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Abstract

In Broadcast Encryption (BE) systems like Pay-TV, AACS, online content sharing and broadcasting, reduc-
ing the header length (communication overhead per session) is of practical interest. The Subset Difference (SD)
scheme due to Naor-Naor-Lotspiech (NNL) is the most popularly used BE scheme. It assumes an underlying
full binary tree to assign keys to subsets of users. In this work, we associate short tree structures of height
a to nodes in the binary tree to assign keys to more subsets. This ensures that for any set of revoked users,
the header length is in general less and never more than the NNL-SD scheme. Experimental studies show that
the average header length is always less than that of the NNL-SD scheme and decreases as a increases. User
storage in the new scheme is more than that of the NNL-SD scheme but is not prohibitively expensive. By
choosing a suitable value of a, it is possible to obtain substantial reduction in the communication overhead at
the cost of a tolerable increase in the user storage.

Keywords: Broadcast encryption; subset difference; trees; augmented structure; general arity; probabilistic
analysis; expectation; header length; transmission overhead.

1 Introduction

Content protection in systems like Pay-TV, online media broadcasting and digital rights management [DRM]
in optical discs, are based on broadcast encryption (BE) schemes. A symmetric key BE scheme assumes a
broadcasting center and a set N of users who can receive the encrypted broadcast. At the outset, the users
are provided long-lived keys which are stored on the user devices. Blocks of data are broadcast in sessions.
For a given broadcast, a non-empty subset of users are identified as privileged and the other users are said to
be revoked. Each session is encrypted with a fresh random session key. The session key in turn is encrypted
a number of times using a subset of long-lived keys such that each privileged user has access to one of these
keys and no revoked user can access any of these keys. These encryptions of the session key are sent with the
encrypted data block as the header. The number of times the session key is encrypted is called the header length.
The communication overhead due to the scheme is measured by the header length.

The Advanced Access Content System [AAC] standard for digital rights management [DRM] in optical discs
suggest the use of the Subset Difference (SD) scheme proposed in 2001 by Naor, Naor and Lotspiech [NNL01].
The SD scheme has thus become the most popularly used BE scheme. In this scheme, long-lived keys are assigned
to some subsets of N . A user is provided some secret information from which it can derive the keys of only
those subsets to which it belongs. At the time of the broadcast, the center computes the subset cover containing
subsets of privileged users. Each privileged user for a session is in some subset of the cover for that session. In
the header, the session key is encrypted using the long-lived keys of subsets in the cover. A privileged user can
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decrypt the session key from the part of the header intended for the subset in the cover to which it belongs. It
can thus decrypt the data block of the session.

For a system with n users, the NNL-SD scheme requires each user to store O(log2 n) secret key material.
Further, for a broadcast having r revoked users, the worst case header length is 2r − 1.

1.1 Our Contributions

There are two main parameters of a BE scheme – the header length which determines the communication
bandwidth requirement and the user storage. In applications like the Advanced Access Content System [AAC]
for digital rights management [DRM] in optical discs, reducing the header length implies the system will be
able to tolerate more number of revocations. There are applications like Pay-TV where the communication
bandwidth is more important than the user storage. Our goal in this work is to explore methods to reduce the
communication bandwidth in the NNL-SD scheme.

The starting point of our work is the NNL-SD scheme. For a system with n = 2`0 users, the NNL-SD scheme
uses a full binary tree of height `0. The scheme identifies certain subsets of users and employs a clever strategy
for assigning keys to these subsets. In any broadcast, the set of privileged users are covered using these subsets.
A basic combinatorial intuition is that if we can somehow manage to increase the number of allowed subsets,
then it may become easier to cover the privileged users using a smaller number of subsets. We follow up on this
intuition.

Reducing the communication bandwidth can trivially be done if there is no restriction on the user storage.
This, however, is an unrealistic scenario. We consider the issue of reducing communication bandwidth while at
the same time ensuring that the increase in the user storage is not prohibitively expensive. The new scheme that
we introduce still uses T 0 as the underlying framework and all the subsets considered in the NNL-SD scheme are
also present in the new scheme. Additionally, we use small trees of height a rooted at internal nodes of T 0 to
identify additional subsets which are to be assigned keys. In the scheme, a is a parameter whose value is greater
than or equal to 1. Accordingly, the new scheme is called as the a-augmented binary tree subset difference
(a-ABTSD) scheme. For a = 1, the new scheme is the same as the NNL-SD scheme. For a > 1, the flexibility of
having additional subsets arises. As a result, the new scheme is a proper generalization of the NNL-SD scheme.

For a scheme with n users, the user storage is still O(log2 n). The difference with the NNL-SD scheme is
that the constant in the big-oh notation is proportional to 2k−1 where k = 2a. So, for a fixed n, the a-ABTSD
scheme is meaningful only if a is small. Later we consider the values of a to be from 1 to 4. The worst case
header length of the a-ABTSD scheme is 2r − 1 (irrespective of the value of a) as in the case of the NNL-SD
scheme. It can be shown though that for any particular set of revoked users, the header size of the new scheme
is never more than that of the NNL-SD scheme. Further, compared to the NNL-SD scheme, in the a-ABTSD
scheme, the maximum header size of 2r − 1 is attained for a larger values of n.

The main gain in using the a-ABTSD scheme is the reduction in the average header length. We have carried
out experiments to study this. It turns out that for all values of r, the average header length of the new
scheme for a > 1 is lower than that of the NNL-SD scheme. The lowering effect of the header length becomes
more pronounced as either r increases or as a increases. Our results show that in scenarios where reducing
communication bandwidth is a major concern, the new scheme provides an attractive alternative to the NNL-SD
scheme.

1.2 Previous And Related Works

Broadcast encryption was introduced in [Ber91] and the scheme was based on “k out of n” secret sharing. It
was formally studied in [FN93] and several schemes were proposed that were based on one-way functions and
computational number-theoretic assumptions. These schemes were not fully resilient against colluding users.
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The subset cover framework for BE was proposed in [NNL01] that modelled almost all previously known
BE schemes. The subset difference scheme, its formal security analysis and traitor tracing technique were all
proposed in this same work. Halevy and Shamir introduced the concept of layering in the underlying tree of the
NNL-SD scheme and reduced the user storage [HS02]. The number of users in these tree-based schemes NNL-
SD [NNL01] and the HS-LSD [HS02] was assumed to be a power of two. The NNL-SD scheme was extended
to accommodate arbitrary number of users in [BS13a]. Detailed combinatorial and probabilistic analysis of the
scheme was also done. In [BS13b] the idea of layering was further generalized to obtain different optimizations
of the user storage and the expected header length.

A ternary tree based subset difference technique was proposed in [FKTS08]. More recently, [BS13c] introduced
a generalization of the NNL-SD scheme to work for k-ary trees for any k ≥ 2 and studied its properties.

The trade-off between a given upper bound on the user storage and the consequent lower bound on the header
length was given by [LS98]. BE schemes for low-memory stateless and low-state devices was considered in [LS98].
The header length was brought down below r for the first time in [JHC+05] with a one-way chain based scheme,
where the user storage increased considerably.

The header length being the most important parameter affecting the cost of implementation of BE schemes,
most of the analysis of these schemes are towards it. Analysis of the expected header length of tree-based
schemes in [NNL01, HS02] was done in [PB06]. It was shown in [EOPR08] that the standard deviations of the
header lengths for these schemes are small compared to the means as the number of users gets large. Hence, the
expected header length is a good estimate of the overall communication overhead per session. Efficient algorithms
to compute the expected header lengths for these schemes were proposed in [BS13a, BS13b]. Lower bounds on
the header length for subset cover algorithms over different ranges of r were found in [AKI03]. Detailed worst
case header length analysis for the tree-based schemes of [NNL01] have been done in [MMW09].

2 Subset Cover Framework

Most known symmetric key BE schemes fall under the subset cover framework [NNL01]. In this framework,
the broadcast center defines a collection S of subsets of the set of users N and keys are assigned to each subset
in S. For a user u, let Su denote the subsets in S which contain u, i.e., Su = {S : S ∈ S and u ∈ S}. A user
u gets secret information Iu from which it can derive the keys for all subsets in Su. This secret information Iu
need not be the actual keys, instead it can consist of sufficient information which allows u to derive the key for
any subset in S to which it belongs.

The message to be broadcast by the center in each session is encrypted with a random session key Ks. For
each session, the center knows the set of revoked users R. It forms a partition Sc of the set of privileged users
N \R using subsets in S, i.e., Sc ⊆ S; for S1, S2 ∈ Sc, S1 ∩ S2 = ∅; and ∪S∈ScS = N \R.

This set of subsets Sc is called the subset cover and the algorithm to find Sc is called the cover generation
or cover finding algorithm. The session key is further encrypted for each subset S ∈ Sc, using the key associated
with S. These encryptions of the session key are sent as the header with the encrypted data. The number, h, of
subsets in the cover Sc, i.e., h = |Sc| is called the header length.

For decryption, a privileged user first determines the subset S in Sc to which it belongs. Then it uses the key
corresponding to S to decrypt the portion of the header intended for S to obtain the session key Ks. Finally, it
uses Ks to decrypt the message.

2.1 The Naor-Naor-Lotspiech Subset Difference Scheme

The subset difference scheme introduced by Naor, Naor and Lotspiech (NNL-SD) [NNL01] falls under the
subset cover framework. The number of users n (n = |N |) is assumed to be a power of two, i.e., n = 2`0 for some
`0 ≥ 0.
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A full binary tree T 0 of height `0 forms the underlying structure for the scheme. Each user is associated with
a unique leaf of T 0. The nodes in the tree are numbered as follows. The root node is numbered 0. The left
(resp. right) child of an internal node i is numbered 2i+ 1 (resp. 2i+ 2). For any node i in T 0, the full binary
tree rooted at i is denoted as T i.

There are a total of `0 + 1 levels in the tree T 0. The leaf nodes are at level 0; any internal node is at level
`+ 1 if its children are at level `. So, the root node is at level `0. By level(i) we denote the level number of the
node i in the tree T 0. If J is a set of nodes all of which are at the same level, we will denote this common level
by level(J).

Let i be a non-leaf node in T 0 and j be a non-root node in T i. By T i \ T j we denote the subgraph obtained
by taking away T j from T i. Let Si,j be the set of leaf nodes of T i \ T j .

The Collection NNL-S. For the NNL-SD scheme, let us denote the collection of subsets which are assigned
keys by NNL-S. Then

NNL-S = {N} ∪ {Si,j : i is a non-leaf node of T 0 and j is a non-root node of T i}. (1)

The size of the collection NNL-S is 1 + `02`0+1 − 2`0 + 1 = 2 + `02`0+1 − 2`0 .

Key Assignment To Subsets. A key K0 is assigned to the subset N . For key assignment to the other subsets
in S, a cryptographic hash function

G : {0, 1, 2} × {0, 1}m → {0, 1}m (2)

is chosen by the center and is made available to all users in the system. Here m is the key-size of the underlying

symmetric cipher. For t = 0, 1, 2, let Gt(·)
∆
= G(t, ·). Each subset Si,j ∈ S is assigned a key as follows.

• Every internal node i in T 0 is assigned a uniform random m-bit seed Li.

• All non-root nodes j in the subtree T i derive seeds from Li in the following manner. Let j = t0, . . . , tp = i
be the sequence of nodes in the path from j to i. Then for ı = p−1, . . . , 0, tı = 2tı+1 + sı where sı ∈ {1, 2}.
Define the label Li,j associated to Si,j to be Li,j

∆
= Gs0(· · ·Gsp−2(Gsp−1(Li)) · · · ).

• The key Ki,j associated to the subset Si,j is defined to be Ki,j
∆
= G0(Li,j).

The Set Iu For A User u. For a user u consider the set NNL-Su of subsets in NNL-S which contain u. If Si,j
is such a subset, then i is an ancestor of the leaf node u and j is not an ancestor of u. The user u should be able
to generate the keys of all such subsets and no more. User u is at level 0 and suppose i is at level `. Further
suppose u = i0, i1, . . . , i` = i be the path from u to i. Let j1, . . . , j` be the siblings of i1, . . . , i` respectively.
Corresponding to the ancestor i at level `, user u is given the ` seeds Li,j1 , . . . , Li,j` . Since u has `0 ancestors,
the total number of seeds given to u is `0(`0 + 1)/2 plus the key K0 assigned to the set N . Denote the set of all
seeds given to u by NNL-Iu, i.e.,

NNL-Iu

= {K0} ∪ {Li,j : i is an ancestor of u and j is the sibling of some node in the path from u to i }. (3)

It can be seen that from the seeds that u gets, it can derive the keys for all subsets to which it belongs and no
more.
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3 The a-Augmented Binary Tree Subset Difference Scheme

The a-Augmented Binary Tree Subset Difference (a-ABTSD) scheme is a generalization of the NNL-SD scheme.
It assumes an underlying full binary tree T 0 as in the case of the NNL-SD scheme and imposes additional structure
on this tree. The size of the structure is determined by a parameter a. For a = 1, the scheme turns out to be
the same as the NNL-SD scheme.

Underlying Structure. As in the case of the NNL-SD scheme, there are n = 2`0 users associated with the
leaves of the underlying full binary tree T 0. The nodes and levels are also numbered as in the NNL-SD scheme.

For ease of later description, we introduce a few notions. Suppose J1 and J2 are two sets of nodes of T 0 such
that there is a node j ∈ J1 and nodes j1, j2 ∈ J2 such that J1 \ {j} = J2 \ {j1, j2} and j1, j2 are the two children
of j. Then the set J2 can be thought of as being obtained from J1 by replacing {j1, j2} by j. Call the operation
of replacing j1, j2 by their parent j to be a moving-up step.

Given a set J , it is possible to repeatedly apply the moving-up operation to get a set J ′ such that the moving-
up operation can no longer be applied on J . We call J ′ to be a reduced set. Given a set J , there is a unique
reduced set which can be obtained by repeatedly applying the moving-up step.

Let T be a full binary tree and J be a non-empty subset of the leaf nodes of T . If J is either singleton, or,
J can be reduced to a singleton set using moving-up operation, then J is called a simple subset of T ; otherwise,
J is called a non-simple subset of T . Figure 1 and Figure 2 show examples of simple and non-simple subsets
respectively. By Js(T ) we denote the set of all simple subsets of T . Similarly, Jns(T ) denotes the set of all
non-simple subsets of T . Note that both Js(T ) and Jns(T ) consist of subsets of the set of leaf nodes of T .
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Figure 1: A full binary tree T with the set J1 =
{7, 8, 9, 10} of leaf nodes that can be reduced to a
singleton set J ′1 = {1}. Hence, J1 is a simple subset
of T .
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Figure 2: A full binary tree T where the set J2 =
{7, 9, 10, 12} of leaf nodes may be reduced to J ′2 =
{7, 4, 12} which is not singleton. Hence, J2 is a non-
simple subset of T .

For the new scheme, additional structure is endowed to T 0 in the following manner. Define an a-tree Aja to
be a subgraph of T 0 which is the full binary tree rooted at node j and of height a. So, the number of nodes in
an a-tree is 1 + 2 + . . .+ 2a = 2a+1 − 1. The scheme is parameterized by the number a.

We provide an example to illustrate this notion. In Figure 3 where a = 2, the subtree rooted at node 4 is the
a-tree A4

2 containing the nodes {4, 9, 10, 19, 20, 21, 22}. Another a-tree A1
2 is the subgraph containing the nodes

{1, 3, 4, 7, 8, 9, 10}.
For a fixed value of a in T 0, each a-tree is uniquely identified by its root node. Alternatively, suppose J is a

non-empty subset of leaf nodes of an a-tree Aja such that the nodes in J are at level ` (of T 0). Then the root j
is the unique ancestor at level ` + a of the nodes in J . So, given J , the node j is uniquely determined and we
will call j to be the a-pivot of J .
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The level number of the root node of any a-tree in T 0 is at least a. Hence, for a full binary tree with n = 2`0

leaves, the number of distinct a-trees is the number of internal nodes at levels between `0 and a. Since there are
2`0−` nodes at level ` in T 0, hence the number of a-trees is

1 + 2 + . . .+ 2`0−a = 2`0−a+1 − 1.

For any internal node i of T 0 and any non-root node j in T i, T i \ T j is the subgraph of T i obtained by
taking away T j . We generalize this notion in the following manner. As before, let i be a non-leaf node in T 0

and let J = {j1, . . . , jc} be a non-empty subset of non-root nodes in T i. Define Ti,J to be the subgraph of T i
formed by taking away all of T j1 , . . . , T jc from T i. In other words,

Ti,J = T i \
(
T j1 ∪ · · · ∪ T jc

)
.

Let Si,J denote the set of leaf nodes of the subgraph Ti,J .
Suppose J1 and J2 are two sets of nodes in T i such that J2 is obtained from J1 by a moving-up step. Then

it is easy to see that the set of leaf nodes of Ti,J1 is the same as the set of leaf nodes of Ti,J2 and so Si,J1 = Si,J2 .
We say (i, J1) and (i, J2) are two representations of the set Si,J1 = Si,J2 . If J ′ is a reduced set obtained by
successively applying the moving-up operation to a set J , then Si,J = Si,J ′ . By an extension of terminology, we
will call the representation (i, J ′) to be the reduced form representation of the set Si,J .

The Collection S. Let i be an internal node of T 0 and J be a non-simple subset of Aja where j is a node of
T i. We call such a pair (i, J) to be allowed.

Suppose (i, J) is an allowed pair where the nodes in J are at level `. Then the level of the a-pivot j of J is
`+ a and so the level of i is at least `+ a. This shows that there cannot be an allowed pair (i, J) where the level
of i is less than a.

The collection S consists of the following subsets:

• all NNL-SD subsets Si,j ; and

• Si,J for all allowed pairs (i, J).

In other words,

S = NNL-S ∪ A-S (4)

where A-S ∆
= {Si,J : (i, J) is allowed}.

For Si,J ∈ A-S, J is non-simple and so J cannot be reduced to a singleton set using moving-up operations.
As a result, Si,J is not equal to any NNL-SD subset. So, the collections NNL-S and A-S are disjoint.

If a = 1, then any J which is a non-empty subset of the leaf nodes of an a-tree is necessarily simple. So,
there are no allowed pairs (i, J) showing that A-S = ∅. As a consequence, in this case, the a-ABTSD scheme
collapses to the NNL-SD scheme.

As an example, let us consider the tree T 0 in Figure 3 with 16 users. It shows the subset that has been
formed by excluding the users in T 7, T 9 and T 10 from the users in T 0. The subset is denoted as S0,{7,9,10}.
Nodes {7, 9, 10} are leaves of the a-tree A1

2. Note that the set {7, 4} can be obtained from the set {7, 9, 10} by a
moving-up operation. So, S0,{7,9,10} = S0,{7,4}.

Key Assignment To Subsets In S. The key assignment strategy is an extension of the strategy for the
NNL-SD scheme. The collection S consists of two sub-collections NNL-S and A-S. We assume as in the case of
the NNL-SD scheme that each internal node i of T 0 is assigned an independent and uniform random m-bit seed
Li. Further, for any non-root j in T i, the seed Li,j is also defined using Gt as in the NNL-SD scheme and the
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Figure 3: The binary tree T 0 that is the underlying structure of the a-ABTSD scheme for n = 16 users is shown
here. The red leaf nodes denote revoked users while the black ones denote privileged users. Here we assume
a = 2. The subset S0,{7,9,10} = {17, 18, 23, 24, . . . , 30} from the collection S (A-S in particular) is also shown. It
has all users in the subtree T 0 but not in T 7 ∪T 9 ∪T 10. Since J = {7, 9, 10} is a non-simple subset of the a-tree
A1

2, (1, J) is an allowed pair. Using the moving up operation, the subset J may also be represented as S0,{7,4}.

key for the NNL-SD subset Si,j is Ki,j = G0(Li,j). In other words, keys to the subsets in NNL-S are assigned as

in the NNL-SD scheme. For convenience of notation, we define Li,i
∆
= Li.

Let T be a full binary tree of height a and as defined earlier Jns(T ) is the set of all non-simple subsets of T .
We define a cryptographic hash function

H[T ] : Jns(T )× {0, 1}m → {0, 1}m. (5)

Keys to the subsets in A-S are defined using the hash function H. Note that H is defined with respect to the
tree T . This is because the domain of H depends on T . On the other hand, we expect H to act on any full
binary tree of height a in the same manner. So, when T is clear from the context, we will write H instead of
H[T ].

Let k = 2a which is the number of leaf nodes in any a-tree. Suppose Si,J is in the collection A-S. Then

(i, J) is an allowed pair and suppose the a-pivot of J is j. Then J is necessarily a non-simple subset of Aja, i.e.,
J ∈ Jns(Aja). The key Ki,J assigned to Si,J is

Ki,J
∆
= H[Aja](J, Li,j). (6)

Note that j can be equal to i and in that case Li,i is simply Li.

Number Of Subsets In The Collection. As mentioned earlier, the count of the number of NNL-SD subsets
is 2 + `02`0+1 − 2`0 . We now consider the number of subsets in A-S. The following result gives the number of
simple and non-simple subsets of a full binary tree of height a.

Lemma 1. Let T be a full binary tree of height a and k = 2a. Then the number of simple subsets of T , i.e.
|Js(T )| equals 2k − 1. Consequently, the number of non-simple subsets of T , i.e. |Jns(T )|, equals 2k − 2k.

Proof. T has k = 2a leaf nodes and a total of 2k − 1 nodes. If J is a simple subset of T , then J is either a
singleton subset of the set of leaf nodes of T or, can be reduced to one of the internal nodes of T . So, the number
of simple nodes of T is 2k − 1. The total number of non-empty subsets of the leaf nodes of T is 2k − 1. Out of
these 2k − 1 are simple subsets. As a result, there are 2k − 2k non-simple subsets of T .
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Fix a node i of T 0 with level(i) = `. Out of the 2`+1 − 1 nodes in T i, 2`−a+1 + . . . + 2` nodes are at the
bottom-most a levels. These nodes cannot be the a-pivot for any set J such that the pair (i, J) is allowed. Each
of the remaining 2`−a+1 − 1 nodes in T i will be the root of an a-tree that generate subsets. For a node i, each
such a-tree will generate 2k − 2k subsets of the form Si,J where J is non-simple. Thus, the total number of
subsets of the form Si,J in A-S is

`0∑
`=a

2`0−`(2`−a+1 − 1)(2k − 2k − 2) = (2k − 2k)((`0 − a)2`0−a+1 − 2`0−a+1 + 1).

Hence, the total number of subsets in the collection S is

|S| = |NNL-S|+ |A-S|
= 2 + `02`0+1 − 2`0 + (2k − 2k)((`0 − a)2`0−a+1 − 2`0−a+1 + 1). (7)

Iu Per User u. Let u be a user, i.e. a leaf node of T 0. The information provided to u consists of two disjoint

subsets which we call I
(1)
u and I

(2)
u .

The Subset I
(1)
u . The first part is the same as that in the NNL-SD scheme, i.e., I

(1)
u = NNL-Iu. Recall that

NNL-Iu consists of seeds Li,j where i is an ancestor of u and j is the sibling of some node in the path from u to

i. As mentioned earlier, the number of m-bit seeds in I
(1)
u is |I(1)

u | = 1 + `0(`0 + 1)/2. From the seeds in I
(1)
u , u

can derive keys of the following type:

• key Ki,j corresponding to any NNL-SD subset Si,j containing u;

• key Ki,J corresponding to any subset Si,J containing u such that the a-pivot of J is in the subtree rooted
at the sibling of some node in the path from u to i.

The seeds in I
(1)
u are not actual keys for subsets. These actual keys have to be derived from the seeds by one or

more applications of the hash functions G and/or H.

The Subset I
(2)
u . Let T be a full binary tree of height a and v be a leaf node of T . Let Jns,v(T ) denote the

set of all non-simple sets of T not containing v. In other words, J is in Jns,v(T ) if J is a non-empty subset of
the leaf nodes of T , J cannot be reduced to singleton subset and v /∈ J .

Lemma 2. Let T be a full binary tree of height a and v be a leaf node of T . Then |Jns,v(T )| = 2k−1−2k+a+1.

Proof. Consider a non-empty subset of the leaf nodes of T not containing v. Since T has k leaf nodes, there are
a total of 2k−1 − 1 possibilities for J . Further J cannot be reduced to any of the ancestors of v in T .

Define S(2)
u to be collection of subsets Si,J in A-S satisfying the following conditions:

• i is an ancestor of u and the a-pivot j of J is also an ancestor of u;

• the ancestor v of u at level(J) is not in J .

Define

I(2)
u = {Ki,J : Si,J is in S(2)

u }. (8)

The size of I
(2)
u is calculated as follows. If i is at level `, then the possible levels for the a-pivot j of J are

a, a+ 1, . . . , `. Fix a level `′ of j. We now need to find the number of non-simple subsets J satisfying the above
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conditions. There are k = 2a leaf nodes of Aja. The ancestor v of u at level `′ is a leaf node of Aja. By the above
condition, v should not be in J and so there are k − 1 leaf nodes of Aja which can be in J . Any subset J ′ of the
leaf nodes of Aja which does not contain v cannot be reduced to any of the singleton nodes in the path from v to
j (both inclusive). There are a total of (2k−1)− (a+ 1) nodes in Aja to which it may be possible to reduce J ′ by
applying moving-up operations. So, the number of J satisfying the required conditions is 2k−1− 1− (2k−a− 2).
For a node i at level `, there are (` − a + 1) possible choices for j and for each j there are 2k−1 − 2k + a + 1

choices for J . So, the number of keys in I
(2)
u is

|I(2)
u | =

`0∑
`=a

(`− a+ 1)(2k−1 − 2k + a+ 1) =
1

2
× (2k−1 − 2k + a+ 1)(`0 − a+ 2)(`0 − a+ 1). (9)

Recall that for a user u, Su denotes the collection of subsets in S which contain u. Also, NNL-Su denotes
the collection of all NNL-SD subsets which contain u. Define A-Su to be the collection of all subsets from A-S
which contain u. Then Su is the disjoint union of NNL-Su and A-Su. The set I

(1)
u provides u with information to

generate keys for any subset in NNL-Su. Similarly, the set I
(2)
u provides u with information to generate keys for

any subset in A-Su. Further, the two sets I
(1)
u and I

(2)
u are disjoint and their union is the set Iu which provides

u with information to generate keys for any subset in Su. The total number of m-bit seeds that u needs to store
is the cardinality of Iu and is given by the following.

|Iu| = |I(1)
u |+ |I(2)

u | = 1 +
`0(`0 + 1)

2
+

(2k−1 − 2k + a+ 1)(`0 − a+ 2)(`0 − a+ 1)

2
. (10)

For a fixed k and as n grows, the expression in (10) is O(log2 n) which is the same as that of the NNL-SD scheme.
This is much better than the number of keys being proportional to n. On the other hand, for a fixed n as k

increases, the number of keys also increases. The set I
(2)
u consists of actual keys for the subsets in S(2)

u . Later

we show how to define the hash function H such that the definition of I
(2)
u can be altered to provide information

using which seeds in S(2)
u can be derived. This results in decreasing the factor (2k−1 − 2k + a+ 1) in the above

expression.

4 Cover Finding Algorithm

The algorithm takes as input the set R of revoked users and outputs the subset cover Sc. If R = ∅ then the
only set in the subset cover is the set N of all users. If R 6= ∅, then the subset cover consists of NNL-SD subsets
Si,j or Si,J for allowed pairs (i, J). The subset cover algorithm that we describe below identifies NNL-SD subsets
Si,j with Si,{j}. For any allowed pair (i, J), the algorithm obtains Si,J ′ where J ′ is the reduced form of J .

The algorithm runs iteratively and maintains a list L of nodes on the paths joining revoked leaf nodes with
the root. The list L is initially populated with the revoked leaf nodes, all marked as covered. The algorithm runs
from left to right on this list and keeps adding the parent nodes of each node in the list until the root. Each node
j in the list has an associated list SDnodes[j] of its descendant nodes. For a node j at level level(j) ≥ a, the nodes
in SDnodes[j] are in an a-tree rooted at j or at some descendant of j. For a node j at level level(j) < a, the list
SDnodes[j] will have nodes from the subtree T j . While investigating the child nodes of i in the list, SDnodes[i]
and the status of i are updated. The algorithm works as follows.

Algorithm C. Takes as input the set R 6= ∅ of revoked users and outputs the subset cover Sc. Each subset in
Sc is in reduced form.

1. Form the initial list L with all revoked leaf nodes of T 0. Mark each node j as covered and set SDnodes[j] =
{j}. Set Sc to be the empty set.
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2. Process nodes in L from left to right. Let L[t] be the node that is processed at the tth iteration. If L[t] is
the root node, go to step 3. Let i be the parent of L[t]. At the tth iteration:

(a) If L[t] and L[t+ 1] have the same parent, proceed to the next iteration for L[t+ 1].

(b) Else, append i to L. Node i can have at most two children in L. Let the children of i in L be {j1, jc}
where (1 ≤ c ≤ 2). The following mutually exclusive cases occur:

i. Case when all c children of i are covered:

A. If c = 1, mark i as intermediate and set SDnodes[i] = {j1}.
B. For c = 2, mark i as covered and set SDnodes[i] = {i}.

ii. Case when c = 1 and j1 is intermediate:
Mark i as intermediate and copy SDnodes[j1] to SDnodes[i].

iii. Case when c = 2 and at least one node in {j1, j2} is intermediate:

A. If for some j ∈ {j1, j2}, there is a j′ ∈ SDnodes[j] such that level(j) − level(j′) ≥ a, then for
each j ∈ {j1, j2} that is marked as intermediate, add Sj,SDnodes[j] to Sc. Subsequently, mark i
as covered and set SDnodes[i] = {i}.

B. Otherwise, mark i as intermediate and set SDnodes[i] to SDnodes[j1] ∪ SDnodes[j2].

3. If the root node is marked as intermediate, add S0,SDnodes[0] to the cover Sc.

The subset cover Sc output by the algorithm is a collection of subsets of the form Si,SDnodes[i].
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Figure 4: Example of a subset cover for R = {31, 33, 39, 43} in the a-ABTSD scheme with a = 2 and n = 32
users. The subsets in the cover are S3,{31,33}, S9,{39}, S10,{43} and S0,{1}.

Figure 4 shows an example where a = 2, n = 32 and R = {31, 33, 39, 43}. Hence, the list L eventually gets
populated with the nodes {31, 33, 39, 43, 15, 16, 19, 21, 7, 9, 10, 3, 4, 1, 0} that lie on the paths joining the revoked
leaves with the root node. The subsets generated by the algorithm working on the above list are S9,{39}, S10,{43},
S3,{31,33} and S0,{1}.

The cover generation algorithm outputs sets of the type Sj,SDnodes[j]. To show the correctness of the algorithm
we need to argue two things.

1. Each subset produced by Algorithm C is in S.

2. The subsets that are produced form a partition of the set of privileged users.

Lemma 3. If Algorithm C produces a subset Si,J , then every element of J has been marked covered.
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Proof. J is of the form SDnodes[j] for some node j. Further, all nodes in SDnodes[j] are marked covered. This
can be seen from the manner in which the SDnodes[j] is built up. Nodes enter SDnodes[j] either in Step 1 or in
Step 2(b)(i) and in both cases they are marked covered; the set SDnodes[j] grows in Step 2(b)(iii)(B) through the
union of two other sets of the same type and hence the property of having only covered nodes is preserved.

Lemma 4. If a subset Si,J is produced by Algorithm C, then J is a reduced set.

Proof. All nodes in J are marked covered. Let if possible j1 and j2 be siblings in J and i is their parent. Then
both j1 and j2 are marked covered. When the node i is considered in Step 2(b), then c is 2 and Step 2(b)(i)(B)
is executed which results in SDnodes[i] being set to {i} and j1, j2 do not enter any SDnode[i]. So, they cannot
be members of any J such that Si,J is produced by Algorithm C at a later point of time.

Lemma 5. For any set SDnodes[j], if i1, i2 ∈ SDnodes[j], then level(i1) − level(i2) < a. Further, all nodes of
SDnodes[j] belong to some a-tree.

Proof. Let J = SDnodes[j]. If J is a singleton set, then this is clearly true; if J contains more than one element,
then J must have been formed by the merger of two SDnodes set in Step 2(b)(iii)(B). Such merger can take place
only if the maximum of the differences in the levels of the nodes in the resulting set is less than a.

For the last statement, again it is easy to see this if J is a singleton set. On the other hand, if J has
been formed by merger (one or more times), then each such merger is a union of the SDnodes of two siblings.
Consequently, this corresponds to a moving-up operation within the same a-tree.

Lemma 6. Any subset produced by Algorithm C is in the collection S.

Proof. Suppose Sj,SDnodes[j] is produced. Then all the nodes in J = SDnodes[j] are in the subtree rooted at j.
By Lemma 5, the nodes in J are in some a-tree and by the previous statement, the root of this a-tree is also in
T j . So, Sj,J is in S.

Lemma 7. If u is a leaf node corresponding to a revoked user, then Algorithm C visits all ancestors of u.

Proof. Whenever a node i is processed by Algorithm C, its parent is added to L. Further, every node in L is
processed before the algorithm terminates. Since the initial list L contains the node u, every ancestor of u is
processed by Algorithm C.

Lemma 8. Any privileged (i.e., non-revoked) user is in one of the subsets produced by Algorithm C.

Proof. Let v be a privileged user. Since there is at least one revoked user, there is a minimal subtree T i of T 0

which contains both v and some revoked user u. Let j1 and j2 be the two children of i and suppose v is a leaf
node of T j2 . By the minimality of T i, it follows that u is necessarily in T j1 and further all leaf nodes of T j2 are
privileged.

Since i is an ancestor of the revoked node u, by the previous lemma, Algorithm C will process both nodes
i1 and i. The node i is added to L when node i1 is processed. Since all nodes in T i2 are privileged, node i2
does not enter L. So, i has exactly one child in L and either by Step 2(b)(i)(A) or by Step 2(b)(ii), i is marked
intermediate and SDnodes[i] is set to either {j1} or to SDnodes[j1]. In both cases, v is in Si,SDnodes[i]. From this
point onwards, Algorithm C ensures the following. If i′ is an ancestor of i, then either the set Si′,SDnodes[i′] is
produced, or, Si′,SDnodes[i′] contains v. Since, the second case cannot continue indefinitely, at some point of time,
Algorithm C will produce a set Si′,SDnodes[i′] for some ancestor i′ of i and so v will be in this subset.

From Lemmas 7 and 8, we get the following result on the correctness of Algorithm C.

Theorem 9. Algorithm C produces a sub-collection of subsets of S which form a partition of the set of privileged
users.
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The complexity of Algorithm C is given by the following result.

Theorem 10. Algorithm C requires O(r log n) time where r is the number of revoked nodes.

Proof. As proved in Lemma 7, the algorithm processes every ancestor of any revoked node. There are O(log n)
such ancestors and so the total time taken by the algorithm is proportional to r log n.

It has already been remarked that for a = 1, the a-ABTSD scheme collapses to the NNL-SD scheme. The
following result shows that for a > 1 and any revocation pattern, the header length of the a-ABTSD scheme is
never more than that of the NNL-SD scheme.

Theorem 11. For a given R (revocation pattern) the header length due to the NNL-SD scheme is at least as
large as that of the a-ABTSD scheme.

Proof. For a given value of a, let Ja be the collection of all nodes j in T 0 such that Sj,SDnodes[j] ∈ Sc. Let us
consider a node i in T 0 that have both children {j1, j2} in L and at least one of them is marked as intermediate.
When a = 1, for every intermediate child j of i, there is a j′ ∈ SDnodes[j] such that `j − `j′ ≥ 1. Hence,
Sj,SDnodes[j] ∈ Sc and hence j ∈ Ja=1. For a > 1, if for some j ∈ {j1, j2}, there is a j′ ∈ SDnodes[j] such that
`j − `j′ ≥ a, only then all intermediate children of i generate SD subsets. Otherwise, i is marked as intermediate
and SDnodes[j] is included in SDnodes[i] and is carried upwards. Hence, Ja=1 ⊆ Ja>1. Thus, the header length
due to a revocation pattern for the a-ABTSD scheme will be at most that of the NNL-SD scheme.

It follows from Theorem 11 above that the worst case header length for the a-ABTSD scheme will be less
than or equal to that of the NNL-SD scheme. From [NNL01] we know that for a given r, the worst case header
length of the NNL-SD scheme is 2r − 1. Hence we get the following theorem.

Theorem 12. For a given r in the a-ABTSD scheme, the maximum header length that can be achieved for any
n, is 2r − 1.

To show that this upper bound is tight, we consider the a-ABTSD scheme with a = 2 for n = 32 users
in Figure 5 where R = {31, 39}. The subset cover for this revocation pattern is Sc = {S3,{31}, S4,{39}, S0,{1}}.
Hence, the header length is 2|R| − 1 = 3. A similar example can be constructed to show the tightness of this
upper bound for any general value of a with larger values of n. The subtrees rooted at nodes 3, 4, 5 and 6 in
Figure 5 where a = 2, are of height a+ 1 = 3 each. For any general a, these subtrees should be full subtrees of
height a+ 1 each. It is to be noted that the tree T 0 in such a case will be of height a+ 3 and the total number
of users will be 2a+3. There will be two revoked users, one in each of the subtrees rooted at nodes 3 and 4. The
subset cover will have three subsets. Two of these subsets will be rooted at nodes 3 and 4. The third subset will
be S0,{3,4} = S0,{1}. Hence, the upper bound given by Theorem 12 is tight for any a ≥ 1.

5 Other Issues

In this section, we consider two issues. The first one is the ability to extend the scheme to handle arbitrary
number of users and the second one is the issue of traitor tracing.

5.1 Accommodating Arbitrary Number Of Users

The NNL-SD [NNL01] scheme assumes the number of users n to be a power of two. The a-ABTSD scheme
retains this assumption and hence assumes an underlying full binary tree. In practice this may be restrictive.
We extend the a-ABTSD scheme for arbitrary number of users by assuming a complete binary tree instead of
full. A complete binary tree with 2`0−1 < n ≤ 2`0 leaves is formed by adding child nodes to the leaf nodes of a
full tree with 2`0−1 leaf nodes, starting from the left. These newly added leaves are said to be at level 0. The old
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Figure 5: Example to show that the upper bound 2r−1 of the header length in the a-ABTSD scheme with a = 2
is tight. The subset cover for R = {31, 39} in the binary tree T 0 with n = 32 users contains the subsets S3,{31},
S4,{39} and S0,{1}.

leaves are at level 1. The newly constructed complete tree has n leaves, some of which are filled from the left of
level 0 and the others (if 2`0−1 < n < 2`0) are on the right at level 1.

Since the underlying tree T 0 is a complete tree (that may not be full) and hence an a-tree may also be a
non-full complete binary tree. Thus, an a-tree Aia is a complete tree rooted at node i in T 0 and is of height a.
Let us call the path joining the root node and the right-most internal node at level 1 to be the dividing path. Any
subtree of T 0 rooted at a node other than the dividing path, is full. Hence, only the a-tree rooted at the node
on the dividing path at level a may be non-full. The subsets that are included in the collection S are formed as
before. A subset Si,J ∈ S is such that all nodes in J are within a single (possibly non-full but complete) a-tree.

The user storage requirement of the a-ABTSD scheme assuming n = 2`0 is given by (10) where `0 is the
height of the underlying tree. Let us denote this storage requirement as usa(2

`0). Then the user storage of
the scheme assuming the complete tree structure will be at least usa(2

`0−1) and at most usa(2
`0), depending on

where a user is placed in the tree with respect to the dividing path. All users are attached to some node on
the dividing path. Users that are to the left (respectively right) of the dividing path and are attached to it at
nodes on or above level a, receive usa(2

`0) seeds (respectively usa(2
`0−1) seeds). For the users that are attached

to the dividing path at a level less than a, the number of seeds can be easily calculated from the number of users
attached to the dividing path at those levels.

The cover generation algorithm for the complete tree version of the scheme would have an additional pre-
processing step for the leaf nodes at level 0. First, all the revoked leaf nodes at level 0 are inserted into the list
L in left-to-right order. These nodes are processed one after another as in the cover generation algorithm. The
parent of each leaf in L gets appended to it and their respective data structures are appropriately updated. Once
all revoked leaves at level 0 have been processed, all their parents at level 1 are in the list. The remaining revoked
leaf nodes that are at level 1 in T 0, are then appended to L. Then onwards, the cover generation algorithm
proceeds exactly as it did for full trees. The worst-case header length remains 2r−1 for the complete tree version
of the scheme. We have implemented this algorithm and results are reported later.

5.2 Traitor Tracing

Traitor tracing is an important feature of BE schemes. It is the mechanism to identify leaked user keys from a
pirate decoder by treating it as a “black-box”. Traitor tracing for the NNL-SD scheme was discussed in details
in [NNL01]. They showed that traitor tracing can be done on any scheme that assigns keys to subsets which
satisfy the bifurcation property. The bifurcation property states that given any subset that is in the collection S
and hence has been assigned a key, it is possible to partition the set into two (or a constant number of) almost
equal subsets from S. The bifurcation value is defined to be the ratio of the size of the largest subset to that
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of the set itself. For the BE schemes of [HS02, BS13a, BS13b], the subsets used in these schemes all belong to
the collection S for the NNL-SD scheme with the same number of users. Hence, their respective traitor tracing
mechanisms are almost the same as the NNL-SD scheme.

For the a-ABTSD scheme that we have proposed in this work, keys are assigned to subsets that are in
general different from those in the NNL-SD scheme. Hence, the traitor tracing for these schemes do not directly
follow from the NNL-SD traitor tracing algorithm. However, the subsets of this scheme do follow the bifurcation
property. Here we state very briefly how these subsets can be split into roughly equal sized subsets from their
respective collection S.

In the a-ABTSD scheme, the subsets in the collection S are of the forms Si,j or Si,J . Any subset of the form

Si,j can also be written as Si,J where J is a simple subset of Aja. Assume that all subsets in S are of the form

Si,J where J is a non-empty subset of the leaf nodes of Aja for some j in the subtree rooted at i. Subsets where
J = {j} is a singleton set are split into two as was done in [NNL01]. The node j will be in either of the two
subtrees rooted at 2i + 1 or 2i + 2. If j is in T 2i+1, the subsets after split will be S2i+1,j and Si,2i+1. If j is in
T 2i+2, the subsets after split will be S2i+2,j and Si,2i+2. Hence, the maximum bifurcation value in this case is
2/3.

For the subsets Si,J where |J | > 1, let us consider the a-tree Aia rooted at node i. The a-tree Aja containing
the nodes in J is either this same a-tree (when i = j) or it is rooted at a descendant j of i. In any case, the
subsets formed by the split are as follows. The subtrees rooted at leaves of Aia form a subset each in the split.
From each of these 2a subtrees, all users under nodes in J are excluded. As a result, some of these 2a subtrees
may be completely excluded. When i = j, the maximum bifurcation value is 1/(2a−|J |) which in the worst case
would be 1/2. In case j is in the subtree of i, the nodes in J will be contained in at least one (but not all) of the
2a subtrees under the a-tree Aia. The users in the subtrees of J are excluded from the respective subtrees at the
leaves of Aia. Since j is in the subtree of i, one of the child subtrees of i would not have any node in J . There
will be at least 2a−1 subtrees at the leaves of Aia that will not have any node in J . As a result, the bifurcation
value in this case will be between 1/2a−1 and 1/2a. This goes to show that the bifurcation property also holds for
subsets in the a-ABTSD scheme. Hence, traitor tracing mechanisms can be devised for the scheme introduced
in this work in a manner similar to the one described in [NNL01].

The number of queries required by the traitor tracing algorithm depends on the bifurcation value. At every
step of the traitor tracing algorithm, a subset S of users that contains a traitor is divided into subsets S1, . . . , St
using the bifurcation property as mentioned above. Each subset St is tested for containment of a traitor. The
ratio |St|/|S| is at most the bifurcation value. Lesser the bifurcation value, lesser is the size of the remaining
subset from which the traitors have to be traced. The bifurcation value of the NNL-SD scheme is 2/3. The
bifurcation value of the a-ABTSD scheme is at most 2/3 for a ≥ 2. Hence, traitor tracing in the a-ABTSD
scheme will be at least as efficient as the NNL-SD scheme, if not better on an average.

6 Reducing User Storage

A user u is provided with the set Iu as secret information. This set is the union of two disjoint sets I
(1)
u and I

(2)
u

where |I(1)
u | = 1 + `0(`0 + 1)/2 and |I(2)

u | = (2k−1 − 2k + a+ 1)(`0 − a+ 2)(`0 − a+ 1)/2. So the user storage is
|Iu| = 1 + `0(`0 + 1)/2 + (2k−1 − 2k + a+ 1)(`0 − a+ 2)(`0 − a+ 1)/2 where k = 2a (see (10)). For a given `0,

the quantity |I(1)
u | = 1+`0(`0 + 1)/2 is fixed and does not change with the value of a. As the value of a increases,

the component |I(2)
u | = (2k−1 − 2k + a+ 1)(`0 − a+ 2)(`0 − a+ 1)/2 increases. The main increase is due to the

exponential factor 2k−1 which is actually doubly exponential in a. Here we describe a technique to somewhat
mitigate this increase. For small concrete values of a, the decrease in user storage is quite significant.

Recall that the information provided in I
(2)
u is used by u to generate keys for the subsets in A-Su. For a

specified value of a, the new key generation method will provide a user u with a different set, to be denoted



6 REDUCING USER STORAGE 15

II
(2)
u (a), which will enable u to generate keys for the subsets in A-Su.

It is to be noted that the technique for decreasing user storage described in this section does not change the
definition of the collection S of subsets to which keys are assigned in the a-ABTSD scheme. Hence, the cover
generation algorithm remains the same. Only the method of assigning seeds to nodes and keys to SD subsets is
altered.

Suppose the number of users is n. Then as discussed earlier, the user storage is not the same for all users.
Denote by usa(n) the maximum user storage with n users, i.e., usa(n) = maxu |Iu|. For 2`0−1 < n ≤ 2`0 ,
usa(n) = usa(2

`0).

6.1 The Basic Idea

Consider a subset Si,J for an allowed pair (i, J). Let j be the a-pivot of J . Then J is a non-simple subset of

the set of leaf nodes of Aja, i.e., J ∈ Jns(Aja). The key Ki,J is assigned to Si,J using the hash function H as

Ki,J = H[Aja](J, L) where j is the a-pivot of J and L = Li,j (6). Let u be a user and consider the set I
(2)
u . The

key Ki,J is in I
(2)
u if the following condition holds: the a-pivot j of J is an ancestor of u and the ancestor v of u

at level(J) is not in J .
Let T be a full binary tree of height a having k = 2a leaf nodes. Any subset J of the leaf nodes of T can

be encoded by a k-bit string str(J) where the ı-th bit from the left of str(J) is 1 if and only if the ı-th leaf node
of T is in J . By extension of this notation, str(Jns(T )) denotes the set of k-bit strings encoding the non-simple
subsets of T . Define

H : str(Jns(T ))× {0, 1}m → {0, 1}m. (11)

For σ ∈ str(Jns(T )) and L ∈ {0, 1}m define Lσ = H(σ, L). If w is a leaf node of T , define keys[L, T ](w) to be the
set of all Lσ such that the w-th bit of σ is 0.

Let i be an internal node of T 0 and j be a node of T i. Let v be a leaf node of the a-tree Aja. The seed Li,j is

the derived seed from Li which is assigned to the node j. Let w a leaf node of Aja. The keys in keys[Li,j ,Aja](w)
are to be made available to users in T w. This is captured by the following definition.

Using the definition of H in (11), the key Ki,J for the subset Si,J is defined to be

Ki,J = H(str(J), Li,j) (12)

where as before, j is the a-pivot of J . Suppose u is a user. Then the set I
(2)
u is the following.

I(2)
u =

⋃
i

⋃
j

keys[Li,j ,Aja](v) (13)

where i is an ancestor of u; j is node on the path from u to i and level(j) ≥ a; v is the ancestor of u at level
level(j)− a.

Our basic idea of reducing key storage is that instead of directly providing keys[Li,j ,Aja](v) we provide
sufficient information for the keys in this set to be computed. This is achieved by defining the function H in a
different manner. Note that the function H can itself be defined with respect to a full binary tree T of height a
and without reference to the tree T 0. Once H is defined, the definition of Ki,J follows and the set keys[Li,j ,Aja](v)
is also obtained from the definition of keys[L, T ](w).

In the rest of this section, we show how to define suitable H. In the next subsection, we describe this method
for the special case of a = 2 and in the subsequent subsection we consider the case of general a.
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6.2 The Case a = 2

For a = 2, k = 2a = 4. For a = 2, the factor 2k−1 − 2k + a + 1 = 3 and so from (10) the maximum number of
seeds to be stored by a user is

1 + `0(`0 + 1)/2 + 3`0(`0 − 1)/2. (14)

We show how to reduce the factor 3 to 2 by suitably defining the function H.
Let T be a full binary tree of height a. Then the simple subsets of T are encoded by the 6 strings

0001, 0010, 0100, 1000, 0011, 1100 and the non-simple subsets of T are encoded by the 8 strings

0101, 0110, 0111, 1001, 1010, 1011, 0101, 1001, 1101, 0110, 1010, 1110.

So, given an m-bit string L and a string σ encoding a non-simple subset of T , we have to define Lσ = H(σ, L).
Let the leaf nodes of T from the left be θ0, . . . , θ3. Then

keys[L, T ](θ0) = {L0101, L0110, L0111}; keys[L, T ](θ1) = {L1001, L1010, L1011};
keys[L, T ](θ2) = {L0101, L1001, L1101}; keys[L, T ](θ3) = {L0110, L1010, L1110};

Each of these sets contains 3 m-bit strings which gives the factor 3 in (14). Since L and T will be clear
from the context we will drop them from the notation. We show how to define H such that any of the sets
keys(θ0), . . . , keys(θ3) can be obtained from 2 m-bit strings.

We define a new tree T4. This tree has no relation to the tree T 0. It is solely used to define the function
H. The tree T4 is defined as follows. The root node has four children nodes numbered 0, 1, 2, 3. The child node
numbered i has two children numbered (i, 0) and (i, 1). The structure is shown in Figure 6.

Define, two hash functions F1 : {0, 1, 2, 3} × {0, 1}m → {0, 1}m and F2 : {0, 1} × {0, 1}m → {0, 1}m. These
hash functions are chosen by the broadcast center and made available to the users in the system.

Given an m-bit seed L, define

L̂i = F1(i, L) for i = 0, 1, 2, 3;

L̂i,b = F2(b, L̂i) = F2(b, F1(i, L)) for i = 0, 1, 2, 3 and b = 0, 1.

}
(15)

$

0 a4

0, 0

L1110

0, 1 a2

L1010

1 a3

1, 0

L1101

1, 1 a1

L0101

2 a2

2, 0

L1011

2, 1 a3

L1001

3 a1

3, 0

L0111

3, 1 a4

L0110

Figure 6: The structure of T4 for a = 2.

Define

L1110 = L̂1,0, L1010 = L̂1,1, L1101 = L̂2,0, L0101 = L̂2,1,

L1011 = L̂3,0, L1001 = L̂3,1, L0111 = L̂4,0, L0110 = L̂4,1.

Then each of the sets keys(θ0), . . . , keys(θ3) can be obtained from 2 m-bit seeds as indicated below.
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keys(θ0) : L̂3 and L̂1,1;

keys(θ1) : L̂2 and L̂0,1;

keys(θ2) : L̂1 and L̂2,1;

keys(θ3) : L̂0 and L̂3,1.

It is easy to verify that the above information is sufficient to obtain any set keys(θi). For example, the users
under the node 4j + 3 in T 0 will be able to get the seeds {L0101, L0110, L0111}.

Fix a user u and an ancestor i of u at level `. For every node j which is an ancestor of u at levels between 2

and `, the set II
(2)
u (2) contains two m-bit seeds. Since ` can vary from 2 to `0, we have

|II(2)
u (2)| = 2× `0(`0 − 1)

2
= `0(`0 − 1). (16)

Based on this we obtain the following improvement to (14).

us2(2`0) = 1 + `0(`0 + 1)/2 + `0(`0 − 1). (17)

6.3 General Case

The technique for a = 2 is somewhat specific since in this case the number of non-simple subsets of an a-tree
turns out to be 8 which is a power of 2. More generally, Lemma 1 shows that the number of non-simple subsets
of an a-tree is 2k − 2k where k = 2a. The expression 2k − 2k will not be a power of 2 for a > 2. For this case, we
directly use the technique from [BS13c] which dealt with the same problem in a different context. We explain
this below.

The k-ary Tree Subset Difference Scheme. The underlying structure of the NNL-SD scheme is the binary
tree T 0. The work [BS13c] generalizes the idea to work with k-ary trees for any k ≥ 2. So, suppose that T 0 is
a k-ary tree. Then each internal node has k children. Let i be an internal node of T 0 and J be a non-empty
subset of nodes having a common parent j. Let Si,J denote the leaf nodes of the graph formed by taking away
from T 0 the subtrees whose root nodes are in J . The collection S for the k-ary tree scheme consists of all such
subsets Si,J .

Key assignment in the k-ary tree scheme is done as follows. Each node is assigned a seed Li and a hash
function is iteratively used to define the seed Li,j for any node j in the subtree rooted at i. Given Li,j and the
subset J of children nodes of j, a key Li,J is defined. In [BS13c] this is first defined directly and then later it is
shown how to define this in a different manner so that the user storage reduces.

Coming back to the a-ABTSD scheme, we note the similarity between the subsets and the key assignment
procedure of the two schemes. The relevant difference is that in the k-ary tree scheme the subset J is a non-empty
subset of the children nodes of j, whereas in the a-ABTSD scheme, the subset J is a non-simple subset of the
leaf nodes of the a-tree rooted at j. For both cases, the key to Si,J is assigned from the seed Li,j . So, in both
cases the problem is given an m-bit seed L and the subset J , how to define the key based on L and J?

A solution to this problem has been given in [BS13c] which uses the notion of cyclotomic cosets. We do not
provide the solution here and instead refer the reader to [BS13c] for details. Our main observation is that the
solution provided in [BS13c] also works in the present case. The difference is that the method of [BS13c] assigns
keys to all non-empty subsets of the children nodes of j, whereas in the present case, we only need to assign keys
to all non-simple subsets of the leaf nodes of the a-tree rooted at j. This difference, however, is not significant.
We simply ignore the keys that are assigned to the simple subsets.

On the other hand, it is also possible to actually modify the key assignment procedure in [BS13c] so that keys
are only assigned to non-simple subsets. We have carried this out for a = 3 and k = 2a = 8. The work required
us to examine the 2k−1 = 256 non-empty subsets and eliminate the keys assigned to 2k−1 = 15 simple subsets.
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Table 1: Effect of reduction of user storage. In the second row the entry for a = 2 is from (16) and the entries
for a = 3 and a = 4 are from (18).

storage a = 2 a = 3 a = 4

2|I(2)
u |/(`0 − a+ 2)(`0 − a+ 1) from (9) 3 116 32741

2|II(2)
u (a)|/(`0 − a+ 2)(`0 − a+ 1) 1 36 4116

These details are quite tedious and so we do not report them. Directly using the key assignment procedure

from [BS13c] in the present context shows that II
(2)
u (a) for a user u consists of (χk − 2)(`0 − a+ 2)(`0 − a+ 1)/2

m-bit keys where χk is the number of cyclotomic cosets of k-bit strings, i.e., for a > 2,

II(2)
u (a) =

(χ2a − 2)× (`0 − a+ 2)(`0 − a+ 1)

2
. (18)

So, for a > 2,

usa(2
`0) = 1 +

`0(`0 + 1)

2
+

(χ2a − 2)× (`0 − a+ 2)(`0 − a+ 1)

2
(19)

For the case of a = 2 and k = 4, χ4 = 6. Hence, from (19) us2(2`0) would be 1 + `0(`0 + 1)/2 + 2`0(`0 − 1).
Previously, however, we have seen that us2(2`0) = 1 + `0(`0 + 1)/2 + `0(`0− 1). So, for the case of a = 2, directly
using the solution from [BS13c] is sub-optimal. This is one of the reasons why we considered the case of a = 2
as a special case.

For small value of a the reduction that is achieved is shown in Table 1. It is clear that the reduction achieved
is significant in practical terms.

6.4 Full Resilience

A user obtains secret information Iu which allows it to obtain a set of keys. Let us denote this set as Ku. It
is to be noted that under certain reasonable cryptographic assumptions on the hash functions G, F1 and F2,
user u does not obtain any information about keys that are not in Ku. Further, if K is a set of keys and UK
is the set of all users such that K ∩ Ku = ∅, then ∪u∈UKu does not provide any information about K (again
under reasonable cryptographic assumptions on G, F1 and F2). This can be argued formally along the lines of
the argument provided in [NNL01]. We skip the details and only remark that this can be intuitively seen by
considering the hash functions to be one-way and the outputs of the hash functions to be independent.

7 Experimental Studies

The main point of this work is to reduce the header length. As we have already seen, the header length is never
more than that of the NNL-SD scheme. This result, however, does not indicate what will happen on average. In
this section, we report on this aspect and also compare the average header length and user storage as a varies.

In order to compute the expected header length, one may consider a situation where r users out of n are
randomly revoked without replacement. Then for every non-leaf node i in T 0, one can associate a binary valued
random variable Xi which takes the value 1 if a subset of the form Si,j or Si,J is generated and takes the value
0 otherwise. The header length is then

∑
Xi and by linearity of expectation, the expected header length is∑

Pr[Xi = 1].
In order to find Pr[Xi = 1] one has to consider the situations for which the event Xi = 1 can occur. Let us

consider two sibling nodes i1 and i2 in T 0. A subset Si1,J1 is generated from i1 if sibling subtrees in J1 are the
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only subtrees within the subtree T i1 that have at least one revoked node each. Moreover, the level of the nodes
in J1 should be at least a levels below that of i1. If such a subset is generated from i1, then there has to be
at least one revoked leaf in the subtree T i2 and a subset Si2,J2 will be generated. Similarly, if the subset Si2,J2
generated from i2 is such that the sibling subtrees in J2 are the only subtrees in T i2 with revoked users and the
level of nodes in J2 is at least a levels below i2, then T i1 will have at least one revoked leaf and a subset Si1,J1
will be generated from i1. This gives rise to a large number of cases in the computation of Pr[Xi

n,r = 1]. While
in principle it is possible to exhaust all the cases, the resulting algorithm will be quite complicated. It did not
seem useful to us to obtain such an algorithm.

Instead, we chose a simulation based approach to get a fair idea of the expected header length. First, we
fix the parameter a for the scheme. For given values of n and r, we generate random revocation patterns using
Floyd’s Algorithm [BF87]. For each such revocation pattern, the cover generation algorithm finds the exact cover
and hence we get the header length. The number of iterations is chosen so that the average value of the header
length stabilizes. It turns out that 100 iterations are sufficient.

Table 2 shows that for different values of r, the expected header length of the 1-ABTSD scheme (the complete
tree version of the NNL-SD scheme) is always more than that of the a-ABTSD scheme with a > 1. In fact, as a
increases, there is a steep fall in the expected header length for fixed n and r. As an example, we see that for
n = 224 and r = 0.4n = 6710886, the expected header length due to the NNL-SD scheme is 2.29 times that of
the a-ABTSD scheme with a = 3.

We compare the performance of the a-ABTSD scheme by varying the parameter a. Table 2 shows how the
mean header length for a given value of a (MHLa) varies with n and r. We observe the following:

1. For a fixed n, as the parameter a is increased, the user storage increases.

2. For fixed n and a, the ratio MHLa/r decreases steadily as r increases. This behavior is true for all a ≥ 1
(including the NNL-SD scheme).

3. For fixed n and r, as a increases, the ratio MHLa/r decreases steadily. This holds for any value of r.

4. For fixed a and r/n, the value of MHLa/r is approximately the same for all values of n. Hence, these
properties hold good for the full-tree versions (with n = 2`0) of the scheme too.

For certain values of r/n, the ratio MHLa/r is shown in Table 3. This behavior is further depicted by plotting
the values of Table 3 in Figure 7.

Practical Impact. Broadcast encryption is used in paid services like cable TV, online broadcasting services
(audio, video, gaming and document sharing), content protection in optical discs, etc. for implementing digital
rights management [DRM]. Our scheme with a > 1 would reduce the communication overhead of a system that
uses the NNL-SD scheme. For any value of r/n, the mean header length for a > 1 will be lesser than a = 1
(NNL-SD scheme).

In real-time systems like Pay-TV and online media broadcasting, the communication overhead is the costliest
parameter. Reducing the communication overhead shall have significant impact on the economy of the system.
Let us take an example scenario to explain this reduction. From Table 2, we see that for a system with n = 106

user of which r = 0.4n = 4× 105 users are revoked, the expected header length of the 2-ABTSD scheme is 0.96r
whereas that of the 1-ABTSD scheme is 1.11r. This means that a system using the NNL-SD scheme will on an
average require the header to be smaller by 0.05r per session as compared to the 1-ABTSD scheme. In concrete
terms, assuming that keys in these systems are 128-bit long, for r = 4 × 105, on an average, the header length
will be lesser by 312.5KB per session. Thus, each session will save around 0.31MB of additional bandwidth per
channel. Depending upon the length of each session, this can be significant savings per channel. This practical



7 EXPERIMENTAL STUDIES 20

Table 2: User storage and mean header lengths in the complete a-ABTSD scheme for values of a between 1 and
4. For a fixed n, we report MHLa/r for three different choices of r namely, r = (0.1n, 0.2n, 0.4n).

n a usa(n) MHLa/r n a usa(n) MHLa/r

103

1 55 (1.11, 0.97, 0.71)

104

1 105 (1.11, 0.97, 0.71)
2 145 (0.96, 0.78, 0.53) 2 287 (0.96, 0.78, 0.53)
3 1279 (0.75, 0.53, 0.31) 3 2757 (0.75, 0.53, 0.31)
4 115247 (0.52, 0.31, 0.16) 4 271629 (0.52, 0.30, 0.16)

105

1 153 (1.11, 0.97, 0.71)

106

1 210 (1.11, 0.97, 0.71)
2 425 (0.96, 0.78, 0.53) 2 590 (0.96, 0.78, 0.53)
3 4233 (0.75, 0.53, 0.31) 3 6024 (0.75, 0.53, 0.31)
4 432123 (0.52, 0.30, 0.16) 4 629652 (0.52, 0.30, 0.16)

107

1 300 (1.11, 0.97, 0.71)

108

1 378 (1.11, 0.97, 0.71)
2 852 (0.96, 0.78, 0.53) 2 1080 (0.96, 0.78, 0.53)
3 8902 (0.75, 0.53, 0.31) 3 11428 (0.75, 0.53, 0.31)
4 950634 (0.52, 0.30, 0.16) 4 1234578 (0.52, 0.30, 0.16)

Table 3: List of values of the ratio MHLa/r (for any n) corresponding to the varying ratio r/n for each a. Note
that as the value of a increases, the scheme performs better in terms of communication overhead as compared
to a lesser value of a.

HHH
HHHa
r/n

(0.01, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00)

1 (1.23, 1.18, 1.11, 0.97, 0.84, 0.71, 0.58, 0.46, 0.33, 0.22, 0.11, 0.00)

2 (1.20, 1.08, 0.96, 0.78, 0.64, 0.53, 0.44, 0.35, 0.27, 0.18, 0.10, 0.00)

3 (1.15, 0.93, 0.75, 0.53, 0.39, 0.31, 0.25, 0.20, 0.17, 0.13, 0.08, 0.00)

4 (1.07, 0.73, 0.52, 0.30, 0.21, 0.16, 0.13, 0.10, 0.09, 0.08, 0.06, 0.00)
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Figure 7: Plot showing how MHLa/r varies with r/n.

saving of communication bandwidth, however, comes at a cost. Assuming 128-bit key size, the storage for a = 1
is 26.25KB, whereas that of the 2-ABTSD scheme is around 73.75KB. Due to steadily falling memory prices, the
benefit of savings in communication bandwidth will outweigh the cost of extra memory.

In applications like the standard for DRM in optical discs [AAC], the header is stored in a fixed portion of
the optical disc. There is an allotted amount of space for the header. This amount of storage allotted for the
header may be fixed and hence there would be a limit on the number of revoked users that the system will be
able to tolerate. For a given value of r, the average header length due to a > 1 will always be less compared to
the NNL-SD scheme (a = 1). In other words, for an instantiation of the scheme with a > 1, a particular value
of the expected header length will occur for larger values of r. Given n and r, the maximum header length for
a > 1 will be at most as much as the NNL-SD scheme and in general less. As a result of the reductions in the
average as well has worst-case header lengths, the system with a > 1 will be able to tolerate more number of
revoked users compared to the NNL-SD scheme.

8 Conclusion

User storage and communication overhead are two very important efficiency parameters for any BE scheme.
The NNL-SD scheme of [NNL01] is the most popular BE scheme and is applied in a lot of practical scenarios.
Several such scenarios require improving the communication efficiency and can tolerate an increase in the user
storage. Our goal is to bring down the communication cost. It can be intuitively said that increasing the number
of subsets to which keys are assigned, should improve the communication overhead. Based on this intuition,
we have proposed the a-augmented binary tree subset difference scheme (a-ABTSD) scheme. This scheme is a
generalization of the NNL-SD scheme. It is parameterized by a (height of the augmenting structure), offering
varying efficiencies of the user storage and communication overhead. We prove that the header length for any
given set of revoked users in this scheme is at most as much as the NNL-SD scheme. The expected header length
however, is experimentally seen to be always less than the NNL-SD scheme for any value of r. Although the
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storage requirement for both these schemes are asymptotically the same as the NNL-SD scheme, in concrete
terms they are more than the NNL-SD scheme. This is the trade-off for the decreased average communication
overhead.
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