Quantum Bit Commitment with Application in Quantum
Zero-Knowledge Proof

Dongdai Lin?, Yujuan Quan', Jian Weng!, and Jun Yan!?

1Jinan University
quanyj@126.com, {cryptjweng, complezityan} @gmail.com
2State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences
ddlin@iie.ac.cn

October 4, 2014

Abstract

Watrous (STOC 2006) proved that plugging classical bit commitment scheme that is secure
against quantum attack into the GMW-type construction of zero-knowledge gives a classical
zero-knowledge proof that is secure against quantum attack. In this paper, we showed that
plugging quantum bit commitment scheme (allowing quantum computation and communication)
into the GMW-type construction also gives a quantum zero-knowledge proof, as one expects.
However, since the binding condition of quantum bit commitment scheme is inherently different
from its classical counterpart, compared with Watrous’ security proof, here we encounter new
difficulty in soundness analysis. To overcome the difficulty, we take a geometric approach,
managing to reduce quantum soundness analysis to classical soundness analysis.

We also propose a formalization of non-interactive quantum bit commitment scheme, which
may come in handy in other places. Moreover, inspired by our formalization, we generalize
Naor’s construction of bit commitment scheme to the quantum setting, achieving non-interactive
commit stage.

We hope quantum bit commitment scheme can find more applications in quantum cryptog-
raphy.

1 Introduction

Zero-knowledge (ZK) is an important concept in both cryptography and complexity theory. Rough-
ly speaking, compared with NP proof system (in which prover sends witness to verifier for verifica-
tion), through zero-knowledge proof prover can convince verifier to accept without leaking anything
that is hard to compute, i.e. knowledge, in particular the witness . Bit commitment scheme (BC)
is a two-stage (first a commit stage followed by a reveal stage) interactive cryptographic protocol
between sender and receiver; its security consists of two aspects: the security against receiver,
known as hiding, roughly says receiver cannot guess the committed bit during the commit stage.
The security against sender, known as binding, says sender cannot open the bit commitment as
both 0 and 1 later in the reveal stage. Bit commitment scheme is an important cryptographic

'In this paper, we focus on proof system, in which malicious prover could be computationally unbounded.
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Figure 1: GMW-type zero-knowledge protocol

primitive, found many applications in the construction of cryptographic protocols. In particular,
one can use bit commitment scheme to construct zero-knowledge protocols. A famous yet simple
zero-knowledge protocol in the classical setting is GMW-type protocol [8], as depicted in Firgure 1.
Specifically, in such type of protocol, prover first commits to a string bit by bit using bit commit-
ment scheme. Next, verifier comes up with a random challenge. Last, prover responds by opening
a subset of bit commitments as some values that will make verifier accept. Taking a concrete ex-
ample, refer to the GMW-type protocol for Hamiltonian Cycle [2], as described in Figure 3. More
detail about zero-knowledge and bit commitment scheme is referred to [7].

With the possible emergence of quantum computer and quantum communication, we are forced
to study cryptography with quantum security, i.e. quantum cryptography. Generally, there are
two sorts of quantum cryptography. The first one still uses classical mechanism in the construction
(a.k.a. post-quantum cryptography), but even quantum computer cannot break it; the second one
investigate the full power of quantum mechanism (including quantum computation and quantum
communication) in the construction. We stress that one should be very careful about the security
these two sorts of quantum cryptography provide, which may be inherently different (as we shall
see in this paper). Likewise, there are two sorts of quantum bit commitment scheme (QBC) and
quantum zero-knowledge (QZK). By convention, we usually call the first sort of QBC and QZK
as (classical) BC and ZK against quantum attack, while the second just (general) QBC and QZK,
respectively 2.

QBC. Quantum bit commitment scheme is a quantum generalization of classical bit commitment
scheme that is secure against quantum adversary. We remark that due to quantum mechanism,
general QBC has inherently different binding condition from classical BC [6]. Briefly, this is
because malicious sender in general QBC can deploy such a superposition attack as follows: he can
realize a conversation with receiver that is an arbitrary superposition of conversations corresponding
to honestly commit 0 and 1; then sender may open both 0 and 1 with non-negligible probability. In
contrast, BC against quantum attack is ”unique”, just like classical BC, in that malicious sender
can open at most one value (0 or 1) with non-negligible probability .

Since unconditional QBQC, i.e. satisfying both statistically-hiding and statistically-binding con-
ditions, does not exist [18, 17], a possible approach is to take some plausible quantum complexity
assumptions and relax one condition to be computationally secure. As in classical setting, we have
two flavors of QBC: (computationally-hiding) statistically-binding QBC and (computationally-
binding) statistically-binding QBC. There have been several constructions in this regards, e.g.
[1, 6, 15, 16]; interestingly, all these constructions have non-interactive commit stage (only one
message sent from sender to receiver), in sharp contrast to the classical setting where interactivity

2The first sort of QBC and QZK can be viewed as a special case of the second by standard quantum simulation
technique; see e.g. [28].

3Though in BC against quantum attack, malicious sender still can be quantum and thus can commit 0 and 1 in
superposition, honest receiver will measure the commitment (upon receiving it) and collapse it into a classical one.



seems inherent [9].

QZK. Quantum zero-knowledge is a quantum generalization of classical zero-knowledge that is even
secure against quantum adversary. Rewinding is an important technique in establishing classical
zero-knowledge, which, however, seems generally impossible in the quantum setting [28]. Fortu-
nately, Watrous in his breakthrough paper [31] showed that quantum rewinding is possible in some
special case. In more detail, Watrous plugged a BC against quantum attack (i.e. QBC of the
first sort) into the GMW-type zero-knowledge protocol for Graph 3-Coloring problem, showing it is
quantum zero-knowledge by a new quantum rewinding technique, thus giving the first (classical)
zero-knowledge proof against quantum attack (i.e. QZK of the first sort) for all NP languages.

1.1 Our motivation

The motivating question of this paper is natural: with general QBC, can we construct QZK?
In particular, if we plug QBC, rather than classical BC against quantum attack as in [31], into
the GMW-type zero-knowledge protocol, can we end up with a quantum zero-knowledge? Most
previous studies of QBC (e.g. [3] and references therein) only treat it as a stand-alone scheme,
failing to consider it as a building block of other protocols. Seeing from practice, one benefit of
using QBC (rather than classical BC against quantum attack) is by noting that most constructions
of QBC have non-interactive commit stage, which is of the most desired.

1.2 New difficulty with QBC in security proof

Compared with Watrous’ proof, the new difficulty of the security proof for GMW-type protocol
with QBC lies in soundness analysis. In more detail, in Watrous’ case, we can let (honest) verifier
measure prover’s commitment upon receiving it, which then becomes classical and thus fixed. Then
the same line of proof as in classical soundness analysis goes through. However, in our case with
QBC, we cannot let verifier measure prover’s commitment simply because it is quantum . This
difference turns out to be crucial in soundness analysis: now prover who plays the role of sender
in QBC can deploy a much more elusive superposition attack than the sender in a stand-alone
execution of QBC. For example, prover can let his commitment com, and response resp, which
contains some classical information such as value or position of bit commitments to open, be
entangled. Once verifier measures these classical information in resp, prover’s commitment will
collapse into possibly different subspaces due to verifier’s different challenges. Therefore, classical
soundness analysis where prover’s commitment is fixed in the first place cannot be used here.

Taking GMW-type protocol for Hamiltonian Cycle for example. Prover can commit a bunch of
graphs in superposition as com. Classical information in prover’s response resp include a graph or
location of Hamiltonian cycle to open, depending on verifier’s challenge bit, which could also be in
superposition and entangled with com.

1.3 Our idea and technique

To prove soundness, i.e. the security of verifier against prover’s possible superposition attack,
we take a geometric approach to tackle this problem. First, we delay verifier’s measurement of
classical information within resp to the end, guaranteeing that prover’s commitment com is fixed
during the execution of the protocol. Note that now these classical information are not determined

4As pointed out by Unruh, since his proof-of-knowledge (a notion stronger than soundness) technique [26] also
heavily relies on bit commitment scheme being classical, it cannot be used in our setting either.



(may be in superposition), so classical soundness analysis still cannot be applied. Second, at the
end of the protocol, we really do not let verifier measure those classical information within resp;
instead, for each verifier’s challenge, we view verifier’s corresponding measurement of classical
information, as well as the subsequent procedure of checking whether to accept, as a single binary
(0/1) measurement, where the projection subspace corresponding to outcome 1 can be viewed as
verifier’s accepting subspace. In other words, now we do not differentiate which particular classical
information will be obtained if verifier measures them; we only care about whether they lead verifier
to accept. By this viewpoint, it turns out that we can covert quantum soundness analysis into a
geometric problem more or less like this: show that verifier’s accepting subspaces corresponding to
different challenges are (almost) mutually orthogonal.

For strict proof of soundness, we need a technical lemma whose geometric intuition is as fol-
lows: in a nutshell, it gives two equivalent yet simple characterizations of a bunch of complex
Euclidean subspaces almost having a non-trivial intersection; that is, there exists a unit vector
whose projections onto all the subspaces are almost one.

1.4 Our results

The main result of this paper is to give an affirmative answer to our motivating question.

Theorem 1 All NP languages have quantum computational zero-knowledge proof given access to
non-interactive (computationally-hiding) statistically-binding quantum bit commitment scheme.

To prove this theorem, we first propose a formalization of non-interactive (statistically-binding)
QBC. Here by "non-interactive” we mean in the commit stage, sender sends a quantum state to
receiver as the bit commitment; later in the reveal stage, sender sends another quantum state
for receiver to open the commitment; in both stages, receiver does not send any messages. Our
formalization is motivated by Watrous’ construction of QSZK-complete problem [30] as well as
our intended application; it makes an essential use of the reversibility of quantum computation,
and conceptually can encapsulate all constructions of non-interactive QBC, which could be of
independent interest. Detail is referred to section 3.

Next, we plug such formalization of non-interactive QBC into GMW-type zero-knowledge pro-
tocols for NP-complete languages, e.g., Hamiltonian Cycle [2] or Graph 3-Coloring [8]. As for its
security, quantum zero-knowledge follows similar to [31], using Watrous’ quantum rewinding tech-
nique; the novel part lies in the soundness (section 5), as we have discussed.

Shortcoming. Our main result seems only of theoretic interests, since we still use GMW-type
construction here, which is not much round-efficient (if we want to reduce soundness error to be
negligible). Nevertheless, we believe that our novel use of QBC as building block, as well as
corresponding soundness analysis, could be theoretically interest and found other applications in
the future study of quantum cryptography.

Unconditional study of QZK. We also follow Watrous [30], generalizing unconditional study of
classical zero-knowledge [27, 19, 23, 24] to the quantum setting. In particular, we show that QBC
is also necessary for QZK.

Lemma 2 If NP language A has quantum zero-knowledge proof, then it also has an instance-
dependent non-interactive quantum bit commitment scheme.

Here, the concept of instance-dependent QBC is a straightforward generalization of its classical
counterpart [27]. The construction from QZK to QBC is just the same as Watrous’ QSZK-



complete problem [30] (section 6). Combining with (a slight variant of) Theorem 1, we establish
an equivalence between QBC and QZK.

Theorem 3 Non-interactive statistically-binding quantum bit commitment scheme is not only suf-
ficient but also necessary for quantum zero-knowledge proof for NP languages.

We point out two difference between our equivalence theorem above and its classical counterpart
in [24]:

1. The constructions and security proofs in the quantum setting are inherently different from
[24].

2. Here we only obtain the equivalence with regard to proof system; whether it holds for ar-
gument system where malicious prover are polynomial-time bounded is an interesting open
question.

From such equivalence, mimicing unconditional conditional study of classical zero-knowledge,
we can also prove many properties about quantum zero-knowledge proof for NP languages uncon-
ditionally (does not rely on any complexity assumption); refer to section 7 for detail.

QBC from QOWETF. Inspired by our formalization of non-interactive (statistically-binding) QBC,
we provides a construction based on a complexity assumption likely to be equivalent to quantum
one-way function (QOWTF). It can be viewed as a quantum generalization of Naor’ scheme [20] in
the classical setting, but with only one message in the commit stage; detail is referred to section
4. We highlight that a straightforward quantum generalization of Naor’s scheme gives a BC
against quantum attack [10], but with two-messages in the commit stage rather than one; another
construction is however assuming quantum one-way permutation (QOWP) [1], which is believed
to be much stronger than QOWF.

1.5 Related work

We prove a technical lemma (Lemma 6) in soundness analysis that is similar to Unruh’s proof-of-
knowledge technique [26, Lemma 6]. For the difference, it seems that Unruh got better bound than
ours, whereas our technique can handle QBC (more general than BC against quantum attack)
and conceptually any GMW-type zero-knowledge protocols for NP-complete languages, including
Graph 3-Coloring (Appendix F).

Compared with Kobayashi’s work on QZK proof [13], here we restrict to NP languages. We
remark that zero-knowledge for NP languages is of the most interest from cryptographic view: we
expect (honest) prover can be implemented in polynomial time given access to a witness; this is
actually what we have achieved. In comparison, Kobayashi assumes honest prover has unbounded
computational power. We highlight that we prove many properties of QZK proof that are similar
to Kobayashi, but with such subtle difference in prover’s efficiency. Of course, Kobayashi’s proof
and ours are completely different; actually, our study meet Kobayashi’s call for unconditional study
of QZK proof in [13].

To the best of our knowledge, the only previous work we know using QBC as a building block is
[5], where QBC is used to construct quantum oblivious transfer (QOT). But the security analysis
there and ours are also completely different.

We note that our idea of formalizing non-interactive QBC is similar to [4], but with different
motivations and assumptions.



1.6 Organization

In section 2 we give some preliminary materials. In section 3, we propose a formalization of QBC.
Inspired by this formalization, we give a construction of QBC in section 4. Following is section 5,
where we prove the soundness of the GMW-type protocol for Hamiltonian Cycle when we plug in
QBC,; this is the main technical part of the paper. In sections 6 and 7, we prove an equivalence
between QBC and QZK, and several immediate consequences following from such equivalence,
respectively. We conclude with section 8.

2 Preliminaries

In this paper, we assume readers are familiar with classical GMW-type zero-knowledge protocol
and its security proof, in particular the soundness analysis. Refer to [7] for detail.

Most of terminologies and notations in quantum information we are using here are standard
and can be found in [29]; for self-containment, we give a quick overview in Appendix 2. In addition,
given a projector II, we also abuse the notation to use II to denote the subspace it projects onto.
We shall use quantum register and a sequence of qubits interchangeably; when we say Hilbert
space induced by the quantum register, we mean the Hilbert space induced by qubits stored in the
quantum register.

We also adopt the definition of quantum indistinguishability from Watrous [31], which is a
straightforward generalization of its classical counterpart. For self-containment, we give it in Ap-
pendix B.

Quantum algorithm can be formalized in terms of uniformly generated quantum circuit family,
whereas quantum circuit is composed of quantum gates chosen from some fixed universal, finite,
and wunitary quantum gate set [22, 31].

3 Formalization of QBC

In this section, we shall give a formalization of non-interactive statistically-binding QBC. Before
doing this, we need to introduce a notion known as quantum state defined by quantum circuit, as
firstly defined by Watrous [30].

Definition 4 (Quantum state defined by quantum circuit) We can view a quantum circuit
() with designated output as encoding a quantum state in the following way: imagine we apply
quantum circuit @ on a pair of quantum registers (O, G) initialized in all 0’s state, where quantum
register O corresponds to output qubits and G corresponds to non-output qubits (or garbage qubits,
which will be implicitly discarded after applying @); we call the resulting state of quantum register
O as the quantum state defined by quantum circuit (). That is, the quantum state defined by
quantum circuit @ is given by Trg(Q|0)(0|Q*), where G is the subspace induced by register G.

Our formalization of QBC is as follows.

Definition 5 A non-interactive quantum bit commitment scheme, represented by an ensemble of
a pair of quantum circuits {(Qo(n),Q1(n))},, with security parameter n, is a two-party, two-stage
protocol with following properties:

e The protocol consists of two parties, sender and receiver, proceeding in two stages: first a
commit stage and later a reveal stage.
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Figure 2: Commit and open procedures of non-interactive QBC

e Both sender and receiver’s operations can be represented by a pair of (unitary) quantum
circuits (Qo(n), @1(n)), defining a pair of quantum states (po(n), p1(n)).

e At the beginning of commit stage, sender receives a private bit b € {0,1}. To commit bit b,
sender applies quantum circuit Qp(n) on quantum registers (O, G), which is initialized in all
0’s state. Then sender sends register O to receiver; register G is kept.

o In the reveal stage, sender sends b, together with quantum register G to receiver R. Receiver
first measures b to get the value to open, and then applies Qy(n)* on (O, G), the inverse of
Qp(n); accept if these quantum registers return to all 0’s state.

The commit and open procedures are depicted in Figure 2. We are next to define hiding (or
concealing) and binding conditions of quantum bit commitment scheme.

e Hiding. We say the scheme {(Qo(n), Q1(n))},, is statistically (resp. computationally) hiding
if quantum state ensembles {pg(n)},, and {p1(n)}, are statistically (resp. computationally)
indistinguishable.

e Statistically €(n)-binding. We say the scheme {(Qo(n), Q1(n))},, is statistically e(n)-binding
if the fidelity F'(po(n), p1(n)) < e(n). For cryptographic applications, we usually require €(n)
be negligible, or even exponentially small °.

Several remarks about our formalization are in order.

1. Here we only consider information-theoretic binding 6, which is defined by requiring the
fidelity F'(po, p1) close to 0. According to the relation between fidelity and trace distance as
described in inequalities (16), the binding condition can also be expressed in terms of the
trace distance ||pg — p1||; /2 being close to 1. We further remark that this definition implies
the widely accepted definition of quantum binding [6] such that py + p1 < 1+ €(n), where pg

5Actually, what e(n) really is does not make much difference, because some standard amplification procedures, as
described in Appendix G, can decrease €(n) in exponential speed.
5Because we only consider proof system in this paper.



and p; are probability that sender can open the bit commitment as 0 and 1, respectively. See
Appendix C for detail.

2. We argue that the commit and the open procedures of all constructions of non-interactive
quantum bit commitment scheme in standard model (even those of anther flavor, e.g. [6,
15, 16]) can be recast in our formalization. To see it, note that the open procedure in
our formalization is actually a verification, via reverse computation, that sender performs
honestly in the commit stage. This is in the same spirit as the canonical open procedure
in the classical setting, where sender sends random coins he/she used in the commit stage,
and receiver checks that such random coins are consistent with the generated transcript. (see
Goldreich’s textbook [7, page 225]).

3. We stress that here we restrict our attention to the non-interactive QBC. The reasons for
our choice are three-fold. First, in this paper, indeed we can construct such stronger (no need
of interaction) notion of QBC. Second, almost all previous constructions of QBC (including
another flavor), e.g. [1, 6, 15, 16], are non-interactive. Third, as we show later, we can
actually construct non-interactive QBC from QZK proof. Therefore, evidences indicate
that QBC perhaps does not really need interaction; restricting to non-interactive QBC does
not lose generality. This is in sharp contrast to most of classical constructions of BC that
are interactive.

From now on, when we say QBC, we refer to the formalization given above rather than any
specific constructions.

4 A construction of statistically-binding QBC

In this section, we consider how to construct non-interactive statistically-binding QBC from quan-
tum one-way function (QOWTF); previously, we only know how to do this assuming quantum
one-way permutation (QOWP) [1]. The idea of our construction is inspired by our formalization
of QBC: it suffices for us to generate in polynomial time an ensemble of a pair of quantum states
{(po(n), p1(n))},, such that {pp(n)}, and {pi(n)}, are computationally indistinguishable but sta-
tistically distinguishable. To this end, we use idea of Naor’s [20]: let pg(n) be the density operator
corresponding to a pseudorandom distribution, while p;(n) corresponding to a truly random (i.e.
uniform) distribution. The commit and the open procedures follow the ones in our formalization
(Definition 5).

In more detail, assume G : {0,1}" — {0,1}>" is a classical pseudorandom generator secure
against any quantum polynomial-time distinguisher. Then we let quantum circuit )y output quan-
tum state

=g O GENEE) 1)

z€{0,1}"

We point out that given GG, the construction of quantum circuit (g which simulates G in a reversible
way is standard. The construction of quantum circuit ()1 which outputs quantum state

e DL @

z€{0,1}3n

is easy. Details of the construction and its security proof are referred to Appendix D.



Common input: a directed graph G with n vertices.
Private input to prover: a Hamiltonian cycle of G.

Protocol:

e Prover (P1): Select a random permutation 7 of {1,2,...,n}, and commit to each bit
of the string encoding the adjacency matrix of 7(G) independently. Send these bit
commitments to verifier.

e Verifier (V1): Select a challenge bit b € {0,1} randomly and uniformly, and send it to
prover.

e Prover (P2): When b = 0, prover sends to verifier permutation 7, as well as information
used to open all bit commitments as the adjacency matrix of 7(G). When b = 1, prover
sends to verifier the information about the position where the Hamiltonian cycle locates,
i.e. n out of n? entries in the adjacency matrix of 7(G), as well as information used to
open bit commitments at these n positions as all 1’s.

o Verifier (V2): When b = 0, verifier checks that all bit commitments are opened as the
adjacency matrix of 7(G) successfully. When b = 1, verifier checks that bit commitments
at the n specified positions are all opened as 1’s successfully and the corresponding edges
form a Hamiltonian cycle.

Figure 3: GMW-type zero-knowledge protocol for Hamiltonian Cycle

We remark that the exact complexity assumption we are using here is (classical) pseudorandom
generator against quantum distinguisher; but if [11] can be generalized to the quantum setting,
which is widely believed, then our construction can in turn be based on QOWF.

5 QZK from QBC

We intend to plug QBC, as formalized in Definition 5, into GMW-type zero-knowledge protocol to
obtain QZK. For its security proof, we mentioned that compared with Watrous [31], we encounter
new difficulty in the soundness analysis; briefly, this is because malicious prover may deploy a
superposition attack.

Soundness analysis: a geometric approach

To overcome the new difficulty, we take a geometric approach: we consider verifier’s accepting
subspaces corresponding to each of his/her challenge. In the following, we give a soundness proof
of GMW-type protocol for Hamiltonian Cycle problem (described in Figure 3). We remark that our
approach is generic; it presumably can be applied to any GMW-type protocols, including the one
for Graph 3-Coloring (refer to Appendix F for a sketched proof).

Adopting notations used in Figure 3, we introduce projectors

Py = Y 1m){7] © Quic)|0)(01Q%c) (3)
Pio= ) o)l ® Qel0)(0|Q:, (4)



denoting accepting subspaces corresponding to challenge bit 0 and 1, respectively. The expressions
of Py, P; are explained as below. We assume QBC is represented in terms of quantum circuits
(Qo,Q1). For the expression of Py, m denotes a permutation, which is a part of prover’s response.
Projector Q,T(G)|0>(0|Q;(G) operates on all n? (quantum) bit commitments, where Qnr(q) is the
quantum circuit to commit graph m(G). In more detail, suppose the adjacency matrix of m(G)
can be represented by binary string b1by - -by2. Then Qrg) = Qp @ Qp, @ -+ ® anz. For the
expression of Py, ¢ denotes the location of Hamiltonian cycle. Projector Q.|0)(0|Q} operates on n
(out of n?) bit commitments at positions specified by ¢, where Q. (= Q?") is quantum circuit to
commit n 1’s.

At a high level, to prove soundness, it becomes to show that whatever quantum state prover
prepares as commitment, its projections on subspaces Py and P; cannot be too long simultaneously.
To this end, we need a technical lemma stated as below (its proof is delayed to Appendix E),
which implies that for contradiction, it then suffices to show that subspaces Py and P; are almost
orthogonal. The intuition of the lemma is referred to the remark immediately after it.

Lemma 6 Let X,) be two complexr Fuclidean spaces, and Pi,..., P, be projectors on X ® Y.
If there exists a vector [¢) € X ® Y and unitary transformations Uy, ..., Uy, € U(Y) such that
S IPUY? Jm > 1-8 for some 0 < & < 1, then there exists unitary transformations UY, ... U’ €
U(Y) satisfying | P1UT -+ - PrUp )| > 1 —mA/3.

Remark. In a special case where subspace ) is trivial (then there are no U;’s and U/’s), then the
lemma above gives two equivalent characterizations of a bunch of subspaces having almost non-
trivial intersection. In more detail, expression Y, || B;|)||> /m > 1 — § says there exists a vector
whose projections on all subspaces P;’s are almost one, while expression ||Py - - - Py, [90)|| > 1 —m\/3
says there exists a vector such that after a sequence of projections P;’s, the resulting vector almost
has length one.

For our purpose, the general case where subspace ) is non-trivial corresponds to prover prepar-
ing response adaptively (according to verifier’s challenge); subspace X is induced by the commit-
ment, which is out of prover’s reach at the moment preparing his response.

Putting things together

We next show how our technical lemma magically reduce quantum soundness analysis to classical
soundness analysis.

PROOF of soundness: Suppose graph G does not have Hamiltonian cycle. Moreover, without loss of
generality, suppose QBC represented by (Qq, Q1) satisfies binding condition F(pg, p1) < 27" For
contradiction, assume verifier will accept with probability at least, say, 0.8. That is, there exists a
quantum state vector [¢) such that

ST IR /2 = 08,

i=0,1

where Py, P, are described in expressions (3), (4), respectively; vector [¢) is the quantum state
prover prepares before seeing verifier’s challenge (part of it is sent to verifier in the first message as
commitment), and unitary transformations Uy, U; can be viewed as prover’s strategy after seeing
challenge but before sending response. By Lemma 6, there exists unitary transformation U, U7,
which operate on prover’s response, such that

|PUSPLUL ) || > 1 = 20/0.2 = Q(1).

10



Thus, to derive contradiction, we suffice to show that for any U], U], operating only on prover’s
response, the operator norm [|PyU)P{U, || is negligible.
By our assumption of (Qo, @1), we have

BT

D m) (7] @ Qr(c)|0)(01Q ey U D le) (el ® Qel0)(0|Q1TT

IA

> {1 © Qe 0)401Q g - T - led (el © Qel0)(01Q; - U

< Z F(pﬂ(G)\ca p(lgn%

T,C

where pr(q). denote the quantum state corresponding to the commitment of string 7(G)l, i.e.
string 7(QG) restricting to position specified by ¢. The last ”<” holds because |(7T|<0|Q;‘T(G) Uy -

©)Qc|0)] is upperbounded by F(p (., pi"), according to Uhmann’s Theorem (Fact 11).
Now comes classical soundness argument: since G does not have Hamiltonian cycle, neither

does 7(G). Tt follows that among the n terms in the tensor product in the expression of Pr(@)e» b
least one must be pg. Since F(pg, p1) < 9’ by quantum binding condition,
[PUGPUT || < Y 27 <l (n—1)1- 27" = o(1). (5)
T,c
We arrive at the contradiction. This completes the soundness proof.
|

Remark.

1. Here we require quantum binding hold as strong as F(pg, p1) < 2% for technical reason
(inequality (5)). But this does not matter because we can strengthen the quantum binding
condition by taking multiple (polynomial bounded) copies of the original scheme.

2. Here we can only prove that when graph G does not have Hamiltonian cycle, then verifier’s
acceptance probability is at most 0.8. In comparison, in classical setting, we can actually
show that this probability is =~ 0.5. But such difference does not matter either, as long as
there is a non-negligible probability gap from one.

Combing with Watrous’ quantum rewinding technique [31] to show quantum (computational)
zero-knowledge property, which is omitted here since the proof is almost the same, we arrive at our
main theorem.

RESTATEMENT OF Theorem 1: All NP languages have quantum computational zero-knowledge
proof given access to non-interactive statistically-binding quantum bit commitment scheme.

6 An equivalence between QBC and QZK

In the same spirit as [24], we investigate whether QBC and QZK are equivalent. To this end, like
[24], we first need to generalize the definition of QBC to the instance-dependent one.

Definition 7 We say a (promise) problem A has instance-dependent QBC if on input z € Aygg U
Ayo, we can construct in polynomial time a quantum bit commitment scheme such that

11



e When = € Ay, then the scheme is hiding;

e When = € Ay, then the scheme is binding.

The hiding and binding conditions can be defined in a similar way as in Definition 5.

Remark. Instance-dependent QBC can be simultaneously statistically-hiding and statistically-
binding.

Now we can prove a theorem which is a precise restatement of Theorem 3.

Theorem 8 For every language A € NP, A has quantum statistical (resp. computational) zero-
knowledge proof if and only if A has an instance-dependent quantum bit commitment scheme that
is statistically (resp. computationally) hiding on YES instances and statistically binding on NO
mstances.

ProoOF SKETCH: From QZK to QBC, the basic idea is to use Watrous’ construction of QSZK-
complete problem, together with some amplification procedures; detail is referred to appendix G.
On the other hand, from QBC to QZK, the proof is almost the same as what we have given
in the last section, except that now we use instance-dependent QBC instead. A key observation is
that quantum zero-knowledge property only relies on quantum hiding, while soundness on quantum
binding.
[ |

7 Consequences

As an immediate corollary of our equivalence theorem (Theorem 8), we can prove several interesting
properties about quantum zero-knowledge proof for NP languages. We remark that all these
properties are proved unconditionally, not relying on any complexity assumptions. Compared with
Kobayashi’s results [13], we highlight here (honest) prover can be implemented in polynomial time.

Corollary 9 For every language A € NP:

1. A€ HVQSZK (resp. HVQZK) with efficient prover if and only if A € QSZK (resp. QZK)
with efficient prover;

2. If A€ QSZK (resp. QZK), then A has a three-round quantum statistical (resp. computation-
al) zero-knowledge proof with perfect completeness, constant soundness error, and verifier’s
message being just a single random bit. Moreover, prover can be implemented in quantum
polynomial time given a witness.

Second, combining Theorem 1 and QBC we constructed in section 4, we have the following
theorem.

Theorem 10 If (classical) pseudorandom generator against quantum attack exists, then all lan-
guages in NP have quantum computational zero-knowledge proof.

Due to different bit commitment schemes used, Theorem 10 relies on conceivably a much weaker
complexity assumption than Watrous [31]; and one less message than [10] based on the same as-
sumption, but at the cost of requiring quantum computation and quantum communication. Though
widely believed, we have not yet seen a formal proof that the same construction of pseudorandom
generator as in [11] remains secure against quantum attack if we assume QOWPF. If this is true,
then we can relax the assumption of Theorem 10 to the existence of QOWEF.

12



8 Conclusion

A summary of our results. In this paper, we show that one can construct quantum zero-
knowledge proof for all NP languages given access to non-interactive statistically-binding quantum
bit commitment scheme. As for the security proof, compared with Watrous [31], the novel part of
ours lies in the soundness analysis. We take a geometric approach to solve this problem, proving a
technical lemma that reduces quantum soundness analysis to classical soundness analysis.

On the other hand, we show that non-interactive statistically-binding quantum bit commitment
scheme is also necessary for quantum zero-knowledge proof. We carry out an unconditional study
of quantum zero-knowledge proof mimicking its classical counterpart [27].

QBC as cryptographic primitive. Observing from previous study of QBC [6, 1, 15, 16], as
well as its applications in quantum oblivious transfer (QOT) [5, 14] and quantum zero-knowledge
in this paper, we propose to study QBC as cryptographic primitive in the future study of quantum
cryptography. We have two reasons for this:

1. Seeing from its constructions, both two flavors (i.e. statistically-binding and statistically-
hiding) of QBC have non-interactive commit stage. Moreover, in this paper we show that
the non-interactivity of QBC seems not a too strong requirement; it is necessary for QZK.
Thus, compared with classical BC for which interactivity in the commit stage seems inherent,
QBC has greater advantage regarding round complexity. Maybe we can construct much more
round-efficient (compared with classical setting) quantum cryptographic protocols using QBC
as a building block.

2. As we have discussed, party (prover in this paper) who plays the role of sender in quantum
commitment scheme may carry out a superposition attack, and classical security analysis will
fail. In spite of this, previous work on QOT [5] and our work on QZK shows that QBC also
suffices for some serious cryptographic applications; maybe more are waiting for discovery.

Acknowledgements We thank Yi Deng for helpful discussion during the progress of this
work. Thanks also go to Dominique Unruh and anonymous referee of QIP 2014 for their invaluable
insights on the subject of this paper.
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A  Quantum information

Here we just give a quick review of some basics of quantum information, most of which are adopted
from Watrous’ lecture notes [29].

According to axioms of quantum mechanics, every quantum system mathematically induces a
Hilbert space, which we denote by, e.g., X, ), Z. The state of a quantum system could be either
pure or mized, depending on whether this quantum system is isolated or entangled with other
quantum systems (or environment). A pure quantum state is mathematically represented by a
vector in the Hilbert space induced by the quantum system; we write, e.g., u, v, or |¢), to denote
state vector, with their conjugates u*,v*, or (1|, respectively. A mixed quantum state can be
mathematically described by an density operator, which contains all the statistical properties of
the quantum system. Formally, a density operator is a positive semi-definite operator with trace
one; we usually write, e.g., p, £, to denote density operator, and write D(&X’) to denote the set of all
density operators in Hilbert space X.

Measurements of the distance (or closeness) between two quantum states are important in
quantum information. There are two commonly used measurements for our purpose. The first one
is trace distance. Specifically, for two density operator p,& € D(X), their trace distance is given
by [|p —&|l; /2, where the 1-norm ||-||; is equal to the sum of the absolute value of all eigenvalues.
Another measurement is called fidelity, as explained as below.

Let p € D(X) be a density operator. A purification of p in space X ® ) is a vector u € X @ )
such that Try(uu*) = p, where ® is the tensor product and Try(-) is the partial trace. Purifications
of a (mixed) quantum state are generally not unique and exist if dim())) > rank (p). Then the
fidelity between two quantum states p, £ € D(X) can be viewed as defined via the following fact.

Fact 11 (Uhlmann) Let X and )Y be two Hilbert spaces. Let p,§ € D(X) be density operators,
both having rank at most dim()), and let u € X ® Y be any purification of p. Then

F(p,&) = max {|u*v| :v € X ® Y is a purification of £} .

PROOF: See [29, Lecture 4].

|
There are several simple facts about fidelity that we shall use in this paper.
Fact 12 Let u € X be a unit vector and let p € D(X) be density operator. Then
F(uu™, p) = \J/u* pu.
PROOF: See [29, Lecture 4].
|

Fact 13 Let p,§ € D(X ® Z) be density operators. Then

F(P,f) < F(TTZ(p)v TTZ(&))

PRrROOF: Purifications of density operators p and ¢ are also purifications of Trz(p) and Trz(§),
respectively. Then Uhlmann Theorem (Fact 11) implies F(p,&) < F(Trz(p), Trz()).
[ |
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Fact 14 Let density operators p1,& € D(X) and p2,&s € D(Y). Then
F(p1 ® p2,& @ &2) = Fp1,61) Fp2, &2).
Fact 15 For any p,§,0 € D(X), we have

max (F(p, o)+ F(0,8)?) =1+ F(p,€).

PROOF: See [30, 21].
|

The two measurements of distance (or closeness) between two quantum states, trace distance
and fidelity, are related through the following inequalities.

Fact 16 (Fuchs-van de Graaf inequality) Let X' be a complex Euclidean space and assume that
p, & € D(X) are density operators over space X. Then

1= F(p.€) < 3 llo— &l < VI~ Fip P

PROOF: See [29, Lecture 4].

B Quantum Indistinguishability

Following Watrous [31], we introduce the notion of quantum measurement circuit as the quantum
circuit followed by a measurement of all its output qubits with respect to the computational basis.
In particular, quantum distinguisher is a quantum measurement circuit which has exactly one bit
output. Then quantum indistinguishability is defined as below.

Definition 17 (Quantum Indistinguishable) Let {p,} and {{,} be two ensembles of mixed
states of poly(n) qubits. We say ensembles {p,} and {,} are statistically (resp., computationally)
indistinguishable if for any mixed state o, of poly(n) qubits, and any unbounded-size (resp., poly(n)-
size) quantum distinguisher D,,, we have

|Pr[Dy(py ® o) = 1] — Pr[Dy (& ® 04) = 1]] < €(n),
where €(+) is some negligible function.

Remark. Quantum statistically indistinguishable can be equivalently characterized by the trace
distance ||pn — &nl|; /2 being negligible.

C A note on quantum statistically-binding

A widely accepted definition of quantum binding [6] is pg + P1 < 1 + ¢, where py and p; are
probability that sender can open the bit commitment as 0 and 1, respectively; € is some negligible
function. We next show that our definition of quantum statistically-binding in Definition 5 implies
this widely accepted definition.

As a preparation, let us first prove a fact which gives a characterization of py and p1; this fact
was also implicit in the proof of [30, Theorem 11].
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Fact 18 Let Qq, Q1, po, p1,p0,p1 and Hilbert spaces O,G be the same as introduced in Definition
5. Let o € D(O) be the quantum state of Sender’s message in the commit stage. Then

2

po = F(po,0)?, p1 = F(p1,0)>

PRrROOF: Denote 7y € D(O®G) the quantum state of all qubits at receiver’s hands when he/she has
received message in the reveal stage and the bit to open is 0. Seeing from the canonical procedures
of commit and reveal stages in our formalization of QBC, we know that Trg(vy) = 0. Then

(0]Q5 Y0 Qol0)
F(Qol0),7)*  (Fact 12)
F(po,0)?®.  (Fact 13)

Po

IN

We highlight that the equality in the last ”<” above can be achieved, if sender prepares vy =
Tra(uu*), where A denote the Hilbert space corresponding to ancilla qubits used by (malicious)
sender, and vector u € O ® G ® A (guaranteed by Uhlmann Theorem, Fact 11) could be any
purification of quantum state o whose inner product with Qy|0) ® |0) 4 is equal to F(pg, o).

Similarly, we can show that p; = F(p1,0)?.

With the expressions for pg and p; given in Fact 18, applying 15, we get
po+p1 = max (F(po,0)* + F(p1,0)?)

= 1+F(pO,Pl)
< 14¢€(n).

D A construction of statistically-binding QBC

We first give a formal definition for of pseudorandom gemerator against quantum attack. This
definition is adapted from [7].

Definition 19 (Pseudorandom Generator Against Quantum Attack) A pseudorandom
generator against quantum attack is a (classical) deterministic polynomial-time algorithm G sat-
isfying the following two conditions:

1. Ezpansion: There exists a function ¢ : N — N such that ¢(n) > n for all n € N, and
|G(s)| = ¢|s]| for all s € {0,1}*.

2. Pseudorandomness (against quantum attack): for any quantum state vector |¢) € (C2)®poly(n)
(i.e., quantum state of polynomial qubits), and any polynomial-size quantum measurement
circuit family {Dp}, cn

[Proc oy [Da(GENI8) = 1] = Proe oy [Dulllé)) = 1]] < e,

or equivalently (in the form of density operator, removing randomness),

| Pr[Da (5 X jeenee 9)0l) =1] -

Pr[Dn<2€%n) Y e |¢>(¢l) = 1” <e,

ye{0,1}4(m)
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Security parameter: n.

Construction: Assume G : {0,1}" — {0,1}3" is a classical pseudorandom generator against
quantum attack (any quantum polynomial-time distinguisher). We construct quantum bit
commitment scheme represented by a pair of quantum circuits (Qo, Q1) as below, both treating
the first 3n qubits as the output.

e Quantum circuit Qg:

1. Apply Hadamard gate on each of the first n qubits;

2. For i = 1,...,n, apply CNOT gate on the i-th and the (i + n)-th qubits, with the
former as the control.

3. Simulate G in a standard reversible way, treating the first n qubits as the random
bits used by G, and treating qubits from the (2n + 1)-th one as ancillas that might
be used in the simulation, while keeping the (n + 1)-th to the 2n-th qubits intact.

4. Rearrange qubits so that the first 3n qubits correspond to the output of G.
e Quantum circuit Q)1:

1. Apply Hadamard gate on each of the first 3n qubits;

2. For i =1,...,3n, apply CNOT gate on the i-th and the (i + 3n)-th qubits, with the
former as the control.

Figure 4: Statistically-binding QBC based on pseudorandom generator against quantum attack

where €(-) is some negligible function.

Remark. We point out that the classical construction to increase the expansion factor (refer to
[7, section 3.3.2]) generalizes in a straightforward way to the quantum setting. It then follows that
extension factor ¢(n) in the definition above could be an arbitrary polynomial of n.

With pseudorandom generator at disposal, our construction of QBC is described in Figure 4,
where by ”simulate G in a standard reversible way” we mean given the description of G, i.e., a
classical circuit, the computation of G can be simulated by a classical reversible circuit, which in
turn can be simulated by a unitary quantum circuit; detail is referred to, e.g., [12, section 7].

The correctness of our construction is proved in the following lemma.

Lemma 20 If there exists a classical pseudorandom generator against quantum attack, then the
construction described in Figure / gives a (computationally hiding) statistically binding quantum
bit commitment scheme.

PrOOF: To show that this quantum bit commitment scheme satisfies both hiding and binding
conditions, let us write out the expressions for pg and p;, the quantum states defined by quantum
circuits Qg and @Q1, respectively.

Clearly we have

1
m=gm D Wl

y€{0,1}3
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that is, p; is the mazimally mized state. We also have

1
Qol0) = ﬁwe%}n\G<x>>rw>!wx>

- Y e j2_ S @),

€Im(G z€{0,1}7:
y€lm(G) S5,

where Im(G) denote the image of G(-) and |t,) denote the quantum state of ancilla qubits (beyond
the first 3n qubits) that we do not care about. Thus,

po= Y. alyyl,

y€lm(G)

where oy = Prye 013 [G(2) = yl.
Next we show that our construction is computationally hiding and statistically binding.

Hiding. Note that quantum states ensembles {po}, and {p;}, are quantum computationally
indistinguishable because G(-) is a pseudorandom generator against quantum attack. The scheme
is thus computationally hiding.

Binding. We estimate the trace distance between pg and ps:

1 1
leo—pily = X |-+ 2
y€lm(G) y€{0,1}3"\Im(G)
< 2-o0(1),

by observing that [Im(G)| < 2". Therefore, F(rhog, py = o(1) by Fuchs-van de Graaf inequality
(Fact 16); the scheme is thus statistically-binding.

|
E A proof for Lemma 6
We give a proof for our technical Lemma 6 below.
RESTATEMENT OF Lemma 6: Let X', ) be two complex Euclidean spaces, and P, ..., P, be pro-

jectors on XY®Y. If there exists a vector [1)) € X®) and unitary transformations Uy, ..., U, € U(Y)
such that Y2, ||BUi|)||* /m > 1 — § for some 0 < § < 1, then there exists unitary transformations
Uj,..., U, € U(Y) satistying ||PyU] - - - P, UL |0)|| > 1 —mn/6.

PROOF: From the assumption Y, || B;U;|4)||* /m > 1 — 6, we have

1
o 2 IPU) — Uil < 6. (6)
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Common input: a graph G with n vertices.

Private input to prover: a coloring scheme of vertices of G such that each edge of G is
bi-colored.

Protocol:

e Prover (P1): Select a random permutation 7 of three colors {1,2, 3}, and for each vertex
v of G, commit to 7(c,) where ¢, is the color of v under the coloring scheme. Then send
these bit commitments to verifier.

e Verifier (V1): Select an edge e of G randomly and uniformly, and send it to prover.

e Prover (P2): Open the color of the two vertices adjacent to edge e as specified under the
coloring scheme after permutation 7.

o Verifier (V2): Check if the colors of the two vertices adjacent to edge e are opened
successfully and differently.

Figure 5: GMW-type zero-knowledge protocol for Graph 3-Coloring

Choose U; = U;U},, for 1 <i <m —1, and U},, = Up,. Then,

| P U -+ Prea U, P UL 1) ||
| PLUL -+« Poea Uy (U |$0) + (P Una|90) — Una|[¥9)))||

o RO P U U] — [ AU P U (Bal) — Ul
> leU{ o 'Pm—lUm—1’w>H - HPmUmhm - UmWJH\
> ...
> 1= |BU) - Uily)|
i=1
> 1- Z | P;Us|v) — Ui\¢>|]2 -m  (Cauchy-Schwartz inequality)
i=1

> 1-—mVs. (Plug inequality (6))

We complete the proof.

F QZK for Graph 3-Coloring

The GMW-type zero-knowledge protocol for Graph 3-Coloring is described in Figure 5.

The proof for the soundness of the protocol is similar to Hamiltonian Cycle, which we sketch
below. Specifically, suppose verifier selects edge denoted by e as the challenge. Then verifier’s ac-
tion upon receiving prover’s response (the third message) can be viewed as a binary measurement
{P.,1 — P.}, where projector P, = 261#2 |crea){crea| @1 (e, c2); €1, c2 denotes two colors; projec-
tor Il (c1, c2) corresponds to that commitments of colors at the two vertices adjacent to edge e are
opened as color ¢; respective co successfully. In more detail, using our formalization of QBC, which
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is described by a pair of quantum circuits (Qo, Q1), then Il.(c1, c2) = Q¢ [0)c(0|Q%, ® Qc,|0)c(0|Q%,,
where suppose color c is described by two bits b1 by, then quantum circuit Q. = Qp, ® Qp,; moreover,
projectors Qc, |0).(0|Q%, and Q,|0).(0|Q, operate on the bit commitments of colors corresponding
to the two vertices adjacent to edge e, respectively.

Then like soundness analysis of Hamiltonian Cycle, it suffices to show that for any unitary
transformations U7, ... U], operating on prover’s response, the operator norm ||P,U] - -- P, U, || is
negligible, where m is the number of edges of G, and Pi,..., P, are projectors described above
corresponding to verifier’s different challenges (edges).

We first consider the operator norm of the tensor product of term II.(cp,ce) within P, for
each edge e, where Il.(c1,c2) = Q¢ ]0)e(0]Q7, ® Qc,|0)c(0|QF, as described above. Since graph G
is not 3-colorable, there exist edges e, e’ such that their common vertex is colored with different
colors in the coloring schemes of e and €'. It follows that the operator norm ||, Il.(c1, c2)|| is
upperbounded by F'(pg, p1), where pg, p1 are quantum states defined by quantum circuits (Qo, Q1)
in our formalization of QBC. Summing up over all possible pair of colors (c1, c2) for each edge, we
have the operator norm

PPy Pyl < 6™ F(poy,p1) < 6™ 27" = o(1).

Finally, we remark that the same upper bound also applies to ||PiU]--- P,,U},||, because
U{,... U], only operate on prover’s response; but our upper bound is derived from the subspace
corresponding to prover’s commitment, which U7, ... U], does not touch.

G QBC from QZK

Our basic construction from QZK proof to (statistically binding) instance-dependent QBC is
borrowed from Watrous [30]. Specifically, suppose problem A has an m-message honest-verifier
quantum statistical (resp. computational) zero-knowledge proof. By Watrous’ construction [30,
section 5], given an instance z € Aygs U Ayo, we can construct a pair of quantum circuits (Qo, @1),
which define two quantum states pg, p1, respectively, satisfying the following properties:

o If x € Aygs, then py and p; are statistically (resp. computationally) indistinguishable.
o If x € Ayo, then |[po — p1ll; /2 > ¢/m, where ¢ is some constant.

We remark that Watrous only proves the properties above for quantum statistically zero-
knowledge proof (QSZK). Regarding quantum computationally zero-knowledge proof (QCZK),
the proof for the case x € Ay is the same as Watrous, since the soundness for QSZK and QCZK
are the same (both information-theoretic). After a careful examination, we find the proof for the
case T € Aygs is also similar to Watrous, except that we replace statistically indistinguishable in
Watrous’ proof with computationally indistinguishable.

We observe that this pair of quantum circuits naturally gives a weak instance-dependent QBC,
where by ”weak” we mean the trace distance between pg and p; is not large enough as we need when
T € Axo. Constructions to amplify the trace distance, though different with respect to quantum
statistical and computational zero-knowledge proofs, are standard; we describe them below.

Statistical setting. In this setting, the hiding condition (when x € Aygs) can be equivalently
characterized by the trace distance ||pg — p1l|; /2 being negligible. Thus, what we really need is a
procedure to polarize the trace distance: we want to increase the trace distance when it is mildly
large while decrease it when negligible. Actually, Watrous [30, Theorem 5] also gave such a kind
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of polarization procedure, which is adapted from its classical counterpart [25]; we omit the detail
here. Anyway, by applying Watrous’ polarization procedure to quantum circuits (Qq, Q1), we get
another pair of quantum circuits denoted by (Qy), @), whose sizes are O(poly(|z|)), defining a pair
of quantum states (pj, p}) such that

o If x € Aygs, then pf) and p| are statistically indistinguishable (or precisely, |lp — pill; /2 <
2—p01y(\90\)).

o If x € Ayo, then ||pf — pill; /2>1— 9—poly(|z|)

As a consequence, quantum circuits (Qf, @) give a desired instance-dependent quantum bit com-
mitment scheme.

Computational setting. In this setting, just taking multiple copies of (Qo, Q1) do the job. This
is because the property of computationally indistinguishable is preserved when x € Aygg (just by a
simple hybrid argument; see [31, Proposition 4] for detail), while the trace distance ||po — p1||; /2
decreases with exponential speed when = € Ayo.
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