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Abstract—The McEliece cryptosystem is an asymmetric type of cryptography based on 

error correction code. The classical McEliece used irreducible binary Goppa code which 

considered unbreakable until now especially with parameter [1024, 524, and 101], but it is 

suffering from large public key matrix which leads to be difficult to be used practically. In 

this work Irreducible and Separable Goppa codes have been introduced. The Irreducible and 

Separable Goppa codes used are with flexible parameters and dynamic error vectors. A 

Comparison between Separable and Irreducible Goppa code in McEliece Cryptosystem has 

been done. For encryption stage, to get better result for comparison, two types of testing have 

been chosen; in the first one the random message is constant while the parameters of Goppa 

code have been changed. But for the second test, the parameters of Goppa code are constant 

(m=8 and t=10) while the random message have been changed. The results show that the time 

needed to calculate parity check matrix in separable are higher than the one for irreducible 

McEliece cryptosystem, which is considered expected results due to calculate extra parity 

check matrix in decryption process for g2(z) in separable type, and the time needed to execute 

error locator in decryption stage in separable type is better than the time needed to calculate 

it in irreducible type. The proposed implementation has been done by Visual studio C#. 
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I. INTRODUCTION 

new horizon for computer industry is in the infancy stage, that is quantum computer. It is 

different from digital computers, in that the latter, deals with data either as zeros or ones, 

while in the quantum computation uses quantum bits. Shore’s proved that, whenever quantum 

computer becomes to reality, most cryptography algorithms are cryptanalytic (especially 

those cryptosystems that depends on factoring, logarithm, and elliptic curve). The only 

cryptosystem that resist the quantum computer is McEliece Cryptosystem. 

McEliece cryptosystem is based on hardness of finding nearest codeword for a linear binary 

code, which is considering a NP- hard Problem (Non-deterministic Polynomial-time hard), 

the name stands for McEliece who is suggested it in 1978 [1], to use error correction code in 

order to send knowledge in a secure method to destination over unsecured channel. This idea 

is considered out of ordinary due to the main principles of coding theory to ensure that the 

message received is correct message; while one of the principles of cryptography is protecting 
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the communication over non-secure channels. Error correcting codes harnesses the coding 

theory in order to detect and fix the errors (as depicted in Fig. 1). The main drawback of error 

correcting codes is the adding of redundant bits, which makes the message size larger than its 

original size. The reason behind adding redundant bits is to detect the errors and then fix it.  

 

 

Fig. 1 Sending message with error correcting 

 

The McEliece cryptosystem suffers from large public key matrix, which leads to be difficult 

for practical use (with all platforms which have small memories and virtual memories). After 

that many variants of McEliece cryptosystem were proposed in order to reduce the size of 

public key [2]-[11]. Unfortunately most proposed system was broken [12]-[15]. 

Due to the above reasons, McEliece cryptosystem with binary Goppa code have been 

introduced and studied, which is classified into irreducible and separable binary Goppa code. 

A few implementations of original McEliece public key cryptosystem have been proposed, 

most of them were dealing with a fixed parameters, except an implementation proposed by 

Repka[16] which deals with unfixed parameters, using C++   language, and he depends on 

number theory library (NTL), which is use C++ program to factorize, test irreducibility,   

multiplication, division, and other polynomial operations. 

In this paper a new implementation with flexible parameters and dynamic errors, using the 

two types of binary Goppa code, have been introduced in order to compare between the two 

types of binary Goppa code. The implementations have been done by graphical user interface 

(GUI) using Visual Studio C#. 

The comparison was done from different perspectives, which are computation time, 

security, implementation issue, and size of public generator matrix. 

II. BINARY GOPPA CODE 

The Binary Goppa code is denoted by Γ(g(z); L), where g(z) is a Goppa generator 

polynomial of degree t over the extension field GF(2m) and L is the range of code such that 

L⊆GF(2m) [17]. 

 

𝑔(𝑧) =  ∑ 𝑔𝑖𝑧
𝑖𝑡

𝑖=0        (1) 

and 

𝐿 = {∀ 𝛼𝑖  ∈ 𝐺𝐹(2
𝑚)\𝑔(𝛼𝑖) = 0}         (2) 



 

 

A. Parameters of Goppa Code 

Let n=2m be the length of codeword c, which is constricted by range L, k is a dimension 

bounded by k ≥n -mt, and minimum distance d ≥2t + 1. Then [n, k, d] denotes to the 

parameters Goppa code Γ(g(z); L) [1]. 

A generated Polynomial g(z) is called separable when the polynomial has no roots of 

multiplicity greater than one (i.e. has no repeated roots). In this case the minimum distance 

of the Goppa code will be the larger d ≥ 2t + 1 and can be correct t errors. 

Obviously, according (1) and (2) in irreducible Goppa code, none of α’s yields the condition 

𝑔(𝛼𝑖) = 0 i.e. L=GF{2m}. While in separable Goppa code, there exist at least one α s.t. 

g(α)=0. 

B. Parity Check Matrix of the Binary Goppa Code 

Parity Check matrix H is the most important matrix in encoding and decoding the message. 

To determine the matrix H: 

𝐻𝑑𝑖 = ∑ ∑ 𝑔𝑡−(𝑘−1)𝛼𝑖
𝑡−𝑑+(1−𝑘)

ℎ𝑖
𝑡−(𝑑−1)
𝑘=1𝛼𝑖∈𝐿    where 1 ≤ d ≤ t                  (3) 

 

Remark: If c is a codeword, then the parity check matrix H should yield cHT=0. 

C. Generator Matrix of the Binary Goppa Code 

The generator matrix G of the binary Goppa code used to encode and decode message, while 

Parity check matrix is important for detecting and correcting errors. The generator matrix G 

is derived from parity check matrix H, the row space of G is the vectors of nullspace of H 

modulo 2 such that: 

 

𝐺𝐻𝑇 = 0                   (4) 

D. Encoding Message in Binary Goppa Code 

Let [n, k, d] be a parameters of Goppa code Γ (L; g(z)), where g(z) is a polynomial of degree 

t over GF(2m) with range L⊆GF(2m). Then encoding a message by partitioned it into blocks 

of k bits and multiplying each block with the generator matrix G [17], i.e.: 

 

(𝑚1, 𝑚2, … ,𝑚𝑘). 𝐺 = (𝑐1, 𝑐2, … , 𝑐𝑛)                 (5) 

 

 

Fig. 2 Algorithm of Finding and Correcting Errors in Separable Goppa Code 



 

 

E. Error Correcting of Binary Goppa Code 

Finding and fixing errors differs from irreducible than separable Goppa code. Each one have 

it is own algorithm to fixing errors (as shown in Figs. 2 and 3). 

 

Fig. 3 Algorithm of Finding and Correcting Errors in Irreducible Goppa Code 

F. Decoding a Message in Binary Goppa Code 

When the errors are fixed in codeword, the received message can be decoded [17], using 

the (5), which can be written as matrix representation: 

 

𝐺𝑇 . (

𝑚1
⋮
𝑚𝑘
) = (

𝑐1
⋮
𝑐𝑛
) 

 

For computing the message, Gauss elimination method is applied in order to remove 

generator matrix G: 

 

(𝐺𝑇|

𝑐1
⋮
𝑐𝑛
)  ∼  ⋯  ∼  

(

  
 
(𝑃𝐼|

𝑚1
⋮
𝑚𝑘

)

𝑃

)

  
 

       (6) 

 

where Ik is the identity matrix with size k × k and P is a matrix with size (n - k) × (k + 1). 

III. MCELIECE CRYPTOSYSTEM 

The McEliece Cryptosystem is one of the major types of public key cryptosystem. It is 

classified into three processes (as shown in Fig. 4), namely: Key generation, Encryption 

process, and Decryption process. 

 



 

 

 

Fig. 4 McEliece Cryptosystem 

A. Key Generation of McEliece Cryptosystem 

Public key cryptosystem based on two types of keys (public and private), which are linked 

together mathematically. A public key is published and used to cipher a message, while a 

private key must be keep it secret and used it to decipher the message [2]. To prepare keys 

depending on Goppa code, the following approaches should be used [1]: 

1. The secret key of McEliece PKC depends on three Parameters: 

 The first one depends on setup Goppa code, a random polynomial g(z) of degree t over 

GF(2m) could be selected. The Goppa code Γ(L; g(z)) has parameters [n; k≥ n -mt; d ≥ 2t 

+ 1]. Based on given parameters calculate the k × n private generator matrix G of the 

Goppa code as explained in Section II (A-C). 

 Pick a random k × k matrix S, s.t S × B= I. The matrix B is derived from Gauss elimination 

method. This approach are faster than to determining the determinant of a matrix, at the 

same time reduce the probability of choosing invertible matrix because in our assumption 

the matrix B is not necessary to be an inverse for picked matrix S. 

 Pick an arbitrary n × n permutation matrix P, Where P is a matrix that contains one ones 

in each row and each column.  

2. The Public generator matrix 𝐺∗ is calculated by 𝐺∗ = 𝑆 × 𝐺 × 𝑃 and should be published 

with degree of random generator polynomial t. 

B. Encryption Process in McEliece Cryptosystem 

To encrypt any message, the following steps (as seen in Fig. 5) should be followed: 

1. Obviously, in encryption process, there is public generator matrix 𝐺𝑘×𝑛
∗  and degree of an 

arbitrary generator polynomial t. 

2. Convert each character to decimal number using ASCII code, where each character should 

have 7 bits length. 

3. Collect all binary string together. 

4. In case length of message mod k ≠ 0, the message with (k-(length of message mod k)) 

zero’s in the last of the message, should be padding. 

5. Each fetching process for k bits from the message should perform steps 6-10. 

6. Calculate fetched message × G*. 

7. Create error vector e with size n and include (≤ t) errors (i.e. e has n zero’s and convert (≤ 

t) zero’s to one’s). 



 

 

 

 

Fig. 5 Encryption Process 

 

C. Decryption Process in McEliece Cryptosystem 

To recover plain message from cipher message c, the following steps should be done (as 

depicted in Fig. 6): 

1. The receiver has the following information: Goppa code parameters with secret generator 

matrix𝐺𝑘×𝑛, Nonsingular Matrix S, and Permutation matrix P. 

2. Compute the invertible of matrix S, and the inverse of Permutation matrix. 

3. Partition the cipher message into parts, where each part contains k bits. 

4. For each entity should perform steps 5-9. 

5. Compute 𝑚𝑆𝐺 ′ = 𝑐 × 𝑃−1 = 𝑚𝑆𝐺𝑃 + 𝑃′ = 𝑚𝑆𝐺 + 𝑒 ′. 
6. Use efficient decoding algorithm (if the Goppa code is separable (as shown in Fig. 2) or 

irreducible (as shown in Fig. 3) to find error location 𝑒 ′. 

7. Calculate 𝑚𝑆𝐺 = 𝑚𝑆𝐺 ′ + 𝑒 ′. 
8. Removing secret generator matrix G using Gaussian elimination method to get (mS). (as 

explained in Section II (F). 

9. Compute𝑚 = 𝑚𝑆 × 𝑆−1. 

10. Collect all computing message together. 

11. Make sure length (message) mod 7 =0; in case of inequality we could remove (length 

(message) mod 7) zero’s from the last of the message. 

12. Fetch every time 7 bits from the message and convert it to decimal number. 

13. Convert each decimal number to character using ASCII code table, and then collect all 

characters together to obtain the plain message. 

 

 

Fig. 6 Decryption Process 

 

IV. A PROTOTYPE FOR DESIGNED SYSTEM USING VISUAL STUDIO C# 

The designed platforms have been done by three stages using Visual Studio c#, the first one 

is to generate secret and public key for the required cryptosystem, and the second stage is for 

encryption process, while the last one used to decrypt the message. It has the following 

specifications: 



 

 

1. The system randomly generate a Goppa code Γ(L; g(z)) and then tested it, if the code 

match the condition of Goppa code (Irreducible or separable) then it starts the process, 

whereas the system will inform the user why the condition dose not yield then start to 

generate a new code. 

2. The designed system deals with flexible parameters and dynamic error vectors. The 

dynamic error (dynamic errors means that the sender have the right to choose number of 

errors less than from published one without notifying the receiver and for the next block 

of message the error locations are changed randomly with a new number of errors). This 

process increases the time attacks (which are based on finding minimum codewords) 

against McEliece cryptosystem. 

3. The designed system, record every details and operations required by McEliece 

cryptosystem (for key generation, encryption, and decryption process) in text files. This 

process helps the researchers to do a well studying for the designed cryptosystem and it is 

useful for teaching propose. 

A. Key Generation Stage 

In this stage many forms has designed in order to determine each needed operation 

separately. The designed system begin from factoring polynomial and testing irreducibility 

and ended with generating public generator matrix as explained in Section III (A). Figs. 7-9 

declare how the key generation stages are designed. These figures are part of several forms. 

 

 

Fig. 7 Generating Secret Matrix 

 

 

Fig. 8 Parameters of Code 

 



 

 

 

Fig. 9 Generating Public Matrix 

 

A. Encryption Stage 

This stage consists of three forms, the two forms used to enter the message in two ways. 

The First way is about import file from specified folder, while the second form is entering the 

message within the textbox. During the two forms the message has partitioned and converted 

to a numbers using ASCII code. Whereas the third form begin to encrypt the message as 

shown in Fig. 10. 

 

 

Fig. 10 Encryption Stage 

 

B. Decryption Stage 

In this stage several forms have been designed in order to determine each needed operations 

separately. The designed system begin from determine parity check matrix in case of 

separable Goppa code, decoding algorithm, etc. as explained in Section III (C). Figs. 11 and 

12 show how the decryption stages are designed. These figures are part of several forms. 

 

 

Fig. 11 Syndrome and Error Locations Form 



 

 

  

Fig. 12 Decryption Stage 

 

V. COMPARISON BETWEEN SEPARABLE AND IRREDUCIBLE GOPPA CODE IN MCELIECE 

CRYPTOSYSTEM 

A. Collecting Data 

In order to compare between separable and irreducible Goppa code, two measurement types 

have been recorded. The first one records the average computation time for Parity check 

matrix (in case of separable type, time computation in encryption and decryption process have 

been counted), error locator polynomial (sigma), and encryption stage for (50 Byte) message.  

 
TABLE I 

 COMPUTATION TIME OF PARITY CHECK MATRIX FOR SEPARABLE AND IRREDUCIBLE GOPPA CODE\CPU 

TICKS 

Degree of 

g(z) t 

Extension 

number 

(m) 

Av. 

Separable\ 

CPU Ticks 

Av. 

Irreducible\ 

CPU Ticks 

2 4 1.26E+04 4.64E+03 

3 4 1.75E+04 6.74E+03 

4 5 6.47E+04 2.30E+04 

5 5 6.55E+04 2.81E+04 

6 6 2.86E+05 8.94E+04 

7 6 3.64E+05 9.65E+04 

8 7 2.55E+06 6.70E+05 

9 7 2.35E+06 5.63E+05 

10 8 1.19E+07 3.22E+06 

11 8 1.46E+07 3.60E+06 

 
TABLE II 

COMPUTATION TIME OF ERROR LOCATOR FOR SEPARABLE AND IRREDUCIBLE GOPPA CODE\CPU TICKS 

Degree of 

g(z) t 

Extension 

number 

(m) 

Av. 

Separable\ 

CPU Ticks 

Av. 

Irreducible\ 

CPU Ticks 

2 4 7.01E+02 1.43E+03 

3 4 1.03E+03 2.12E+03 

4 5 2.23E+03 4.58E+03 

5 5 3.01E+03 5.31E+03 

6 6 6.85E+03 1.35E+04 



 

 

7 6 7.57E+03 1.83E+04 

8 7 3.45E+04 1.06E+05 

9 7 3.11E+04 1.04E+05 

10 8 1.25E+05 8.37E+05 

11 8 1.60E+05 8.37E+05 

 

TABLE III 

COMPUTATION TIME TO ENCRYPT (50 BYTE) MESSAGE FOR SEPARABLE AND IRREDUCIBLE GOPPA 

CODE\CPU TICKS 

Degree of 

g(z) t 

Extension 

number 

(m) 

Av. 

Separable\ 

CPU Ticks 

Av. 

Irreducible\ 

CPU Ticks 

2 4 1.42E+05 8.28E+04 

3 4 4.74E+05 3.23E+05 

4 5 6.10E+02 6.47E+04 

5 5 3.20E+05 1.61E+05 

6 6 2.13E+04 2.22E+04 

7 6 4.88E+04 3.65E+04 

8 7 1.58E+04 1.98E+04 

9 7 2.26E+04 2.01E+04 

10 8 1.42E+04 1.77E+04 

11 8 1.64E+04 1.98E+04 

 

The designed system is implemented for random parameters m=4, 5, ...,8 and for each 

extension number (m), two degree of random generator polynomial is implemented, which is 

starts from 2 to 11 respectively (as shown in Tables I-III). 

 
TABLE IV 

COMPUTATION TIME TO ENCRYPT MESSAGE FOR SEPARABLE AND IRREDUCIBLE GOPPA CODE\CPU TICKS 

Message 

Size\ Byte 

Av. 

Separable 

with One 

Root 

Av. 

Separable\ 

CPU Ticks 

with t root 

Av. 

Irreducible\ 

CPU Ticks 

118 8.36E+04 5.14E+04 8.54E+04 

223 1.78E+05 1.29E+05 1.74E+05 

348 3.18E+05 2.48E+05 2.95E+05 

413 6.12E+05 3.52E+05 4.50E+05 

558 8.31E+05 6.73E+05 8.70E+05 

657 1.15E+06 9.50E+05 1.21E+06 

751 1.76E+06 1.31E+06 1.53E+06 

836 2.01E+06 1.75E+06 2.03E+06 

964 2.58E+06 2.26E+06 2.66E+06 

1136 4.17E+06 3.74E+06 4.17E+06 

 

While second measurement records the computation time for encryption process with 

different random message size, which is start from 100 Byte to 1kB. Due to yield notable 

chart, smaller Goppa code (m=8, t=10) have been implemented (as shown in Table IV). 



 

 

B. Analyzing Time Computation 

As shown in Fig. 13, which is derived from Table I, the computation time for calculating 

parity check matrix is higher than the time needed to calculate it in irreducible McEliece 

cryptosystem. It is expected results due to determining additional parity check matrix in 

decryption process for g2(z) in  separable type. Actually this is one of the reasons behind 

preference irreducible type over separable type. 

 

 

Fig. 13 Average Computation Time of Parity Check Matrix in Respect to Degree of g(z) for Separable and 

Irreducible Types 

 

Fig. 14 shows that the time needed to execute error locator in decryption process for 

separable type, is better than the computing time in irreducible type. For encryption stage, to 

get better result for comparison, two types of testing have been chosen, in the first one the 

random message is constant while the parameter of Goppa code are changed. But in the 

second test, the parameters of Goppa code are constant (m=8 and t=10), while the random 

message are changed. The result shows that the time needed to execute it is closed especially 

for big (m)’s (choosing big (m)’s are better for security propose) (as shown in Figs. 15 and 

16)). 

 

 



 

 

Fig. 14 Average Computation Error Locator Polynomial (Sigma) in Respect to Degree of g(z) for Separable 

and Irreducible Types 
 

 

 

Fig. 15 Average Computation Time of Encryption Process for (50 Byte) Random Message in Respect to 

Degree of g(z) for Separable and Irreducible Types 

 

 

Fig. 16 Average Computation Time of Encryption Process in Respect to Random Message for Separable 

and Irreducible Types 

VI. SEVERAL PERSPECTIVES ON COMPARISON BETWEEN SEPARABLE AND IRREDUCIBLE GOPPA 

CODE IN MCELIECE CRYPTOSYSTEM 

In general, the separable and irreducible McEliece cryptosystem can be compared in four 

perspectives, as below: 

1. Time Computation 

It is clear, the consuming time are closed to be balance, which is disprove that vision about 

preference irreducible over separable type. 

2. Security 



 

 

Till now, there is no study mentioned that there is an active attack on separable type except 

that attacks on cyclic and dyadic Goppa code which is depend on separable type (the attack 

depends on secret matrix which is generated by cyclic the first row of matrix while in the 

designed system, the secret matrix are generated by the null space). 

3. Implementation Issues 

Due to calculating a parity check matrix for g2(z), it may cause a problem with enlarge t in 

implementation time (i.e. maximize the size of matrix from (t× no. of columns) to (2t × no. 

of columns), which may cause a problem with big t. 

4. Memory 

The size of generator public matrix in original McEliece cryptosystem is large, which is 

considering an effective drawback. Using separable Goppa code, reduces the size of public 

key, for example if m=8 and t=10 have been selected, the size of public key in irreducible 

type [256, 176, 21] will be 256 × 176 = 45056 bits, while in separable type [246, 166, 21] 

will be 246 × 166 = 40836 bits 

VII. CONCLUSIONS 

A graphical user interface of McEliece public key cryptosystem, have been designed using 

the two types of Goppa code (irreducible and separable) with unfixed parameters and dynamic 

errors. The designed system increases the attacking time against attacks based on finding 

minimum codeword. Also, a comparison between separable and irreducible have been done, 

and founded in general implementation the two types are closed to be balanced. Separable 

type may cause a problem in implementation time for those programming languages that deals 

with smaller size of integer data types (which is convert to exponential format), whenever 

degree of generator polynomial are big. On the other hand, separable type needs less memory 

than irreducible Goppa code to store public generator matrix. 
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