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Abstract

Compression is desirable for network applications as it saves bandwidth; however, when
data is compressed before being encrypted, the amount of compression leaks information about
the amount of redundancy in the plaintext. This side channel has led to successful CRIME and
BREACH attacks on web traffic protected by the Transport Layer Security (TLS) protocol.
The general guidance in light of these attacks has been to disable compression, preserving
confidentiality but sacrificing bandwidth. In this paper, we examine two techniques—heuristic
separation of secrets and fixed-dictionary compression—for enabling compression while
protecting high-value secrets, such as cookies, from attack. We model the security offered by
these techniques and report on the amount of compressibility that they can achieve.
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1 Introduction

To save communication costs, network applications often compress data before transmitting it;
for example, the Hypertext Transport Protocol (HTTP) [FR14, §4.2] has an optional mechanism
in which a server compresses the body of an HTTP response, most commonly using the gzip
algorithm. When encryption is used to protect communication, compression must be applied
before encryption (since ciphertexts should look random, they should have little apparent
redundancy that can be compressed). In fact, to facilitate this, the Transport Layer Security
(TLS) protocol [DRO8, §6.2.2] has an optional compression mode that will compress all application
data before encrypting it.

While compression is useful for reducing the size of transmitted data, it has had a negative
impact when combined with encryption, because the amount of compression acts as a side
channel. Most research considers side-channels such as timing [Koc96, KSWH98] or power
consumption [HMFO07], which can reveal information about cryptographic operations and secret
parameters.

Compression-based leakage. In 2002, Kelsey [Kel02] showed how compression can act as a
form of side-channel leakage. If plaintext data is compressed before being encrypted, the length
of the ciphertext reveals information about the amount of compression, which in turn can reveal
information about the plaintext. Kelsey notes that this side channel differs from other types
of side channels in two key ways: “it reveals information about the plaintext, rather than key
material”, and “it is a property of the algorithm, not the implementation”.

Kelsey’s most powerful attack is an adaptive chosen input attack: if an attacker is allowed to
choose inputs x that are combined with a target secret s and the concatenation z||s is compressed
and encrypted, observing the length of the outputs can eventually allow the attacker to extract
the secret s. For example, to determine the first character of s, the attacker could ask to have the
string x = prefix*prefix combined with s, then compressed and encrypted, for every possible
character *; in one case, when * = s1, the amount of redundancy is higher and the ciphertext
should be shorter. Once each character of s is found, the attack can be carried out on the next
character. The attack is somewhat noisy, but succeeds reasonably often.

Key to this attack is the fact that most compression algorithms (such as the DEFLATE
algorithm underlying gzip) are adaptive: they adaptively build and maintain a dictionary of
recently observed strings, and replace subsequent occurrences of that string with a code.

The CRIME and BREACH attacks. In 2012, Rizzo and Duong [RD12] showed how to
apply Kelsey’s adaptive chosen input attack against gzip compression as used in TLS, in what
they called the Compression Ratio Info-leak Mass Ezxploitation (CRIME) attack. The primary
target of the CRIME attack was the user’s cookie in the HTTP header. If the victim visited
an attacker-controlled web page, the attacker could use Javascript to cause the victim to send
HTTP requests to URLs of the attacker’s choice on a specified server. The attacker could
adaptively choose those URLs to include a prefix to carry out Kelsey’s adaptive chosen input
attack. Some care is required to ensure the padding does not hide the length with block ciphers,
but this can be dealt with. The CRIME attack also applies to compression as used in the SPDY
protocol [The].

As a result of the CRIME attack, it was recommended that TLS compression be disabled,
and the Trustworthy Internet Movement’s SSL Pulse report for December 2014 finds that just
7.2% of websites have TLS compression enabled [Trul4]; moreover, all major browsers have
disabled it.

However, compression is also built into the HT'TP protocol: servers can optionally compress
the body of HTTP responses. While this excludes the cookie in the header, this attack can still
succeed against secret values in the HTTP body, such as anti-cross-site request forgery (CSRF)



tokens. Suggested by Rizzo and Duong, this was demonstrated by Gluck et al. [GHP13] in the
Browser Reconnaissance and Ezxfiltration via Adaptive Compression of Hypertext (BREACH)
attack.

Mitigation techniques. Gluck et al. [GHP13] discussed several possible mitigation techniques
against the BREACH attack, listed in decreasing order of effectiveness:

1. Disabling HT'TP compression

Separating secrets from user input

Randomizing secrets per request

Masking secrets (effectively randomizing by XORing with a random nonce)
Length hiding (by adding a random number of bytes to the responses)
Rate-limiting the requests

S OV N

Despite the demonstrated practicality of the BREACH attack, support for and use of HTTP
compression remains widespread, due in large part to the value of decreasing communication
costs and time. In fact, compression is even more tightly integrated into the proposed HTTP
version 2 [BPT14] than previous versions. Techniques 2—4 generally require changes to both
browsers and web servers. For example, masking secrets such as anti-CSRF tokens requires new
mark-up for secrets, which browsers and servers can interpret to apply the randomized masking
technique. Techniques 5-6 can be unilaterally applied by web servers, though length hiding can
be defeated with statistical averaging, and rate-limiting must find a balance between legitimate
requests and information leakage.

Related work. There has been little academic study of compression and encryption. Besides
Kelsey’s adaptive chosen input attack and the related CRIME and BREACH attacks, the only
relevant work we are aware of is that of Kelley and Tamassia [KT14]. They give a new security
notion called entropy-restricted semantic security (ER-IND-CPA) for keyed compression functions
which combine both encryption and compression: compared with the normal indistinguishability
under chosen plaintext attack (IND-CPA) security notion, in ER-IND-CPA the adversary should
not be able to distinguish between the encryption of two messages that compress to the same
length. Kelley and Tamassia then show how to construct a cipher based on the LZW compression
algorithm by rerandomizing the compression dictionary. Unfortunately, the ER-IND-CPA notion
does not capture the CRIME and BREACH attacks, which depend on observing messages that
compress to different lengths.

In leakage-resilient security definitions [AGV09, ADW09, DP08, NS09], leakage of the secret
key is addressed. This differs from the setting in compression-based side-channel attacks, which
addresses leakage of the plaintext. Thus, previous leakage-resilient approaches are not suitable
to model compression-based side-channel attacks.

Our contributions. In this work, we study symmetric-key compression-encryption schemes,
characterizing the security properties that can be achieved by various mitigation techniques in
the face of CRIME- and BREACH-like attacks.

To some extent, the side channel exposed by compression is fundamentally unavoidable: if
transmission of data is decreased, nothing can hide the fact that some redundancy existed in
the plaintext. Hence, we focus our study on the ability of the attacker to learn specific “high
value” secrets embedded in a plaintext, such as cookies or anti-CSRF tokens. In our models, we
imagine there is a secret value ck, and the adversary can adaptively obtain encryptions

Ency (m’||ck||m") (1)

for prefix m’ and suffix m” of its choice; the attacker’s goal is to learn about ck.
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Figure 1: Compression ratios of full page compression versus mitigation techniques

The first mitigation technique we consider is that of separating secrets. During compres-
sion/encryption, an application-aware filter is applied to the plaintext to separate out any
potential secret values from the data, the remaining plaintext is compressed, then the secrets
and compressed plaintext are encrypted; after decryption, the inverse of the filter is used to
reinsert the secret values in the decompressed plaintext. Assuming the filter fully separates
out all secret values, we show that the separating secrets technique is able to achieve a strong
notion of protection, which we call chosen cookie indistinguishability (CCl): the adversary cannot
determine which of two cookies ckg and ck; of the adversary’s choice was encrypted with messages
of the adversary’s choice given ciphertexts as in (1).

The second mitigation technique we consider is the use of a fized-dictionary compression
scheme, where the dictionary used for compression does not adapt to the plaintext being
compressed, but instead is preselected in advance based on the expected distribution of plaintext
messages, for example including common English words like “the” and “and”.! We show that,
if the secret values are sufficiently high entropy, then fixed-dictionary compression is able to
achieve cookie recovery (CR) security: if the secret cookie is chosen uniformly at random, the
adversary cannot recover the entire secret cookie even given an adaptive message attack as in (1).
While cookie recovery security does not meet the “gold standard” of indistinguishability notions
for encryption, it may be sufficient for some settings, for example protecting compressed HTTP
traffic from CRIME and BREACH attacks that try to recover cookies and anti-CSRF tokens.

We also characterize the relationship among the CCl and CR security notions, as well as an
intermediate notion called random cookie indistinguishability (RCl) and the ER-IND-CPA notion
of Kelley and Tamassia [KKT14].

In the separating secrets technique, if the number of secrets extracted by the separating filter
is relatively small, then the compressibility generally remains close to that of normal compression
of the full plaintext. In the fixed-dictionary compression technique, compressibility suffers
quite a bit compared to adaptive techniques on the full plaintext, although if the dictionary
is constructed from a corpus of text similar to the plaintext, then some compression can be
achieved.

Figure 1 summarizes experimental results comparing compression ratios for these two
techniques on the HTML, CSS, and Javascript source code of the top 10 global websites as
reported by Alexa Top Sites (http://www.alexa.com/topsites). On average, the compression
ratio (uncompressed : compressed size) of gzip applied to the full source code was 5.42x; applying
a separation filter that extracted all values following value= in the HTML source code yielded
an average compression ratio of 5.20x; compression of each page using a fixed dictionary trained
on all 10 pages yielded an average compression ratio of 1.55x.

1Sadly “cryptography” is only the 29,697th most-frequently used English word. (http://en.wiktionary.org/
wiki/Wiktionary:Frequency_lists/PG/2006/04/20001-30000)
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2 Definitions

Notation. If z is a string, then z; denotes the ith character of x; z;y denotes the length-¢
substring of x starting at position i: x;p = ;]| ... ||x;4e—1. If z and y are strings, then z <y
denotes that x is a substring of y. The index of z in y is the smallest ¢ such that y;.|, = = and
is denoted by ind,(z); if  Z y, we denote ind,(x) = L. The empty string is denoted by e.

2.1 Encryption and compression schemes

Recall the standard definition of an encryption scheme:

Definition 1 (Symmetric-key encryption). A symmetric-key encryption scheme II for message
space M and ciphertext space C is a tuple of algorithms:

e KeyGen|() i k: A probabilistic key generation algorithm that generates a random key k
in the keyspace K.

e Enci(m) S A possibly probabilistic encryption algorithm that takes as input a key
k € K and a message m € M and outputs a ciphertext ¢ € C.

e Deci(c) = m’ or L: A deterministic decryption algorithm that takes as input a key k € K
and a ciphertext ¢ € C, and outputs either a message m’ € M or an error symbol L.

Correctness of symmetric-key encryption is defined in the obvious way: for all k & KeyGen()
and all m € M, we require that Decy(Encg(m)) = m.

Definition 2 (Compression scheme). A compression scheme I for message space M with output
space O is a pair of algorithms:

e Comp(m) E) o: A possibly probabilistic compression algorithm that takes as input a
message m € M and outputs an encoded value o € O.

e Decomp(o) = m/ or L: A decompression algorithm that takes as input an encoded value
0 € O and outputs a message m’ € M or an error symbol L.

Note that |Comp(m)| may not necessarily be less than |m|; Shannon’s coding theorem implies
that no algorithm can encode every message with shorter length, so not all messages may actually
be “compressed”: some may increase in lenth.

Correctness of a compression scheme is again defined in the obvious way: for all m € M, we
require that Decomp(Comp(m)) = m.

In this paper, we are interested in symmetric-key compression-encryption schemes, which
formally are just symmetric-key encryption schemes as in Definition 1, but usually have the goal
of outputting shorter ciphertexts via some form of compression. Of course, every symmetric-key
encryption scheme is also a symmetric-key compression-encryption scheme, with “compression”
being the identity function. We will often deal with the following specific, natural composition
of compression and symmetric-key encryption:

Definition 3 (Composition of compression and encryption). Let I' = (Comp, Decomp) be a
compression scheme with message space M and output space O. Let II = (KeyGen, Enc, Dec)
be a symmetric-key encryption scheme with message space O and ciphertext space C. The
symmetric-key compression-encryption scheme Il o I' constructed from I' and II is the following
tuple:

(IToT).KeyGen() = II.KeyGen()
(ITo T").Enck(m) = I1.Enc (I'.Comp(m))
(IT o T").Decg(¢) = I'.Decomp(I1.Decg/(c))

Note that IT o I' is itself a symmetric-key encryption scheme with message space M and
ciphertext space C. If I' and II are both correct, then so is [ToT'.
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Figure 2: Security experiments for indistinguishability under chosen plaintext attack (IND-CPA,
left) and entropy-restricted IND-CPA (ER-IND-CPA, right)

2.2 Existing security notions

The standard security notion for symmetric-key encryption is indistinguishability of encrypted
messages. In this paper, we focus on chosen plaintext attack. The security experiment
ExpNP-CPA(A) for indistinguishability under chosen plaintext attack (IND-CPA) of a symmetric-
key encryption scheme IT against a stateful adversary A is given in Figure 2. The advantage of A
in breaking the IND-CPA experiment for IT is Advj}>"“PA(A) = |2 Pr (Expf>-PA(A) = 1) —1|.

Kelley and Tamassia [KT14] give a definition of entropy-restricted IND-CPA security which
applies to keyed compression schemes II, and demands indistinguishability of encryptions of
messages from the same class £ C M; typically, £ is the class of messages that encrypt (compress)

to the same length under II.Enc, such as:
Ly={m e M : |[ILEnc(m)| = ¢} .

The ER-IND-CPA security experiment is given in Figure 2; the corresponding advantage is defined
similarly. Kelley and Tamassia note that any IND-CPA-secure symmetric-key encryption scheme
II, combined with any compression scheme I, is immediately ER-IND-CPA-secure. As well, it
is easily seen that if a symmetric-key encryption scheme is ER-IND-CPA-secure for the class
Ly ={m € M :|m| = {}, then that scheme is also an IND-CPA-secure symmetric-key encryption.

2.3 New security notions

In this paper, we focus on the ability of an attacker to learn about a secret piece of data inside
a larger piece of data, where the attacker controls everything except the secret data. We use
the term cookie to refer to the secret data; in practice, this could be an HTTP cookie in a
header, an anti-CSRF token, or some piece of personal information. We will allow the attacker
to adaptively obtain encryptions of compressions of data of the form m/||ck|m” for a secret
cookie ck and adversary-chosen message prefix m’ and suffix m”.

We now present three notions for the security of cookies in the context of compression-
encryption schemes:

e Cookie recovery (CR) security: A simple, but relatively weak, security notion for symmetric-
key compression-encryption schemes: it should be hard for the attacker to fully recover a
secret value, even given adaptive access to an oracle that encrypts plaintexts of its choosing
with the target cookie embedded.

e Random cookie indistinguishability (RCl) security: The adversary has to decide which of
two randomly chosen cookies was embedded in the encrypted plaintext, given adaptive
access to an oracle that encrypts plaintexts of its choosing with the target cookie embedded.
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Figure 3: Security experiments for cookie recovery (left) and random cookie indistinguishability
and chosen cookie indistinguishability (right) attacks

e Chosen cookie indistinguishability (CCl) security: Here, the adversary has to decide which
of two cookies of the adversary’s choice was embedded in the encrypted plaintext, given
adaptive access to an oracle that encrypts plaintexts of its choosing with the target cookie
embedded.

These security notions are formalized in the following definition, which refers to the security
experiments shown in Figure 3.

Definition 4 (CR, RCI, CCl security). Let ¥ be a symmetric-key compression-encryption scheme.
Let A denote an algorithm. Let CK denote the cookie space. Let xxx € {CR,RCI, CCl} be a
security notion. Consider the security experiment Exp§(A) in Figure 3. Define AdV\%FfC c(A) =
Pr (Expg?c,c(/l) = 1) as the probability that A wins the cookie recovery experiment for ¥ and
CK. Similarly, define Adv§%(A) = [2Pr (Exp§ex(A) =1) — 1|, xxx € {RCI,CCl}, as the
advantage that A has in winning the random cookie and chosen cookie indistinguishability
experiments.

Remark. The CR, RCI, and CCl security notions intentionally include only the confidentiality of
the cookie as a security goal, and not the confidentiality of any non-cookie data in the rest of
the message. In most applications it would be desirable to obtain confidentiality of non-cookie
data as well, and in many real-world situations, the application layer’s cookie and non-cookie
data are jointly sent to the security layer (such as SSL/TLS) for encryption. Our notions do not
preclude the scheme from encrypting the non-cookie data as well (and in fact our constructions
in Sections 3 and 4 do so). However, it is not possible in general to require confidentiality of the
non-cookie data while still allowing it to be compressed, as that brings us back around to the
original problem that motivated the work—compression of adversary-provided data can lead
to ciphertexts of different lengths that break indistinguishability. This cycle can be broken by
demanding some length restriction on the separated non-cookie data, such as in the ER-IND-CPA
notion described in Section 2.2, but we omit that complication to focus solely on the security of
the high-value secret cookies.

2.4 Relations and separations between security notions

Cookie recovery, being a computational problem rather than a decisional problem, is a weaker
security notion. Keeping CR as an initial step, the RCl and CCl notions gradually increase the
security afforded to the cookie.



The following relations exist between security notions for symmetric-key compression-

encryption schemes:
CCl = RCl = CR .

In other words, every scheme that provides chosen cookie indistinguishability provides random
cookie indistinguishability, and so on. Moreover, these notions are distinct, and we can show
separations between them:

CR =% RCl =4 CCI .

Additionally, we can connect our new notions with existing notions:
ER-IND-CPA = IND-CPA — CC(lI and CCl =& IND-CPA .

(These last relations should be interpreted as follows. A standard (non-compressing) IND-CPA-
secure symmetric-key encryption scheme is also CCl-secure. This is not to say, however, that an
IND-CPA-secure symmetric-key encryption scheme combined with a compression scheme, such
as ITo T from Definition 3, is CCl-secure.)

The proofs of these relations and counterexamples for the separations appear in Appendix A.

3 Technique 1: Separating secrets from user inputs

In this section we analyze a mitigation technique against attacks that recover secrets from
compressed data: separating secrets from user inputs. The basic idea of separating secrets from
user inputs is: given an input, use a filter to separate all the secrets from the rest of the content,
including user inputs. Then the rest of the content is compressed, while the secrets are kept
uncompressed. This mitigation technique is a generic mitigation technique against a whole class
of compression-based side-channel attacks.

3.1 The scheme
Definition 5 (Filter). A filter is an invertible (efficient) function f : {0,1}* — {0,1}* x {0,1}*.

Given a filter f and a compression scheme I, the separating-secrets scheme SSyr is given in
Figure 4.

SSy,r-Comp(m) SS# r.Decomp(pt)
L: (l’iyptns) — f(m) 1: Parse ptsHp/t\,; —pt
2: plyps < I'.Comp(ptns) 2: ptns < I.Decomp(pt,s)
3: return ptg||pt,s 3 m < [ (pts, ptns)

4: return m
Figure 4: Abstract separating-secrets compression scheme SS

Our results will make use of the following two conditions on filters. Intuitively, a filter is
effective if it removes cookies from an input string, and is safe if no prefix/suffix can fool the
filter into separating out one cookie but not another.

Definition 6 (Effective filter). Let CK be a cookie space, and let f be a filter. We say that f
is effective at separating out CK if, for all ck € CK and all m’,m”, we have that ck & y, where

(z,y) = f(m|[ck[lm").

Definition 7 (Safe filter). Let CK be a cookie space, and let f be a filter. We say that f is safe
for CK if, for all ckg, ck; € CK such that |cko| = |ck1| and all m/,m”, we have that |zo| = |z1]
and yo = y1, where (xo,y0) = f(m/||cko||m”) and (z1,y1) = f(m/||ck1||m").



Example cookie space and filter. Let A € N and let CK be the set of alphanumeric strings
starting with the literal “secret” and starting and ending with a space (denoted by .), i.e.,
strings matched by the regular expression

_secret [A-Za-z0-9]*_

Let f be a filter that uses the above regular expression to separate out secrets. Consider a string
of the form m = mg_cki_-mi_ckomo._..._ck,_m,, where m; contains no substring matching the
above regular expression and ck; is a string completely matching the above regular expression
(excluding the initial and terminal space ). Then f(m) = (pts, ptns), where pts = cki|| ... ||ck,
and pt,s = mo||T||m1||7|| ... ||mn, and T represents a fixed replacement token that can not appear
as a substring of any m € M.

Claim 1. The above filter f is effective at separating out and safe for the above CK.

Proof sketch. Since each cookie begins and ends with a character - which does not appear within
the cookie, no prefix or suffix can cause the filter to not separate a cookie.

More precisely, for any _ck. € CK and any m’ that contains no substring matching the above
regular expression and any m” # €, we have that f(m/|.ck_|m”) = (ck||z, m/||7|ly), where
(z,y) = f(m”). Such an f is effective at separating out CK since it separates every substring
of m this is a cookie into the first component of the output. Moreover, f is safe for CK by
recursively applying the above identity. O

3.2 CCl security of basic separating-secrets technique

In this section we analyze the security of separating-secrets mitigation technique according
to CCl notion. Let IT = (KeyGen, Enc, Dec) be an IND-CPA-secure symmetric-key encryption
scheme and SSyr be the separating-secrets compression scheme given in Figure 4. We consider
the security of the resulting symmetric-key compression-encryption scheme Il oSSy, showing
that, if the filter f safely separates out cookies, then breaking chosen cookie indistinguishability
of ITo SSyr is as hard as breaking indistinguishability (IND-CPA) of encryption scheme II. The
proof of Theorem 1 appears in Appendix B.

Theorem 1. Let II be a symmetric-key encryption scheme and let I be a compression scheme.
Let CK be a cookie space, and let f be a filter that is safe for CK. Let A be any adversary
against the CCl security of the separating-secrets symmetric-key compression-encryption scheme
IIoSSyr, and let g denote the number of queries that A makes to its Ey oracle. Then

Adviicss, p ex(A) < g - Advif " PABY)

where B is an algorithm, constructed using the adversary A as described in the proof, against
the IND-CPA security of the symmetric-key encryption scheme I1.

3.3 Separating secrets in HTML

Separating secrets from user inputs is a realistic mitigation technique against the BREACH
attack: in the application layer, some fields which contain secrets (such as anti-CSRF tokens)
can be identified and separated from the HT'TP response body. In order to implement separating
secrets from user inputs in HTML we need to describe a filter firmr,-

One possible method to separate secrets in HI'ML is to separate the content assigned to the
value attribute of HI'ML elements. Among other uses, the value attribute defines the value
of a specific field in a form. The HTML code segment of Figure 5 shows inclusion of a secret
anti-CSRF token as a hidden input field in a web form, which will appear in a HTML response
body. By separating the content in the value attribute, we separate the anti-CSRF token.

10



<form action="/money_transfer" method="post">
<input type="hidden" name="csrftoken"
value="0WT4NmQ10DE40DRjN2QINT1hMmZ1YWE...">

</form>

Figure 5: HTML code segment showing inclusion of anti-CSRF token in a web form

Table 1: Compression performance (file size in bytes and compression ratio) for separating
secrets (Section 3) and fixed dictionary (Section 4) techniques

Website Uncompressed gzip full page Separating secrets Fixed dictionary
Google.com 145599 41455  (3.51x) 41502  (3.51x) 117794  (1.23x)
Facebook.com 48 226 13785  (3.50x%) 15863  (3.04x) 35036 (1.37x)
Youtube.com 467928 41813 (11.19x%) 41893 (11.17x) 181676 (2.58x)
Yahoo.com 444 408 82572  (5.38%) 83342  (5.33%) 318386 (1.40x)
Baidu.com 74979 17519  (4.28x%) 17727 (4.23%) 55950 (1.34x)
Wikipedia.org 48 548 11217 (4.33x%) 11809  (4.11x) 38406 (1.26x)
Twitter.com 57777 12520  (4.61x) 16618  (3.48x%) 39712 (1.46x)
Qqg.com 626 297 124108  (5.05x) 125747  (4.98x%) 519830 (1.21x)
Amazon.com 234 609 54922  (4.27x) 56278  (4.17x) 150924  (1.55%)
Taobao.com 192068 23658  (8.12x) 23898  (8.04x) 93410 (2.06x)

The following (case-insensitive) regular expression can be used to separate out quoted
anti-CSRF tokens in the value attribute of HTML elements:

value\s*=\s*" [A-Za-z0-9]+" | value\s*=\s*’ [A-Za-z0-9] +’

This filter is effective at separating out and safe for the implied set of cookies, in the sense of
Definitions 6 and 7.

However, the above regular expression is not perfect, highlighting the challenges of using
heuristic techniques to separate out secrets.

First, the above regular expression will also capture the value attribute of HTML elements
other than hidden input elements, such as option, which may not need to be treated as secret,
so it is not as efficient as it could be.

Second, the above regular expression does not capture anti-CSRF tokens in unquoted
value attributes, such as value=0WT4NmQl, which are allowed by the HTML specification.
While it is easy to add an additional term such as |value\s*=\s*[A-Za-z0-9]+ to the regular
expression to capture unquoted attributes, this filter would no longer be effective in the sense
of Definition 6: if a cookie is value=0WT4NmQl, and the adversary constructs m’ = value=,
then m/||ck = value=value=0WT4NmQl, and the filter applied to m/|ck would separate out
value=value as the cookie and leave =0WT4NmQl unprotected.

3.4 Experimental results on separating-secrets in HTML

Table 1 shows the result of applying the above regular expression to separate secrets on the top
10 global websites of Alexa Top Sites. As most pages contain little data in value attributes, the
total amount of space required to transmit the separated secrets plus the remaining data is not
much more than when the full page is compressed. (Table 1 also contains performance results of
the fixed dictionary technique, to be discussed in Section 4.)

3.5 Discussion

The main drawback of the separating secrets technique is that the separation filter must be
application-dependent. We noted already the challenges in using the heuristic regular expression
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above to capture anti-CSRF tokens: it may separate out non-secrets as well as secrets (which
yields suboptimal compression) and it does not capture unquoted tokens (which is a problem for
security).

Moreover, this HTML filter also only captures secrets in a value attribute, which does
not necessarily capture all values that might be considered sensitive. For example, should the
titles of books in a search results page on an shopping site be considered secret? If so, an
alternative separation filter would have to be developed. To provide complete certainty, secret
separation would require additional markup with which the developer clearly identifies which
data should be treated as secret. Otherwise, any sensitive values which are not separated may
be compressed together with user inputs and other application data, and hence remain open to
the compression-based side-channel.

4 Technique 2: Fixed-dictionary compression

The CRIME and BREACH attacks work because the dictionary constructed by the DEFLATE
compression algorithm is adaptive: if the attacker injects a substring of the target secret into the
plaintext nearby the secret itself, then the plaintext will compress more because of the repeated
substring. Some early compression algorithms were non-adaptive, using a fixed dictionary
mechanism. For example, Pike [Pik80] used a fixed dictionary of 205 popular English words and
a variable length coding mechanism to compress typical English text at a rate of less than 4
bits per character. Another recent algorithm, Smaz [San09], similarly uses a fixed dictionary
consisting of common digrams and trigrams from English and HTML source code, allowing it
to compress even very short strings. Because the CRIME and BREACH attacks rely on the
adaptivity of the compression dictionary, fixed-dictionary algorithms can offer resistance to such
attacks while still providing some compression, albeit not as good as adaptive compression.

In this section, we investigate the use of fixed-dictionary compression in the context of
encryption. We describe the basic idea of fixed-dictionary compression. We show that fixed-
dictionary compression-encryption schemes can satisfy cookie recovery security for sufficiently
large cookies. We then present an example of a modern fixed-dictionary compression algorithm
and report on the compression ratios achieved by our algorithm.

4.1 The scheme

In general, fixed-dictionary compression schemes work by advancing through the string x and
looking to see if the current substring appears in the dictionary D: if it does, then an encoding
of the index of the substring is recorded, otherwise an encoding of the current substring is
recorded. The compression scheme must specify the encoding rules in a way that unambiguously
discriminates between the two cases to allow for correct decompression.

An abstract version of a fixed-dictionary fixed-width compression algorithm FD is given
in Figure 6. FD checks if the current substring of length w appears in the dictionary D. If it
does, it records the index of the substring in D and advances w characters. If it does not, it
records the next ¢ characters directly, then advances. (Using ¢ > 1 but ¢ < w may be more
efficient when it comes to encodings.) One could treat D either as a set of strings (recording
which element is matched) or a long string (recording the starting and ending position of the
matching substring); we will use the latter in the rest of this section.

For example, if D =“cookierecoveryattack”, then FDp 4 2.Comp(“recover the cookie”)
yields 7ver_the_lie.

4.2 CR security of basic fixed-dictionary technique

Let II be a symmetric-key encryption scheme. Let D be a dictionary of length d and FDp , ¢ be
the abstract fixed-dictionary compression scheme in Figure 6.
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FDp,w,¢.Comp(x) FDp u,e.Decomp(y)

1: y<«€ 1: x <€

2: 1+ 1 2: 1+ 1

3: while i < |z| —w+ 1 do 3: while i < |y| do

4: if z;., < D then 4: if y; encodes an index then
5: y < y || encoding of indp(x;.4) 5: 2 || Dy,

6: L1+ w 6: 11+ 1

7 else 7:  else

8: y < y || encoding of ;. 8: x < x || decoding of y;.¢
9: R 4 9: 11+ 0
10: return y 10: return z

Figure 6: Abstract fixed-dictionary fixed-width compression scheme FD
Note the simplification that ¢ characters of x are encoded as ¢ characters of y.

Suppose the cookie space is binary strings of length 8, or equivalently byte strings of length
A: CK = {0x00,...,0xFF} .

If IT is a secure encryption scheme, then, intuitively, the only way the adversary can learn
information about the cookie from seeing ciphertexts Ency(-||ck||-) and Encg(-) is from the length
of the ciphertext: if some substring of ck appears in the dictionary D, then ck will compress,
and that length difference tells the adversary that the secret cookie is restricted to some subset
of CK matching D.

The situation is subtler in the full CR experiment: the attacker can provide m’ and m”
and get Ency(Comp(m/||ck|m”)). If the last few bytes of m’ followed by the first few bytes of
ck appear in D, then the string will compress more. This allows the attacker to carry out a
CRIME-like attack on the first few bytes of ck.

For example, let w = 4 and suppose D = 1234567890ABCDEFGHI JKLMNOPQRSTUVWXYZ and
CK = [0-9A-F]*. The attacker can query m/ = 890, m/ = 90A, m’ = O0AB, .... In exactly one
case, the adversary’s m’ combined with the cookie’s first byte will be in the dictionary, telling
the adversary cky. For example, if ck; = B, then when the adversary queries m’ = 904, the value
that is compressed and then encrypted is m/||ck||m” = 90AB..., which is a substring of D.

While this allows the attacker to recover the first byte or two of the secret cookie with decent
probability, it drops off exponentially; a similar argument applies to the last few bytes of the
secret cookie. Theorem 2 captures this issue. Theorem 2 only provides quantifiable security
when the cookie length n is significantly bigger than the compression window w. Additionally,
this type of attack on the first/last few bytes of the cookie precludes indistinguishable security,
which is why we focus on cookie recovery here. (Admittedly, in some settings recovering the
first /last few cookie bytes may still be quite damaging.)

Theorem 2. Let I be a symmetric-key encryption scheme. Let D be a dictionary of d words,
each of length ¢. Let w be positive integer. Let CIC = Q". Let A be any adversary against the
cookie recovery security of the fived-dictionary symmetric-key compression-encryption scheme
IToFDp . Then
CR IND-CPA —-A
Adviopp,, ,(A) < Advp (B) +277 ,

where B is an algorithm, constructed using adversary A, against the IND-CPA security of the
symmetric-key encryption scheme 11, and

1 n—3w-+1
> _ _ =
o (el () ™)
) ) 1 n—3w-+1
log, | QP20 — |2 . g 1—<1—>
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For example, for cookies of n = 16 bytes, with a dictionary of d = 4000 words each of length
w = 4, we have A > 63.999695. Doubling d gives A > 63.999391.
The derivation and proof of the formula in Theorem 2 appear in Appendix C.

4.3 Experimental results on fixed-dictionary technique

Table 1 shows the result of applying a fixed-dictionary based compression algorithm to the
top 10 global websites of Alexa Top Sites. The 4000-byte dictionary was built from the most
common 8-, 16-, and 32-character substrings of the pages. The compression algorithm was based
in part on the Smaz [San09] algorithm and was adapted slightly from Figure 6, to allow for
variable-length words to be matched. Specifically, when attempting to encode the substring at
the current position at line 4 in Figure 6, we first try variable length words in order of decreasing
length, checking to see if w = 18, then w = 16, then ..., then w = 4 characters can be found in
the dictionary. This requires the encoding to include both index and length of the dictionary
substring.

e To encode a dictionary word at index 0 < j < 4096 of length w = 2w’ + 4,0 < w’ < 7,
store 16 bits: 1 || [12-bit encoding of j] || [3-bit encoding of w']

e To encode 2 lower-ASCII characters zj 22, store 16 bits: 00 || [7-bit encoding of z;] || [7-bit
encoding of 2]

e To encode 1 byte z, store 16 bits: 01000000 || [8-bit encoding of z]

4.4 Discussion

The main drawback of the fixed dictionary mitigation technique is that in practice it achieves
relatively poor—albeit non-zero—compression compared with adaptive compression techniques.
However, it does not rely on application-dependent or heuristic techniques for separating secrets.

5 Conclusion

In this paper we introduced theoretical models to analyze compression-based side-channel attacks
on high-value secrets embedded inside messages: the notions of cookie recovery (CR) security,
random cookie indistinguishability (RCI), and chosen cookie indistinguishability (CCl). Each
notion allows an attacker adaptive access to an oracle which encrypts chosen plaintexts alongside
a target secret.

The simple, but relatively weak, CR security notion is sufficient to model real-world
compression-based side-channel attacks such as CRIME and BREACH that aim to recover the
target secret. The CCI security notion addresses stronger situations where the adversary has to
decide which of two secrets of the adversary’s choice was embedded in the encrypted plaintext,
even given adaptive access to an oracle that encrypts plaintexts of its choosing with the target
secret embedded.

The most secure countermeasure to compression-based side-channel attacks remains to
disable compression. As implementers seem loathe to do so—indeed, compression is even
more heavily embedded in current drafts of HI'TP version 2 [BPT14, §10.6] than it was in
previous versions—techniques for safely compressing data that may be partially adversarially
controlled are of significant importance. While compression inherently leaks information about
redundancy in plaintext, some compression techniques, such as the separating secrets and fixed
dictionary approaches treated in this paper, provide some resistance to previous compression-
based attacks like CRIME and BREACH. Further cryptographic study of compression seems
like a worthwhile research direction, including the investigation of definitions that provide both
cookie indistinguishability and some measure of message indistinguishability.
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Relations and separations between security notions

This subsection briefly gives the intuition for the proofs of the relations and separations of the
security notions; details follow in the rest of the section.

Al

IND-CPA — CCl: A (non-compressing) IND-CPA-secure symmetric-key encryption
scheme provides indistinguishability of any pair of equal-length chosen messages, including
messages involving a cookie. The proof proceeds by a hybrid argument, making the cookie
used in each query made by the adversary to its E; oracle independent of the secret bit b.
CCl =& IND-CPA: A degenerate scheme that uses a separating-secrets filter to extract
secret cookies then encrypt the cookies but not the non-cookie data is CCl-secure but not
IND-CPA-secure for the whole message.

CCl = RCI: A straightforward simulation: an adversary who cannot distinguish between
encryptions of equal-length cookies of its choosing can also not distinguish between
encryptions of randomly chosen equal-length cookies.

RCI =5 CCl: A counterexample is constructed that uses a separating-secrets filter: an
extra ciphertext component ¢y is added, consisting of a point function applied to the
separated secrets, where the point function is 1 on a single, publicly known cookie value
z. With high probability, two randomly chosen cookies will not match z, so ¢y carries
no useful information and the scheme is RCl-secure, but a CCl adversary can choose one
cookie that matches z and one that does not, so co allows distinguishing of the chosen
cookies.

RCI = CR: A straightforward simulation: an adversary who recovers a cookie given
only ciphertexts easily distinguishes encryptions of cookies.

CR =& RCI: A counterexample is constructed: an extra ciphertext component ¢ is added,
consisting of a random oracle applied to the message. The adversary gets encryptions
of m/||ck||m” for m’;m” of its choice; without querying the random oracle on exactly
m'||ck|lm”, co provides no information to the adversary, so the scheme is CR-secure.
However, an RCI adversary can check the random oracle on the two given random cookies,
so ¢o allows distinguishing of the given random cookies.

IND-CPA = CClI

Theorem 3. Let ¥ be an IND-CPA-secure symmetric-key encryption scheme. Then V is also a
CCl-secure symmetric-key compression-encryption scheme for any cookie space CK. Formally,
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let A be an adversary against the CCl security of U, and let q denote the number of queries that
A makes to its E1 oracle. Then

AV (4) < g AdVDPABA) |

where B is an algorithm, constructed using the adversary A as described in the proof, against
the IND-CPA security of the underlying symmetric-key encryption scheme W.

Proof. The proof proceeds in a sequence of games, using a hybrid approach. Each Game i
proceeds as in the original CCl security experiment, except that the queries to Ey are answered
as in Figure 7. Let Adv' denote the probability that game i outputs 1.

E (m/’ m//)
if query # < ¢ then

return W.Encg(m/|cko|lm”)
else if query # > ¢ then

return W.Ency(m/||cky||m”)

=

Figure 7: Oracle E; used in Game ¢ in proof of Theorem 3.

Game 0. This is the original CCl security game for II. By definition,
Adv%?cl,c(/l) = Adv° .

Transition from Game (i — 1) to Game i, 1 <i <g. FEach hybrid transition changes how
one query is answered; if the adversary’s behaviour differs because of the change in answering
the query, we can construct a simulator B; that wins the IND-CPA game for ¥, as shown in
Figure 8. When the IND-CPA challenger uses b = 0, ¢* is the encryption of m’||ck;||m”, so B; is
playing game (i — 1) with \A. When the IND-CPA challenger uses b = 1, ¢* is the encryption of
m/||cky||m”, so B; is playing game ¢ with A. Thus,

|Advi™ — Adv?| < Advi!>PABA) .

B;-A’E() By(m/,m")
1: (cko, cky, st) & APz () 1: if query # < i then
s.t. |cko| = |ck| 2. return E(m/||cko[m”)
>3 3: else if query # = then
2: b+ {0,1
s { ’E}E 4: Give (m/||ck;|lm”, m||cko||m") to IND-CPA challenger
3: b= A 17/ *(cko, cki, st) 5. Receive ¢* from IND-CPA challegner
4: return b 6. return c*
Es(m) 7: else if query # > ¢ then
1: return FE(m) 8 return E(m/[|ck;||m”)

Figure 8: Simulator B; used in the proof of Theorem 3

Analysis of Game ¢. Since the adversary’s view is independent of b in Game ¢, we have

Adv?i =0 .
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Conclusion. Combining the above results, we have

4q
AdviZic(A) <AV PAB;) = g - Advy®A(B)

i=1

(with a small abuse of notation in creating a single B from the disparate B;). O

A.2 CClI == IND-CPA

Theorem 4. There exists a symmetric-key compression-encryption scheme that is CCl-secure
but not IND-CPA-secure.

Theorem 4 is shown using a degenerate counterexample involving the separating-secrets
technique. The basic idea is that we encrypt only secret cookies and not the message. Technically,
the CClI security definition only requires any confidentiality for the cookie portion of the ciphertext
and not the rest of it, so a scheme that extracts and encrypts only the cookies is CCl-secure, but
is clearly not IND-CPA-secure.

In particular, let II be a symmetric-key encryption scheme. Let CK be the cookie space rec-
ognized by _secret [A-Za-z0-9]1*_ and f be the corresponding filter, as described in Section 3.1.
Recall this filter is effective at separating out CXK.

We construct ¥ from IT and f as in Figure 9. We will show that ¥ is CCl-secure, but is not
IND-CPA-secure.

U.KeyGen() U.Encg(m) U.Decg(c)

1: return I1.KeyGen() L pts||ptns < f(m) . Parse ¢ ||ptns < ¢

1

2: g II.Encg (pts) 2: pts < qiDeCk(cl)

3: return ¢ ||pt,s 3: m <= [ (pts, Ptns)
4: return m

Figure 9: Scheme V¥ used in the proof of Theorem 4

Claim 2. V in Figure 9 is CCl-secure, assuming I is IND-CPA-secure.

Proof sketch of claim. Since f is effective at separating out CK, only ¢; components carry any
information about b. However, ¢; is the encryption of the secrets extracted from m’ and m”
as well as ckp. Since f is safe for CIC, the length of pts is the same when derived from either
m/||cko||m” or m/||cki||m”. Thus any adversary that can guess the bit b serves as a distinguisher
for II under chosen plaintext attack. O

Claim 3. VU in Figure 9 is not IND-CPA-secure.

Proof sketch of claim. The construction of a successful A against the IND-CPA security of ¥
is straightforward. A picks two distinct messages m{, and m/ that do not match the regular
expression defining f, and gives these as the challenge messages to the IND-CPA challenger for
U. The resulting ciphertext will have an empty ¢; component (since neither m{, nor m/} has
any value that will be separated out), and the second ciphertext component is encrypted, so
the adversary receives back my directly. The adversary then can immediately provide a correct
guess of b. O

A.3 CCl = RCI

Theorem 5. Let W be a CCl-secure symmetric-key compression-encryption scheme. Then ¥ is
also an RCl-secure symmetric-key compression-encryption scheme. Formally, let CK be a cookie
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space, and let A be an algorithm against the RCl security of W. Then, for the algorithm B given
i Figure 10,
AdvEDk(A) < AdviSie(BH) .

Proof. The proof proceeds via direct simulation. We are given an adversary A against the RCI
security of ¥. We must construct an adversary B against the CCl security of ¥; note that B will
have access to oracles F1 and Fy described in the CCI security experiment. The simulator B
is constructed in Figure 10. Notice in particular that B uses the CCl challenger’s Fy and FEs
oracles to answer A’s queries.

B.A,El,EQ()
1: (cko, cky) & CK sit. |cko| = |cki]
2: Give (cko, ck1) to the CCl challenger
3. 0 & APVE: (cky, chy, L)
4: return b

Figure 10: Simulator used in the proof of Theorem 5.

B’s simulation of the RCl experiment to A is perfect. If A’s guess o’ of the b is correct in the
RCI experiment, then it is also correct for the CCl experiment, and similarly when the guess is
wrong. This yields the bound in the theorem. O

A.4 RCl =& CCl

Theorem 6. There exists a symmetric-key compression-encryption scheme that is RCl-secure
but not CCl-secure.

Theorem 6 is shown using a counterexample involving the separating-secrets technique and a
point function involving a hard-coded publicly known string. The basic idea is that we append to
each ciphertext a single bit representing the output of the point function on the cookie(s) in the
message. Since randomly chosen cookies are highly unlikely to be the same as the hard-coded
value in the point function, this extra bit provides no useful information for an RCl adversary,
but a chosen-cookie adversary could easily pick one cookie to be the hard-coded value and one
not to be, the bit thereby allowing him to easily distinguish the two.

In particular, let II be a symmetric-key encryption scheme and let I' be a compression scheme.
Let CK be the cookie space recognized by _secret [A-Za-z0-9]1*_ and f be the corresponding
filter, as described in Section 3.1. Recall this filter is safe for CKC.

Let ¥ =1II0SSyr be the symmetric-key compression-encryption scheme constructed using
the separating-secrets technique. Recall from Theorem 1 that W is CCl-secure if II is IND-CPA
secure. By Theorem 5, ¥ is thus also RCl-secure.

Additionally, let z € CK, and define the point function

1, ifz=<uz,
g:(7) = {

0, otherwise.

We will construct ¥ as in Figure 11 from ¥ = IIo SS;r and g.. We will show that ¥’
remains RCl-secure, but is not CCl-secure.

Claim 4. V' in Figure 11 is RCl-secure, assuming II is IND-CPA-secure and CK is large.

Proof sketch of claim. Let ck{ and ck] denote the random cookies to be distinguished.
Because I o SSy 1 is RCl-secure, c; gives the adversary no advantage in guessing the bit b.
We need to assess whether c2 helps the adversary at all in winning the RCI game.
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U’ KeyGen() U’ Ency(m) U’ Decy(c)

1: return ¥.KeyGen() 1: ptg||ptns + SSy.r.Comp(m) 1. Parse ¢1ljca < ¢

- gH'Ean(ptsH%) 2: return W.Decy(c1)

2
3: ¢ < gx(pts)
4: return cl|cy

Figure 11: Scheme ¥’ used in the proof of Theorem 6

The second ciphertext component co is only useful to the adversary if the adversary can
construct a pair (m/,m”) such that ¢, is different for m/||ckg||m” versus m/||cky||m”.

Consider the construction of pts from m in ¥ .Encg(m). Since pts consists of a comma-
separated list of cookies, and no cookie contains a comma, g,(pts) = 1 if and only if there
exists some i such that g,(ck;) = 1, where m is parsed as mgq||cky||mq]|cka||ma]| ... ||cky||m, as
described above.

Now consider the handling of m = m/||ckj||m” for m’,m” of the adversary’s choosing. By
the argument above, g.(pts) = g.(ck;) V g.(m') V g-(m"). Moreover, g.(ck}) # g.(ck}) if and
only if one of them is equal to z but the other is not. Since ckj and ckj are chosen uniformly at
random from CIC, this occurs with probability at most 2/|CK|. O

Claim 5. U’ in Figure 11 is not CCl-secure.

Proof sketch of claim. The construction of a successful A against the CCl security of ¥’ is
straightforward. Note that A knows the value z in the point function g,. Thus, A could issue a
CClI challenge with ckg = z and ck; # z, and then make the query F(¢,¢€), thereby obtaining
c1 = Ency(cky) and c2 = g, (cky). The last bit of such a ciphertext immediately indicates whether
ckpy = z or not. ]

A.5 RCl = CR

Theorem 7. Let W be an RCl-secure symmetric-key compression-encryption scheme. Then W
is also a CR-secure symmetric-key compression-encryption scheme. Formally, let CIC be a cookie
space, and let A be an algorithm against the CR security of V. Then, for the algorithm B given
in Figure 12,
R RCI
AdV%,c;c(A) < AdV\IJ,CCIC(BA) .

Proof. The proof proceeds via direct simulation. We are given an adversary A against the CR
security of W. We must construct an adversary B against the RCl security of ¥; note that B will
have access to oracles F1 and E5 described in the RCI security experiment. The simulator B
is constructed in Figure 12. Notice in particular that B uses the RCI challenger’s Fy and FEs
oracles to answer A’s queries.

B‘A’E1 £ (Cko, Ckl)

1 k! & ABLE2()

2: if ck’ = ckg then

3 return 0

4: else if ck’ = ck; then
5 return 1

6: else

7. return b & {0,1}

Figure 12: Simulator used in the proof of Theorem 7.
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B’s simulation of the CR experiment to A is perfect: the value ck;, used by the Ej oracle in
the RCI challenger was indeed chosen at random, just as in the CR experiment, and is indeed
consistent.

If A’s guess ck’ of the cookie is correct in the CR simulation, then it is also correct for the
RCI experiment, and so B’s output will be correct. If A’s guess is wrong, then B does as good as
random guessing. O

A.6 CR =% RCl

Theorem 8. There exists a symmetric-key compression-encryption scheme that is CR-secure
but not RCl-secure.

Theorem 8 is shown using a counterexample involving a random oracle. The basic idea is
that we append to each ciphertext the output of the random oracle applied to the message. For
an adversary who is trying to guess an unknown cookie, this provides no information unless it
queries the random oracle on the cookie itself, but a random-cookie adversary, who knows that
the cookie is one of two values, could easily determine which by querying both to the random
oracle.

Let U be a symmetric-key compression-encryption scheme. Let H : {0,1}* — {0,1}* be a
random oracle. Construct ¥’ as shown in Figure 13.

U’ KeyGen() U’ Ency(m) U’ Decy(c)
1: return V.KeyGen() e & U.Encg(m) 1: Parse ciljca < ¢
2: ¢g < H(m) 2: return W.Decy(c;)

3: return cl/c2

Figure 13: Scheme ¥’ used in the proof of Theorem 8

Claim 6. V' is CR-secure in the random oracle model, assuming ¥ is CR-secure and CK is
sufficiently large. Formally,

AdviRec(A) < g - - AdviTec(BY)

where qp is the number of queries that A makes to the random oracle, £ is the mazimum length
of a message queried by A to the random oracle, and B is the algorithm given in Figure 14.

Proof. Let ck* denote the cookie to be recovered.

The intuition of the proof is as follows. Because ¥ is CR-secure, ¢; does not help the
adversary in guessing the cookie ck*. We need to assess whether ¢y helps the adversary at all
in winning the CR game. The second ciphertext component ¢y is only useful to the adversary
if the adversary queries the random oracle on the plaintext of ¢, which would mean that the
adversary queries the random oracle on the target cookie ck*. We can thus use this to win the
CR experiment for ¥'.

More precisely, the proof proceeds via direct simulation. We are given an adversary A against
the CR security of ¥/. We must construct an adversary B against the CR security of ¥; note
that B will have access to oracles Fy and E5 described in the CR security experiment for for W.
The simulator B is constructed in Figure 14.

B’s simulation of the CR experiment for ¥’ to A is perfect so long as E} and H remain
consistent. The only time an inconsistency arises is if A queries H on m/|ck*||m” for some
m’,m” that it also queries to E}. With probability 1/¢, B will correctly guess that the first such
query to H is the ith query. Moreover, with probability at least 1/¢, B will correctly guess which
substring of that query to H is the target cookie c¢*. For simplicity, we ignore the possibility of
collisions on the output of the random oracle. O
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BAEE() Ey(m)

$
1: iﬁ{l,...,qH} 1: ¢ < Ea(m)
2 j & {1,...,0) 2 ¢ = H(m)
g 3: return ciljc
3: rand < CK

B (m!, m") 1: if query # = then
it AN AL 2:  Parse m to identify every substring of m that is in CK
1: ¢ ﬁ Ei(m/,m") 3 Pick one uniformly at random
2: cg < H(m!||rand|m”) 4:  Output it to the CR challenger for ¥
5. else

6:  Answer H(m) as normal for a random oracle

3: return ci||co

Figure 14: Simulator used in the proof of Theorem 8.

Claim 7. ¥ is not RCl-secure.

Proof sketch of claim. The construction of a successful A against the RCl security of ¥’ is
straightforward. An adversary A against the RCl security of ¥’ is told that the target cookie is
one of two values, ckg and ck;. A could make the query F (¢, €), thereby obtaining ¢; = Ency(cky)
and cg = H(cky). A could then query H(cky) and H(cky); one of these will equal co, telling the
adversary the value of b. O

B Proof of CCl security of separating-secrets technique

Proof of Theorem 1. The proof proceeds in a sequence of games, using a hybrid approach. Each
Game ¢ proceeds as in the original CCl security experiment, except that the queries to Ey are
answered as in Figure 15. Let Adv® denote the probability that game i outputs 1.

El (m/’ m//)
1: if query # < i then
2. return ILEncg(SSyp(m/||ckol|m”))
3: else if query # > ¢ then
4:  return ILEncy(SSyr(m/||cky||m”))

Figure 15: Oracle F used in Game ¢ in proof of Theorem 1.

Game 0. This is the original CCl security game for II. By definition,
CC
AdVHOISSf,F,CIC(A) = AdVO .

Transition from Game (i — 1) to Game i, 1 <i <g. FEach hybrid transition changes how
one query is answered; if the adversary’s behaviour differs because of the change in answering
the query, we can construct a simulator B; that wins the IND-CPA game for ¥, as shown in
Figure 16. When the IND-CPA challenger uses b = 0, ¢* is the encryption of the separating-secrets
compression of m/||ck;||m”, so B; is playing game (i — 1) with A. When the IND-CPA challenger
uses b = 1, ¢* is the encryption of the separating-secrets compression of m/||cko||m”, so B; is
playing game i with A. Since f is safe for CK, the separating-secrets compressions of m’||ckq||m”
and m/||ck1||m” have the same length, and thus the pair of chosen messages given from the
simulator in F7 to the IND-CPA challenger is valid according to the IND-CPA experiment. Thus,

|AdviT — Adv?| < Advifi>PABA) .

22



BZA’E() Ey(m/,m")

1: (cko, cky, st) & AF2() 1: if query # < i then
s.t. |cko| = |cki] 2. return E(SSyp.Comp(m/|ckol|m”))
2 b & (0,1} 3: else if query # =i then
’ 4 pt|ptas « SSyr.C /|| ek || m”
5 0 & APUE2 (cky, chy, st) pﬂ{@, M‘OmMmuCMma
4: return bV 5. pt'||ptns ‘:fSﬁF-QE’/H}p(m [[cko|lm")
6:  Give (pt||ptns, pt'||ptns ) to IND-CPA challenger
Ey(m) 7:  Receive ¢* from IND-CPA challenger
1: return E(SS;p.Comp(m)) 8 return ¢’
9: else if query # > ¢ then

10:  return E(SSyr.Comp(m/||ck;|[m”))

Figure 16: Simulator B; used in the proof of Theorem 1

Analysis of Game ¢. Since the adversary’s view is independent of b in Game ¢, we have

Adv?i =0 .

Conclusion. Combining the above results, we have

q
AdvEe(A) < D7 AP PABA) = ¢ AdviiD PA(B4)

=1

(with a small abuse of notation in creating a single B from the disparate B;). O

C Analysis of security of fixed-dictionary technique

C.1 Probability bounds, no prefix/suffix

In this section, we compute the amount of information given to the adversary from knowing the
length of the compressed cookie, without any adversarially chosen prefix or suffix. This can be
computed by calculating the amount of information given by knowing how many substrings of
the cookie appear in the dictionary. For the analysis, we treat D as a set of strings.

First we calculate the probability that a given string is a substring of a randomly chosen
cookie.

Lemma 1. Let x € Q% be a word, and let ck & r = ¢K be a random string of n characters.

Then
1 n—w+1
Pr k — - —
wxansi-(1-g)
Proof.
Pr(x < ck) =1—Pr(z A ck)
=1—Pr((x # cki.w) N (T # ckaw) A -+ A (x # chn—wiiw))
< 1—Pr(x # cki.y) Pr(z # ckow) . .. Pr(z # ckn—wiiw)

1 n—w-+1
—1—(1- —
( mrw) -

We now compute that probability that one of a set of given strings is a substring of a
randomly chosen cookie:
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Lemma 2. Let D C QY with |D| = d be a dictionary of d words of w characters. Let

ck & Q" = CK be a random string of n characters. Then

1 n—w-+1
Pr(3z € D:x <ck) <d 1_<1_W>

Proof. Suppose D = {z1,x2,...,24}.
Pr(3x € D:x < ck) =Pr((x1 < ck)V (z2 2 ck)V---V (x4 =2 ck))

d
< ZPr(xi = ck)

=1

1 n—w-+1
<d|1l—-(1-——— O
<i(1- (=)

Recall the definition of conditional entropy for random variables X and Y:

HY | X)= ) Pi(X=2)HY |X=ux

zesupp(X)
=— Z Pr(X =x)
zesupp(X)
Z Pr(Y =y | X =2)log, Pr(Y =y | X =2) .
yesupp(Y)

We now compute the amount of entropy about the cookie given knowledge about the number
of substrings of the cookie that appear in the dictionary:

Lemma 3. Fiz D. Let #SUB(ck) denote the number of substrings of ck that appear in D.
Suppose CK is a uniform random variable on CIC. Then

H(CK | #SUB(CK)) > (1 _d (1 _ (1 - |Q1|w>nw+l>>

1 n—w-+1
- log, (CIC|—|CIC]-d<1— <1—W> )) .

Proof. Let #s denote the number of cookies ck € CKC such that #SUB(ck) = s. First note that

Pr(#SUB(CK) = s) = ’Z%ja .

Additionally,
L if #SUB(CK) =
Pr(CK = ck | #SUB(CK) = s) = {#S, if #SUB(CK) = s,

0, otherwise .

Substituting into the definition of conditional entropy, H(CK | #SUB(CK))
=~ Pr(#SUB(CK) = s)

seN
. Z Pr(CK = ck | #SUB(CK) = s)logy, Pr(CK = ck | #SUB(CK) = s)
ckeCk
#s 3 1 1
== Z - logy ——
seN CK] ckeCK:#SUB(CK)=s #s #s

1
= Wz#slo&#s .
seN
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Let #>1 denote the number of cookies ck € CKC such that #SUB(ck) > 1. Then

Pr(#SUB(CK)>1)=Pr(Iz € D:z <ck) = ?C&IZCI (by definition of #>1)
1 n—w-+1
<d (1 - (1 - |Q|w> ) (by Lemma 2)

Thus, the number of cookies with at least 1 substring in the dictionary is

1 n—w-+1
< dl1-(1-—=—
#Zl > ‘CK:’ d ( ‘Q|w>

Consequently, the number of cookies with no substring in the dictionary is

1 n—w-+1
o = [CK| — #1 > [CK| — CK]d (1—(1—,Q|w) ) .

Finally,

H(CK | #SUB(CK)) Z #slogy #s >

“ i e

(ool )
log, <|CIC| —|cK|-d (1 _ <1 _ lﬂllw) )) O

For example, if we have 16-byte cookies (CK = {0x00,...,0xFF}!6) and the dictionary D is
a set of d = 4096 words of length w = 4 bytes, then

e 701082 Fo

H(CK | #SUB(CK)) > 127.998395 .

Concluding our analysis of the information learned given to the adversary without any
adversarially chosen prefix or suffix, we give a bound on the amount of entropy about the cookie
given the length of the compressed cookie:

Lemma 4. Fix D with d words of length w over character set . Denote the length of a cookie
ck compressed with dictionary D by COMPLEN(ck) = |[FDp 4 ¢.Comp(ck)|. Suppose CK is a
uniform random variable on CKC. Then

H(CK | COMPLEN(CK)) > H(CK | #SUB(CK))

Lol )
log, <|CIC| —[cK]-d ( (1 - |QIW> ))

Lemma, 4 follows from the data processing inequality and Lemma 3.



C.2 Probability bounds, prefix/suffix

Suppose C'K is a uniform random variable on CK = Q". We know that H(CK) = nlogy(|Q]).

Trivially, H(CK | CK;) = (n — 1) logy(|€?]), where C K is the first character of CK. Similarly,

H(CK | CKi.q) = (n—a)logy(|9]) and finally H(CK | CK1.q, CKp_pp) = (n —a —b)logy(|€2]).
Consider the following CRIME-like attack on the beginning of the cookie. Let D be a

dictionary with d words of length w over character set 2. Let ck € Q™. Let O(-) be an oracle

that, upon input a of length w —m, with 1 <m < w — 1, returns 1 if and only if a||ck;.,, € D.
The CRIME-like attack works as follows:

1. For each z € D, query x1.,_1 to the oracle. If a query for x1.,_1 returns 1, then it is
known that ck1.1 € Z1 = {z : £1.4-1/]2 € D}. If no query returns 1, then return .

2. For m = 2,...,w — 1. For each x € D such that xy_, € Zp—1, query Ti.,—m to the
oracle. If a query for x1.y_, returns 1, then it is known that cki., € Z,,, = {z122... 2 ¢
Tlaw—ml|[z122 ... 2m € D}. If no query returns 1, then return Zy,..., Z,_1.

3. Return Z3,...,Z,_1.

A corresponding attack on the suffix is obvious.

Let CRIMEpre(ck) denote the output obtained from running the above prefix CRIME
attacks on ck, CRIMEsuf(ck) denote the output from the corresponding suffix attack. Let
CRIME(ck) = (CRIMEpre(ck), CRIMEsuf (ck)).

Noting that in the best case the CRIME attack allows the attacker to learn the first w — 1
and the last w — 1 characters of the cookie, some trivial lower bounds are:

H(CKi.y—1 | CRIME(CK)) > 0
H(CKp—wi1w—1 | CRIME(CK)) > 0

However, the CRIME attack provides no information about the remaining characters, so
I(CK1;w_1, CKw:n—w-i—l) =0 and I(CKlzn—w+17 CKn—w-i—l:w—l) = 0, and thus H(CKw;n_w+2 |
CRIME(CK),COMPLEN(CK)) = H(CKyn—w+2 | COMPLEN(CK)).

Finally, we have that

H(CK | CRIME(CK), COMPLEN(CK))
> H(CKy.-1 | CRIMEpre(CK)) 4+ H(CKyn—wi2 | COMPLEN(CK))
+ H(CKp—wi1w—1 | CRIMEsuf (CK))
>0+ H(CKyn—wt2 | COMPLEN(CK)) +0

and we can obtain a lower bound on H(CK:p—qy | COMPLEN(CK)) using Lemma 4.
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