Reliable Information Extraction for Single Trace
Attacks

Valentina Banciu, Elisabeth Oswald, Carolyn Whitnall
Department of Computer Science, University of Bristol
MVB, Woodland Road, Bristol BS8 1UB, UK
Email: {Valentina.Banciu, Elisabeth.Oswald, Carolyn.Whitnall} @bristol.ac.uk

Abstract—Side-channel attacks using only a single trace cru-
cially rely on the capability of reliably extracting side-channel
information (e.g. Hamming weights of intermediate target values)
from traces. In particular, in original versions of simple power
analysis (SPA) or algebraic side channel attacks (ASCA) it was
assumed that an adversary can correctly extract the Hamming
weight values for all the intermediates used in an attack. Recent
developments in error tolerant SPA style attacks relax this
unrealistic requirement on the information extraction and bring
renewed interest to the topic of template building or training
suitable machine learning classifiers.

In this work we ask which classifiers or methods, if any, are
most likely to return the true Hamming weight among their first
(say s) ranked outputs. We experiment on two data sets with
different leakage characteristics. Our experiments show that the
most suitable classifiers to reach the required performance for
pragmatic SPA attacks are Gaussian templates, Support Vector
Machines and Random Forests, across the two data sets that we
considered. We found no configuration that was able to satisfy
the requirements of an error tolerant ASCA in case of complex
leakage.

I. INTRODUCTION

Contemporary literature on side-channel attacks, and in
particular on power analysis, is mostly focused on the scenario
in which an adversary has access to several side-channel traces
arising from input data with a fixed secret key, known as
Differential Power Analysis (DPA). However, single trace at-
tacks such as Simple Power Analysis (SPA) or Algebraic Side
Channel Analysis (ASCA) (see [1] and [2], [3] respectively),
have regained attention over the last years. Attacks such as [1],
which we refer to as pragmatic SPA attacks, essentially utilise
the leakage information to narrow down the search space for
the secret key, but leave the actual key search as a separate
step. On the other hand, ASCA attacks deploy a black box
solver that implicitly performs the key search in a pre-set
interval of time, i.e. either the outcome is the secret key or the
solver halts when the allowed time has elapsed. Recent work
[4] suggests that an advantage of using the pragmatic approach
is that one can tolerate imprecise leakage information better
than ASCA.

Being able to work with more error tolerant attacks should
have an impact on the information extraction process. In-
tuitively, in the presence of less stringent requirements, in-

V. Banciu has been supported by EPSRC via grant EP/H049606/1. E.
Oswald and C. Whitnall have been supported in part by EPSRC via grant
EP/1005226/1.

formation extraction including building templates or training
classifiers should become easier. In this work we investigate a
wide range of options to build templates, and analyse whether
they would be able to meet the requirements of state-of-the-art
error-tolerant pragmatic SPA and ASCA attacks. Surprisingly,
despite the fair amount of publications on single trace attacks,
currently there are no available results confirming that any
approach to template building actually complies, and so the
practical relevance of aforementioned strategies remains un-
clear.

The outcomes of our study can be briefly summarised as
follows: Gaussian templates, Support Vector Machines, and
Random Forests performed consistently well across the two
(significantly) different data sets, including increasing the
noise and varying the number of training traces and features,
i.e. points of interest and principal components. We were
able to achieve the required classification performance for
pragmatic SPA attacks for all data sets by using suitable
parameters, i.e. enough features and/or training traces. For the
more stringent requirements of ASCA however, only the ‘easy’
data set led to sufficient classification performances.

We structure this article as follows. In Section II we explain
the requirements of pragmatic SPA and ASCA attacks in more
detail, review some previous work on profiling, and introduce
the necessary notation. Thereafter in Section III we explain our
experimental setup and methodology for evaluation, including
choices we made with regards to selecting the features (points
of interest and principal components) and the classifiers.
This section also offers some first intuitions about how the
classifiers cope with the data sets, and so sets the scene for
the results in Section IV.

II. BACKGROUND AND NOTATION

The leakage model considered in this paper is the Hamming
weight. We use HW (v) to refer to the Hamming weight of a
value v, i.e. the number of bits with value one. Furthermore,
we consider a typical implementation of AES on an 8-
bit architecture: these assumptions keep our contribution in
line with previous work in this context. Consequently, if an
adversary learns the Hamming weight w of an intermediate
value v, then this reduces the uncertainty about v as only ()
out of 256 values satisfy the observed Hamming weight.

Pragmatic SPA and ASCA are error tolerant in the sense that
the side-channel information for a single intermediate leakage

point can be represented as a set of possible values (rather
than uniquely identified). Let £ = {wq, ws, ... ws} be such
a set, where 1 < s < 9 denotes the size of the set. The
true Hamming weight value must be contained within this set,
which however does not imply actually knowing the value.
Given a set £, an attacker will need to test Zle (ui) out of
256 values. Clearly, as the set size increases, the relevance
of side-channel information diminishes and more effort is
required for the key search, up to the point where it become
infeasible. Previous work indicates s = 5 for the pragmatic
SPA (see [4]), and s = 3 for ASCA (see [2], [5]) as the
largest set sizes tolerated by each type of attack.

Research in the area of pragmatic SPA and ASCA is based
on simulations, leaving information extraction as a separate
topic. This points towards a widening gap: given that such
attacks can now tolerate errors, what are the most efficient
ways of templating side-channel information such that the
requirements of pragmatic SPA and/or ASCA are met?

A. Previous Work

In previous work two expressions are used synonymously:
profiling and template building. Both expressions refer to
the process of identifying and extracting the essential data-
dependent characteristics from side-channel traces. Histori-
cally [6], power traces were mainly understood as vectors of
Gaussian distributed points. Characterising them boiled down
to estimating means and variances in the univariate case,
or mean vectors and covariance matrices in the multivariate
case. Early work [6], [7] discussed some of the challenges
of building Gaussian templates, and made recommendations
to maximise the classification performance, which was largely
characterised by the probability of correctly classifying new
leakages.

Recent work [8]-[10] investigated machine learning tech-
niques, and in particular Support Vector Machines (SVM),
as an alternative to classical template building approaches.
SVM are probably the most prominent member of kernel
methods. As such, two kernel functions (linear and RBF) are
investigated in [8]; of these two, the RBF one yields better
results than classical templates. While classical templates aim
at building an explicit characterisation of data, SVM aim at
separating data into classes, but clearly noise will negatively
impact the performance of both techniques; other intuitive
parameters are the number of available traces, and the number
of relevant points as described above. When the noise is higher,
SVM outperform classical approaches, and require slightly
fewer traces to succeed [10].

B. Notation

We strive to use simple notation throughout this paper.
Recall that we essentially extract the 8-bit Hamming weight
of intermediate values. Let ¢ denote the observed power trace
corresponding to the processing of a single intermediate value
v, and w = HW (v). The aim of an attacker is to guess
w, given t. For this task, the attacker can use a (black box)
classifier C that, given as input ¢, will output a ranked list

C(t) = {(pi,wi)lpi = piraVi = 1~-8,Z?=1Pi = lw; #
w;Vi # j,i,j = 1...9}, where p; is the probability of trace ¢
being observed if the Hamming weight of v was w;. Naturally
then, 0 < p; < 1,i = 1...9 and U}_,w; = {0...8}. Note
that it is not mandatory that w; = 1.

Ideally, the Hamming weight class indicated by the highest
probability should correspond to the true leakage, i.e. w = w;.
However, in practice, this is not always the case. Thus, an
attacker will want to look at the first s classes indicated by
the classifier, where s is a fixed parameter; in order to make
the link with previous work, we discuss the cases s = {3,5}
(see Section II). As stated, our main focus in this paper is to
determine which classifiers consistently rank the true leakage
within the top s outputs, and therefore meet the requirements
of the ASCA, respectively pragmatic SPA. We measure the
effort needed to achieve such a classification performance in
terms of the number of training traces in relation to the signal-
to-noise ratio (SNR), or the number of features, e.g. points of
interest or principal components.

III. EXPERIMENTAL SETUP AND METHODOLOGY

We elected to adopt two widely-used experimental platforms
for our research: a simple 8-bit microcontroller based on
the 8051 instruction set, and a slightly more complex 32-
bit platform based on an ARM7 microprocessor. Both archi-
tectures run a standard 8-bit implementation of AES without
countermeasures and constant execution times, and leak the
Hamming weight of intermediate values. The microcontroller
has a very favourable SNR and consequently DPA-style attacks
succeed with very few leakage traces. The microprocessor
has a worse SNR, and some instructions do not give much
exploitable leakage unless some previous state is known. These
devices were therefore chosen to illustrate a favourable and a
more adverse scenario for an attacker.

For each setup we produced a set of power traces with
random inputs. Each set consists of ten thousand traces;
this amount is sufficient based on our experience with these
devices, and necessary in order to cater for some larger
experiments (see Section IV). Because the results are similar
for the different encryption operations (i.e. AddRoundKey,
SubBytes and MixColumns), we shall only include results for
the SubBytes operation. We further explain some parameter
choices in the remainder of this section.

A. Dimensionality Reduction

The size of traces, quantified in the number of time instances
where measurements are recorded, is large in practice, such
that profiling entire traces is impractical. Further, one is usu-
ally targeting a single key-dependent intermediate value, and
clearly only a part of the trace will be relevant. Previous work
has shown that selecting some points of interest (short POI)
can be effectively done via performing a correlation-based
profiling. Alternatively one can use PCA [11] to transform
traces and then select a small number of principal components
(short PC). It should be noted that the correlation-based
profiling is possible due to the leakage characteristics of the

targeted devices, but it is in no way mandatory; alternatively,
PCA is always feasible.

1) Selecting Points of Interest: We applied correlation-
based profiling to all key-dependent intermediate values (i.e.
the output byte values of MixColumns, AddRoundKey and
SubBytes) from each round. For each such intermediate
value, the correlation trace exhibits some clear peaks, which
indicate the points in time at which the value is processed:
approximately 10 points are high, i.e. they are larger than a
chosen threshold which is around 0.7 for 8051 and 0.25 for
ARM. Because our AES implementation has constant time, if
one selects only the point indicating the highest correlation for
all output bytes of all rounds of a chosen operation, then these
points are at a fixed distance to each other when analysing
either the same byte of consecutive rounds, or adjacent bytes
of the same round. Note that ShiftRows has an effect similar
to the renumbering of bytes, and that the last round has
no MixColumns operation, which implies some shift of the
otherwise well-aligned bytes. Further, if the highest correlation
points are ordered in descending order of the correlation value,
then this ordered suite will again mostly follow the previously
observed alignment pattern.! Because the points are well-
aligned for all intermediate values, it is possible to target
only a single output byte and stipulate that targeting other
intermediate values will lead to similar results.

2) Selecting Principal Components: We used PCA, which
is an orthogonal transformation that converts the initial data
into a set of linearly uncorrelated variables, called principal
components, maximising variance. The number of principal
components is a priori bounded by the number of classes (in
our case this number is 9) minus one.

To give some intuition about the respective leakage char-
acteristics of the two devices we provide some simple scatter
plots. Focusing first on the microcontroller we can observe in
Figure la that already a simple two-dimensional model leads
to clearly visible clusters: the left hand side relates to choosing
two points of the observed leakage trace, the right hand side
relates to choosing the first two principal components. We
would hence expect that almost all clustering algorithms will
perform well, possibly even if we inject independent Gaussian
noise into our data. However, looking at Figure lc, which
shows the same plots but using the microprocessor data, a
different picture emerges. Possibly because these traces were
filtered after being recorded, there exist some visible clusters,
but they are much less clearly separated across the different
points or principal components that we selected. The 8051
clusters become less distinct when one looks at the highest
principal components, but it is not the case for the ARM
clusters (see Figure 1b, respectively Figure 1d). We hence
expect that not all clustering techniques will be successful
in this case, and it would even seem unclear whether any

'We observed that the difference-of-means test outputs very similar sets of
points. Consequently our analysis no further discriminates if a correlation-
based profiling is used for point selection or another means based distin-
guisher.

© HWO
HWA
HW2
HW3
HW4
| Hws
© HW6

© HW7
- HW8

(a) 8051, POI (b) 8051, PC

(c) ARM, POI

(d) ARM, PC

Fig. 1: Scatter plots showing two dimensional HW clusters as
arising from the 8051 (up), respectively ARM (down) traces,
using the power consumption at the first two points of interest
(left), respectively principal components (right)

1 1

5 i 3 —FoOl
[0'75". [0.75,‘ ---PC
c " c
2 05" 2 05"
o \ o \
2025 2025
8§ 8
Ty T M-S
5 10 15 20 5 10 15 20
Feature rank Feature rank
(a) 8051 (b) ARM

Fig. 2: Sorted absolute correlation values of the first eight
features obtained via correlation-based profiling and PCA to
8051 (left), and ARM (right) trace points.

strategies exist that can deliver the classification performance
that we require for pragmatic SPA or ASCA. Further, the
sorted absolute correlation values for both dimensionality
reduction methods and devices are plotted in Figure 2. The
first principal component has a higher correlation to the traces
compared with the highest correlation point in the case of
ARM traces, but not for the 8051 traces.

B. Selecting the Data Sets

In the usual scenario of SPA, an attacker has unlimited
access to a device which they may use to generate traces with
known inputs (e.g. known plaintexts and secret key). They will
then use this device to make a ‘good enough’ characterization
of the device, in the sense that when given a trace from
an identical device for which the inputs are not known they
will be able to guess the hidden information. In practice, it
may be unfeasible or costly to require unlimited access to a
device. The aim for the attacker is therefore to create a good
characterisation of the device using as few as possible traces.
This set of traces is called training data (or training traces).
Next, an attacker will use his model to extract information
about new traces, i.e. test data (or test traces).

In order to prevent the overfitting of the model (i.e., creating
a model that perfectly describes the training data but does not
perform comparably well on test data), k-fold cross-validation
can be used: the training data is divided into k groups, and
by rotation £ — 1 groups are used for training and the k-th
group is used for testing. For our experiments, we empirically
set £k = 10. Further, in order to obtain a balanced model, the
training and test data are a stratified selection of the available
traces (i.e., similar amounts of training traces per Hamming
weight).

C. Selected Classifiers and First Intuitions

The classifiers that we use are the classical approach intro-
duced by Chari et al. in [6], and a number of machine learning
techniques. So far, Support Vector Machines (SVM) have been
studied as an alternative to the classical approach; we further
look at other machine learning techniques such as k-Nearest
Neighbours (kNN), Decision Trees (DT) and Random Forests
(RF). We will briefly describe the algorithms in the following.

1) Support Vector Machines (SVM): An SVM will con-
struct the optimum separation hyperplane, which maximizes
the distance to the nearest data points from each class, i.e. the
margin. It may occur that the classes are not linearly separable,
and/or some outliers exist; thus, soft margin classification was
introduced by Cortes and Vapnik [12] to allow for intentional
misclassification of training data, but hopefully overall improv-
ing prediction results. SVM using soft margin classification
aims at maximizing the margin while minimizing the number
of misclassified instances. Finally, applying the kernel trick
[13] is a way to create a non-linear separation surface; the
maximum-margin plane may still be linear in a transformed
feature space. There are a number of parametric choices for
the kernel, e.g. the kernel function can be linear, polynomial,
a radial basis or sigmoid; the most common is the radial basis
function (RBF) and it is the one we used.

2) k-Nearest Neighbors (kNN): A new instance is assigned
to the class which contains most of the k (fixed parameter)
nearest neighbours, via majority voting. An important step
is choosing the right value for k: choosing £ = 1 will lead
to overfitting the training data; choosing k = n (the number
of training traces) will lead to a constant output for all new
instances. So, k should be chosen large enough that noise in
the data is minimised and small enough so that the samples of
the other classes are not included. Some rules of thumb suggest
choosing 3 < k < 10, or k = /n. For our experiments, we
have set k = 5.

3) Decision Trees (DT): The algorithm for constructing a
decision tree works top-down, by choosing an attribute that at
each step best splits the set of training features. Each internal
node of the DT tests one attribute (e.g. the average value), each
branch corresponds to an attribute value and each leaf assigns
a classification. Afterwards the training data is organised as a
tree, classifying a new trace is equivalent to a tree search.

4) Random Forests (RF): This method [14] uses a forest
of uncorrelated trees, meaning that each tree is trained on a
subset of the full training data. Further, each tree will only

use a random subset of the full set of features (usually, the
square root of the total available number of features). The
classification is then done by majority voting, i.e. by counting
the outputs of all trees in the forest.

In order to get some intuition of the above methods, let
us consider that the training data set is chosen from the
2-dimensional sets which are represented in Figure 1, say
we choose both the 8051 and ARM data with POI. Let the
testing data be, in each case, the grid of points that covers
both axes spanned by the training data. Then, the decision
surface of each classifier (see Figure 3) can be obtained by
classifying each point on the corresponding grid as indicated
by output w; of that classifier. One can observe the interesting
behaviour of some classifiers, e.g. the DT basically implements
some ranking of features, and a cut-off takes place at some
point (this can be visualised through the rectangular-shaped
surfaces). The RF classifier, which uses decision trees, has a
similar but more granular decision surface. The kNN is highly
sensitive to the local structure of the data.

IV. RESULTS

For the experiments we have varied the number of training
traces from 25 to 500 per Hamming weight in steps of 25,
and the number of POI as well as PC from 1 to 8, in steps
of 1 (to be able to report consistent results for both devices
and dimensionality reduction methods). For each scenario
(20 x 8 x 2 scenarios in total), we have generated 50 different
training data sets, i.e. performed 50 independent experiments,
and averaged out the results. We have used a fixed set of 450
test traces for classification. The performance was evaluated
by counting how many of the test traces were correctly ranked
in the top s (see Section II).

The main issue that we address is whether it is at all possible
to guarantee with certainty that the true leakage will be ranked
within the top s by some classifier for the two concrete
devices that we used. We can provide a positive answer to
this question as several classifiers were able to achieve the
required classification performance.

We now discuss the outcomes and focus on a number of
practically relevant questions. We report some results of the
experiments that were carried out using the RF classifier (the
most efficient classifier that we have found), using POI, and
setting s = 5 (which corresponds to the more challenging
scenario in the exploitation phase, see Section II). The RF
classifier was able to always identify the correct leakage in
the top 5 for the simple microcontroller leakage, and by
adjusting the parameters the classifier was also able to achieve
the same classification performance in case of the complex
microprocessor leakage.

A. Feasibility w.r.t. ASCA

Error tolerant ASCA attacks now support a set size of up
to 3 (see [2], [3], [5], [15]), i.e. any classifier must return the
true Hamming weight within the top 3 ranked classes. The
‘easy’ data sets from the microcontroller allowed for this, but

14

s i
0 0 5 10 15 18 -16 -14 -12 -10

-y ¢ 7
20 cc‘fiﬁ' E © O

Tes

5

-10 5 0 5 10 18 -16 -14 -12 -10

(c) 8051, SVM

.
-10 5 1 5 10 15 -18 -16 -14 -12 -10

(e) 8051, k-Nearest Neighbors (f) ARM, k-Nearest Neighbors

712‘&;
-1
8 .]
G R
iy
C Ty
B N R
o Sdih
20 AL
METS

-10 5 0 5 10 15

(g) 8051, Decision Tree

" o +
o 4 o . .
18 K X b, .
PRI 16 SPond
B AT A 15| AT
20 AR
> |
40 5 0 5 10 15 Sis -16 14 -12 -10

(i) 8051, Random Forest (j) ARM, Random Forest

Fig. 3: Exemplary decision surfaces from training the classi-
fiers. In the absence of a clear separation of classes, some algo-
rithms struggle to find the optimum classification. N7 = 250,
Npor = 2.

we could not train any classifier to achieve this performance
in the case of the ARM data sets.
B. Feasibility w.r.t. pragmatic SPA

For the microcontroller (8051), already a Gaussian template
or SVM (even with a single POI or PC) will achieve the

TABLE 1. ARM, RF: The confusion matrix. Nt = 50,
NPOI = 2, s=25.

Predicted class

0 1 2 3 4 5 6 7 8

0 1 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0
] 2 0.03] 0.03] 0.68] 0.06] 0.06] 0.04] 0.03] 0.03] 0.02
% 3 0 0.01| 0.02] 0.78| 0.04] 0.04| 0.04] 0.04]| 0.01
= 4 0.03] 0.02] 0.04] 0.05] 0.68] 0.06] 0.04] 0.04] 0.02
2 5 0.02] 0.03| 0.02] 0.04] 0.05] 0.70| 0.03| 0.04| 0.02
43:) 6 0.01| 0 0.01] 0.04] 0.04] 0.04]| 0.78| 0.03| 0.03
7 0.01] 0.01] 0.0I] 0.01] 0.01] 0.02] 0.02] 0.89] 0.01

8 0 0 0 0 0 0 0 0 1

desired performance. RF similarly can achieve the top 5
classification goal, however here providing either two POI
or PCs is necessary. All our experiments showed that 25
training traces were sufficient to achieve an almost optimal
classification performance, i.e. using more than 25 traces did
not improve any of the classifiers.

Unsurprisingly, the results for the microprocessor (ARM)
are quite different. Whilst Gaussian templates and SVM al-
most achieve the desired performance, more training traces
were required and more POI and PCs were necessary. RF
is successful in some cases. Interestingly, there is a slight
performance difference using the PC vs. the POI for the ARM
data set. As discussed in Section III-A, the first principal com-
ponent bears a higher correlation to the data than the highest
correlation point, which leads to a performance difference for
all classifiers.

Neither kNN nor DT could reach the desired classification
performance for the data from our two target devices. This is
in accordance with the intuition given in Section III-C.

Figure 4 shows the cumulative distribution functions for
the probability that the true leakage is within the top s in
the RF classifier output. The interesting values of s are 3
(corresponding to the set size required by error tolerant ASCA)
and 5 (corresponding to the set size required by pragmatic
SPA). Clearly for the simple microcontroller data we can
succeed for both set sizes. However, in case of the more
complex microprocessor data, only set size 5 can be achieved.

We briefly focus on the scenarios in which the classifier fails
to rank the correct leakage within the top s. Intuitively, middle
classes (i.e., centred around HW = 4) overlap more, which
could lead to a higher failure rate. This intuition is confirmed
by the confusion matrix, in which element (4, j) evaluates the
percentage of instances of class ¢ that are classified as class j.
Table I shows the confusion matrix for the RF classifier using
ARM data, 50 training traces and two POI, for s = 5.

C. Impact of Noise

Because the classification succeeds with ease in case of the
8051 microcontroller, noise does not greatly impact on the
classification performance in the case of Gaussian templates,
SVM and RF. We noticed a slight degradation only in the case
of the already unsuccessful classifiers.

[AT Tl e = 8
s o
&
095% / o5 !
; i
5 '
0. 09},
=®= 25 training traces ! =o~ 2 features
085 =P 50 training traces 0.85) == 4 features
—H- 75 training traces —m- 6 features
~A= 100 training traces ~A- g features

0.8 0.
2 4 6 8 2 4 6 8

(a) 8051, increasing Nt (b) 8051, increasing Npor

1 T A dn (L A 1

. 5td 2 T
09 s 09 . 4%
¥, a7 K
08 5% 08| ,¥
¥ P
07}, 07l 47
o ~®=- 100 training traces 47
06, o =P 200 training traces 0.0 ~0- 2 features
! 300 training traces =b= 4features
0. ~A=" 400 training traces 05 6 features
' =¥=" 500 training traces —A- " g features
04 04

2 4 6 8 2 4 6 8

(c) ARM, increasing N1 (d) ARM, increasing Npor

Fig. 4: RF: Cumulative distribution function of the probability
that the true Hamming weight is contained within the top s,
with s ranging from 1 to 9. Npo; = 6 (left) and Ny = 250
(right).

TABLE II: RF: The impact of noise on the classification
performance; SNRy is the original SNR. Ny = 250, s = 5.

[8051 I ARM]
Npor
SNR 2 4 6 8 2 4 6 8
SNRg 1 1 1 1 0.98| 099 0.99| 1
0.75 x SNRo 098] 1 1 1 0.95| 0.98| 0.98| 0.98
0.5 x SNRyg 0.96| 099 1 1 0.91| 0.96| 0.97| 0.97
0.25 x SNRo 0.92| 097/ 0.99| 1 0.88| 0.91| 0.92| 0.94

Similarly for the microprocessor, we observed that lowering
the signal had an impact on the classification performance,
but the overall observations made before still apply: Gaussian
templates, SVM and RF can be trained to achieve the desired
performance. In the most noisy case that we considered (we
lowered the natural SNR of the ARM data set by a factor
of 4) we observed that the Random Forest method using
POI achieved the best classification performance and almost
reached the desired correct key rank; this implies too that none
of the methods was (in the most noisy case) able to rank the
true leakage under the top s with certainty. Table II shows the
results using a training data set consisting of 250 traces.

V. CONCLUSION

We trained a number of classifiers with the aim of using
them for the information (i.e. Hamming weight) extraction
required as a precursor to pragmatic SPA and ASCA attacks.
Such attacks are error tolerant to some extent: pragmatic SPA
can tolerate a set size of up to 5 and ASCA can tolerate a set
size of up to 3. We used data from two devices (a microcon-
troller based on an 8051 instruction set and a microprocessor
based on an ARM?7 core) that would be a typical target for
such attacks. The data from the 8051 were raw traces, which
feature a very clear Hamming weight leakage with little noise.
The data from the ARM were filtered to improve the SNR. It
leaks proportional to the Hamming weight but both contains

more noise than the 8051 (despite filtering) and exhibits less
clearly defined Hamming weight features.

Due to the fact that the microcontroller data is ‘nice’, it was
possible to train some classifiers to meet both the requirements
of pragmatic SPA and ASCA. The picture for the ARM data
was different: only Gaussian templates, SVM, and RF were
capable of achieving the classification performance required
for pragmatic SPA attacks. It was not possible to achieve the
performance required for ASCA with any classifier in case of
the ARM data. This leads us to conclude that the practical
relevance of such SPA style attacks is still limited, albeit the
more error tolerant nature of pragmatic SPA gives it a natural
advantage over ASCA.

REFERENCES

[1] S. Mangard, “A simple power-analysis (SPA) attack on implementations
of the AES key expansion,” in Information Security and Cryptology
(ICISC) 2002. Springer, 2003, pp. 343-358.

[2] M. Renauld and F.-X. Standaert, “Algebraic side-channel attacks,” in
Information Security and Cryptology (INSCRYPT) 2009. Springer,
2009, pp. 393-410.

[3] M. Renauld, F.-X. Standaert, and N. Veyrat-Charvillon, “Algebraic side-
channel attacks on the AES: Why time also matters in DPA,” in Cryp-
tographic Hardware and Embedded Systems-CHES 2009. Springer,
2009, pp. 97-111.

[4] V. Banciu and E. Oswald, “Pragmatism vs. elegance: comparing two
approaches to simple power attacks on AES.” JACR Cryptology ePrint
Archive, vol. 2014, p. 177, 2014.

[5] Y. Oren, M. Kirschbaum, T. Popp, and A. Wool, “Algebraic side-channel
analysis in the presence of errors,” in Cryptographic Hardware and
Embedded Systems-CHES 2010. Springer, 2010, pp. 428-442.

[6] S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks,” in Cryptographic
Hardware and Embedded Systems-CHES 2002. Springer, 2003, pp. 13—
28.

[7]1 C. Rechberger and E. Oswald, “Practical template attacks,” in Informa-
tion Security Applications. Springer, 2005, pp. 440-456.

[8] G. Hospodar, B. Gierlichs, E. De Mulder, 1. Verbauwhede, and J. Vande-
walle, “Machine learning in side-channel analysis: A first study,” Journal
of Cryptographic Engineering, vol. 1, no. 4, pp. 293-302, 2011.

[9] L. Lerman, G. Bontempi, and O. Markowitch, “Side channel attack:
An approach based on machine learning,” in Constructive Side-Channel
Analysis and Secure Design. Springer, 2011, pp. 29-41.

[10] A. Heuser and M. Zohner, “Intelligent machine homicide,” in Construc-
tive Side-Channel Analysis and Secure Design. Springer, 2012, pp.
249-264.

[11] C. Archambeau, E. Peeters, F.-X. Standaert, and J.-J. Quisquater, “Tem-
plate attacks in principal subspaces,” in Cryptographic Hardware and
Embedded Systems-CHES 2006. Springer, 2006, pp. 1-14.

[12] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, no. 3, pp. 273-297, 1995.

[13] B. Scholkopf and A. J. Smola, Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press, 2002.

[14] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5-32, 2001.

[15] Y. Oren, M. Renauld, F.-X. Standaert, and A. Wool, “Algebraic side-
channel attacks beyond the Hamming weight leakage model,” in Cryp-
tographic Hardware and Embedded Systems-CHES 2012. Springer,
2012, pp. 140-154.

