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Tally-based simple decoders
for traitor tracing and group testing

Boris Škorić

Abstract—The topic of this paper is collusion resistant water-
marking, a.k.a. traitor tracing, in particular bias-based traitor
tracing codes as introduced by G. Tardos in 2003. The past
years have seen an ongoing effort to construct efficient high-
performance decoders for these codes.
In this paper we construct a score system from the Neyman-
Pearson hypothesis test (which is known to be the most powerful
test possible) into which we feed all the evidence available to the
tracer, in particular the codewords of all users. As far as we know,
until now simple decoders using Neyman-Pearson have taken into
consideration only the codeword of a single user, namely the user
under scrutiny.
The Neyman-Pearson score needs as input the attack strategy
of the colluders, which typically is not known to the tracer. We
insert the Interleaving attack, which plays a very special role in
the theory of bias-based traitor tracing by virtue of being part
of the asymptotic (i.e. large coalition size) saddlepoint solution.
The score system obtained in this way is universal: effective not
only against the Interleaving attack, but against all other attack
strategies as well. Our score function for one user depends on
the other users’ codewords in a very simple way: through the
symbol tallies, which are easily computed.
We present bounds on the False Positive probability and show
ROC curves obtained from simulations. We investigate the proba-
bility distribution of the score. Finally we apply our construction
to the area of (medical) Group Testing, which is related to traitor
tracing.

Index Terms—traitor tracing, Tardos code, collusion, watermark-
ing, group testing.

I. INTRODUCTION

A. Collusion attacks on watermarking

Forensic watermarking is a means for tracing the origin
and distribution of digital content. Before distribution, the
content is modified by embedding an imperceptible watermark,
which plays the role of a personalized identifier. Once an
unauthorized copy of the content is found, the watermark
present in this copy can be used to reveal the identities of those
users who participated in its creation. A tracing algorithm or
‘decoder’ outputs a list of suspicious users. This procedure is
also known as ‘traitor tracing’.
The most powerful attacks against watermarking are collu-
sion attacks: multiple attackers (the ‘coalition’) combine their
differently watermarked versions of the same content; the
observed differences point to the locations of the hidden marks
and allow for a targeted attack.
Several types of collusion-resistant codes have been developed.
The most popular type is the class of bias-based codes,
introduced by G. Tardos in 2003. The original paper [36],
[37] was followed by a lot of activity, e.g. improved analyses
[4], [13], [14], [22], [32], [41], [40], code modifications [16],

[28], [29], decoder modifications [2], [8], [24], [30], [12] and
various generalizations [7], [38], [39], [42]. The advantage of
bias-based versus deterministic codes is that they can achieve
the asymptotically optimal relationship ` ∝ c2 between the
sufficient code length ` and the coalition size c.
Two types of tracing algorithm can be distinguished: simple
decoders, which assign a level of suspicion to single users,
and joint decoders [2], [8], [24], which look at sets of users.
One of the main advances in recent years was finding [16], [18]
the saddlepoint of the information-theoretic max-min game
(see Section II-E) in the case of joint decoding. Knowing the
location of the saddlepoint makes it easier for the tracer to
build a decoder that works optimally against the worst-case
attack and that works well against all other attacks too.

B. Contributions and outline

We consider the non-asymptotic regime, i.e. coalitions of
arbitrary finite size. We do something that has somehow been
overlooked: we determine the Neyman-Pearson score [27]
aimed against the collusion attack in the asympotic saddle-
point (i.e. the Interleaving attack), but contrary to previous
approaches (such as [21] for a binary alphabet), we take
all available information as evidence in the Neyman-Pearson
hypothesis test. More precisely, in order to determine if a user
j is suspicious, a hypothesis test is done taking as evidence not
only his codeword, but all the other codewords as well. The
result is a simple decoder which, when the Interleaving attack
is inserted, miraculously simplifies to an easy-to-compute
score for a single user; the score depends on all the other
users’ codewords merely through symbol tallies.
• In Section II we give some background on traitor tracing.
• In Section III we derive our new tally-based score

function. We first present a general result valid in the
Combined Digit Model and then narrow it down to the
Restricted Digit Model. For alphabet size 2, in the limit
of many users our score reduces to the log-likelihood
score of Laarhoven [21]; for larger alphabets the limit
of many users yields the non-binary generalisation of the
Laarhoven score. In the large c limit our score further
reduces to the asymptotic-capacity-achieving score of
Oosterwijk et al. [30].

• In Section IV we compute the probability that there exist
one or more infinite colluder scores. Such an occurence
allows for errorless decoding. Then we upper-bound the
False Positive error rate using an approach similar to the
‘operational mode’ that was recently proposed by Furon
and Desoubeaux [12]. We show that there is quite a large
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gap between this bound and error rates in simulations.
We provide ROC curves from simulations; they show that
the performance of out new score is mostly the same as
the Laarhoven score, except in special cases such as the
Minority Voting attack.

• In Section V we derive the single-position probability dis-
tribution for the scores of Oosterwijk et al. and Laarhoven
as well as our new score. The Oosterwijk et al. score has
a power-law tail with a finite 2nd moment but in general
with an infinite 3rd moment. The generalized Laarhoven
score has an exponential tail. Our new score is discrete;
it has a probability mass function rather than a density
function.

• In Section VI we briefly comment on hypothesis tests for
Group Testing. There is a link between Group Testing
on the one hand and on the other hand binary traitor
tracing where the colluders employ the All-1 attack. We
evaluate the Neyman-Pearson hypothesis test in the case
of the All-1 attack and obtain a new, tally-dependent,
score function for Group Testing.

II. PRELIMINARIES

A. General notation and terminology

Random variables are written as capitals, and their realisations
in lower-case. Sets are written in calligraphic font. (E.g.
random variable X with realisations x ∈ X .) The probability
of an event A is denoted as Pr[A], and the expectation
over a random variable X is denoted as EX [f(X)]

def
=∑

x∈X Pr[X = x]f(x).
The notation [n] stands for {1, . . . , n}. The Kronecker delta
is written as δxy , the Dirac delta function as δ(·). The step
function is denoted as Θ(·). Vectors are written in boldface.
The 1-norm of a vector v is denoted as |v| =

∑
α vα.

The number of users is n. The length of the code is `. The
alphabet is Q, with size |Q| = q. The number of colluders
is c. The set of colluders is denoted as C ⊂ [n] with |C| = c.
The coalition size that the code is built to withstand is c0.
We will use the term ‘asymptotically’ meaning ‘in the limit
of large c0’.

B. Code generation

The bias vector in position i is denoted as pi = (piα)α∈Q,
and it satisfies |pi|

def
=
∑
α∈Q piα = 1. The bias vectors

pi are drawn independently from a probability density F .
The asymptotically optimal F is given by the following
Dirichlet distribution (multivariate Beta distribution): F (p) =

Γ( q2 )[Γ( 1
2 )]−q

∏
α∈Q p

−1/2
α . We use the ‘bar’ notation to in-

dicate a quantity in all positions, e.g. p̄ def
= (pi)i∈[`].

The code matrix is a matrix x ∈ Qn×`; the matrix rows are the
codewords. The j’th row is denoted as x̄j

def
= (xji)i∈[`]. The

entries of x are generated column-wise from the bias vectors:
in position i, the probability distribution for user j’s symbol
is given by Pr[Xji = α|P i = pi] = piα.

C. Collusion attack

For i ∈ [`], α ∈ Q we introduce tally variables as follows,

tiα
def
= |{j ∈ [n] : xji = α}|

miα
def
= |{j ∈ C : xji = α}|. (1)

In words: tiα is the number of users who have symbol α in the
i’th position of their codeword; miα is the number of colluders
who have symbol α in the i’th position of their codeword.
We write ti = (tiα)α∈Q and mi = (miα)α∈Q. They satisfy
|ti| = n and |mi| = c. In the remainder of this paper, the
position index i will sometimes be omitted when it is clear
that a single position is studied.
In the Combined Digit Model (CDM) [39], the attackers have
to decide which symbol, or combination of averaged (‘fused’)
symbols, to choose in each content position i ∈ [`]. This set
of symbols is denoted as ψi ⊆ Q, with ψi 6= ∅. According
to the Marking Assumption, ψi may only contain symbols for
which the colluder tally is nonzero. In addition, the colluders
may add noise. The effect of the attack on the content is
nondeterministic, and causes the tracer to detect of a set of
symbols ϕi ⊆ Q that does not necessarily match ψi. This is
modelled as a set of transition probabilities Pϕ|ψ which depend
on |ψ|, the amount of noise etc. For more details on the CDM
we refer to [39].
In the Restricted Digit Model (RDM) the colluders are allowed
to select only a single symbol (usually denoted as y ∈ Q) with
nonzero tally, which then gets detected with 100% fidelity by
the tracer.
As is customary in the literature on traitor tracing, we will
assume that the attackers equally share the risk. This leads
to “colluder symmetry”, i.e. the attack is invariant under
permutation of the colluder identities. Furthermore we assume
that there is no natural ordering on the alphabet Q, i.e.
everything is invariant under permutation of the alphabet.
Given these two symmetries, the attack depends only on m̄,
the set of colluder tallies. Any attack strategy can then be fully
characterized by a set of probabilities θψ̄|m̄. In the case of the
RDM this reduces to θȳ|m̄.
The process of generating the matrix x as well as tracing
the colluders is fully position-symmetric, i.e. invariant under
permutations of the columns of x (the content positions).
However, that does not guarantee that the optimal collusion
strategy is position-symmetric as well, since the realisation of
x itself breaks the symmetry. Asymptotically the symmetry
is restored (due to ` → ∞); the attack strategy can then
be parametrized more compactly as a set of probabilities
θψ|m applied in each position independently. In the RDM the
asymptotically optimal attack [17], [18] is the Interleaving
attack: a colluder is selected uniformly at random and his
symbol is output.

D. Decoders

The process of tracing colluders based on p̄, x and ȳ is
referred to as ‘decoding’. The decoder outputs a list L ⊂ [n]
of suspicious users. The literature distinguishes between two
types of decoder: simple and joint. A simple decoder computes
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a score for each user j ∈ [n]. A joint decoder, on the other
hand, investigates tuples of users. The runtime of a simple
decoder is linear in n, whereas a joint decoder typically takes
much more time (polynomial in n) because it e.g. has to check
all possible user tuples up to a certain size.
Examples of simple decoders are the original Tardos score
function [36], [37], its symmetrized generalization [38], the
empirical mutual information score [34], [26], and the score
function [30] targeted against the Interleaving attack. Ex-
amples of joint decoders are the Expectation Maximization
algorithm [8], the decoder of Amiri and Tardos [2] and the
Don Quixote algorithm [24].
Often a threshold is used in the accusation procedure: if
the score of a user/tuple exceeds the threshold, he/they are
accused. In this scenario a decoder can make two kinds of
mistake: (i) Accusation of one or more innocent users, known
as False Positive (FP); (ii) Not finding any of the colluders,
known as False Negative (FN).
The error probabilities of the decoder are PFP = Pr[L\C 6= ∅]
and PFN = Pr[L∩C = ∅]. In the literature on Tardos codes one
is often interested in the one-user false accusation probability
PFP1

def
= Pr[j ∈ L|j ∈ [n] \ C] for some fixed innocent user

j; this is for proof-technical reasons. For bias-based codes it
holds [40] that PFP ≈ (n− c)PFP1 if PFP � 1.

E. Joint decoder saddlepoint

The fingerprinting rate is defined as R def
= (logq n)/`. This is

the number of q-ary symbols needed to specify a single user in
[n] (the message part of the codeword), divided by the actual
number of symbols used by the code in order to convey this
message.
The maximum achievable fingerprinting rate at which the
error probabilities can be kept under control is called the
fingerprinting capacity. We consider the most general case, the
joint decoder, in which case the capacity is denoted as Cjoint.
Shannon’s channel coding theorem (see e.g. [10]) gives a
bound on the decoding error probability Perr of an error-
correcting code (for ` → ∞), Perr ≤ q−`(C−R). From this it
follows that, in the limit of large n, the sufficient code length
`suff for resisting c0 colluders at some given error probability
is given by

`suff =
ln(n/PFP)

Cjoint(q, c0) ln q
. (2)

Here the FP error appears because it is usually dominant (more
critical than FN) in audio-video watermarking. Computing the
capacity as a function of q and c0 is a nontrivial exercise.
It is necessary to find the saddlepoint of a max-min game
with payoff function 1

c I(Φ;M |P ), where I(·; ·) stands for
mutual information. In the max-min game, the tracer controls
the bias distribution F and tries to maximize the mutual
information. The colluders know F . They control the attack
strategy and try to minimize the mutual information. There is
a saddlepoint, a special combination of F and strategy such
that it is bad for both parties to stray from that point. The
value of the payoff function in the saddlepoint is the capacity.
The asymptotic (large c) capacity in the RDM was found [2],
[5], [17] to be CRDM,asym

joint = (q − 1)/(2c2 ln q), leading to

a sufficient code length `RDM,asym
suff = 2

q−1c
2
0 ln(n/PFP). In

the asymptotic saddlepoint [18] the bias distribution is the
Dirichlet distribution as specified in Section II-B, and the
attack strategy is the Interleaving attack applied independently
in each content position. For non-asymptotic c0 only numerical
results are available (except at c0 = 2). There are also
numerical results for the asymptotics in the case of attack
models like the CDM [6]. It turns out [17] that the optimal
attack quickly converges to Interleaving with increasing c.

F. Universal score function

Based on the work of Abbe and Zheng [1], Meerwald and
Furon [25] pointed out that a universal decoder for traitor
tracing is obtained by evaluating a Neyman-Pearson score [27]
in the saddlepoint of the mutual-information-game. The term
‘universal’ means that the decoder is effective not only against
the saddlepoint value of the attack, but also all other attacks.
This is a very important point. Usually one can check the
effectiveness of a decoder only against a small set of attacks
and then hope that the decoder will work against other attacks
as well; a universal decoder is guaranteed to work against all
attacks.
The general formula for the Neyman-Pearson score yields a
result that depends on the attack strategy, which is not known
to the tracer. Hence the existence of a universal decoder is
very important.
Laarhoven [21] showed for the binary case that the asymptotic-
capacity-achieving score function of Oosterwijk et al. [30]
is asymptotically equivalent to such a Neyman-Pearson score
evaluated for the Interleaving attack.

G. The multivariate hypergeometric distribution

Consider a single column of the matrix x. Let T be the total
tally vector and M the colluders’ tally vector, as defined in (1).
If a coalition of c users is selected uniformly at random out of
the n users, the probability Lm|t that colluder tally m occurs,
for given t, is

Lm|t
def
= Pr[M = m|T = t] =

1(
n
c

) ∏
α∈Q

(
tα
mα

)
. (3)

(For each symbol α, a number mα of users have to be selected
out of the tα users who have that symbol). Eq. (3) is known
as the multivariate hypergeometric distribution. Its first and
second moment are

EM |t[M ] =
c

n
t (4)

EM |t[MαMβ ]− c2

n2
tαtβ = c

n− c
n− 1

[δαβ
tα
n
− tαtβ

n2
]. (5)

H. Useful Lemmas

Lemma 1 (Bernstein’s inequality [3]): Let V1, · · · , V` be
independent zero-mean random variables, with |Vi| ≤ a for
all i. Let ζ ≥ 0. Then

Pr

[∑̀
i=1

Vi > ζ

]
≤ exp

(
− ζ2/2∑

i E[V 2
i ] + aζ/3

)
.
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Lemma 2 (Beta function): The Beta function is defined as
B(u, v) = Γ(u)Γ(v)/Γ(u + v) and for u, v > 0 it has the
integral representation

B(u, v) =

∫ 1

0

p−1+u(1− p)−1+v dp. (6)

III. TALLY-BASED UNIVERSAL SCORE FUNCTION

Motivated by the fact that with increasing c the saddlepoint
value of the attack strategy quickly converges to Interleaving,
we construct a Neyman-Pearson score against Interleaving.
However, instead of taking as the evidence the detected
symbols ϕ̄, the biases p̄ and a single user’s codeword, as was
done before, we include the whole matrix x. This is an obvious
step, but as far as we know it has not been done before in a
simple decoder.
Theorem 1: Let the biases p̄, the matrix x and the detected
symbols (or symbol fusions) ϕ̄ be known to the tracer. Let the
attack be position-symmetric, parametrized by the probabilities
θψ|m. Consider a tracer who has no a priori suspicions about
the users. His a priori knowledge about the coalition is that
it is a uniformly random tuple of c users from [n]. For him
the most powerful hypothesis test to decide if a certain user
j ∈ [n] is a colluder or not is to use the score

∑̀
i=1

ln

∑
m Lm|tiPϕi|mmxji∑

m Lm|tiPϕi|m(tixji −mxji)
(7)

where we have used the notations Pϕ|m, Lm|t, m and t as
defined in the Preliminaries section.
Proof: The most powerful test to decide between two hy-
potheses is to see if the Neyman-Pearson score exceeds a
certain threshold. We consider the hypothesis Hj = (j ∈ C).
The Neyman-Pearson score in favour of this hypothesis is
the ratio Pr[Hj |evidence]/Pr[¬Hj |evidence], which can be
rewritten as Pr[Hj ]

Pr[¬Hj ] ·
Pr[evidence|Hj ]

Pr[evidence|¬Hj ] . We have Pr[Hj ] = c
n

and Pr[¬Hj ] = 1 − c
n since the a priori distribution of

colluders over the users is uniform. We discard1 the constant
factor Pr[Hj ]

Pr[¬Hj ] and study the expression Pr[evidence|Hj ]
Pr[evidence|¬Hj ] . The

evidence is given by p̄, x, ϕ̄. Using symbol symmetry and
colluder symmetry we have

Rj
def
=

Pr[p̄, x, ϕ̄|Hj ]

Pr[p̄, x, ϕ̄|¬Hj ]

=
Pr[p̄] Pr[x|p̄]

∑
m̄ Pr[m̄|x,Hj ] Pr[ϕ̄|m̄]

Pr[p̄] Pr[x|p̄]
∑

m̄ Pr[m̄|x,¬Hj ] Pr[ϕ̄|m̄]

=

∑
m̄ Pr[m̄|x,Hj ] Pr[ϕ̄|m̄]∑
m̄ Pr[m̄|x,¬Hj ] Pr[ϕ̄|m̄]

. (8)

In applying the chain rule for probabilities (2nd line) we have
used Pr[m̄|xp̄] = Pr[m̄|x], which is due to the fact that m̄ is
created directly from x. We have also used Pr[ϕ̄|p̄xm̄Hj ] =
Pr[ϕ̄|m̄] (and similarly for ¬Hj) since ϕ̄ is created directly
from ψ̄ which is a function of m̄ only.
Note that the randomness of the coalition causes M̄ |x to be a
random variable. Due to the position symmetry of the attack,

1This is allowed. Score systems that differ in a constant factor are
equivalent.

Rj reduces to a factorized expression,

Rj =
∏̀
i=1

∑
mi

Pr[mi|x,Hj ]Pϕi|mi∑
mi

Pr[mi|x,¬Hj ]Pϕi|mi

=
∏̀
i=1

∑
mi

Pr[mi|ti, Hj ]Pϕi|mi∑
mi

Pr[mi|ti,¬Hj ]Pϕi|mi

. (9)

Next we write

Pr[mi|ti, Hj ] =
1(
n−1
c−1

) ∏
α∈Q

(
tiα − δα,xji
miα − δα,xji

)
=

n

c
·
mixji

tixji
Lmi|ti (10)

Pr[mi|ti,¬Hj ] =
1(
n−1
c

) ∏
α∈Q

(
tiα − δα,xji

miα

)
=

n

n− c
tixji −mixji

tixji
Lmi|ti . (11)

Substitution of (10),(11) into (9) yields

Rj =
∏̀
i=1

n− c
c
·

∑
mi

mixjiLmi|tiPϕi|mi∑
mi

(tixji −mixji)Lmi|tiPϕi|mi

. (12)

We discard the constant factor (n−cn )`. We drop the index i on
the summation variable mi. Finally we take the logarithm; this
is allowed since applying a monotonic function to a Neyman-
Pearson score leads to an equivalent score system.
We note a number of interesting properties of the score (7):
• The p̄ has disappeared from the score. This is not

surprising because x contains more evidence than p̄. (The
x is generated from p̄ and after that all further events
depend directly on x.)

• The score for user j depends on the tallies t̄, i.e. on
the codewords of all the other users. This is unusual. In
other simple decoders only the codeword of user j is
considered.

In the case of the RDM, the ϕ̄ reduces to ȳ, and Pϕi|mi

reduces to θyi|mi
. Note that (7) depends on the attack strategy,

which is in general not known to the tracer. The colluder tallies
m are also not known to the tracer, but these are averaged over,
hence (7) does not depend on the unknown colluder tallies.
Theorem 2: In the case of the Restricted Digit Model and the
Interleaving attack, the score function of Theorem 1 reduces
to∑̀
i=1

(
ln

c

n− c
+ ln

[
1 +

1

c

{
δxjiyi

1− 1/n

tiyi/n− 1/n
− 1

}])
(13)

which is equivalent to∑̀
i=1

ln

[
1 +

1

c

{
δxjiyi

1− 1/n

tiyi/n− 1/n
− 1

}]
. (14)

Proof: We omit the indices i and j for notational brevity. In
the case of the RDM and Interleaving, the Pϕ|m in (7) reduces
to θy|m = my/c. With the use of (4),(5) we obtain∑

m

Lm|tmymx = c2
txty
n2

+ c
n− c
n− 1

[δxy
ty
n
− txty

n2
] (15)
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and∑
m

Lm|tmy(tx−mx) = tx
∑
m

Lm|tmy−
∑
m

Lm|tmymx

= (
c

n
− c2

n2
)txty − c

n− c
n− 1

[δxy
ty
n
− txty

n2
]. (16)

We have two cases, δxy = 0 and δxy = 1, which after some
algebra can be simplified to

x 6= y :
(15)

(16)
=
c− 1

n− c

x = y :
(15)

(16)
=
c− 1

n− c
+

1

n− c
· 1− 1/n

ty/n− 1/n
. (17)

Together this can again be written compactly as

(15)

(16)
=

c− 1

n− c
[1 +

δxy
c− 1

· 1− 1/n

ty/n− 1/n
]

=
c

n− c
[1 +

1

c
{δxy

1− 1/n

ty/n− 1/n
− 1}]. (18)

The result (13) follows by substituting (18) into (7) and finally
taking the logarithm.
We mention a number of interesting points about the score
function (14):
• If for any i ∈ [`] it occurs that δxjiyi = 1 and
tiyi = 1, then user j’s score is infinite. This makes perfect
sense: he is the only user who received symbol yi in
position i, which makes it possible to accuse him with
100% certainty.

• For large n the expression (14) approaches
∑
i ln(1 +

c−1[δxjiyi
1
p̂yi
−1]) ≈

∑
i ln(1+ c−1[δxjiyi

1
pyi
−1]). The

latter form was already obtained by Laarhoven [21] in
the case of binary alphabets.

• If c is large as well, then the score may be approx-
imated by its first order Taylor expansion, yielding
c−1

∑
i[δxjiyi

1
pyi
− 1]. This is (up to the unimportant

constant c−1) precisely the asymptotic-capacity-achieving
simple decoder of Oosterwijk et al. [30].

• For given pi, the tally ti is multinomial-distributed with
parameters n and pi. The first moment and variance are
given by ET i|P i=pi

[T i] = npi and ET i|P i=pi
[T 2
iα] −

(np2
iα) = npiα(1− piα). Thus the expression tiyi/n that

appears in the score function is an estimator for piyi that
becomes more accurate with increasing n. We will use the
shorthand notation p̂iα

def
= tiα/n. The typical deviation

|p̂iα − piα| scales as 1/
√
n. If n is not very large, or if

piyi is small, then p̂iyi is noticeably different from piyi ,
which yields a score noticeably different from [21].

• The parameter c appears in the score function, even
though it is not known to the tracer. The tracer has
to use a parameter c0 instead, indicating the maximum
coalition size that can be traced given the code length
` and alphabet size q. Alternatively, he can use several
score systems, each with a different c0, in parallel.

Due to c < ∞ there is of course a mismatch between
the strategy that the Neyman-Pearson score is aimed against
(Interleaving) and the actual saddlepoint strategy. Hence (14)
is not completely optimal. However, it is guaranteed to give

a low FP error probability even when the coalition is much
larger than expected.
We investigate the performance of our score function in
Section IV.

IV. PERFORMANCE OF THE TALLY-BASED SCORE
FUNCTION

A. Setting the scene

We first define a version of the score that is shifted by a
constant ln(1− 1/c), such that a symbol xji 6= yi incurs zero
score. Furthermore we replace the unknown c by c0.

sj =
1

`

∑̀
i=1

sji

sji
def
= ln

(
1 +

δxjiyi
c0 − 1

· n− 1

tiyi − 1

)
= δxjiyi ln

(
1 +

1

c0 − 1
· n− 1

tiyi − 1

)
.

(19)

(20)

Most scores in the literature are balanced such that an innocent
user’s expected score (at fixed p̄) is zero. However, here we
cannot achieve this with a constant shift, because an innocent’s
score depends on the coalition’s actions in a complicated way.
The tracer uses a threshold Z that may in principle depend on
all the knowledge he has, namely p̄, x and ȳ. In contrast to e.g.
the Tardos score function [36], [38] a constant Z will not work.
We analyze this more complicated situation by considering the
following sequence of experiments.
• Experiment 0. Randomly generate p̄ according to the

distribution F . Then, using p̄, generate the codewords of
the colluders, i.e. the x̄j for all j ∈ C. Finally generate
ȳ based on m̄. (The m̄ follows from the colluders’
codewords.)

• Experiment 1. The p̄, (x̄j)j∈C and ȳ are fixed. Now
randomly generate the codewords of the innocent users.
(Note: the innocent user symbols at all the positions
i ∈ [`] are independent random variables, even if the
attack strategy breaks position symmetry!)

This approach is similar to the ‘operational mode’ of Furon
and Desoubeaux [12].

B. Infinite scores

As mentioned in Section III, it can occur that one or more
colluders have an infinite score, in which case it is possible to
accuse them with 100% certainty. (Innocent users can never
get an infinite score.) For some cases we can provide a simple
analytic expression for the probability that such an infinite
score occurs.
Definition 1: Consider a single position. For b ∈ {1, . . . , c}
we define Gb ∈ [0, 1] as

Gb
def
= Pr[MY = b]. (21)

In words: Gb is a parameter that depends on the colluder
strategy, and it indicates the probability that the output symbol
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y was seen by exactly b colluders. From the Marking Assump-
tion it follows that Gc does not depend on the attack strategy.
For the investigation of infinite scores we are of course
interested in G1. In a number of cases we can obtain simple
expressions for Gb.
Lemma 3: For (q = 2, c ≥ 3, Majority Voting) it holds that
G1 = 0. For (q = 2, c ≥ 3, Minority Voting) it holds that

GMinV
1 =

Γ(c− 1
2 )

√
π Γ(c)

. (22)

For (q = 2, Coin Flip) it holds that

GCoinFlip
1 =

Γ(c− 1
2 )

2
√
π Γ(c)

. (23)

In the case of the Interleaving attack, the parameter Gb is
given by

GInt
b = q

(
c− 1

b− 1

)
B( 1

2 + b, q−1
2 + c− b)

B( 1
2 ,

q−1
2 )

(24)

=
q√
π

Γ(c)

Γ(c+ q
2 )

Γ(b+ 1
2 )

Γ(b)

Γ(c− b+ q−1
2 )

Γ(c− b+ 1)

Γ( q2 )

Γ( q−1
2 )

.

Furthermore, independent of the strategy, Gc is given by

Gc =
q√
π

Γ(c+ 1
2 )Γ( q2 )

Γ(c+ q
2 )

. (25)

Proof: The G1 for Majority Voting is trivial, since θα|m = 0
under the given circumstances.
The mα is binomial-distributed, with Pr[Mα = mα|p] =(
c
mα

)
pmαα (1−pα)c−mα . For fixed α we introduce the notation

m = (mα,m\α), where m\α is the (q−1)-component vector
consisting of the tallies (mβ)β∈Q\{α}. We write

Gb =
∑
α∈Q

EpEm|pδmα,bθα|m

=
∑
α∈Q

Ep

∑
m\α

(
c

b

)(
c− b
m\α

)
pbαp

m\α
\α θα|m

=

(
c

b

)∑
α∈Q

Epp
b
α

∑
m\α

(
c− b
m\α

)
p
m\α
\α θα|(b,m\α)(26)

In the case of c ≥ 3, q = 2, b = 1 and Minority Voting we
have θ = 1. Eq. (26) then reduces to c

∑
α Eppα(1− pα)c−1,

which can be evaluated using the marginal probability density
function F (pα) = p

− 1
2

α (1 − pα)−1+ q−1
2 /B( 1

2 ,
q−1

2 ) [32] and
Lemma 2, yielding (23). (The

∑
α reduces to a factor 2).

For q = 2 the analysis for the Coin Flip attack differs from
Minority Voting only be a factor 1/2, since θα|m equals 1/2
as long as mα is not 0 or c.
In the case of the Interleaving attack for general b, we substi-
tute θα|(b,m\α) = b/c in (26), which allows us to evaluate the
multinomial sum over m\α,

GInt
b =

b

c

(
c

b

)∑
α∈Q

Epp
b
α(1− pα)c−b

=
b

c

(
c

b

)∑
α∈Q

B(b+ 1
2 , c− b+ q−1

2 )

B( 1
2 ,

q−1
2 )

. (27)

In the last line we used the marginal pdf F (pα) and Lemma 2.
The

∑
α reduces to a factor q. Writing the Beta functions and(

c
b

)
in terms of Gamma functions gives the second expression

for GInt
b in the lemma.

Finally, it follows directly from the Marking Assumption that
Gc cannot depend on the colluder strategy, since θα|m equals
1 when mα = c. The Gc is obtained e.g. by setting b = c in
(24).
Lemma 4: Let α ∈ Q. Consider the bias p in a single position.
The marginal distribution of pα, given tally mα, is

F (pα|ma) =
p
− 1

2 +mα
α (1− pα)−1+c−mα+ q−1

2

B(mα + 1
2 , c−mα + q−1

2 )
. (28)

Proof: We start from the joint probability F (pα,mα) =
F (pα)

(
c
mα

)
pmαα (1 − pα)c−mα , that follows from the F (p)

given in Section II-B. We divide F (pα,mα) by the marginal
distribution of mα, which does not depend on pα. This
yields F (pα|ma) ∝ p−

1
2 +mα

α (1−pα)−1+c−mα+ q−1
2 . The Beta

function in (28) is a normalization constant.
Lemma 5: Consider a single position. The probability that an
infinite colluder score occurs in this position is given by

Pr[TY = 1] = G1

Γ(c+ q
2 )Γ(n+ q

2 −
5
2 )

Γ(c+ q
2 −

3
2 )Γ(n+ q

2 − 1)
. (29)

Proof: Pr[TY = 1] = Pr[MY = 1] Pr[TY = 1|MY = 1]

= G1

∫ 1

0
F (py|1)(1 − py)n−cdpy , where F (py|1) is the con-

ditional marginal of Lemma 4. The factor (1− py)n−c is the
probability that none of the innocents receive symbol y, for
given py . The integral is evaluated using Lemma 2.
Theorem 3: Let the colluder strategy be position symmetric.
The probability that at least one colluder has infinite score is
given by

Pr[∃j ∈ C : sj =∞] = 1− (1− Pr[TY = 1])` (30)

where Pr[TY = 1] stands for the single-position probability
given in Lemma 5.
Proof: The probability of having no infinite score overall is
the product of the probabilities of not having ty = 1 in the `
separate positions.
For n� q, n� c2 the probability (30) can be approximated
by its first order Taylor term,

Pr[∃j ∈ C : sj =∞] ≈ `G1

Γ(c+ q
2 )

Γ(c+ q
2 −

3
2 )
n−

3
2 . (31)

We see that for large n the probability of having errorless
accusation quickly dwindles.

C. False Positive bound using Bernstein’s inequality

For Experiment 1 we want to investigate the probability
Pr[Sj > Z] for arbitrary innocent user j /∈ C. We want to
use Bernstein’s inequality (Lemma 1). However, our Sji does
not have zero mean, so we first have to shift it. We define

Uji
def
= Sji − EXinnocents|p̄m̄ȳ[Sji] for j /∈ C. (32)
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We stress that Uji is defined only for innocent users. In order
to do the ‘Xinnocents’ average we introduce a tally variable K
for the set of innocent users minus user j,

kiα
def
= |{v ∈ ([n] \ C) \ {j} : xvi = α}|. (33)

For all i ∈ [`] it holds that
∑
α∈Q kiα = n − c − 1.

The dependence of ki on j is not made explicit in the
notation, since ki has the interpretation ‘the tally of a set of
n − c − 1 randomly generated innocent users’. The tally ki
is multinomial-distributed, with parameters pi and n− c− 1.
This notation allows us to express Uji more precisely,

Uji
def
= Sji − EXjiKi|p̄m̄ȳ[Sji] for j /∈ C. (34)

We write Tiα = miα + δXjiα +Kiα, which yields

Sji = δXjiyi ln(1 +
1

c0 − 1
· n− 1

miyi +Kiyi

) for j /∈ C. (35)

The Xji and Ki are independent random variables.
Hence the EXjiKi|p̄m̄ȳSji factorizes into (EXji|p̄m̄ȳδXjiyi)·
EKi|p̄m̄ȳ ln(· · · ) and we get

Uji = δXjiyi ln(1 +
1

c0 − 1
· n− 1

miyi +Kiyi

)

−piyiJ1(piyi ,miyi) (36)

Ja(piyi ,miyi)
def
= EKi|pi lna(1 +

1

c0 − 1
· n− 1

miyi +Kiyi

).

We furthermore define

Umax
def
= max

i
max

[
ln(1+

n− 1

(c0−1)miyi

)−piyiJ1(piyi ,miyi),

piyiJ1(piyi ,miyi)
]

(37)

as the maximum absolute value of the score that could possibly
occur, and

ν(p̄, m̄, ȳ)
def
=

1

`

∑̀
i=1

piyiJ1(piyi ,miyi) (38)

ζ
def
= Z − ν (39)

σ2(p̄, m̄, ȳ)
def
=

1

`

∑̀
i=1

[piyiJ2(piyi ,miyi)− p2
iyiJ

2
1 (piyi ,miyi)]

(40)
We are now ready to invoke Bernstein’s inequality.
Theorem 4: Let j ∈ [n] \ C be an arbitrary innocent user. Let
the score Sji be defined as in (35) and let the threshold Z be
parametrized as Z = ν + ζ. Then in Experiment 1 the one-
user false accusation probability PFP1

def
= Pr[ 1

`

∑
i∈[`] Sji >

Z|j /∈ C] can be bounded as

PExp.1
FP1 ≤ exp

[
−` ζ2

2σ2 + 2
3ζUmax

]
. (41)

where Umax and σ2 are defined as in (37), (40).
Proof: We have Pr[ 1

`

∑
i∈[`] Sji > Z] = Pr[1

`

∑
i∈[`] Uji >

ζ]. The Uji are zero-mean, independent random variables, and
ζ does not depend on these variables. We write Vi = Uji/` in
Bernstein’s inequality (Lemma 1). The absolute value |Uji|
cannot exceed Umax. Hence we can set a = Umax/` in

Bernstein’s inequality. Finally we need to evaluate E[U2
ji].

We have
∑
i E[U2

ji] =
∑
i E[S2

ji − 2piyiSjiJ1 + p2
iyi
J2

1 ]
=
∑
i[piyiJ2 − 2p2

iyi
J2

1 + p2
iyi
J2

1 ] = `σ2. Substitution of all
these elements into Lemma 1 yields (41).
Even though we cannot analytically evaluate the expressions
J2 and J1, they are straightforward to compute numerically,
and hence Theorem 4 gives a recipe for setting the accusation
threshold.
Theorem 5: Let the tracer use the score function (20) and set
the accusation threshold as

Z∗ = ν + ζ∗ (42)

ζ∗ =
1

3`
Umax ln

1

ε1
+

√
(

1

3`
Umax ln

1

ε1
)2 +

2

`
σ2 ln

1

ε1
.

Then in Experiment 1 it holds that PFP1 ≤ ε1.
Proof: According to Theorem 4, it is sufficient for the tracer
to set ζ such that exp[−` · 1

2ζ
2/(σ2 + 1

3Umaxζ)] = ε1. This
yields a quadratic equation in ζ, namely 1

2`ζ
2− 1

3Umax ln 1
ε1
ζ−

σ2 ln 1
ε1

= 0, whose positive solution ζ∗ is precisely the
expression given in Theorem 5. Hence the tracer may set the
threshold Z at ν + ζ∗ or larger, and then it is guaranteed that
PFP1 ≤ ε1.
The result (42) makes intuitive sense. The part ν corresponds
to the observed average of all the user scores. The σ2 under the
square root corresponds to the score variance. Its magnitude
compared to the ( 1

3 · · · )
2 term under the square root depends

on the collusion strategy. If the variance term dominates, then
Z tends to the form “ν + σ`−1/2

√
2 ln(1/ε1)”, which is

approximately where one would put the threshold if the score
were Gaussian-distributed.
Note that the tracer does not know the colluder tallies m̄;
hence the above result is not immediately practical. Below we
derive a practical recipe for placing the threshold.
Lemma 6: Let Umax be defined as in (37). For n� c it then
holds that

Umax < Upract
max

def
= ln[1 +

n− 1

c0 − 1
]. (43)

Proof: For n � c, the expression ln[1 + n−1
(c0−1)miyi

] in
(37) dominates the expressions containing J1. This yields
Umax = maxi

[
ln(1 + n−1

(c0−1)miyi
)− piyiJ1(piyi ,miyi)

]
<

maxi ln(1 + n−1
(c0−1)miyi

) ≤ ln(1 + n−1
c0−1 ).

Lemma 7: Let σ2 be defined as in (40). Let 2 ≤ c ≤ c0. Then

σ2 < σ2
pract

def
=

1

`

∑̀
i=1

[piyiJ2(piyi , 1)− p2
iyiJ

2
1 (piyi , c0)].

(44)
Proof: We use 1 ≤ miyi ≤ c. We have J2(piyi ,miyi) ≤
J2(piyi , 1) and J1(piyi ,miyi) ≥ J1(piyi , c) ≥ J1(piyi , c0).
Substitution of these inequalities into (40) yields the right-
hand side of (44). Since miyi cannot be simultaneously equal
to 1 and to c0, the σ2 cannot equal σ2

pract.
Lemma 8: Let ν be defined as in (38). Then

ν ≤ νpract
def
=

1

`

∑̀
i=1

piyiJ1(piyi , 1). (45)
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Fig. 1. The one-user false positive probability PFP1 as a function of the
threshold Z, for Experiment 1 with parameters n = 100000, c = 12, ` =
14000 and use of the score function (20). In the simulation the PFP1 was
estimated by doing a single run of Experiment 0 and Experiment 1 and then
counting how many innocent users had a score exceeding Z.

Proof: We use J1(piyi ,miyi) ≤ J1(piyi , 1).

For n� c0 ≥ c the ‘practical’ parameters do not differ much
from the original ones.
Corollary 1: Let the threshold in Experiment 1 be set as Z =
νpract + ζ. Then

PExp.1
FP1 < exp

[
−` ζ2/2

σ2
pract + 1

3ζU
pract
max

]
. (46)

For obtaining PExp.1
FP1 ≤ ε1 it suffices to set

ζ =
1

3`
Upract

max ln
1

ε1
+

√
(

1

3`
Upract

max ln
1

ε1
)2 +

2

`
σ2

pract ln
1

ε1
.

(47)
Proof: We have Z > ν + ζ, which implies that the FP error
probability is smaller than in Thorem 5. Into Theorem 5 we
substitute σ2 < σ2

pract and Umax < Upract
max (Lemmas 7 and 6).

This yields (46). Finally (47) follows by demanding that the
right-hand side of (46) equals ε1 and then solving for ζ.
Corollary 1 is a recipe that contains only quantities known to
the tracer.
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Fig. 2. ROC curves for the Oosterwijk et al. score function −1 + δxy/py ,
the Laarhoven score function ln(1+ 1

c0
[−1+δxy/py ]) with c = c0, and the

new tally based score function (20) with c = c0. The simulations consisted
of 50000 repetitions of the steps {Experiment 0; then make one innocent user
codeword and ` tallies kiyi for the rest of the innocent users}. No cutoff was
used on the p. The error probabilities were obtained by counting the number
of events with an FN or FP1 error. Three different attacks are shown. The
jumps at low PFP1 are numerical artifacts caused by the finite number of
runs (50000).

It is of course possible to derive bounds using other techniques.
In the Appendix we present an analysis using Markov’s
inequality instead of Bernstein’s inequality. The tracer can
set the threshold to the value prescribed by Corollary 1 or
Theorem 11, whichever is smaller (usually Corollary 1).
It is worth noting that the analytic bounds obtained in this way
are far from tight in non-asymptotic cases. Fig. 1 shows that
the gap between the the bound on PFP1 and the actual PFP1

can be orders of magnitude.

D. ROC curves

Obtaining analytic bounds for the False Negative probability
is far more complicated. It is also far less interesting. In
the context of audio-video content tracing, a deterring ef-
fect is achieved even with very large FN probabilities, e.g.
PFN ≈ 0.5. It is entirely feasible to accurately determine such
high probabilities by doing simulations. (On the other hand,
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an accurate estimate of PFP, which may be as small as 10−6,
takes millions of simulation runs of Experiments 0 and 1.)
In Fig. 2 we show an example of Receiver Operating Char-
acteristic (ROC) curves2 obtained from simulations. Even at
n = 1000, a rather small number of users, we see that there is
little performance difference between the score (20) proposed
in this paper and the Laarhoven score. An exception is the case
of the Minority Voting attack, which favours low py values; at
low py the statistical fluctuations in ty are more pronounced
than at large py , as already mentioned in Section III.
For the Interleaving attack there is a large performance gap
between the Oosterwijk et al. score on the one hand, and the
Laarhoven and tally-based score on the other. This is hardly
surprising, since the Oosterwijk et al. score is designed to work
at asymptotically large c.
It is important to note that the ROC curves shown here are
based on an accusation procedure that does not exploit the
existence of infinite scores. When an infinite score is detected,
the decoder should in fact re-set the threshold; this was not
done in Fig. 2, even though the Minority Voting experiments
at n = 1000 had such events occurring 19% of the time and
Interleaving 2%. Analysis of such an improved decoder, as
well as more exhaustive numerics for different combinations
of q, c, c0, n and `, are the subject of future work.

V. PROBABILITY DISTRIBUTION OF THE SINGLE-POSITION
SCORE

In this section we study the probability mass function of
the single-position tally-based score Sji (20) for an innocent
user j, for repetitions of Experiments 0 and 1. As far as we
are aware, this kind of analysis has not yet been done for the
Oosterwijk et al. score and the Laarhoven score. Therefore we
first present the analysis for these scores.
The single-position distribution is of interest for several rea-
sons. (i) Knowing the distribution allows one to use the method
of Simone et al. [32] to obtain the probability distribution of
the entire score (i.e. added over all positions). (ii) By looking
at the moments of the single-position score distribution, es-
pecially the third moment, one can determine how Gaussian
the entire score is. A Gaussian distribution allows for simpler
analysis.

A. Probability density for the Oosterwijk et al. score

The generalized Laarhoven score is given by

wj
def
=

1

`

∑̀
i=1

wji ; wji
def
= δxjiyi ln(1 +

1

(c0 − 1)piyi
), (48)

We do our analysis by first looking at Oosterwijk et al.’s score
function h,

h(x, y,p)
def
=

δxy
py
− 1, (49)

and then applying a change of variables,

wji = ln[1 +
1

c0
h(xji, yi,pi)]− ln[1− 1

c0
]. (50)

2Actually we represent the axes in a slightly different way. We plot the FN
instead of the True Positive probability.

We derive the distribution of the score h in a couple of small
steps.
Lemma 9: [See e.g. [15].] Let f : R → R be a monotonous
function with inverse function f inv. Let δ denote the Dirac
delta function. Then δ(u− f(p)) = δ(p−f inv(u))

|f ′(p)| .

Corollary 2: Let h1(p)
def
= 1/p− 1. It holds that

δ(u− h1(p)) = p2δ(p− 1

u+ 1
) =

δ(p− 1
u+1 )

(u+ 1)2
. (51)

Proof: We use Lemma 9 with f = h1. We have hinv
1 (u) =

1/(u+ 1) and h′1(p) = −p−2.
Lemma 10: For a user j /∈ C, the probability density of the
score h in a single position, with given py , is

ϕh(u|py) = (1− py)δ(u+ 1) + pyδ(u− h1(py)). (52)

Proof: With probability 1−py , an innocent user gets score u =
−1; with probability py he gets u = h1(py).
At this point we assume position symmetry of the attack.
Lemma 11: Let the colluders use a position-symmetric strat-
egy. The probability density for the variable PY is given by
ρ(py) =

∑c
b=1GbF (py|b).

Proof: If my is known, then the probability density for PY is
given by F (py|my) as defined in (28). Taking the expectation
over MY yields the

∑
b expression in Lemma 11.

Theorem 6: Let the colluders use a position-symmetric strat-
egy. For a user j /∈ C, the probability density of the Oosterwijk
et al. score h in a single position is

ϕh(u) =

c∑
b=1

Gb

{
δ(u+ 1)

c− b+ q−1
2

c+ q
2

(53)

+
Θ(u)(1 + u)−

5
2−b

B(b+ 1
2 , c− b+ q−1

2 )
(

u

1 + u
)−1+c−b+ q−1

2

}
.

Proof: We have ϕh(u) = Epyϕh(u|py). Using Lemma 10 and
Corollary 2 we get ϕh(u) = δ(u + 1)Epy (1 − py) + (u +
1)−3Epyδ(py − 1

u+1 ). The expectations are evaluated using
the ρ(py) from Lemma 11,

Epy (1− py) =

c∑
b=1

Gb

∫ 1

0

dp F (p|b)(1− p)

=

c∑
b=1

Gb
c− b+ q−1

2

c+ q
2

(54)

Epyδ(py −
1

u+ 1
) = Θ(u)

c∑
b=1

Gb F (
1

u+ 1
|b). (55)

The step function Θ(u) in (55) occurs because for u < 0 the
delta function δ(py − 1

u+1 ), with py ≤ 1, vanishes.
From Theorem 6 we see that the density at u � 1 is
proportional to ( 1

u )5/2+b, with b ≥ 1.
• The Minority Voting strategy will cause the largest possi-

ble G1 and thereby put maximal probability mass in the
tail. Note that the Majority Voting attack for c > 2 has
G1 = 0.

• The 2nd moment of the distribution always exists, but in
general (G1 > 0) not the 3rd moment. The nonexistence
of the 3rd moment implies that the distribution of the
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overall score (all positions added) has ‘fat tails’, i.e. the
distribution converges to Gaussian everywhere except in
the tails, where the power law from the single-position
distribution is inherited.

Theorem 7: Let the coalition use the Interleaving attack. Then
for a user j /∈ C, the probability density of the Oosterwijk et
al. score h in a single position is

ϕInt
h (u) = δ(u+1)

q − 1

2 + q
+Θ(u)

q(1 + u)−
7
2

B( 1
2 ,

q−1
2 )

(
u

1 + u
)−1+ q−1

2 .

(56)
Proof: We follow the proof of Theorem 6, but now the
expectations (54) and (55) can be easily computed using
Pr[Y = y|P = p] = py ,

Epy (1− py) =
∑
y

Eppy(1− py) = 1−
∑
y

Epp
2
y

= 1−
∑
y

B( 1
21q + 2ey)

B( 1
21q)

= 1− q
Γ( 5

2 )Γ( q2 )

Γ( 1
2 )Γ(2 + q

2 )

=
q − 1

2 + q
(57)

Epyδ(py −
1

u+ 1
) =

∑
y

Eppyδ(py −
1

u+ 1
)

= q [pF (p)]p= 1
u+1

=
q

u+ 1
F (

1

u+ 1
). (58)

Here 1q is the vector (1, 1, . . . , 1) of length q, and ey is
a q-component vector with (ey)α = δyα. The ‘B’ is the
generalized Beta function.

B. Probability density for the generalized Laarhoven score

Lemma 12: Let X ∼ ρX and Y ∼ ρY , with Y = λ(X), where
λ is a monotonous function. Then ρY (y) = ρX(x)/|λ′(x)| =
ρX(λinv(y)) / |λ′(λinv(y))|.
For a proof, see any book on probability theory.
Theorem 8: Let the colluders use a position-symmetric strat-
egy. For a user j /∈ C, the probability density of the generalized
Laarhoven score wji (48) in a single position is

ϕw(α) =

c∑
b=1

Gb

{
δ(α)

c− b+ q−1
2

c+ q/2

+Θ(α− ln c0
c0−1 )

(c0 − 1)−
3
2−b

B(b+ 1
2 , c− b+ q−1

2 )
·

·
eα(eα − c0

c0−1 )−1+ q−1
2 +c−b

(eα − 1)1+c+q/2

}
. (59)

Proof: We use Lemma 12 with ρX → ϕh; ρY → ϕw; α =
λ(u) = ln c0+u

c0−1 ; u = λinv(α) = (c0−1)(eα− c0
c0−1 ); u+ 1 =

(c0 − 1)(eα − 1); 1/λ′(u) = c0 + u = (c0 − 1)eα, and then
simplify. We use that δ(u + 1) = e−α(c0 − 1)−1δ(α) and
Θ(u) = Θ(α− ln c0

c0−1 ).
Note that (59) contains c0 as well as c. Also note that for
eα � 1 the b’th term is proportional to e−[ 32 +b]α, i.e. the tail
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Fig. 3. Cumulative Distribution Function for an innocent user’s score in
a single position, obtained from (59) and (61) for q = 2, c = c0 = 12,
n = 1000, Interleaving attack. The two curves completely overlap.

exponentially decreases, with dominant contribution ∝ e−
5
2α

if G1 > 0. When random variables with an exponential tail are
summed, the result quickly converges to a Gaussian-distributed
random variable. Without showing the data we mention that
we observed Gaussian distributions in the (limited) simulations
we performed.

C. Probability mass function for the tally-based score

For an innocent user j /∈ C, the possible values of the score
sji (20) are either sji = 0 (the case x 6= y) or sji = ln[1 +

1
c0−1 ·

n−1
ty−1 ], with ty ∈ {2, . . . , n}. In the second case we have

ty ≥ 2 since my ≥ 1 and the innocent user has symbol x = y.
Whereas the Oosterwijk et al. score and the Laarhoven score
are continuous random variables with a probability density
function, the tally-based score is discrete and has a probability
mass function. As such, the innocent user score does not have
any complications such as infinite moments.
Theorem 9: Let the colluders use a position-symmetric strat-
egy. Let t ∈ {2, . . . , n}. For a user j /∈ C, the probability mass
function of the tally-based score sji (20) in a single position i
is given by

Pr[Sji = 0] =

c∑
b=1

Gb
c− b+ q−1

2

c+ q
2

, (60)

Pr[Sji = ln(1 +
1

c0 − 1

n− 1

t− 1
)] (61)

=

min(t−1,c)∑
b=1

Gb

(
n− c− 1

t− b− 1

)
B( 1

2 + t, q−1
2 + n− t)

B( 1
2 + b, q−1

2 + c− b)
.

Proof: We have Pr[Sji = 0] = Pr[X 6= Y ] which can
be written as

∑
bGb

∫ 1

0
F (py|b)(1 − py)dpy . The integral

is evaluated using Lemma 2. For proving (61) we have to
compute the probability Pr[X = Y ∧ TY = t], which we
can express as

∑
bGb

∫ 1

0
F (py|b)py Pr[TY = t|MY = b,X =

Y, PY = py]dpy , where b cannot exceed t− 1. The last factor
is a binomial,

(
n−c−1
t−b−1

)
pt−b−1
y (1−py)n−c−t+b. The integration

is again evaluated using Lemma 2.
The probability mass function (61) is illustrated in Fig. 3 in
the form of a cumulative distribution. The graph also shows
the Laarhoven density function (59); it is indistinguishable for
the given choice of parameters.

VI. GROUP TESTING

There is a well known link [35], [9], [23], [19] between on the
one hand Traitor Tracing in the RDM with the ‘All-1’ attack,
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and on the other hand (non-adaptive) Group Testing [11]. The
Group Testing scenario is as follows. There is a population of
n people, of which c are infected. Medical tests are expensive,
and there is money to do only ` tests, with `� n. Furthermore
the tests take a long time, so they are done non-adaptively, in
parallel. An efficient way has to be devised to find out who is
infected. Luckily it is possible to combine samples (e.g. blood
samples) from multiple people and run a single test on the
combination; if one or more of the individual samples come
from an infected person, the medical test is positive.
The analogy with Traitor Tracing is straightforward. The user
symbol xji ∈ {0, 1} indicates whether person j’th blood is
included in the i’th test. The result of the i’th test is yi ∈
{0, 1}. The way the combined test works exactly matches the
All-1 strategy: θ1|m1

equals 1 if m1 ≥ 1 and 0 if m1 = 0.
We derive the most powerful hypothesis test for the hypothesis
‘person j is infected’.
Theorem 10: In the case of the Restricted Digit Model, q = 2,
and the All-1 collusion strategy, the score (7) reduces to

yi = 0, xji = 0 : ln c− ln(ti0 − c)
yi = 0, xji = 1 : −∞

yi = 1, xji = 0 : − ln

(
n−1
c

)
−
(
ti0−1
c−1

)(
n−1
c−1

)
−
(
ti0−1
c−1

)
yi = 1, xji = 1 : − ln

n− c
c
− ln[1−

(
ti0
c

)(
n
c

) ]. (62)

Proof: We omit indices i and j. For q = 2 the colluder tally
vector reduces to (c−m1,m1) and we can sum over a single
variable m1 ∈ {0, . . . , c}. We will write m instead of m1. The
strategy parameters can be written as θy|m = δy1(1− δm0) +
δy0δm0. We go case by case.
For y = 0, x = 0 the enumerator in (7) reduces to∑
m Lm|t1θ0|m(c−m) = L0|t1c and the denominator reduces

to
∑
m Lm|t1θ0|m(t0 −m0) = L0|t1(t0 − c).

For y = 0, x = 1 the enumerator reduces to zero, while the
denominator is nonzero. The logarithm of zero is −∞.
For y = 1, x = 0 the enumerator reduces to c(1−L0|t1)− c

n t1,
while the denominator becomes (t0−c)(1−L0|t1)+ c

n t1. Then
we use t1 = n− t0 and L0|t1 =

(
t0
c

)
/
(
n
c

)
, followed by some

laborious rewriting.
For y = 1, x = 1 the enumerator reduces to c

n t1 and the
denominator to t1(1− L0|t1)− c

n t1.
We note the following about Theorem 10,
• The ‘−∞’ for xji = 1, yi = 0 makes perfect sense: if

person j is included in the i’th test and this test gives a
negative result, then person j is definitely not infected.

• In the case yi = 0, xji = 0 we see that the score
increases when ti0 decreases. This is intuitively correct:
At decreasing ti0 the event Yi = 0 becomes more and
more ‘special’ in the sense of condemning person j,
since the tested group becomes bigger and bigger without
yielding a detection. In the extreme case ti0 = c, the
outcome yi = 0 immediately implies that all the people
excluded from the test, including j, are infected. Indeed
the score becomes − ln 0 = +∞. (Note that t0 < c
automatically causes y = 1; Eq. (62) never gets a negative
argument in a logarithm.)

• It may look strange that in the case xji = 0 (user j not
included in the i’th test) the score actually depends on yi.
This dependence is caused by the fact that the result yi
does say something about the number of infected people
outside the tested set.

In group testing there is no adversary and hence no max-min
game. Instead of using a bias distribution F (p) it is optimal to
take a constant p for each test, with p1 = (ln 2)/c+O(c−2)
[20]. This means that typically t1 = O(n/c) and t0 = n −
O(n/c). Hence the fraction

(
t0
c

)
/
(
n
c

)
typically is not much

smaller than 1.
Lemma 13: For n� c we can approximate the score (62) as

yi = 0, xji = 0 : − ln
n

c
− ln

ti0
n

+O(
c

n
)

yi = 0, xji = 1 : −∞

yi = 1, xji = 0 : − ln
n

c
+ ln[1− (

ti0
n

)c−1] +O(
c

n
)

yi = 1, xji = 1 : − ln
n

c
− ln[1− (

ti0
n

)c] +O(
c

n
). (63)

Proof: (sketch) We asked Wolfram Mathematica for a series
expansion in the limit n→∞ for finite c.
Note that we can add ln n

c to all the expressions in (63) to
obtain an equivalent score that does not depend so heavily on
the (possibly unknown) parameter c.

VII. SUMMARY

We have written down a Neyman-Pearson hypothesis test
for the hypothesis “user j is part of the coalition”, and as
evidence we have taken all the information available to the
tracer, including the codewords of all the other users. This
results in Theorem 1, which is very general. Motivated by the
closeness of the Saddlepoint attack to Interleaving, we have
substituted into our test the Interleaving attack, in order to
obtain a ‘universal’ decoder. This procedure yields the score
(20) for user j, which depends on the ‘guilty symbol’ tallies
(tiyi)

`
i=1 of the whole population.

In the limit n → ∞ the score function reduces to (the q-ary
generalization of) the p-dependent log-likelihood Laarhoven
score [21], which in turn reduces to Oosterwijk et al.’s score
[30] for c0 →∞.
We have given a first analysis of the error probabilities.
Corollary 1 shows a threshold setting sufficiently high to
ensure that the single-user FP error probability stays below ε1.
The threshold depends on the observed ȳ and p̄. For non-
asymptotic c0 there is a large gap between the bound and the
actual performance of the scheme. ROC curves for q = 2,
obtained from a limited set of simulations, show that the new
score is very close to the Laarhoven score except for attack
strategies that favour low py values, such as Minority Voting;
there the new score clearly performs better.
In the case of position-symmetric attacks, the statistical be-
haviour of a score system can be understood by studying
the probability distribution of single-position scores [32],
[31], [33]. To this end we have derived the innocent-user
single-position distribution for the Oosterwijk et al. score, the
Laarhoven score and our new score. The results are given
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in Theorems 6, 8 and 9. The strategy dependence is entirely
contained in the parameters Gb.
Finally we have applied our Neyman-Pearson test (7) to the
field of Group Testing and obtained a new score function
(Theorem 10) that may improve the state of the art.
We see various open questions for future work. (i) Investigate
how much performance difference there is between (20) and
the score that would be obtained if the finite-c saddlepoint is
substituted into Theorem 1; (ii) More elaborate simulations
(for many combinations of q, c, c0, `, n, and attack strategy)
to study the difference between the various decoders; (iii) Get
a tighter bound on the FP, e.g. using techniques from [12];
(iv) Use the method of Simone et al. [32] to determine the
full probability distribution of the score (48); (v) See if (62)
yields an improvement over previously known group testing
‘decoders’. (vi) Study various noise models and generaliza-
tions for group testing, using Theorem 1 as a starting point.
(vii) Study decoders that exploit the occasional occurrence of
infinite colluders scores.
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APPENDIX

A False Positive bound using Markov’s inequality

We again look at the FP error probability in Experiment 1, but
now we use Markov’s inequality (Lemma 14).
Lemma 14 (Markov’s inequality): Let X be a nonnegative
random variable, and let a > 0. Then Pr[X ≥ a] ≤ a−1E[X].
Lemma 15: Let A be a (N, p)-binomial-distributed random
variable. Then E 1

1+A = 1−(1−p)N+1

(N+1)p .
Proof:

∑N
a=0

1
1+a

(
N
a

)
pa(1− p)N−a =

1
(N+1)p

∑N
a=0

(
N+1
a+1

)
pa+1(1− p)N+1−(a+1) =

1
(N+1)p

∑N
a′=1

(
N+1
a′

)
pa
′
(1− p)N+1−a′ . The summation con-

sists of the full binomial sum
∑N
a′=0 minus the a′ = 0 term.

Theorem 11: Let c ≤ c0. Let the tracer use the score function
(20) and set the accusation threshold as

Z1 =
1

`
ln

1

ε1
+

1

`

∑
i∈[`]

ln

[
1 +

n− 1

n− c0
· 1− (1− piyi)n−c0

c0 − 1

]
.

(64)
Then in Experiment 1 it holds that PFP1 ≤ ε1.
Proof: For arbitrary innocent user j, we write PFP1 = Pr[Sj >
Z] ≤ Pr[Sj ≥ Z] = Pr[e`Sj ≥ e`Z ]. Then we use
Markov’s inequality to get Pr[e`Sj ≥ e`Z ] ≤ e−`ZE[e`Sj ],
where the expectation is over the ‘innocent’ part of the
matrix x. We write Sji as in (35). This allows us to write
PFP1 ≤ e−`Z

∏
i EKi|piEXji|pie

Sji . Next we have

EXji|pie
Sji = (1−piyi)e0 + piyi(1 +

n−1

c0−1
· 1

miyi+Kiyi

)

≤ 1− piyi + piyi(1 +
n− 1

c0 − 1
· 1

1 +Kiyi

)

= 1 + piyi
n− 1

c0 − 1
· 1

1 +Kiyi

. (65)

Next we evaluate the expectation EKi|pi using Lemma 15
where Kiyi is the binomial variable and we substitute N →
n− c− 1 and p→ piyi . This yields

EKi|piEXji|pie
Sji ≤ 1 + piyi

n− 1

c0 − 1
· 1− (1− piyi)n−c

piyi(n− c)

= 1 +
n− 1

c0 − 1
· 1− (1− piyi)n−c

n− c

≤ 1 +
n− 1

c0 − 1
· 1− (1− piyi)n−c0

n− c0
. (66)

In the last step we used c ≤ c0 and the fact that (1−ux)/x, with
u ∈ (0, 1), is a decreasing function of x. Thus we have estab-
lished that PFP1 ≤ e−`Z exp

∑
i ln[1+ n−1

n−c0 ·
1−(1−piyi )

n−c0

c0−1 ].
Setting the threshold according to (64) achieves PFP1 ≤ ε1.

A more simple, p̄-independent, expression can be obtained if
we sacrifice a little bit of tightness.
Corollary 3: Let c ≤ c0. Let the tracer use the score function
(20) and set the accusation threshold as

Z2 =
1

`
ln

1

ε1
+ ln

[
1 +

n− 1

n− c0
· 1

c0 − 1

]
. (67)

Then PFP1 ≤ ε1.

Proof: In the proof of Theorem 11, at the end, we use 1 −
(1− piyi)n−c ≤ 1. The

∑
i reduces to a factor `.


