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Abstract

We construct the first Authenticated Key Exchange (AKE) protocol whose security does not
degrade with an increasing number of users or sessions. We describe a three-message protocol
and prove security in an enhanced version of the classical Bellare-Rogaway security model.

Our construction is modular, and can be instantiated efficiently from standard assumptions
(such as the SXDH or DLIN assumptions in pairing-friendly groups). For instance, we provide
an SXDH-based protocol whose communication complexity is only 14 group elements and 4
exponents (plus some bookkeeping information).

Along the way we develop new, stronger security definitions for digital signatures and key
encapsulation mechanisms. For instance, we introduce a security model for digital signatures
that provides existential unforgeability under chosen-message attacks in a multi-user setting with
adaptive corruptions of secret keys. We show how to construct efficient schemes that satisfy the
new definitions with tight security proofs under standard assumptions.

1 Introduction

Authenticated Key Exchange (AKE) protocols allow two parties to establish a cryptographic key
over an insecure channel. Secure AKE protects against strong active attackers that may for instance
read, alter, drop, replay, or inject messages, and adaptively corrupt parties to reveal their long-
term or session keys. This makes such protocols much stronger (and thus harder to construct) than
simpler passively secure key exchange protocols like e.g. [DH76].

The most prominent example of an AKE protocol is the TLS Handshake [DA99, DR06, DR08],
which is widely used for key establishment and authentication on the Internet. The widespread use
of TLS makes AKE protocols one of the most widely-used cryptographic primitives. For example,
the social network Facebook.com reports 802 million daily active users on average in September
2013. This makes more than 229 executions of the TLS Handshake protocol per day only on this
single web site.2 The wide application of AKE protocols makes it necessary and interesting to
study their security in large-scale settings with many millions of users.

Provably-secure AKE and tight reductions. A reduction-based security proof describes an
algorithm, the reduction, which turns an efficient attacker on the protocol into an efficient algorithm
solving an assumed-to-be-hard computational problem. The quality of such a reduction can be
measured by its efficiency: the running time and success probability of the reduction running the

1A public version of this paper has been posted to the ePrint Archive at http://eprint.iacr.org/2014/.
2Figure obtained from http://newsroom.fb.com/Key-Facts on May 26, 2014. We assume that each active user

logs-in once per day.

1

http://eprint.iacr.org/2014/
http://newsroom.fb.com/Key-Facts


attacker as a subroutine, relative to the running time and success probability of the attacker alone.
Ideally the reduction adds only a minor amount of computation and has about the same success
probability as the attacker. In this case the reduction is said to be tight.

The existence of tight security proofs has been studied for many cryptographic primitives,
like digital signatures [Ber08, Sch11, KK12], public-key encryption [BBM00, HJ12a, LJYP14], or
identity-based encryption [CW13, BKP14]. However, there is no example of an authenticated key
exchange protocol that comes with tight security proof under a standard assumption, not even in
the Random Oracle Model [BR93b].

Known provably secure AKE protocols come with a reduction which loses a factor that depends
on the number µ of users and the number ` of sessions per user. The loss of the reduction ranges
typically between 1/(µ ·`) (if the reduction has to guess only one party participating in a particular
session) and 1/(µ · `)2 (if the reduction has to guess both parties participating in a particular ses-
sion). This may become significant in large-scale applications. We also consider tight reductions as
theoretically interesting in their own right, because it is challenging to develop new proof strategies
that avoid guessing. We will elaborate on the difficulty of constructing tightly secure AKE ini the
next paragraph.

The difficulty of Tightly-Secure AKE. There are two main difficulties with proving tight
security of an AKE protocol, which we would like to explain with concrete examples.

To illustrate the first, let us think of an AKE protocol where the long-term key pair (pki, ski) is
a key pair for a digital signature scheme. Clearly, at some point in the security proof the security
of the signature scheme must be used as an argument for the security of the AKE protocol, by
giving a reduction from forging a signature to breaking the AKE protocol. Note that the attacker
may use the Corrupt-query to learn the long-term secret of all parties, except for communication
partner Pj of the Test-oracle. The index j might be chosen at random by the attacker.

A standard approach in security proofs for AKE protocols is to let the reduction, which im-
plements the challenger in order to take advantage of the attacker, guess the index j of party Pj .
The reduction generates all key pairs (pki, ski) with i 6= j on its own, and thus is able to answer
Corrupt-queries to party Pi for all i 6= j. In order to use the security of the signature scheme as
an argument, a challenge public-key pk∗ from the security experiment of the signature scheme is
embedded as pkj := pk∗.

Note that this strategy works only if the reduction guesses the index i ∈ [`] correctly, which
leads to a loss factor of 1/` in the success probability of the reduction. It is not immediately clear
how to avoid this guessing: a reduction that avoids it would be required to be able to reveal all
long-term secret key at any time in the security experiment, while simultaneously it needs to use
the security of the signature scheme as an argument for the security of the AKE protocol. It turns
out that we can resolve this seeming paradox by combining two copies of a signature scheme with
a non-interactive proof system in a way somewhat related to the Naor-Yung paradigm [NY90] for
public-key encryption.

To explain the second main difficulty, let us consider signed-DH protocol as an example. Let
us first sketch this protocol. We stress that we leave out many details for simplicity, to keep the
discussion on an intuitive level. In the sequel let G be a cyclic group of order p with generator g.
Two parties Pi, Pj exchange a key as follows.

1. Pi chooses x
$← Zp at random. It computes gx and a digital signature σi over gx, and sends

(gx, σi) to Pj .
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2. If Pj receives (gx, σi). It verifies σi, chooses y
$← Zp at random, computes gy and a digital

signature σj over gy, and sends (gy, σj) to Pi. Moreover, Pj computes the key as K = (gx)y.
3. If Pi receives (gy, σj), and σj is a valid signature, then Pi computes the key as K = (gy)x.
The security of this protocol can be proved [CK01] based on the (assumed) security of the

signature scheme and the hardness of the decisional Diffie-Hellman problem, which asks for a given
a vector (g, gx, gy, gw) ∈ G to determine whether w = xy or w is random. However, even though
the DDH problem is randomly self-reducible [BBM00], it seems impossible to avoid guessing at
least one oracle participating in the Test-session.

To explain this, consider an attacker in the AKE security model from Section 4.1. Assume
that the attacker asks Send(i, s, (>, j)) to an (uncorrupted) oracle πsi . According to the protocol
specification, the oracle has to respond with (gx, σi). At some point in the security proof the
security of the protocol is reduced to the hardness of the DDH problem, thus, the challenger of the
AKE security experiment has to decide whether it embeds (a part of) the given DDH-instance in
gx. Essentially, there are two options:
• The challenger decides that it embeds (a part of) the given DDH-instance in gx. In this case,

there exists an attacker which makes the simulation fail (with probability 1) if oracle πsi does
not participate in the Test-session. This attacker proceeds as follows.

1. It corrupts some unrelated party Pj to learn skj .

2. It computes gy for y
$← Zp along with a signature σj under skj , and asks Send(i, s, (gy, σj))

to send (gy, σj) to πsi .
3. Finally it asks Reveal(i, s) to learn the session key ksi computed by πsi , and checks whether
ksi = (gx)y.

A challenger interacting with this attacker faces the problem that it needs to be able to
compute ksi = (gy)x, knowing neither x or y. Note that the challenger can not answer with
an incorrect ksi , because the attacker knows y and thus is able check whether ksi is computed
correctly.
• The challenger decides that it does not embed (a part of) the given DDH-instance in gx.

If now the attacker asks Test(i, s), then the challenger is not able to take advantage of the
attacker, because the DDH-challenge is not embedded in the Test-session.

The only way we see to circumvent this technical issue is to let the challenger guess in advance (at
least) one oracle that participates in the Test-session, which however leads to a loss of 1/(µ`) in
the reduction.

The challenge with describing a tightly-secure AKE protocol is therefore to come up with a
proof strategy that that avoids guessing. This requires to apply a strategy where essentially an
instance of a hard computational problem is embedded into any protocol session, while at the same
time the AKE-challenger is always able to compute the same keys as the attacker.

Our contribution. We construct the first AKE protocols whose security does not degrade in the
number of users and instances. Following [BR93a] we consider a very strong security model, which
allows adaptive corruptions of long-term secrets, adaptive reveals of session keys, and multiple
adaptive Test queries.

Our model provides perfect forward secrecy [BWJM97, Kra05]: the corruption of a long-term
secret does not foil the security of previously established session keys. Furthermore, we prevent
key-compromise impersonation attacks [BWM98, GBN09]: in our security model, an attacker may
introduce maliciously-generated keys. On the other hand, we do not allow reveals of internal
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states or intermediate results of computations, as considered in the (extended) Canetti-Krawczyk
model [CK01, LLM07]. The existence of a tightly secure construction in such a model is an
interesting open problem.

While our approach is generic and modular, we give efficient instantiations from standard as-
sumptions (such as the SXDH or DLIN assumptions in pairing-friendly groups). Specifically, we
propose an SXDH-based AKE protocol with a communication complexity of only 14 group elements
and 4 exponents (plus some bookkeeping information). The security reduction to SXDH loses a fac-
tor of κ (the security parameter), but does not depend on the number of users or instances. (Using
different building blocks, this reduction loss can even be made constant, however at a significant
expense of communication complexity.)

Our approach. At a very high level, our AKE protocol follows a well-known paradigm: we
use a public-key encryption scheme to transport shared keys, and a digital signature scheme to
authenticate exchanged messages. Besides, we use one-time signature scheme to provide a session-
specific authentication, and thus to guarantee a technical “matching conversations” property.3 The
combination of these building blocks in itself is fairly standard; the difficulty in our case is to
construct suitable buildings blocks that are tightly and adaptively secure.

More specifically, we require, e.g., a signature scheme that is tightly secure in face of adaptive
corruptions. Specifically, it should be hard for an adversary A to forge a new signature in the
name of any so far uncorrupted party in the system, even though A may corrupt arbitrary other
parties adaptively. While regular signature security implies adaptive security in this sense, this
involves a (non-tight) guessing argument. In fact, currently, no adaptively tightly secure signature
scheme is known: while, e.g., [HJ12a] describe a tightly secure signature scheme, their analysis does
not consider adaptive corruptions, and in particular no release whatsoever of signing keys. (The
situation is similar for the encryption scheme used for key transport.)

How we construct adaptively secure signatures. Hence, while we cannot directly use exist-
ing building blocks, we can use the (non-adaptively) tightly secure signature scheme of [HJ12a] as
a basis to construct adaptively and tightly secure components. In a nutshell, our first (less efficient
but easier-to-describe) scheme adapts the “double encryption” technique of Naor and Yung [NY90]
to the signature setting. A little more concretely, our scheme uses two copies of an underlying
signature scheme SIG (that has to be tightly secure, but not necessarily against adaptive corrup-
tions). A public key in our scheme consists of two public keys pk1, sk2 of SIG; however, our secret
key consists only of one (randomly chosen) secret key skb of SIG. Signatures are (non-interactive,
witness-indistinguishable) proofs of knowledge of one signature σi under one ski.

During the security proof, the simulation will know one valid secret key skb for each scheme
instance.4 This allows to plausibly reveal secret keys upon corruptions. However, the witness-
indistinguishability of the employed proof system will hide which of the two possible keys ski are
known for each user until that user is corrupted. Hence, an adversary A who forges a signature for

3Intuitively, the matching conversations property, introduced by Bellare and Rogaway [BR93a] establishes the
notion of a “session” between two communication partners (essentially as the transcript of exchanged messages
itself). Such a notion is essential in a model without explicit session identifiers (such as the one of Canetti and
Krawczyk [CK01, CK02]) that separate different protocol instances.

4This can be seen as a variation of the approach of “two-signatures” approach of [GJKW07]. Concretely, [GJKW07]
construct a signature scheme in which the simulation – by cleverly programming a random oracle – knows one out of
two possible signatures for each message.
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an uncorrupted user will (with probability about 1/2) forge a signature under a secret key which
is unknown to the simulation. Hence, the simulation will lose only about a factor of 2 relative to
the success probability of A.

Of course, this requires using a suitable underlying signature scheme and proof system. For
instance, the tightly secure (without corruptions) signature scheme from [HJ12a, ADK+13] and the
Groth-Sahai non-interactive proof system [GS08] will be suitable DLIN-based building blocks.

Efficient adaptively secure signatures. The signature scheme arising from the generic ap-
proach above is not overly efficient. Hence, we also construct a very optimized scheme that is not
as modularly structured as the scheme above, but has extremely compact ciphertexts (of only 3
group elements). In a nutshell, this compact scheme uses the signature scheme that arises out of
the recent almost-tightly secure MAC of [BKP14] as a basis. Instead of Groth-Sahai proofs, we
use a more implicit consistency proof reminiscent of hash proof systems. Security can be based on
a number of computational assumptions (including SXDH and DLIN), and the security reduction
loses a factor of κ (the security parameter), independently of the number of users or generated
signatures. We believe that this signature scheme can be of independent interest.

Adaptively secure PKE and AKE schemes. A similar (generic) proof strategy allows to
construct adaptively (chosen-plaintext) secure public-key encryption schemes using a variation of
the Naor-Yung double encryption strategy [NY90]. (In this case, the simulation will know one out
of two possible decryption keys. Furthermore, because we only require chosen-plaintext security, no
consistency proof will be necessary.) Combining these tightly and adaptively secure building blocks
with the tightly secure one-time signature scheme from [HJ12a] finally enables the construction of
a tightly secure AKE protocol. As already sketched, our signature scheme ensures authenticated
channels, while our encryption scheme is used to exchange session keys. (However, to achieve
perfect forward secrecy – i.e., the secrecy of finished sessions upon corruption –, we generate PKE
instances freshly for each new session.)

Notation. The symbol ∅ denotes the empty set. Let [n] := {1, 2, . . . , n} ⊂ N and let [n]0 :=

[n] ∪ {0}. If A is a set, then a
$← A denotes the action of sampling a uniformly random element

from A. If A is a probabilistic algorithm, then we denote by a
$← A that a is output by A using

fresh random coins. If an algorithm A has black-box access to an algorithm O, we will write AO.

2 Digital Signatures in the Multi-User Setting with Corruptions

In this section we define digital signature schemes and their security in the multi-user setting. Our
strongest definition will be existential unforgeability under adaptive chosen-message attacks in the
multi-user setting with adaptive corruptions. We show how to construct a signature scheme with
tight security proof, based on a combination of a non-interactive witness indistinguishable proof of
knowledge with a signature scheme with weaker security properties.

2.1 Basic Definitions

Definition 1. A (one-time) signature scheme SIG consists of four probabilistic algorithms:
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• Π
$← SIG.Setup(1κ): The parameter generation algorithm on input a security parameter 1κ

returns public parameters Π, defining the message spaceM, signature space S, and key space
VK × SK.
• SIG.Gen(Π): On input Π the key generation algorithm ouputs a pair (vk, sk) ∈ VK × SK.
• SIG.Sign(sk,m): On input a private key sk and a message m ∈ M, the signing algorithm

outputs a signature σ.
• SIG.Vfy(vk,m, σ): On input a verification key vk, a message m, and a purported signature σ,

the verification algorithm returns b ∈ {0, 1}.

We note that our security definition below assumes a trusted setup of public parameters (us-
ing SIG.Setup). Moreover, throughout the paper, we will assume signature schemes with message
space {0, 1}∗ for simplicity. It is well-known that such a scheme can be constructed from a sig-
nature scheme with arbitrary message space M by applying a collision-resistant hash function
H : {0, 1}∗ →M to the message before signing.

Security Definitions. The standard security notion for signature schemes in the single user
setting is existential unforgeability under chosen-message attacks, as proposed by Goldwasser, Micali
and Rivest [GMR88]. We consider natural extensions of this notion to the multi-user setting with
or without adaptive corruptions.

Consider the following game between a challenger C and an adversary A, which is parametrized
by the number of public keys µ.

1. For each i ∈ [µ], C runs (vk(i), sk(i)) ← SIG.Gen(Π), where Π are public parameters. Fur-
thermore, the challenger initializes a set Scorr to keep track of corrupted keys, and µ sets
S1, . . . ,Sµ, to keep track of chosen-message queries. All sets are initially empty. Then it
outputs (vk(1), . . . , vk(µ)) to A.

2. A may now issue two different types of queries. When A outputs an index i ∈ [µ], then C
updates Scorr := Scorr∪{i} and returns ski. When A outputs a tuple (m, i), then C computes
σ := SIG.Sign(ski,m), adds (m,σ) to Si, and responds with σ.

3. Eventually A outputs a triple (i∗,m∗, σ∗).
Now we can derive various security definitions from this generic experiment. We start with

existential unforgeability under chosen-message attacks in the multi-user setting with corruptions.

Definition 2. Let A be an algorithm that runs in time t. We say that A (t, ε, µ)-breaks the
MU-EUF-CMACorr-security of SIG, if in the above game it holds that

Pr
[
(m∗, i∗, σ∗)← AC : i∗ 6∈ Scorr ∧ (m∗, ·) 6∈ Si∗ ∧ SIG.Vfy(vk(i∗),m∗, σ∗) = 1

]
≥ ε

In order to construct an MU-EUF-CMACorr-secure signature scheme, we will also need the
following weaker definition of EUF-CMA security in the multi-user setting without corruptions.
We note that this definition was also considered in [MS04].

Definition 3. Let A be an algorithm that runs in time t. We say that A (t, ε, µ)-breaks the
MU-EUF-CMA-security of SIG, if in the above game it holds that

Pr
[
(m∗, i∗, σ∗)← AC : Scorr = ∅ ∧ (m∗, ·) 6∈ Si∗ ∧ SIG.Vfy(vk(i∗),m∗, σ∗) = 1

]
≥ ε
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Note that both MU-EUF-CMACorr and MU-EUF-CMA security notions are polynomially equiv-
alent to the standard (single user) EUF-CMA security notion for digital signatures. However, the
reduction is not tight.

Finally, we need strong existential unforgeability in the multi-user setting without corruptions
for one-time signatures.

Definition 4. Let A be an algorithm that runs in time t. We say that A (t, ε, µ)-breaks the
MU-sEUF-1-CMA-security of SIG, if in the above game it holds that

Pr
[
(m∗, i∗, σ∗)← AC : Scorr = ∅ ∧ |Si| ≤ 1, ∀i ∧ (m∗, σ∗) 6∈ Si∗ ∧ SIG.Vfy(vk(i∗),m∗, σ∗) = 1

]
≥ ε

2.2 MU-EUF-CMACorr-Secure Signatures from General Assumptions

In this section we give a generic construction of a MU-EUF-CMACorr-secure signature scheme,
based on a MU-EUF-CMA-signature scheme and a non-interactive witness-indistinguishable proof
of knowledge that allows a tight security proof. The main purpose of this construction is to resolve
the “paradox” explained in the introduction.

2.2.1 NIWI Proofs of Knowledge

Let R be a binary relation. If (x,w) ∈ R, then we call x the statement and w the witness.
R defines a language LR := {x : ∃w : (x,w) ∈ R}. A non-interactive proof system NIPS =
(NIPS.Gen,NIPS.Prove,NIPS.Vfy) for R consists of the following algorithms.
• Algorithm NIPS.Gen takes as input the security parameter and ouputs a common reference

string CRS
$← NIPS.Gen(1κ).

• Algorithm NIPS.Prove takes as input the CRS, a statement x and a witness w, and outputs a

proof π
$← NIPS.Prove(CRS, x, w).

• The verification algorithm NIPS.Vfy(CRS, x, π) ∈ {0, 1} takes as input the CRS, a statement
x, and a purported proof π. It outputs 1 if the proof is accepted, and 0 otherwise.

Definition 5. We call NIPS a witness indistinguishable proof of knowledge (NIWI-PoK) for R, if
the following conditions are satisfied:

Perfect completeness. For all (x,w) ∈ R, κ ∈ N, CRS
$← NIPS.Gen(1κ), and all proofs π com-

puted as π
$← NIPS.Prove(CRS, x, w) holds that

Pr [NIPS.Vfy(CRS, x, π) = 1] = 1

Perfect Witness Indistinguishability. For all CRS
$← NIPS.Gen(1κ), for all (x,w0, w1) such

that (x,w0) ∈ R and (x,w1) ∈ R, and all algorithms A it holds that

Pr [A(π0) = 1] = Pr [A(π1) = 1] (1)

where π0
$← NIPS.Prove(CRS, x, w0) and π1

$← NIPS.Prove(CRS, x, w1).
Simulated CRS. There exists an algorithm E0, which takes as input κ and outputs a simulated

common reference string CRSsim and a trapdoor τ .
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Perfect Knowledge Extraction on Simulated CRS. There exists an algorithms E1 such that

for all (CRSsim, τ)
$← E0(1κ) and all (π, x)← A such that NIPS.Vfy(CRSsim, x, π) = 1

Pr
[
w

$← E1(CRSsim, π, x, τ) : (x,w) ∈ R
]

= 1

Security Definition for NIWI-PoK. An algorithm (t, εCRS)-breaks the security of a NIWI-PoK

if it runs in time t and for all κ ∈ N, CRSreal
$← NIPS.Gen(1κ), all (CRSsim, τ)

$← E0(1κ), it
holds that

Pr
[
A(CRSreal) = 1)

]
− Pr

[
A(CRSsim) = 1

]
≥ εCRS

We note that perfect witness indistinguishability is preserved if the algorithm A sees more
than one proof. That is, let Oqb(x,w0, w1) denote an oracle which takes as input (x,w0, w1) with
(x,w0) ∈ R and (x,w1) ∈ R, and outputs NIPS.Prove(CRS, x, wb) for random b ∈ {0, 1}. Consider
an algorithm A which asks Oqb at most q times. We observe the following (see Appendix A for a
proof):

Lemma 1. Equation 1 implies for all q ∈ N:

Pr
[
AO

q
1 = 1 : CRS

$← NIPS.Gen(1κ)
]

= Pr
[
AO

q
0 = 1 : CRS

$← NIPS.Gen(1κ)
]

(2)

2.2.2 Generic Construction

In this section we show how to construct a MU-EUF-CMACorr-secure (Definition 2) signature scheme
SIGMU from an MU-EUF-CMA-secure (Definition 3) scheme SIG and a NIWI-PoK.

In the sequel let NIPS = (NIPS.Gen,NIPS.Prove,NIPS.Vfy) denote a NIWI-PoK for relation

R := {((vk0, vk1,m), (σ0, σ1)) : SIG.Vfy(vk0,m, σ0) = 1 ∨ SIG.Vfy(vk1,m, σ1) = 1} .

That is, R consists of statements of the form (vk0, vk1,m), where (vk0, vk1) are verification keys for
signature scheme SIG, and m is a message. Witnesses are tuples (σ0, σ1) such that either σ0 is a
valid signature for m under vk0, or σ1 is a valid signature for m under vk1, or both.

The new signature scheme SIGMU = (SIG.SetupMU,SIG.GenMU, SIG.SignMU, SIG.VfyMU) works as
follows:
• ΠSIGMU

$← SIG.SetupMU(1κ): The parameter generation algorithm SIG.SetupMU runs ΠSIG
$←

SIG.Setup(1κ) and CRS
$← NIPS.Gen(1κ). It outputs ΠSIGMU

:= (ΠSIG,CRS).
• SIG.GenMU(ΠSIGMU

): The key generation algorithm generates two key pairs by running the

key generation algorithm of SIG twice: (vki, ski)
$← SIG.Gen(ΠSIG), for i ∈ {0, 1}. Then it flips

a random coin δ
$← {0, 1} and returns (vk, sk) =

(
(vk0, vk1), (skδ, δ)

)
. Observe that sk1−δ is

discarded.
• SIG.SignMU(sk,m): The signing algorithm generates a SIG-signature σδ

$← SIG.Sign(skδ,m).
Then it defines a witness w as

w :=

{
(σδ,⊥), if δ = 0,

(⊥, σδ), if δ = 1,

where ⊥ is an arbitrary constant (e.g., a fixed element from the signature space). Note that

((vk0, vk1,m), w) ∈ R. Finally it runs π
$← NIPS.Prove

(
CRS, (vk0, vk1,m), w

)
. The signature

for message m is σ := π.
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• SIG.VfyMU(vk,m, σ): The verification algorithm parses vk as (vk0, vk1) and returns whatever
NIPS.Vfy

(
CRS, (vk0, vk1,m), σ

)
returns.

Theorem 1. From any attacker ASIGMU
that (t, ε, µ)-breaks the MU-EUF-CMACorr-security (with

corruptions) of SIGMU, we can construct algorithms BNIPS and BSIG such that either BNIPS (tCRS, εCRS)-
breaks the security of NIWI-PoK or BSIG (tSIG, εSIG, µ)-breaks the MU-EUF-CMA-security (without
corruptions) of SIG, where

ε < 2 · εSIG + εCRS

We have tCRS = t + t′CRS and tSIG = t + t′SIG, where t′CRS and t′SIG correspond to the respective
runtimes required to provide ASIGMU

with the simulated experiment as described below.

Proof. We proceed in a sequence of games. The first game is the real game that is played between
an attacker A and a challenger C, as described in Section 2.1. We denote by χi the event that ASIGMU

outputs (m∗, i∗, σ∗) such that SIG.Vfy(vk(i∗),m∗, σ∗) ∧ i∗ /∈ Scorr ∧ (m∗, ·) /∈ Si∗ in Game i.

Game 0. This is the real game that is played between A and C. We set

Pr[χ0] = ε.

Game 1. In this game we change the way keys are generated and chosen-message queries are
answered by the challenger.

When generating a key pair by running SIG.GenMU, the challenger does not discard sk1−δ but
keeps it. However, corruption queries by the attacker are still answered by responding only with
skδ. Therefore this change is completely oblivious to A.

To explain the second change, recall that a SIGMU-signature in Game 0 consists of a proof π
$←

NIPS.Prove
(
CRS, (vk0, vk1,m), w

)
, where either w = (σδ,⊥) or w = (⊥, σδ) for σδ

$← SIG.Sign(skδ,m).

In Game 1 the challenger now defines w as follows. It first computes two signatures σ0
$←

SIG.Sign(sk0,m) and σ1
$← SIG.Sign(sk1,m), and sets w := (σ0, σ1). Then it proceeds as before, by

computing π as π
$← NIPS.Prove

(
CRS, (vk0, vk1,m), w

)
. Thus, in Game 1 two valid signatures are

used as witnesses. Due to the perfect witness indistinguishability property of NIPS we have:

Pr[χ0] = Pr[χ1]

Game 2. This game is very similar to the previous game, except that we change the way the CRS

is generated. Now, we run (CRSsim, τ)
$← E0 and all proofs are generated with respect to CRSsim.

Since the contrary would allow BNIPS to break the (t, εCRS)-security of NIPS we have∣∣Pr[χ1]− Pr[χ2]
∣∣ < εCRS

Game 3. This game is similar to Game 2 except for the following. We abort the game (and
A loses) if the forgery (i∗,m∗, σ∗) returned by A satisfies SIG.VfyMU

(
vk(i∗),m∗, σ∗

)
= 1, but the

extractor E1 is not able to extract a witness (s0, s1) from σ∗. Due to the perfect knowledge extraction
property of NIPS on a simulated CRS we have:

Pr[χ2] = Pr[χ3]
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Game 4. In this game we raise event abortδ(i∗) and abort (and A loses) if A outputs a forgery
(i∗,m∗, σ∗) such that the following holds.

Given (i∗,m∗, σ∗), the challenger first runs the extractor (s0, s1)
$← E1(τ, σ∗). Then it checks

whether
SIG.Vfy

(
vk

(i∗)

1−δ(i∗) ,m
∗, s1−δ(i∗)

)
= 0.

Recall here that δ(i∗) denotes the random bit chosen by the challenger for the generation of the long-
term secret of user i∗. If this condition is satisfied, then the game is aborted. Putting it differently,

the challenger aborts, if the witness s1−δ(i∗) is not a valid signature for m∗ under vk
(i∗)

1−δ(i∗) .
Since A is not allowed to corrupt the secret key of user i∗, and the adversary sees only proofs

which use two valid signatures (s0, s1) as witnesses (cf. Game 1), the random bit δ(i∗) is information-
theoretically perfectly hidden from A. Therefore, we have Pr[abortδ(i∗) ] ≤ 1/2 and

Pr[χ3] ≤ 2 · Pr[χ4]

Claim 1. For any attacker ASIGMU
that breaks the (t,Pr[χ4], µ)-MU-EUF-CMACorr-security of

SIGMU in Game 4 there exists an attacker BSIG that breaks the (tSIG, εSIG, µ)-MU-EUF-CMA-security
of SIG with tSIG ≈ t and εSIG ≥ Pr[χ4].

Given the above claim, we can conclude the proof of Theorem 1. In summary we have ε ≤
εCRS + 2 · εSIG.. �

Proof of Claim 1. Attacker BSIG simulates the challenger for an adversary ASIGMU
in Game 4.

We show that any successful forgery that is output by ASIGMU
can be used by BSIG to win the SIG

security game.
BSIG receives µ public verification keys vk(i), i ∈ [µ], and public parameters ΠSIG from the

SIG challenger. Next, it samples µ key pairs (vk(i), sk(i))
$← SIG.Gen(ΠSIG), i ∈ {µ + 1, . . . , 2µ}.

Moreover, it chooses a random vector δ = (δ(1), . . . , δ(µ)) ∈ {0, 1}µ. It sets

(vk(i), sk(i))←
((

vk(δ(i)µ+i), vk((1−δ(i))µ+i)
)
,
(
skµ+i, 1− δ(i)

))
.

Note that now each SIGMU-verification key contains one SIG-verification key that ASIG has obtained
from its challenger, and one that was generated by BSIG. We note further that, given vk(i), sk(i) is
distributed correctly and may be returned by BSIG when ASIGMU

issues a corrupt query (since it is
generated by BSIG itself).

Over that BSIG generates a “simulated” CRS for the NIWI-PoK along with a trapdoor by

running (CRSsim, τ)
$← E0. ASIGMU

receives as input {vk(i) : i ∈ [µ]}, ΠSIG and CRS.
Now, when asked to sign a message m under public key vk(i), ASIG proceeds as follows. Let

δ(i) = 0 without loss of generality. Then it computes σ1 = SIG.Sign(sk(µ+i),m). Moreover it
requests a signature for public key vk(i) and message m from its SIG-challenger. Let σ0 be the
response. ASIG computes the signature for m using both signatures w = (σ0, σ1) as witnesses. Note
that this is a perfect simulation of Game 4.

If Game 4 is not aborted, then any valid forgery of ASIGMU
can be used by BSIG as a forgery in

the SIG security game. The claim follows.
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2.2.3 (Somewhat Inefficient) Instantiation From Existing Building Blocks

The generic construction SIGMU above can be instantiated conveniently from existing building
blocks:
• Suitable tightly secure MU-EUF-CMA-secure signature schemes can be found in [HJ12b,

ADK+13] (based on the DLIN assumption in pairing-friendly groups).
• Similarly, a suitable tightly MU-sEUF-1-CMA-secure one-time signature scheme is described

in [HJ12b, Section 4.2]. Its security is based on the discrete logarithm assumption.
• Finally, a compatible NIWI-PoK is given by Groth-Sahai proofs [GS08]. (In a Groth-Sahai

proof system, there exist “hiding” and “binding” CRSs. These correspond to our honestly
generated, resp. simulated CRSs.) The security of Groth-Sahai proofs can be based on a
number of assumptions, including the DLIN assumption in pairing-friendly groups.

When used in our generic construction, this yields a signature scheme whose MU-EUF-CMACorr

security can be tightly (i.e., with a small constant loss) reduced to the DLIN assumption in pairing-
friendly groups. However, we note that the resulting scheme is not overly efficient. In particular,
the scheme suffers from public keys and signatures that contain a linear – in the security parameter
– number of group elements.

Thus, in the next section, we offer an optimized, significantly more efficient MU-EUF-CMACorr-
secure signature scheme.

2.3 Efficient and Almost Tightly MU-EUF-CMACorr-Secure Signatures

In this section, we present a very efficient signature scheme whose MU-EUF-CMACorr security can
be almost tightly (i.e., with a reduction loss that is linear in the security parameter) reduced to
a number of standard assumptions in cyclic groups. In fact, we prove security under any matrix
assumption [EHK+13], which encompasses, e.g., the SXDH, DLIN, and k-Linear assumptions. The
following definitions are taken from [BKP14].

Pairing Groups and Matrix Diffie-Hellman Assumption. Let GGen be a probabilistic poly-
nomial time (PPT) algorithm that on input 1κ returns a description G = (G1,G2,GT , q, g1, g2, e)
of asymmetric pairing groups where G1, G2, GT are cyclic groups of order q for a κ-bit prime q,
g1 and g2 are generators of G1 and G2, respectively, and e : G1 × G2 is an efficiently computable
(non-degenerated) bilinear map. Define gT := e(g1, g2), which is a generator in GT .

We use implicit representation of exponents by group elements as introduced in [EHK+13]. For
s ∈ {1, 2, T} and a ∈ Zq define [a]s = gas ∈ Gs as the implicit representation of a in Gs. More
generally, for a matrix A = (aij) ∈ Zn×mq we define [A]s as the implicit representation of A in Gs:

[A]s :=

ga11s ... ga1ms

gan1
s ... ganm

s

 ∈ Gn×m
s

We will always use this implicit notation of elements in Gs, i.e., we let [a]s ∈ Gs be an element in
Gs. Note that under the discrete logarithm assumption in Gs it is hard to compute a from [a]s ∈ Gs

Further, from [b]T ∈ GT it is hard to compute the value [b]1 ∈ G1 and [b]2 ∈ G2 (pairing inversion
problem). Obviously, given [a]s ∈ Gs and a scalar x ∈ Zq, one can efficiently compute [ax]s ∈ Gs.
Further, given [a]1, [a]2 one can efficiently compute [ab]T using the pairing e. For a,b ∈ Zkq define

e([a]1, [b]2) := [a>b]T ∈ GT .
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We recall the definition of the Matrix Diffie-Hellman (MDDH) assumption [EHK+13].

Definition 6 (Matrix Distribution). Let k ∈ N. We call Dk a matrix distribution if it outputs

matrices in Z(k+1)×k
q of full rank k in polynomial time.

For B ∈ Z(k+1)×n
q , we define B ∈ Zk×nq as the first k rows of B and B ∈ Z1×n

q as the last row

vector of B. Without loss of generality, we assume the first k rows A of A
$← Dk form an invertible

matrix.
The Dk-Matrix Diffie-Hellman problem is to distinguish the two distributions ([A], [Aw]) and

([A], [u]) where A
$← Dk, w

$← Zkq and u
$← Zk+1

q .

Definition 7 (Dk-Matrix Diffie-Hellman Assumption Dk-MDDH). Let Dk be a matrix distribu-
tion and s ∈ {1, 2, T}. We say that A (ε, t)-breaks the Dk-Matrix Diffie-Hellman (Dk-MDDH)
Assumption relative to GGen in group Gs if it runs in time at most t and

Pr[A(G, [A]s, [Aw]s) = 1]− Pr[A(G, [A]s, [u]s) = 1]| ≤ ε,

where the probability is taken over G ← GGen(1λ), A ← Dk,w
$← Zkq ,u

$← Zk+1
q and the random

coins of A.

For each k ≥ 1, [EHK+13] specifies distributions SCk, Ck, ILk, Lk such that the correspond-
ing Dk-MDDH assumption is the k-Linear assumption, the k-Cascade, the k-Symmetric Cascade,
and the Incremental k-Linear Assumption, respectively. All assumptions are generically secure in
bilinear groups and form a hierarchy of increasingly weaker assumptions. The distributions are

exemplified for k = 2, where a, a1, a2
$← Zq.

SC2 : A =

a 0
1 a
0 1

 C2 : A =

a1 0
1 a2

0 1

 IL2 : A =

a 0
0 a+ 1
1 1

 L2 : A =

a1 0
0 a2

1 1


It was also shown in [EHK+13] that Uk-MDDH (where Uk is the uniform distribution over Z(k+1)×k

q )
is implied by all other Dk-MDDH assumptions. If A is chosen from SCk, then [A]s can be repre-
sented with 1 group element; if A is chosen from Lk or Ck, then [A]s can be represented with k
group elements; If A is chosen from Uk, then [A]s can be represented with (k+1)k group elements.
Hence, SCk-MDDH and ILk-MDDH offer the same security guarantees as k-Linear, while having
the advantage of a more compact representation.

2.3.1 The Construction and its Security

Let GGen be a pairing group generator and let Dk be a matrix distribution. The new signature
scheme SIGC = (SIG.SetupC, SIG.GenC,SIG.SignC, SIG.VfyC) for message m ∈ {0, 1}` is based on a
tightly-secure signature scheme from [BKP14]. Whereas [BKP14] obtained their signature scheme
from a tightly-secure single-user algebraic MAC, we implicitly construct a tightly-secure multi-
user algebraic MAC. More precisely, the signatures consist of the algebraic MAC part (elements
[r]2, [u]2) plus a NIZK proof [v]2 showing that the MAC is correct with respect to the committed
MAC secret key [c]1.

The scheme works as follows.
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• Π
$← SIG.SetupC(1κ): The parameter generation algorithm SIG.SetupC runs G $← GGen,

A,A′
$← Dk and defines B := A′ ∈ Zk×kq , the k × k matrix consisting of the k top

rows of A′. For 0 ≤ i ≤ `, 0 ≤ b ≤ 1 it picks xi,b
$← Zkq , Yi,b

$← Zk×kq , and defines

Zi,b = (Y>i,b||xi,b) ·A ∈ Zk×kq . It outputs

Π :=
(
G, [A]1, [B]2, ([Zi,b]1, [x

>
i,bB]2, [Yi,bB]2)1≤i≤`,0≤b≤1

)
.

For a message m = (m1, . . . ,m`) ∈ {0, 1}`, define the following functions

x(m) :=
∑̀
i=1

x>i,mi
∈ Z1×k

q , Y(m) :=
∑̀
i=1

Yi,mi ∈ Zk×kq ,

Z(m) :=
∑̀
i=1

Zi,mi = (Y(m)>||x(m)>) ·A ∈ Zk×kq . (3)

• SIG.GenC(Π): The key generation algorithm picks a
$← Zq, b

$← Zkq , and defines c> =

(b>||a) ·A ∈ Z1×k
q . It returns (vk, sk) =

(
[c]1, ([a]2, [b]2)

)
∈ Gk

1 ×Gk+1
2 .

• SIG.SignC(Π, sk,m): The signing algorithm parses sk as sk = ([a]2, [b]2). Next, it picks

r′
$← Zkq and defines

r := B · r′ ∈ Zkq , u = a+ x(m) · r ∈ Zq, v = b + Y(m) · r ∈ Zkq . (4)

The signature for message m is σ := ([r]2, [u]2, [v]2) ∈ G2k+1
2 . Note that [u]2, [v]2 can be

computed from r′ and Π.

• SIG.VfyC(Π, vk = [c]1,m, σ = ([r]2, [u]2, [v]2)): The verification algorithm picks s
$← Zkq and

returns 1 iff the equation

e([c> · s]1, [1]2) = e([A · s]1,

[
v
u

]
2

) · e([Z(m) · s]1, [r]2)−1 (5)

holds, where e([z]1, [z
′]2) := [z> · z′]T .

Instantiated under the SXDH assumption (i.e., k = 1 and DDH in G1 and G2) we obtain a
signature scheme with |vk| = 1 × G1 and |σ| = 3 × G2. Instantiated under the k-Lin assumption,
we obtain a signature scheme with vk| = k ×G1 and |σ| = (2k + 1)×G2. In both cases the public
parameters contain `k2 group elements.

Theorem 2. For any attacker A that (t, ε, µ)-breaks the MU-EUF-CMACorr-security of SIGC, there
exists an algorithm B = (B1,B2) such that B1 (t1, ε1)-breaks the Dk-MDDH assumption in G1, and
B2 (t2, ε2)-breaks the Dk-MDDH assumption in G2 where ε < ε1 + 2`ε2 + 2/q. We have t1 = t+ t′1
and t2 = t + t2, where t′1 and t′2 correspond to the respective runtimes required to provide ASIGMU

with the simulated experiment as described below.

Proof. We proceed in a sequence of games. The first game is the real MU-EUF-CMACorr-security
game that is played between an attacker A and a challenger C, as described in Section 2.1. We
denote by χi the event that ASIGMU

outputs (m∗, i∗, σ∗) such that SIG.Vfy(vk(i∗),m∗, σ∗) ∧ i∗ /∈
Scorr ∧ (m∗, ·) /∈ Si∗ in Game i.
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Game 0. This is the real game that is played betweenA and C. We use (vki, ski) =
(
[ci]1, ([ai]2, [bi]2)

)
to denote the verification/signing key of the i-th user. We have

Pr[χ0] = ε.

Game 1. In this game we change the way the experiment treats the final forgery σ∗ =

([r∗]2, [u
∗]2, [v

∗]2) for user i∗ on message m∗. The experiment picks s∗
$← Zkq and defines t∗ = A ·s∗.

Next, it changes verification equation (5) and returns 1 iff equation

e([(b>i∗ ||ai∗) · t∗]1, [1]2) = e([t∗]1,

[
v∗

u∗

]
2

) · e([(Y>(m∗)||x(m∗)>) · t∗]1, [r∗]2)−1 (6)

holds. By equation (3) and by the definition of c>i∗ = (b>i∗ ||ai∗) · A, equations (5) and (6) are
equivalent. Hence,

Pr[χ1] = Pr[χ0].

Game 2. In this game, we again change the way the experiment treats the final forgery. Instead

of defining t∗ = A · s∗, we pick t∗
$← Zk+1

q . Clearly, there exists an adversary B1 such that B1

(t1, ε1)-breaks the Dk-MDDH assumption in G1 with t ≈ t1 and

Pr[χ2]− Pr[χ1] = ε1.

Game 3. In this game, we make a change of variables by substituting all Yi,b and bi using the
formulas

Y>i,b = (Zi,b − xi,b ·A)A−1, b>i = (c>i − ai ·A)A−1, (7)

respectively. The concrete changes are as follows. First, the public parameters Π are computed by
picking Zi,b and xi,b at random and then defining Yi,b using (7). Second, the verification keys vki
for user i are computed by picking ci and ai at random and then defining bi using (7).

Third, on a signing query (m, i), the values r and u are computed as before, but the value v is
computed as

v> = (r>Z(m) + c>i − u ·A) ·A−1. (8)

Fourth, the verification query for message m∗ and user i∗ is answered by picking h∗
$← Zq and

t∗
$← Zkq , defining t∗ = h∗ + AA−1t∗ and changing equation (6) to

e([c>i∗ ·A−1t∗ + ai∗ · h∗]1, [1]2) = e([t∗]1,

[
v∗

u∗

]
2

) · e([Z(m∗)A−1t∗ + x(m∗)h∗]1, [r
∗]2)−1 (9)

By the substitution formulas for Yi,b and bi and be the definition of h and t∗, equations (4) and
(8) and equations (6) and (9) are equivalent. Hence,

Pr[χ3] = Pr[χ2].

Game 4. In this game, the answer σ = ([r]2, [u]2, [v]2) to a signing query (m, i) is computed
differently. Concretely, the values r and v are computed as before, but the value u is chosen as

u
$← Zq.
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The remaining argument is purely information-theoretic. Note that in Game 4, the value ai∗

from ski∗ only leaks through vki∗ via c>i∗ = (b>i∗ ||ai∗) · A. As the uniform t∗ 6∈ span(A) (except
with probability 1/q) the value (b>i∗ ||ai∗) · t∗ from (6) (which is equivalent to (9)) is uniform and
independent from A’s view. Hence,

Pr[χ4] = 2/q.

The following lemma completes the proof of the Theorem. It follows [BKP14, CW13] and
essentially proves that the underlying message authentication code is tightly secure in a multi-user
setting with corruptions.

Lemma 2. There exists an adversary B2 such that B2 (t2, ε2)-breaks the Dk-MDDH assumption in
G2 with t ≈ t1 and

Pr[χ4]− Pr[χ3] ≤ 2`ε2.

To prove the lemma, we define the following hybrid games Hj , 0 ≤ j ≤ ` that are played
with an adversary C. All variables are distributed as in Game 4. For m ∈ {0, 1}∗, define m|j
as the j-th prefix of m. (By definition, m|0 is the empty string ε.) Let RFi,j : {0, 1}j → Zq be
independent random functions. (For concreteness, one may think of RFi,0(ε) := ai, the MAC secret
key skMAC of the i-th user. In each hybrid Hj , we will double the number of secret-keys used in
answering the queries until each query uses an independent secret key.) In Hybrid Hj , adversary
C first obtains the values [B]2 and ([x>i,bB]2)i,b, which can be seen as the public MAC parameters
ΠMAC. Next, adversary C can make an arbitrary number of tagging and corruption queries, plus
one forgery query. On a tagging query called with (m, i), hybrid Hj picks a random r ∈ Zkq ,
computes u = RFi,j(m|j) + x(m) · r and returns ([r]2, [u]2) (the MAC tag) to adversary C. Note
that the value v is not provided by the oracle. On a Corrupt query called with i, hybrid Hj returns
[ai]2 = [RFi,j(m(i)|j)]2 to C, where m(i) is the first message for which the tagging oracle was called
for with respect to user i. (We make one dummy query if m(i) is undefined.) Further, user i is
added to the list of corrupted users. The adversary is also allowed to make one single forgery query
(i∗,m∗) for an uncorrupted user i∗ which is answered with ([h∗]1, [h

∗ · RFi∗,j(m∗|j)]1, [h
∗ · x(m∗)]1),

for h∗
$← Zq. Finally, hybrid Hj outputs whatever adversary C outputs.

Note that Game 3 can be perfectly simulated using the oracles provided by hybrid H0. The

reduction picks A
$← Dk, inputs [B]2 and ([xi,bB]2)i,b from the hybrid game H0, picks Zi,b at

random, and computes [Yi,bB]2 via (7). The public verification keys vki = [ci]1 are picked at
random, without knowing ski = ([ai]2, [bi]2). To simulate a signing query on (m, i), the reduction
queries the tagging oracle to obtain ([r]2, [u]2) and computes the value [v]2 as in Game 3 via
(8). Forgery and Corrupt queries can be simulated the same way by defining RFi,0(ε) =: ai.
Hence Pr[χ3] = Pr[H0 = 1]. Similarly, Pr[χ4] = Pr[H` = 1] as in hybrid H` are values u =
RFi,`(m) + x(m) · r are uniform.

We make the following claim:

Claim 2. |Pr[Hj−1 = 1]− Pr[Hj = 1]| ≤ 2ε2, for a suitable adversary B2.

The proof of this claim essentially follows verbatim from Lemma B.3 of [BKP14]. The reduction
uses the fact that the Dk-MDDH assumption is random self-reducible. There is a multiplicative
loss of 2 since the reduction has to guess m∗j , the j-th bit of the forgery m∗.

Fix 0 ≤ j ≤ ` − 1. Let Q be the maximal number of tagging queries. Adversary B2 inputs a

Q-fold Dk-MDDH challenge ([A′]2, [H]2) ∈ G(k+1)×k
2 ×G(k+1)×Q

2 and has to distinguish H = A′W
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for W ∈ Zk×Qq from H
$← Z(k+1)×Q

q . The Q-fold Dk-MDDH assumption has been proved tightly
equivalent to the Dk-MDDH assumption in [EHK+13].

Adversary B2 defines B := A′ and picks a random bit α which is a guess for m∗j , the j-th bit
of m∗. We assume that this guess is correct, which happens with probability 1/2. For each user i,
define the random function RFi,j(·) via

RFi,j(m|j) :=

{
RFi,j−1(m|j−1) mj = α

RFi,j−1(m|j−1) +Ri,m|j mj = 1− α
, (10)

where Ri,m|j
$← Zq. Let πi,j : {0, 1}j → Q be arbitrary injective functions. Next, for i = 1, . . . , `,

b = 0, 1 with (i, b) 6= (j, 1 − α), B2 picks xi,b
$← Zkq and implicitly defines x>j,1−αB := x′>A′ for

x′
$← Zk+1

q . Note that xj,1−α is not known to B2, only [x>j,1−αB]2. Adversary B2 returns the values

ΠMAC = ([B]2, ([x
>
i,bB]2)i,b).

A signing query on (i,m) is simulated as follows. We distinguish two cases. Case 1, if mj = α,
then pick random r ∈ Zkq and define u = RFi,j−1(m|j−1) + x(m) · r. By (10), the value u has the

same distribution in Hj−1 and Hj . Case 2, if mj 6= α (i.e., only [x>j,mj
B]2 is known, xj,mj not), then

pick random r′ ∈ Zkq , define r := Br′+Hβ and u := RFi,j−1(m|j−1)+
∑

l 6=j x>l,ml
·r+x′>(A′r′+Hβ).

Here Hβ is the β-th column of H and β = πi,j(m|j). Let Hβ = A′Wβ + Rβ, where Rβ = 0 or Rβ

is uniform. Then r = A′(r′ + Wβ) + Rβ and

x′>(A′r′ + Hβ) = x′>A′(r′ + Wβ) + x′>Rβ = x>j,mj
B(r′ + Wβ) + x′>Rβ = x>j,mj

r + x′>Rβ

such that u = RFi,j−1(m|j−1) +
∑

l x
>
l,ml
· r + x′>Rβ. Hence, if H comes from the Q-fold MDDH

distribution, then Rβ = 0 and u is distributed as in Hj−1; if H comes from the uniform distribution,
then u is distributed as in Hj with Ri,m|j := x′>Rβ.

A verification query on (i∗,m∗, σ∗) is answered with ([h∗]1, [h
∗ · RFi∗,j(m∗|j)]1, [h

∗ · x(m∗)]1), for

uniform h∗. Note that x(m∗) can be computed as all xl,m∗l are known to B2.
Finally, a Corrupt query for user i is answered with [ai]2 = [RFi,j(m(i)|j)]2. Note that [RFi,j(m|j)]2

can be computed for all m. �

3 KEMs in the Multi-User Setting with Corruptions

In this section we will describe a generic construction of a key encapsulation mechanism (KEM)
with tight MU-IND-CPACorr-security proof, based on any public-key encryption scheme with tight
security proof in the multi-user setting without corruptions. Encryption schemes with the latter
property were described in [BBM00, HJ12a]. In particular, a tight security proof for the DLIN-
based scheme from [BBS04] is given in [HJ12a]. A similar scheme was generalized to hold under
any MDDH-assumption [EHK+13].

Before we proceed let us first recall public key encryption and key encapsulation mechanisms.

3.1 Public-Key Encryption

A PKE scheme consists of four algorithms PKE = (PKE.Setup,PKE.KGen, PKE.Enc,PKE.Dec) with
the following syntax:
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• Π
$← PKE.Setup(1κ): The algorithm PKE.Setup, on input the security parameter 1κ, outputs

a set, Π, of system parameters. Π determines the message space M, the ciphertext space C,
the randomness space R, and the key space PK × SK.

• (sk, pk)
$← PKE.KGen(Π): This algorithm takes as input Π and outputs a key pair (sk, pk) ∈

SK × PK.
• c $← PKE.Enc(pk,m): This probabilistic algorithm takes as input a public key and a message
m ∈M, and outputs a ciphertext c ∈ C.
• m = PKE.Dec(sk, c): This deterministic algorithm takes as input a secret key sk and a

ciphertext c, and outputs a plaintext m ∈M or an error symbol, ⊥.

Security. The standard security notions for public key encryption in the multi-user setting (with-
out corruptions) go back to Bellare, Boldyreva and Micali [BBM00]. Security is formalized by a
game that is played between an attacker A and a challenger C.

1. C runs Π
$← PKE.Setup(1κ), generates µ · ` key pairs (sksi , pk

s
i )

$← PKE.KGen(Π) for (i, s) ∈
[µ]× [`], and chooses b

$← {0, 1} uniformly at random.
2. A receives Π and pk1

1, . . . , pk
`
µ, and may now adaptively query an oracle OEncrypt, which takes

as input (pksi ,m0,m1), computes c
$← PKE.Enc(pksi ,mb), and responds with c.

3. Eventually A ouputs a bit b′.

Definition 8. We say that A (t, ε, µ, `)-breaks the MU-IND-CPA security of PKE, if it runs in
time t in the above security game and

Pr[b′ = b] ≥ 1/2 + ε

3.2 Key Encapsulation Mechanisms

Definition 9. A key encapsulation mechanism consists of four probabilistic algorithms:

• Π
$← KEM.Setup(1κ): The algorithm KEM.Setup, on input the security parameter 1κ, outputs

public parameters Π, which determine the session key space K, the ciphertext space C, the
randomness space R, and key space SK × PK.

• (sk, pk)
$← KEM.Gen(Π): This algorithm takes as input parameters Π and outputs a key pair

(sk, pk) ∈ SK × PK.

• (K,C)
$← KEM.Encap(pk) takes as input a public key pk, and outputs a ciphertext C ∈ C

along with a key K ∈ K.
• K = KEM.Decap(sk, C) takes as input a secret key sk and a ciphertext C, and outputs a key
K ∈ K or an error symbol ⊥.

We require the usual correctness properties.

Multi User Security of KEMs. We extend the standard indistinguishability under chosen-
plaintext attacks (IND-CPA) security for KEMs to a multi-user setting with µ ≥ 1 public keys and
adaptive corruptions of secret keys. We will refer to this new notion as MU-IND-CPACorr-security.

Consider the following game played between a challenger C and an attacker A.

1. At the beginning C generates parameters Π
$← KEM.Setup(1κ). Then, for each (i, s) ∈ [µ]×[`],

it generates a key pair (sksi , pk
s
i )

$← KEM.Gen(Π) and chooses an independently random bit
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bsi
$← {0, 1}. Finally, the challenger initializes a set Scorr := ∅ to keep track of corrupted keys.

The attacker receives as input (pk1
1, . . . , pk

`
µ).

2. Now the attacker may adaptively query two oracles. OCorrupt takes as input a public key
pksi . It appends (i, s) to Scorr and responds with sksi . Oracle OEncap takes as input a public

key pksi . It generates a ciphertext-key-pair as (Csi ,K
s
i,1)

$← KEM.Encap(pksi ) and chooses a
random key Ks

i,0. It responds with (Csi ,K
s
i,bsi

).

3. Finally, the attacker outputs a pair (i, s, b).

Definition 10 (MU-IND-CPACorr-security). Algorithm A (t, ε, µ, `)-breaks the MU-IND-CPACorr-
security of the KEM, if it runs in time at most t and it holds that

Pr [bsi = b ∧ (i, s) 6∈ Scorr] ≥ 1/2 + ε

Remark 1. It is easy to see that security in the sense of Definition 10 can efficiently be reduced to
standard IND-CPA security. However, the reduction incurs a loss of 1/(µ · `). We will describe a
KEM with tight security proof.

3.3 Generic KEM Construction

Our KEM KEMMU is based on a PKE-scheme PKE = (PKE.Setup,PKE.KGen,PKE.Enc,PKE.Dec).
It works as follows:
• Π

$← KEM.SetupMU(1κ): The parameter generation algorithm KEM.SetupMU on input κ runs

ΠPKE
$← PKE.Setup(1κ). The session key space K is set toM, the message space of PKE that

is determined by ΠPKE.

• (sk, pk)
$← KEM.SetupMU(Π): The key generation algorithm generates two keys of the PKE

scheme by running (ski, pki)
$← PKE.KGen(Π) for i ∈ {0, 1}. It furthermore flips a random

coin δ
$← {0, 1} and returns (sk, pk) =

(
(skδ, δ), (pk0, pk1)

)
.

• (K,C)
$← KEM.EncapMU(pk): On input pk = (pk0, pk1) the encapsulation algorithm samples

a random key K
$← K, computes two ciphertexts (C0, C1) as Ci

$← PKE.Enc(pki,K) for
i ∈ {0, 1}, sets C := (C0, C1), and outputs (K,C).
• K ← KEM.DecapMU(sk, C): The decapsulation algorithm parses sk = (skδ, δ) and C =

(C0, C1). It computes K ← PKE.Dec(skδ, Cδ) and returns K.

Theorem 3. For each attacker AKEM that (εkem, tkem, µ, `)-breaks the MU-IND-CPACorr-security
of KEMMU there exists an attacker APKE that (εpke, tpke, µ, `)-breaks the MU-IND-CPA-security of
PKE with tkem = tpke + t′kem and εkem ≤ εpke. Here t′kem is the runtime required to provide AKEM

with the simulation described below.

Proof. Proof. Again we proceed in a sequence of games. Let χi denote the event that A outputs

(i, s, b) with bsi = b ∧ (i, s) 6∈ Scorr in Game i.

Game 0. This is the real game that is played between A and C. Thus we have

Pr[χ0] = 1/2 + εkem
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Game 1. This game is identical to Game 0, except that now C changes the way how challenge
ciphertexts are generated. For the moment let C = (C0, C1) denote an arbitrary challenge KEM-
ciphertext, which consists of two PKE-ciphertexts (C0, C1). Let K1 denote the “real” key encap-
sulated in C and let K0 be the corresponding independent random key chosen by the challenger.
Let sk = (skδ, δ) be the secret.

Recall that in Game 0, both ciphertexts (C0, C1) encrypt the “real” key K1. In Game 1
we change this. Now Cδ will be an encryption of the “real” key K1, while C1−δ will encrypt
the “random” key K0. More precisely, the challenge ciphertext C = (C0, C1) is computed as

Cδ
$← PKE.Enc(pkδ,K1) and C1−δ

$← PKE.Enc(pk1−δ,K0). Except for this modification, Game 1
proceeds exactly like Game 0. In particular, note that since C still has knowledge of skδ, C can
respond to corruption queries.

Claim 3. |Pr[χ1]− Pr[χ0]| ≤ εPKE.

Before we prove this claim, let us finish the proof of Theorem 3
Note that since A is not allowed to corrupt pki∗ , the choice of δ(i∗) is perfectly hidden from A.

Therefore A receives no information (in an information-theoretic sense) about the bit bi∗ chosen by
the challenger in Game 1. This implies that we have Pr[χ1] = 1/2. Tracing through the sequence
of games, we thus see that εkem = Pr[χ0] ≤ 1

2 + εPKE. �

Proof of Claim 3. Attacker APKE = AOEncrypt

PKE acts as a challenger for an adversary AKEM =

AOEncap,OCorrupt

KEM . The idea behind the proof is that APKE defines the KEM-public keys such that each
key consists of one PKE-public-key that APKE generated on its own (which enables APKE to answer
corrupt-queries of AKEM), and one PKE-public-key that APKE has received from its challenger
(which allows to reduce the KEM-security to the PKE-security).

For clarity let us in the sequel denote with (pksi,KEM, sk
s
i,KEM) key pairs of the KEM, and with

(pksi,PKE, sk
s
i,PKE) of the PKE-scheme. Moreover, we denote with Csi,KEM ciphertexts of the KEM-

scheme, and with Csi,PKE ciphertexts of the PKE-scheme.
APKE receives as input µ · ` public keys pksi,PKE, (i, s) ∈ [µ] × [`], of the PKE scheme from the

PKE challenger. It generates µ · ` additional key pairs (p̂k
s

i,PKE, ŝk
s

i,PKE)
$← PKE.KGen(ΠPKE) for

(i, s) ∈ [µ]× [`], chooses a random vector δ = (δ1
1 , . . . , δ

`
µ) ∈ {0, 1}µ·`, and sets

(pksi,KEM, sk
s
i,KEM)←


((
p̂k

s

i,PKE, pk
s
i,PKE

)
, (ŝk

s

i,PKE, δ
s
i )
)
, if δsi = 0((

pksi,PKE, p̂k
s

i,PKE

)
, (ŝk

s

i,PKE, δ
s
i )
)
, if δsi = 1.

Note that now each KEM public key consists of one PKE public key obtained from the PKE-
challenger and one PKE public key generated by APKE, their order depends on δ.

In the sequel let us assume δsi = 0, the case δsi = 1 is analogous. Each time AKEM asks

OEncap(pksi,KEM), APKE chooses two keysK0,K1 at random. It computes ĈPKE
$← PKE.Enc(p̂k

s

i,PKE,Ki,0)

and CPKE = OEncrypt(pk
s
i,PKE,K0,K1), and reponds with CKEM = (ĈPKE, CPKE). If AKEM issues a

corrupt-query for pksi,KEM, then APKE responds with sksi,KEM.
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When AKEM terminates, then APKE outputs whatever AKEM returns. Observe that if b = 0,
then the view of AKEM is identical to the view in Game 0 from the proof of Theorem 3, while if
b = 1 then it is identical to Game 1. The claim follows. �

4 A Tightly-Secure AKE Protocol

4.1 Secure Authenticated Key-Exchange

In this section we present a formal security model for authenticated key-exchange (AKE) protocols.
We follow the approach of Bellare and Rogaway [BR93a] and use oracles to model concurrent and
multiple protocol executions within a party and the concept of matching conversations to define
partnership between oracles.

Essentially our model is a strenghtened version of the AKE-security model of [JKSS12], which
allows an additional RegisterCorrupt-query. Moreover, we let the adversary issue more than one
Test-query, in order to achieve tightness also in this dimension.

Execution Environment. In our security model, we consider µ parties P1, . . . , Pµ. In order to
formalize several sequential and parallel executions of an AKE protocol, each party Pi is represented
by a set of ` oracles, {π1

i , . . . , π
`
i}, where ` ∈ N is the maximum number of protocol executions per

party.
Each oracle πsi has access to the long-term key pair (sk(i), pk(i)) of party Pi and to the public

keys of all other parties. Let K be the session key space. Each oracle πsi maintains a list of internal
state variables that are described in the following:
• Pidsi stores the identity of the intended communication partner.
• Ψs

i ∈ {accept, reject} is a boolean variable indicating wether oracle πsi succesfully completed
the protocol execution.
• ksi ∈ K is used to store the session key that is computed by πsi .
• Γsi is a variable that stores all messages sent and received by πsi in the order of appearance.

We call Γsi the transcript.
For each oracle πsi these variables are initialized as (Pidsi ,Ψ

s
i , k

s
i ,Γ

s
i ) = (∅, ∅, ∅, ∅), where ∅

denotes the empty string. The computed session key is assigned to the variable ksi if and only if πsi
reaches the accept state, i.e., if Ψs

i = accept.

Adversarial Model. The attacker A interacts with these oracles through oracle queries. We
consider an active attacker that has full control over the communication network, i.e., A can
schedule all sessions between the parties, delay, drop, change or replay messages at will and inject
own generated messages of its choice. This is modeled by the Send-query defined below.

To model further real world capabilites of A, such as break-ins, we provide further types of
queries. The Corrupt-query allows the adversary to compromise the long-term key of a party. The
Reveal-query may be used to obtain the session key that was computed in a previous protocol
instance. The RegisterCorrupt enables the attacker to register maliciously-generated public keys.
Note that we do not require the adversary to know the corresponding secret key. The Test-query
does not correspond to a real world capability of A, but it is used to evaluate the advantage of A
in breaking the security of the key exchange protocol.
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More formally, the attacker may ask the following queries:
• Send(i, s,m): A can use this query to send any message m of its choice to oracle πsi . The

oracle will respond according to the protocol specification and depending on its internal state.
If m = (>, j) is sent to πsi , then πsi will send the first protocol message to Pj .
If Send(i, s,m) is the τ -th query asked by A, and oracle πsi sets variable Ψs

i = accept after
this query, then we say that πsi has τ -accepted.
• Corrupt(i): This query returns the long-term secret key ski of party Pi.

If the τ -th query of A is Corrupt(Pi), then we call Pi τ -corrupted. If Corrupt(Pi) has never
been issued by A, then we say that party i is ∞-corrupted.
• RegisterCorrupt(Pi, pk

(i)): This query allows A to register a new party Pi, i > µ, with public
key pk(i). If the same party Pi is already registered (either via RegisterCorrupt-query or
i ∈ [µ]), a failure symbol ⊥ is returned to A. Otherwise, Pi is registered, the pair (Pi, pk

(i))
is distributed to all other parties, and the symbol > is returned.
Parties registered by this query are called adversarially-controlled.
All adversarially-controlled parties are defined to be 0-corrupted.
• Reveal(i, s): In response to this query πsi returns the contents of ksi . Recall that we have
ksi 6= ∅ if and only if Ψs

i = accept.
If Reveal(i, s) is the τ -th query issued by A, we call πsi τ -revealed. If Reveal(i, s) has never
been issued by A, then we say that party i is ∞-revealed.
• Test(i, s): If Ψs

i 6= accept, then a failure symbol ⊥ is returned. Otherwise πsi flips a fair coin

bsi , samples k0
$← K at random, sets k1 = ksi , and returns kbsi .

If Test(i, s) is the τ -th query issued by A, we call πsi τ -tested. If Test(i, s) has never been
issued by A, then we say that party i is ∞-tested.
The attacker may ask many Test-queries to different oracles, but only once to each oracle.

Security Definitions. We recall the concept of matching conversations here that was first in-
troduced by Bellare and Rogaway [BR93a]. We adopt the refinement from [JKSS12].

Recall that Γsi be the transcript of oracle πsi . By |Γsi | we denote the number of the messages in
Γsi . Assume that there are two transcripts, Γsi and Γtj , where |Γsi | = w and |Γtj | = n. We say that
Γsi is a prefix of Γtj if 0 < w ≤ n and the first w messages in transcripts Γsi and Γtj are identical.

Definition 11 (Matching conversations). We say that πsi has a matching conversation to oracle
πtj , if
• πsi has sent all protocol messages and Γtj is a prefix of Γsi , or
• πtj has sent all protocol messages and Γsi = Γtj .

We say that two oracles, πsi and πtj , have matching conversations if πsi has a matching conver-
sation to process πtj and vice versa.

Definition 12 (Correctness). We say that a two-party AKE protocol, Σ, is correct, if for any two
oracles, πsi and πtj , that have matching conversations it holds that Ψs

i = Ψt
j = accept, Pidsi = j

and Pidtj = i and ksi = ktj .

Security Game. Consider the following game that is played between an adversary, A, and a
challenger, C, and that is parametrized by two numbers, µ (the number of honest identities) and `
(the maximum number of protocol executions per identity).
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1. At the beginning of the game, C generates system parameters that are specified by the protocol
and µ long-term key pairs (sk(i), pk(i)), i ∈ [µ]. Then C implements a collection of oracles
{πsi : i ∈ [µ], s ∈ [`]}. It passes toA all public keys, pk(1), . . . , pk(µ), and the public parameters.

2. Then the adversary may adaptively issue Send, Corrupt, Reveal, RegisterCorrupt and Test
queries to C.

3. At the end of the game, A terminates with outputting a tuple (i, s, b′) where πsi is an oracle
and b′ is its guess for bsi .

For a given protocol Σ by GΣ(µ, `) we denote the security game that is carried out with parameters
µ, ` as described above and where the oracles implement protocol Σ.

Definition 13 (Freshness). Oracle πsi is said to be τ -fresh if the following requirements satisfied:
• πsi has τ̃ -accepted, where τ̃ ≤ τ .
• πsi is τ̂ -revealed, where τ̂ > τ .
• If there is an oracle, πtj , that has matching conversation to πsi , then πtj is ∞-revealed and
∞-tested.
• If Pidsi = j then Pj is τ (j)-corrupted with τ (j) > τ 5.

Definition 14 (AKE Security). We say that an attacker (t, µ, `, ε)-breaks the security of a two-
party AKE protocol, Σ, if it runs in time t in the above security game GΣ(µ, `) and it holds that:

1. Let Q denote the event that there exists a τ and a τ -fresh oracle πsi and there is no unique
oracle πtj such that πsi and πtj have matching conversations. Then Pr[Q] ≥ ε, or

2. When A returns (i, s, b′) such that Test(πsi ) was As τ -th query and πsi is a τ -fresh oracle that
is ∞-revealed throughout the security game then the probability that b′ equals bsi is upper
bounded by ∣∣Pr[bsi = b′]− 1/2

∣∣ ≥ ε.
Remark 2. We note that, according to Definition 13, a τ -fresh oracle πsi or its partner oracle πtj may
be corrupted later on. This allows us to model perfect forward secrecy [CK01]. Strictly speaking,
we do not even require a τ -fresh oracle πsi not to be τ̂ -corrupted, where τ̂ < τ . I.e., πsi may be
τ -fresh, even if there exists a τ̂ < τ such that party i is τ̂ -corrupted. This allows us to model
key compromise impersonation attacks [JV96]. Since we do not require the adversary to supply a
proof of knowledge of a matching secret key when issuing a RegisterCorrupt-query, we model also
PKI-related attacks, e.g., PKI-related unknown key share attacks. Such attacks can have serious
security effects [BWM99]. We note further that the adversary may issue more than one Test-query
throughout the security game and, over that, that it may issue a Reveal-query, Reveal(i, s), even if
πsi is tested.

4.2 Our Tightly Secure AKE Protocol

Here, we construct an AKE-protocol AKE, which is based on three building blocks: a key encapsu-
lation mechanism, a signature scheme, and a one-time signature scheme.

The protocol is a key transport protocol that needs three messages to authenticate both partici-
pants and to establish a shared session key between both parties. Informally, the key encapsulation
mechanism guarantees that session keys are indistinguishable from random keys. The signature

5 We note that for any Pi, i > µ, we have τ (i) = 0. Therefore for any τ ≥ 1, the intended partner of a τ - fresh
oracle must not be adversarially controlled.
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scheme is used to guarantee authentication: The long-term keys of all parties consist of verifica-
tion keys of the signature scheme. Finally, the one-time signature scheme prevents oracles from
accepting without having a (unique) partner oracle.

In the sequel let SIG and OTSIG be signature schemes (Definition 1) and let KEM be a key-

encapsulation mechanism (Definition 9). We will assume common parameters ΠSIG
$← SIG.Setup(1κ),

ΠOTSIG
$← OTSIG.Setup(1κ), and ΠKEM

$← KEM.Setup(1κ).

Long-term secrets. Each party is in possession of a key pair (vk, sk)
$← SIG.Gen(ΠSIG) for

signature scheme SIG. In the sequel let (vk(i), sk(i)) and (vk(j), sk(j)) denote the key pairs of
parties Pi, Pj , respectively.

Protocol execution. In order to establish a key, parties Pi, Pj execute the following protocol
(see also Figure 1 in Appendix B).

1. First, Pi runs (sk
(i)
KEM, pk

(i)
KEM)

$← KEM.Gen(ΠKEM) and (vk
(i)
OTS, sk

(i)
OTS)

$← OTSIG.Gen(ΠOTSIG)

and computes a signature σ(i) := SIG.Sign(sk(i), vk
(i)
OTS). It defines Pid = j and m1 := (vk

(i)
OTS,

σ(i), pk
(i)
KEM, Pid, i) and transmits m1 to Pj .

2. Upon receiving m1, Pj parses m1 as the tuple (vk
(i)
OTS, σ(i), pk

(i)
KEM, Pid, i). Then it checks

whether Pid = j and SIG.Vfy (vk(i), vk
(i)
OTS, σ(i)) = 1. If at least one of both check is not

passed, then Pj outputs ⊥ and rejects.

Otherwise it runs (vk
(j)
OTS, sk

(j)
OTS)

$← OTSIG.Gen(ΠOTSIG) and (K,C)
$← KEM.Encap(pk

(i)
KEM)

and computes σ(j) := SIG.Sign(sk(j), vk
(j)
OTS). Then it sets m2 := (vk

(j)
OTS, σ

(j), C) and com-

putes a one-time signature σ
(j)
OTS := OTSIG.Sign(sk

(j)
OTS, (m1,m2)) and transmits the tuple

(m2, σ
(j)
OTS) to Pi.

3. Upon receiving the message (m2, σ
(j)
OTS), Pi parses m2 as (vk

(j)
OTS, σ

(j), C) and checks whether

SIG.Vfy (vk(j), vk
(j)
OTS, σ(j)) = 1 and OTSIG.Vfy (vk

(j)
OTS, (m1,m2), σ

(j)
OTS) = 1. If at least one

of both check is not passed, then Pi outputs ⊥ and rejects.

Otherwise it computes σ
(i)
OTS := OTSIG.Sign (sk

(i)
OTS, (m1,m2)) and sends σ

(i)
OTS to Pj . Finally,

Pi computes and outputs the session key Ki,j := KEM.Decap(sk
(i)
KEM, C).

4. Upon receiving σ
(i)
OTS, Pj checks whether OTSIG.Vfy(vk

(i)
OTS, (m1,m2), σ

(i)
OTS) = 1. If this fails,

then ⊥ is returned. Otherwise Pj outputs the session key Ki,j := K.

4.3 Efficiency Analysis.

Here, we analyze the efficiency of our AKE when implemented with the building blocks described
above. The following messages are exchanged for each run of the protocol:

m1 =(σMU-EUF-CMACorr , vkOTS, pkKEM, i, pid)

m2 =(vkOTS, σMU-EUF-CMACorr , CKEM, σOTS)

m3 =σOTS

This leads to an overall communication complexity of 2 · (|σMU-EUF-CMACorr | + |vkOTS| + |σOTS|) +
|pkKEM|+ |CKEM| (plus the size of i and pid). If we use the Dk-MDDH-based signature scheme from
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Section 2.3, then σMU-EUF-CMACorr consists of 2k + 1 group elements. (For efficiency, we could set
k = 1 to obtain an efficient SXDH-based signature with 3 group elements per signature.)

Furthermore, if we use the discrete-log-based tightly secure one-time signature scheme from
[HJ12a], then vkOTS consists of two group elements, and σOTS consists of two exponents. Finally,
we can base our double-encryption KEM on the Dk-MDDH-based IND-CPA secure encryption
scheme from [EHK+13]. In that case, pkKEM consists of 2 ·RE(Dk) group elements, where RE(Dk)
denotes the number of group elements necessary to represent one Dk-element. (For instance, for
the k-Linear assumption, we have RE(Dk) = k.) CKEM consists of 2(k + 2) group elements. In the
SXDH-case with k = 1, we obtain a double ElGamal KEM, which can be optimized – by reusing
randomness, and using the fact that one ElGamal instance can be directly interpreted as a KEM
– to pkKEM and CKEM that contain only 2 group elements each.)

In total, we thus obtain a communication complexity of 2(2k+ 1 + 2) + 2 ·RE(Dk) + 2(k+ 2) =
2 · RE(Dk) + 6k + 10 group elements and 2 · 2 = 4 exponents under the Dk-MDDH assumption.
Furthermore, with the optimizations sketched above, we can get an SXDH-based construction with
a communication complexity of only 2(3 + 2) + 2 + 2 = 14 group elements and 2 · 2 = 4 exponents.

4.4 Proof of Security.

Theorem 4. If there is an attacker AAKE that (t, µ, `, εAKE)-breaks the security of AKE in the
sense of Definition 14 then there is an algorithm B = (BKEM,BSIG,BOTSIG) such that either BKEM
(t′, µ · `, εKEM)-breaks the MU-IND-CPACorr-security of KEM (Definition 10), or BSIG (t′, εSIG, µ)-
breaks the MU-EUF-CMA-security of SIG (Definition 2), or BOTSIG (t′, εOTSIG, µ · `)-breaks the
MU-sEUF-1-CMA-security of OTSIG (Definition 4) where

εAKE ≤ 4εOTSIG + 2εSIG + εKEM.

Here, t′ = t + t′′ where t′′ corresponds to the runtime required to provide AAKE with the simulated
experiment as described below.

Proof. We prove the security of the proposed protocol AKE using the sequence-of-games approach,
following [Sho04, BR06]. The first game is the original attack game that is played between a
challenger and an attacker. We then describe a sequence of games where we modify the original
game step by step. We show that the advantage of distinguishing between two successive games is
negligible.

We prove Theorem 4 in two stages. First, we show that the AKE protocol is a secure authen-
tication protocol except for probability εAuth. That is, the protocol fulfills security property 1.) of
the AKE security definition Definition 14. Informally, the authentication property is guaranteed by
the uniqueness of the transcript and the security of the MU-EUF-CMA secure signature scheme
SIG and the security of the one-time signature scheme OTSIG. We show that for any τ and any
τ -accepted oracle πsi with internal state Ψs

i = accept and Pidsi = j there exists an oracle, πtj , such
that πsi and πtj have matching conversations. Otherwise the attacker A has forged a signature for
either SIG or OTSIG.

In the next step, we show that the session key of the AKE protocol is secure except for probability
εInd in the sense of the Property 2.) of the AKE security Definition 14. The security of the
authentication protocol guarantees that there can only be passive attackers on the test oracles, so
that we can conclude the security for key indistinguishability from the security of the underlying
KEM. We recall that µ denotes the number of honest identities and that ` denotes the maximum
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number of protocol executions per party. In the proof of Theorem 4, we consider the following
two lemmas. Lemma 3 bounds the probability εAuth that an attacker breaks the authentication
property of AKE and Lemma 4 bounds the probability εInd that an attacker is able to distinguish
real from random keys. It holds:

εAKE ≤ εAuth + εInd.

4.5 Authentication

Lemma 3. For all attackers A that (t, µ, `, εInd)-break the AKE protocol by breaking Property 1.) of
Definition 14 there exists an algorithm B = (BSIG,BOTSIG) such that either BSIG (t′, µ, εSIG)-breaks
the security of SIG or BOTSIG (t′, εOTSIG, µ`)-breaks the security of OTSIG where t ≈ t′ and

εAuth ≤ εSIG + 2 · εOTSIG.

Proof. Let break
(Auth)
δ be the event that there exists a τ and a τ -fresh oracle πsi that has internal

state Ψs
i = accept and Pidsi = j, but there is no unique oracle πtj such that πsi and πtj have matching

conversations, in Game δ. If break
(Auth)
δ occurs, we say that A wins in Game δ.

Game G0. This is the original game that is played between an attacker A and a challenger C, as
described in Section 4.1. Thus we have:

Pr[break
(Auth)
0 ] = εAuth

Game G1. In this game, the challenger proceeds exactly like in the previous game, except that
we add an abort rule. Let πsi be a τ -accepted oracle with internal state Pidsi = j, where Pj is

τ̂ -corrupted with τ̂ > τ . We want to ensure that the OTSIG public key vk
(j)
OTSIG received by πsi was

output by an oracle πtj (and not generated by the attacker).
Technically, we abort and raise the event abortSIG, if the following condition holds:
• there exists a τ and a τ -fresh oracle πsi with internal state Pidsi = j6 and

• πsi received a signature σ(j) that satisfies SIG.Vfy(vk(j), vk
(j)
OTS, σ

(j)), but there exists no oracle

πtj which has previously output a signature σ(j) over vk
(j)
OTS.

Clearly we have ∣∣∣Pr[break
(Auth)
0 ]− Pr[break

(Auth)
1 ]

∣∣∣ ≤ Pr[abortSIG].

Claim 4. Pr[abortSIG] ≤ εSIG.

Proof. To show that Pr[abortSIG] ≤ εSIG, we construct a signature forger BSIG that breaks the
MU-EUF-CMACorr-security of SIG.
BSIG simulates the challenger for attacker AAKE in Game 1. BSIG receives as input the public

keys {vk(i)
SIG, i ∈ [µ]} from the SIG challenger. It simulates the AKE challenger for AAKE as follows:

It sets vk(i) as public key for user i. Every time it needs to sign a message under a long-term key
it lets the SIG challenger sign that message. BSIG can answer to corrupt queries made by AAKE by
just forwarding them to the SIG challenger and then forwarding the response back to AAKE. Except
for this, BSIG acts exactly like the challenger in Game 0. We note that since BSIG has the power of

6Since πs
i is τ -fresh it holds that Pj is τ̂ -corrupted, where τ̂ > τ .
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answering to corrupt queries “on the fly”, it does not need to guess which party will be corrupted
by AAKE beforehand.

If event abortSIG occurs, this means that AAKE has issued a Send-query containing (σ(j), vk
(j)
OTS),

where j is not corrupted, and (σ(j), vk
(j)
OTS) was not output by any oracle πtj . Thus, BSIG has never

requested a signature for vk
(j)
OTS from its challenger. Therefore ASIG can use the signature σ(j) to

break the MU-EUF-CMACorr security of the signature scheme. This implies Pr[abortsig] ≤ εSIG. �

Game G2. In this game, the challenger proceeds exactly like the challenger in Game 1, except
that we add an abort rule. Let abortcollision denote the event that two oracles, πsi and πtj , sample
the same verification key, vkOTS, for the one-time signature scheme. More formally, let

abortcollision :=
{
∃(i, j) ∈ [µ · `]2 : vk

(i)
OTS = vk

(j)
OTS ∧ i 6= j

}
.

The simulator aborts if abortcollision occurs and A loses the game. Clearly, we have∣∣∣Pr[break
(Auth)
1 ]− Pr[break

(Auth)
2 ]

∣∣∣ ≤ Pr[abortcollision].

Claim 5. Pr [abortcollision] ≤ εOTSIG

Proof. Note that the number of OTSIG verification keys appearing in the experiment, and thus
the probability of the event abortcollision, depends on AAKE. Therefore we construct an attacker
BOTSIG, which runs AAKE as a subroutine by implementing the challenger for AAKE in Game 2.
BOTSIG proceeds exactly like the challenger in Game 2, except that it does not generate the

verification keys vk
(1)
OTS, . . . , vk

(µ`)
OTS used in the experiment on its own, but instead receives them

from its OTSIG-challenger. With probability Pr [abortcollision] there exists (i, j) ∈ [µ · `]2 such that
vk(i) = vk(j) for i 6= j. If this happens, then BOTSIG issues a sign query sign(m, j) to the OTSIG
challenger, who will respond with a signature σ. Then BOTSIG outputs (i,m, σ), which is a valid
forgery.

�

Game G3. In this game, the challenger proceeds exactly like in the previous game, except that
we add an abort rule. Let πsi be a τ -accepted oracle, for some τ , that received a one-time signature

key, vk
(j)
OTS, from an uncorrupted oracle, πtj . Informally, we want to make sure that if πsi accepts

then πtj has previously output the same one-time signature σ
(j)
OTS over (m1,m2) that is valid under

vk
(j)
OTS. Note that in this case πsi confirms the “view on the transcript” of πtj .
Technically, we raise the event abortOTSIG and abort (and A loses), if the following condition

holds:
• there exists a τ -fresh oracle πsi that has internal state Pidsi = j and

• πsi receives a valid one-time signature σ
(j)
OTS for (m1,m2) and accepts, but there exists no

unique oracle, πtj , which has previously output
(

(m1,m2), σ
(j)
OTS

)
.

Clearly we have ∣∣∣Pr[break
(Auth)
2 ]− Pr[break

(Auth)
3 ]

∣∣∣ ≤ Pr[abortOTSIG].
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Claim 6. Pr[abortOTSIG] ≤ εOTSIG

Proof. We construct a forger BOTSIG that (t′, εOTSIG, µ · `)-breaks the MU-sEUF-1-CMA-security
of OTSIG with t′ ≈ t and εOTSIG ≥ Pr[abortOTSIG].
BOTSIG proceeds exactly like the challenger in Game 3, except that it does not generate the

OTSIG verification keys on its own. Instead, it receives them from its challenger. Whenever
it needs to compute a one-time signature, BOTSIG asks the OTSIG-challenger. With probability

Pr[abortOTSIG] there exists an oracle πsi which receives as input a valid signature σ
(j)
OTS for (m1,m2),

but there exists no unique oracle, πtj , which has previously output
(

(m1,m2), σ
(j)
OTS

)
. If this hap-

pens, then BOTSIG outputs (σ
(j)
OTS, (m1,m2), j) to its challenger. Note that this is a valid forgery.

�

Claim 7. Pr[break
(Auth)
3 ] = 0

Proof. Note that break
(Auth)
3 occurs only if there exists a τ -fresh oracle πsi and there is no unique

oracle πtj such that πsi and πtj have matching conversations.
Consider a τ -fresh oracle πsi . Due to Game 1 there exists (at least one) oracle πtj which has

output the verification key vk
(j)
OTS received by πsi , along with a valid SIG-signature σ(j) over vk

(j)
OTS,

as otherwise the game is aborted. vk
(j)
OTS (and therefore also πtj) is unique due to Game 2.

πsi accepts only if it receives a valid one-time signature σ
(j)
OTS over the transcript (m1,m2) of

messages. Due to Game 3 there must exist an oracle which has output this signature σ
(j)
OTS. Since

(m1,m2) contains vk
(j)
OTS, this can only be πtj . Thus, if πsi accepts, then it must have a matching

conversation to πtj . �

Summing up we see that:
εAuth ≤ εSIG + 2εOTSIG

�

4.6 Key Indistinguishability

Lemma 4. For all attackers A that (t, µ, `, εInd)-break the AKE protocol by breaking Property
2.) of Definition 14 there exists an algorithm B = (BKEM,BSIG,BOTSIG) such that either BKEM
(t′, µ`, εKEM)-breaks the security of KEM, or BSIG (t′, µ, εSIG)- breaks the security of SIG or BOTSIG

(t′, εOTSIG, µ`)-breaks the security of OTSIG where t ≈ t′ and

εInd ≤ εSIG + 2 · εOTSIG + εKEM.

Proof. Let break
(Ind)
δ denote the event that A returns (i, s, b′) in Game δ such that bsi = b′, Test(πsi )

was the τ -th query of A, and πsi is a τ -fresh oracle that is∞-revealed throughout the security game.
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If event break
(Ind)
δ occurs we say that A wins in Game δ. Let Advδ := Pr[break

(Ind)
δ ] − 1/2 denote

the advantage of A in Game δ. Consider the following sequence of games.

Game 0. This is the original security game. Thus we have that

εInd = Adv0.

Game 1. The challenger in this game proceeds as before, but it aborts if there exists a τ -fresh
oracle πsi that has internal state Ψs

i = accept and Pidsi = j, but there is no unique oracle πtj such

that πsi and πtj have matching conversations. Note that this is exactly the event break
(Auth)
0 from

the proof of Lemma 3, which implies

Adv0 ≤ Adv1 + εSIG + 2 · εOTSIG.

Lemma 5.
Adv1 ≤ εKEM

Before we prove this lemma, let us finish the proof of Lemma 4.
Summing up probabilities, we obtain that

εInd ≤ εSIG + 2 · εOTSIG + εKEM

�

Proof of Lemma 5 We describe an attacker BKEM against the MU-IND-CPACorr-security of
KEM that acts as a challenger for an attacker AAKE in Game 2. We show that the simulation of
BKEM perfectly simulates the challenger in Game 2 from the adversarys point of view. We do this
in three steps:

1. First, we describe how BKEM simulates the protocol execution within each oracle, step by
step.

2. Next, we show how BKEM can answer to all queries issued by AAKE.
3. Finally, we show that any tuple (i, s, b) output by AAKE can be used to break the security of

KEM.
BKEM gets a set L of µ` public keys, L := pk1

1, . . . , pk
`
µ. It may adaptively query oracles OEncap

and OCorrupt that will respond as specified in Definition 10. By Lsi we will denote the set of challenge
ciphertexts, corresponding to pksi . These lists will be filled throughout the simulation.

Simulating protocol execution within the oracles. BKEM generates all system parameters
and long-term keys according to the protocol specification. It passes all public parameters as well
as all long-term verification keys to AAKE. In the following, on the right side, we will formally
describe the simulation, whereas on the left side, we explain the changes made. The line numbering
refers to the algorithms on the righthand side.
Step 1: BKEM deviates from the protocol description of Figure 1 in Line 3.

BKEM proceeds exactly like in Game 1, ex- 1: (vksi,OTS, sk
s
i,OTS)

$← OTS.Gen(ΠOTS)
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cept for the following. If πsi needs to sample 2: σ(i) $← SIG.Sign(sk(i), vksi,OTS)

a KEM key pair (sksi , pk
s
i )

$← KEM.Gen(), 3: (sksi , pk
s
i )← (∅, pksi )

BKEM sets pksi ← pksi (recall that BKEM re- 4: pid← j

ceived µ` public keys pk1
1, . . . , pk

`
µ from its 5: m1 ← (vksi,OTS, σ

(i), pksi , i, pid)

challenger). sksi,KEM is not assigned.

Step 2: An oracle, πtj , that computes Step 2 of the protocol specification receives as input the

message m1 = (vksi,OTS, σ
(i), pksi , i, pid). We denote by Ctj the KEM ciphertext that is gener-

ated by oracle πtj . For the simulation of πtj , we distinguish between two cases (Line 7 ff.).
BKEM deviates from the protocol description only if the if-condition in Line 7 is satisfied.

If BKEM has received the KEM key pksi under that 1: (vksi,OTS, σ
(i), pksi , i, pid) := m1

a session key is to be encapsulated from its chal- 2: a← SIG.Vfy(vk(i), vksi,OTS, σ
(i))

lenger then BKEM deviates from the protocol spec- 3: b← pid
?
= j

ification. In this case it lets the KEM challenger 4: IF NOT (a ∧ b) RETURN ⊥
generate a ciphertext Ctj , together with a key Kt

j . 5: (vktj,OTS, sk
t
j,OTS)

$← OTS.Gen(ΠOTS)

We note that we have Pr[KEM.Decap(sksi , C
t
j) =

Kt
j ] = 1

2 . Here sksi “matches” pksi . Therefore 6: σ(j) := SIG.Sign(sk(j), vktj,OTS)

BKEM does not simulate the AKE challenger per- 7: IF pksi ∈ L DO

fectly. However, this lack in the simulation will 8: (Kt
j , C

t
j)

$← OEncap(pksi )

not be detected by the adversary (as we will later 9: Lsi ← Lsi ∪ {Ctj}.
see). 10: ELSE
We note that Ctj is a valid ciphertext. The key 11: (Kt

j , C
t
j) = KEM.Encap(pksi,KEM)

Kt
j is later used to respond to Test(j, t). If pksi /∈
L then this KEM public key is generated by the 12: m2 := (vktj,OTS, σ

(j), Ctj)

adversary AAKE. In this case BKEM will follow the 13: σtj,OTS ← OTS.Sign(sktj,OTS, (m1,m2))

protocol description for Step 2.
In the former case BKEM embeds a challenge in
each ciphertext whereas in the latter case there is
no challenge embedded in the ciphertext. We will
show later that AAKE will not be allowed to issue
Test(i, s) or Test(j, t) in the latter case.
Step 3: An oracle, πsi , that computes Step 3 of the protocol description receives as input the

message m2 = (vktj,OTS, σ
(j), Csi ) and a one-time signature σtj over (m1,m2). We denote with

Csi the KEM ciphertext that πsi receives. That is, there is probably another oracle πtj such
that Ctj = Csi . For the simulation of πsi , we distinguish between two cases (Line 6 ff.). BKEM
deviates from the protocol description only if the if-condition in Line 6 is not satisfied.

If the ciphertext that πsi needs to decrypt 1: (vktj,OTS, σ
(j), Csi ) := m2

was not generated by the KEM challenger, 2: a← SIG.Vfy(vk(j), vktj,OTS, σ
(j))

then BKEM will corrupt the respective KEM 3: b← OTS.Vfy(vktj,OTS, (m1,m2), σtj,OTS)

key and decrypt the ciphertext. We note 4: IF NOT (a ∧ b) RETURN ⊥
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that this branch will be used only if the ci- 5: σsi,OTS := OTS.Sign(sksi,OTS, (m1,m2))

phertext Csi is generated by AAKE. This way, 6: IF Csi /∈ Lsi DO
BKEM performs a ciphertext validity check. 7: sksi,KEM ← OCorrupt(pk

s
i )

Otherwise, no ciphertext validity check is 8: Ks
i ← KEM.Decap(sksi , C

s
i )

performed since the ciphertext was received 9: ELSE
from the KEM challenger. We note that BKEM 10: Ks

i := ∅
does not simulate oracle πsi perfectly since 11: RETURN Ks

i and accept
no session key is computed. However, we
will show later that this will not be detected
by AAKE since all legitimate queries can be
answered correctly by BKEM.
Step 4: An oracle, πtj , that computes Step 4 of the protocol description receives as input a one

time signature σsi,OTS over (m1,m2). Recall that m1 = (vksi,OTS, σ
(i), pksi , i, j) and m2 =

(vktj,OTS, σ
(j), Ctj). BKEM deviates from protocol specification only if the if-condition in Line 3

is satisfied.

If the KEM public key pksi that is received 1: a← OTS.Vfy(vksi,OTS, (m1,m2), σsi,OTS)

by πtj in step two was not received from the 2: IF NOT a RETURN ⊥
KEM challenger, then BKEM has encapsu- 3: IF pksi ∈ L
lated a session key Kt

j in step two. 4: Kt
j ← ∅

Otherwise BKEM does not simulate πtj ac- 5: RETURN Kt
j and accept

cording to the protocol specification. How-
ever, as above, we will show that this will
not be detected.

Simulating the AKE-challenger. In this section we show how BKEM answers to the queries
that are issued by AAKE.
• Corrupt(i): BKEM answers to this query exactly as in Game 2.
• RegisterCorrupt(i, pki) This query is also answered exactly as in Game 2.
• Reveal(i, s): If AAKE issues a Reveal()-query and oracle πsi has internal state Ψs

i = accept

then BKEM needs to return the session key that is computed by πsi . We distinguish between
two cases.
If it holds that Ks

i = ∅ then there is a pair (i′, s′) such that Csi ∈ Ls
′
i′ . This is due the

simulation of Step 3 (Line 6 ) and Step 4 (Line 3). In this case BKEM issues a Corrupt(i′, s′)-
query to the KEM challenger and receives back the secret key sks

′
i′ which it then uses to

compute Ks
i ← KEM.Decap(sks

′
i′ , C

s
i ). Finally it returns Ks

i which is the real session key.
If it holds that Ks

i 6= ∅, BKEM simply returns Ks
i . We note that due to the simulation of

Steps 3 (Line 10), 2 (Line 10) and 4 (Line 5) this is the real session key computed by πsi .
• Test(i, s): To answer to Test()-queries, BKEM proceeds as follows. We note that this query

is only allowed if πsi is fresh at the point in time when this query is issued. Due to Game 1
this means that there is a unique partner oracle πtj . By the definition of freshness, j is τ -
uncorrupted. Over that, it follows from the simulation of Step 2 (Lines 7 to 9) that for the
ciphertext Csi it either holds that Csi ∈ Ltj or Csi ∈ Lsi . We assume wlog that Csi ∈ Lsi . The
other case works analogously. The KEM challenger supplied BKEM with a challenge key Ks

i
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along with Csi . We note that Pr[Ks
i = KEM.Decap(sksi , C

s
i )] = 1

2 . BKEM returns Ks
i .

This completes our description of BKEM. Next, we show how BKEM uses the triplet (i, s, b)
output by AAKE to break the security of KEM.

Extracting a solution for the KEM game. Now, let (i, s, b) be the output of AAKE in Game 2.
I.e., b is its guess for bsi . Then BKEM will just forward this triplet, i.e., it also outputs (i, s, b). We
note that AAKE loses if there is no τ such that πsi is τ -fresh and ∞-revealed throughout Game 2.
Stated differently, AAKE wins only if
• πsi has τ̂ -accepted, τ̂ ≤ τ , and there is a unique partner oracle πtj such that πsi and πtj have

matching conversations.
• πsi is ∞-revealed throughout the security game.
• πtj is ∞-revealed and ∞-tested throughout the security game.
• Party j is τ̃ -corrupted where τ̃ > τ .

We show that if AAKE wins in Game 2, then BKEM is able to win the KEM game. We distinguish
between two cases. Either πsi is an initiator oracle, i.e., it computes Steps 1 and 3 of the protocol
descritpion or πsi is a responder oracle, that is, it computes Steps 2 and 4 of the protcol description.

Consider for the moment that πsi is an initiator oracle. This means that the KEM public key
pkKEM that is used to encapsulate the session key by oracle πtj is generated by the KEM challenger,
i.e., pkKEM = pksi . Recall that to simulate πtj , AAKE issues an Encap-query KEM.Encap(pksi ) to the
KEM challenger. Let (Ks

i , C
s
i ) denote the response to this query. Csi is then sent from πtj to πsi .

Recall further that to answer to a Test-query, Test(i, s), BKEM outputs the key Ks
i that was output

by the KEM-challenger along with Csi .
On the other hand, if πsi is a responder oracle then it generates a ciphertext for a KEM public

key pkKEM = pktj that was sampled by πtj and j (due to Game 1) is τ -uncorrupted. Therefore
pktj ∈ L. Recall again that to simulate πsi , BKEM issued an Encap-query KEM.Encap(pktj) to the
KEM-challenger. Let (Ks

i , C
s
i ) denote the response to this query. Then, Csi is sent from πsi to πtj

and in order to answer to a query Test(i, s) issued by AAKE, BKEM returns Ks
i .

We note that in either case, if AAKE has advantage ε to win in Game 2 then the advantage of
BKEM in the KEM security game is at least ε.

�
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TLS-DHE in the standard model. In Reihaneh Safavi-Naini and Ran Canetti, editors,
Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer
Science, pages 273–293. Springer, August 2012.

33

http://eprint.iacr.org/


[JV96] Mike Just and Serge Vaudenay. Authenticated multi-party key agreement. In Kwangjo
Kim and Tsutomu Matsumoto, editors, Advances in Cryptology – ASIACRYPT’96,
volume 1163 of Lecture Notes in Computer Science, pages 36–49. Springer, November
1996.

[KK12] Saqib A. Kakvi and Eike Kiltz. Optimal security proofs for full domain hash, revisited.
In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology – EU-
ROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 537–553.
Springer, April 2012.

[Kra05] Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In Victor
Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes
in Computer Science, pages 546–566. Springer, August 2005.

[LJYP14] Benoit Libert, Marc Joye, Moti Yung, and Thomas Peters. Concise multi-challenge
cca-secure encryption and signatures with almost tight security. In ASIACRYPT 2014,
2014. https://eprint.iacr.org/2014/743.pdf.

[LLM07] Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of au-
thenticated key exchange. In Willy Susilo, Joseph K. Liu, and Yi Mu, editors, ProvSec
2007: 1st International Conference on Provable Security, volume 4784 of Lecture Notes
in Computer Science, pages 1–16. Springer, November 2007.

[MS04] Alfred Menezes and Nigel P. Smart. Security of signature schemes in a multi-user
setting. Des. Codes Cryptography, 33(3):261–274, 2004.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In 22nd Annual ACM Symposium on Theory of Computing, pages
427–437. ACM Press, May 1990.
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A Proof of Lemma 1

For sake of contradiction assume that there is an algorithm A such that

Pr[AO
q
1

q = 1]− Pr[AO
q
0

q = 1] = εq > 0.

We construct an algorithm A1 such that Pr[AO
1
1

1 = 1] − Pr[AO
1
0

1 = 1] ≥ ε1 =
εq
q+1 > 0. This

contradicts equation 1.
A1 acts as challenger for Aq. We describe q+2 games and A1 will choose which of these games is

to be played. We note that A1 may issue one proof query to a challenger C. Let π = C(·, ·, ·) denote
the response and let b1 denote the bit that was chosen by C. In game i, i ∈ [q+1]0, A1 responds to the

proof queries (x(j), w
(j)
0 , w

(j)
1 ), j ∈ [q], ofAq as follows:
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1: IF j < i RETURN NIPS.Prove(CRS, x(j), w
(j)
0 )

2: IF i = j RETURN π = C(x(j), w
(j)
0 , w

(j)
1 )

3: RETURN NIPS.Prove(CRS, x(j), w
(j)
1 )

Finally Aq will output a bit bq as its guess for b. A1 will just forward this bit as its own guess for
b1. By Pr[χi] we denote the probability that Aq outputs 1 in game i. Obviously, we have that game
0 is equal to Oq1 whereas game q + 1 is equal to Oq0. Therefore we have Pr[χ0]− Pr[χq+1] ≥ εq.
NowA1 will choose i ∈ [q]0 uniformly at random. We note thatO1

1 will return NIPS.Prove(CRS, x, w1)

whereasO1
0 will return NIPS.Prove(CRS, x, w0). Therefore, we have Pr[AO

1
1

1 (π) = 1] = 1
q+1

∑q
i=0 Pr[χi].

We observe that game i and game i+ 1 are identical if b1 = 0 in game i and b1 = 1 in game i+ 1.

It follows Pr[AO
1
0

1 (π) = 1] = 1
q+1

∑q
i=0 Pr[χi+1]. So:

Pr[AO
1
1

1 = 1]− Pr[AO
1
0

1 = 0] ≥ 1

q + 1
εq
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B Illustration of the AKE Protocol

Pj has long-term key pair
(vk(j), sk(j))

Pi has long-term key pair
(vk(i), sk(i))

Step 1:

(vk
(i)
OTS, sk

(i)
OTS)

$← OTSIG.Gen(ΠOTSIG)

σ(i) $← SIG.Sign(sk(i), vk
(i)
OTS)

(sk
(i)
KEM, pk

(i)
KEM)

$← KEM.Gen(ΠKEM)
pid := j
m1 := (vk

(i)
OTS, σ

(i), pk
(i)
KEM, i, pid)

←−
m1

−−−−−−−−−−−−−−

Step 2:
(vk

(i)
OTS, σ

(i), pk
(i)
KEM, i, pid) := m1

a← SIG.Vfy(vk(i), vk
(i)
OTS, σ

(i))

b← pid
?
= j

IF NOT (a ∧ b) RETURN ⊥
(vk

(j)
OTS, sk

(j)
OTS)

$← OTSIG.Gen(ΠOTSIG)

σ(j) := SIG.Sign(sk(j), vk
(j)
OTS)

(K,C) = KEM.Encap(pk
(i)
KEM)

m2 := (vk
(j)
OTS, σ

(j), C)

σ
(j)
OTS := OTSIG.Sign(sk

(j)
OTS, (m1,m2))

−
m2, σ

(j)
OTS

−−−−−−−−−−−−−−→

Step 3:
(vk

(j)
OTS, σ

(j), C) := m2

a← SIG.Vfy(vk(j), vk
(j)
OTS, σ

(j))

b← OTSIG.Vfy(vk
(j)
OTS, (m1,m2), σ

(j)
OTS)

IF NOT (a ∧ b) RETURN ⊥
σ
(i)
OTS := OTSIG.Sign(sk

(i)
OTS, (m1,m2))

K = KEM.Decap(sk
(i)
KEM, C)

Ki,j := K
RETURN Ki,j and accept

←−
σ
(i)
OTS

−−−−−−−−−−−−−−

Step 4:
a← OTSIG.Vfy(vk

(i)
OTS, (m1,m2), σ

(i)
OTS)

IF NOT a RETURN ⊥
Kj,i := K
RETURN Kj,i and accept

Figure 1: Generic AKE-Construction for Extended BR-Security
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