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Abstract. Impossible differential cryptanalysis has been proved to be
one of the most powerful techniques to attack block ciphers. Based on
the impossible differential paths, we can usually add several rounds be-
fore or after to launch the key recovery attack. Impossible differential
cryptanalysis is powerful not only because the number of rounds it can
break is very competitive compared to other attacks, but also unlike dif-
ferential attacks which are statistical attacks in the essential, impossible
differential analysis does not require many statistical assumptions. In
this paper, we investigate the key recovery attack part of the impossible
differential cryptanalysis. We point out that when taking the (non-linear)
key scheduling algorithm into consideration, we can further derive the
redundancy among the subkeys, and thus can filter the wrong key at
a rather early stage. This can help us control the time complexity and
increase the number of rounds we can attack. As an application, we an-
alyze recently proposed lightweight block cipher LBlock, and as a result,
we can break 23 rounds with complexity 277.4 encryptions without using
the whole code block, which is by far the best attack against this cipher.
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1 Introduction

Block ciphers have been investigated for quite a long time, and a lot of powerful
methods have been proposed such as differential attack [2], boomerang attack
[23], linear attack [16], integral attack [13], meet in the middle attack [5], and so
on. Among these techniques, impossible differential cryptanalysis is one of the
most powerful attack against block ciphers, especially block cipher with Feistel
and General Feistel structures are especially considered to be weak for impossible
differential attack as demonstrated in [8] and [22]. Since the technique was first
published in [1], a lot of ciphers have been carefully investigated by impossible
differential attack, which has become a standard default routine when evaluating
newly proposed ciphers. Different from differential attack which searches for the



right key with the most high probability, impossible differential attack searches
the right key by discarding the wrong ones, and the process makes sure that
the right key will never be wrongly discarded. Thus compared with the differ-
ential attack which has to makes the wrong key randomization hypothesis [3],
impossible differential attack provides much more guarantee on the cryptanaly-
sis result we get. Thus if similar results (from the point view of data complexity,
computational complexity and the number of rounds) are derived, we should
prefer impossible differential cryptanalysis. Like in differential attack we need to
first find good differential path holding with high probability, we need to find an
impossible differential path, which from the name indicating, should not be ex-
isted with probability one. Since there is no probability involved compared with
differential attack, good path here means the path that can cover long rounds.
There are a lot of researches on how to find such path such as [11]. Generally
speaking, finding impossible differential path is a relatively easier job than find-
ing differential path, since at present, the gap between the theory and practice
for finding the best differential path is still large. In this paper, we would like
to focus on the key recovery part. Previously, this part was done trivially by di-
rectly recover the subkey involved in the beginning or the end of the impossible
differential path. We show in this paper that we can further optimize this step
by considering the key scheduling algorithm instead of considering the subkey as
independent key bits. By investigating the key scheduling algorithm carefully, we
could reveal the relationship between the subkey bits guessed in the first rounds
and last rounds, then the redundancy can help us to discard the key at an early
stage efficiently.

Lightweight block ciphers have attracted much of the research attention due
to the low computational cost in both hardware and software implementation
which is suitable for resource-restricted devices such as RFID tags. The secu-
rity margin they provide, although reduced compared with the traditional block
ciphers, is considered to be reasonable given the cost of information being pro-
tected. Generally speaking, key size is usually chosen to be 80 bits, while the
popular versions of block size are 32, 48 and 64 bits. The first famous block
cipher that was widely considered to be lightweight is PRESENT [4]. After that,
many lightweight block ciphers have been proposed such as KATAN/KTANTAN
family [6], TWINE [21], PRINTcipher [12], LBlock [26] and so on. Compared
with AES which was selected through competitions, lightweight block ciphers
get started only recently, and the lack of enough cryptanalysis will prevent those
ciphers from being adopted by the industrial world. In this paper, we target one
of the recent proposed cipher LBlock which has not been analyzed thoroughly.

In ACNS2011, LBlock [26] was proposed as a lightweight block which targets
fast hardware and software implementation. It is designed using 32-round Feistel
structure with 64-bit block size and 80-bit key size. In the original paper, the
authors gave several attacks against LBlock, among which the impossible differ-
ential attack is the best one that can attack 20 rounds. Since, it attracted many
analysises using techniques such as differential attack, boomerang attack, inte-
gral attack, zero-correlation linear attack, and so on. Among them, impossible



differential attack is one of the best attack which can penetrate the largest num-
ber of rounds. We summarize the latest analysis results in the following tables
along with ours.

Table 1. Single key scenario attacks against LBlock

# Round Methods Time Complexity Data Complexity Source

21 Integral Attack 262.3 262.3 [18]

22 Integral Attack 22
70

261 [19]
22 Zero-Correlation Linear 271.3 262.1 [20]
20 Impossible Differential Attack 272.7 263 [26]
21 Impossible Differential Attack 273.7 262.5 [14]
22 Impossible Differential Attack 279.3 258 [10]
23 Impossible Differential Attack 277.4 257 Ours

13 Differential Attack 242.08 not mentioned [15]
17 Differential Attack 267.52 259.75 [7]
18 Boomerang Attack 270.84 263.27 [7]
22 Impossible Differential Attack 270 258 [17]

(Related-Key)
23 Impossible Differential Attack 278.3 261.4 [24]

(Related-Key)

This paper is organized as follows. In Section 2, we first give short intro-
duction on impossible differential attack, and then propose an improved version
based on the key scheduling algorithm. Section 3 provides main notations and
specifications of LBlock. Section 4 gives the concrete attacks against 23 rounds
of LBlock and followed by the conclusion in Section 5.

2 Impossible differential attack considering key

scheduling algorithm

2.1 Impossible differential attack

Before the key recovery steps, we will first need a good impossible differential
characteristic which covers as many rounds as possible. Usually, this kind of
impossible differential characteristic can be built by miss-in-the-middle method.
For a truncated input differential α, try to find an output differential γ where
Pr(α → γ) = 1 in the forward direction. In the same way, find a backward
differential path β → δ with probability 1. If γ 6= δ, then Pr(α 6→ β) = 1. Now
based on this impossible differential path, we add some rounds at the beginning
and the end of the path to compute the truncated input and output differential
∆P and∆C. Suppose the subkeys used during rounds covered by paths∆P → α

and ∆C → β are defined to be kf and kb, then we try to guess the subkey bits
kf , kb (or the corresponding extended key bits) to test that given the plaintext
and ciphertext pairs following input and output differentials (∆P,∆C), whether



the guessed key bits can be satisfied. If so, then it can be eliminated from the key
space. By testing the key space using a large mount of message pairs, the right
key is expected to be remained. The general framework is depicted in Figure 1.

Fig. 1. Impossible Differential Cryptanalysis

To launch a successful impossible differential attack, we wish that both im-
possible differential characteristic and key recovery rounds can be long so that
the total number of rounds we can attack may be increased. There are many
previous researches dealing with how to build good impossible differential char-
acteristics such as [11]. Unlike differential path, the space left to be improved
seems to be little regarding the impossible differential path. Thus investigating
the key recovery in detail may provide us with some further advantages which
is only generally studied previously.

2.2 Our improvement by investigating key scheduling algorithm

Let’s suppose before and after the impossible differential path, we add rf rounds
and rb rounds. Denote the number of subkey bits involved in the rf and rb rounds
to be #SKf and #SKb, which are the key bits that are required when com-
puting from difference ∆P (∆C) to α (β). The traditional way to proceed key
recovery phase is to find for each of the #SKf + #SKb subkey candidate, a
set of plaintext and ciphertext pairs that can satisfy the impossible differential
path. Let’s suppose that for each of the #SKf +#SKb key candidates, we have
N pairs before satisfying the last x-bit condition of the impossible differential
path, and denote the probability to be Prx. Then the probability for the subkey
candidate to remain is Prx = (1−2−x)N . Thus the number of remaining key can-
didate is 2#SKf+#SKb ×(1−2−x)N , which should be less than the 2#SKf+#SKb .
Many of the previous researches on impossible differential attack assumes that
#SKf + #SKb is less than the total master key length. In that case, we can
filter either SKf or SKb to a relatively small amount of number, then brute
force the rest of the consecutive key bits related to SKf or SKb. The problem
here is that SKf and SKb are definitely not independent subkeys. Key schedul-
ing algorithm of the block cipher will take a master key as a starting point and
generate subkeys for each round from the master key bits. Usually, the subkey
generation will go through nonlinear operation such S-Box or modular addition,
etc. Recent lightweight block ciphers even simplify it by just reusing the master



key in different rounds such as TEA(XTEA) [25] and LED [9], or only linear op-
eration such as KATAN family [6]. If we can exploit the relation between SKf

and SKb, we can reduce the number of total key candidate, and further extend
the number of rounds we can attack, since we do not need 2#SKf+#SKb to be
less than the total master key bits. The simple reusing or only linear key schedul-
ing algorithm is relatively easy to analyze. Here we focus on the non-linear key
scheduling algorithm which is widely deployed, and at the same time it is not as
trivial to analyze as the case of linear key scheduling algorithm. We propose to
proceed the key recovery phase in the following steps:

1. Given the plaintext and ciphertext differences and the first round conditions,
make a structure of plaintext and ciphertext pairs which satisfy the input
and output difference as well as the first round conditions for each of the
first round subkeys that are required to be guessed.

2. Guess the subkey bits in either rf or rb and filter the wrong pairs after each
condition checking.

3. For each guessed subkey bit, propagate it forwards or backwards respectively
(which depend on rf or rb) to subkeys in each of the following rounds until it
faces nonlinear operation where more unknown information bits are required
to keep going.

4. Resolve the subkey conflicting. If we find that part of input or output of
the nonlinear function are known, then guess the rest of unknown bits to
derive the corresponding input or output. If part of the input or output are
already known due to step two, then we get a conflict and the total number
of guessed key candidates can be decreased. Then go to step 2 until no more
conflicts can be resolved.

5. Finally for each guessed subkey, filter it according to the remaining pairs.
After that, we need to map the subkey which are distributed in different
rounds to one round, and apply brute force search to recover the rest of
the key bits that have not been guessed. Then we know all the consecutive
key bits which has the same length as the master key length, and can easily
recover the master key.

The biggest difference from the previous researches is step 4. Previously, only
plaintext and ciphertext pairs get filtered after each subkey guess. Here if we can
also filter the key candidates at an early stage, then we gain an advantage at
both computational complexity and the number of rounds we can attack. Just
consider the situation where in order to check t-bit condition, we need to guess s-
bit subkey where s is much more larger than t. This can be the case for checking
the conditions in rounds close to the input or output of the impossible differential
path, where many subkeys are involved in computing the internal state. The
complexity is computed as the multiplication of the number of guessed key bits
and the remaining pairs. It is highly possible that the number of guessed key bits
grows so quickly that the total complexity is larger than brute force searching the
master key. By reducing the key candidates at the same time as filtering plaintext
and ciphertext pairs, we can control and optimize the total complexity.



3 Notations and LBlock

3.1 Notations

We summarize the notations here that will be used in the analysis.

– Lr, Rr: the left and right internal state of round r starting from 0.
– Lr,[i], Rr,[i]: the i-th nibble of Lr and Rr.
– ∆Li,[j], ∆Ri,[j]: the difference of i-th nibble of Lr and Rr.
– αi: differences specified in the rounds before the impossible differential path.
– βi: differences specified in the rounds after the impossible differential path.
– Ki: The corresponding 80-bit master key used in round i.
– ki: 32-bit subkey used in round i.
– ki,[i∼j]: i-th bit to j-th bit of subkey ki. i and j are denoted according to the

whole 80-bit index instead of 32-bit index. Assuming k0 = [k0,48, k0,49, ..., k0,79].

3.2 LBlock

LBlock consists of a 32-round variant Feistel network with 64-bit block size and
80-bit key size. The encryption algorithm works as follows:

1. For i = 2, 3, ..., 33, do Xi = F (Xi−1,Ki−1)⊕ (Xi−2 <<< 8)
2. Ciphertext is C = X32||X33

Here round function F contains a S-Box layer and a diffusion layer which are
denoted as S and P.

F : {0, 1}32 × {0, 1}32 → {0, 1}32, (X,Ki) → P (S(X ⊕Ki))

There are eight 4-bit S-Boxes for each of the nibbles. Suppose the input and
output of the S-box are Y and Z. The S layer can be denoted as

Y = Y7||Y6||Y5||Y4||Y3||Y2||Y1||Y0 → Z = Z7||Z6||Z5||Z4||Z3||Z2||Z1||Z0

Z7 = s7(Y7), Z6 = s6(Y6), Z5 = s5(Y5), Z4 = s4(Y4), Z3 = s3(Y3),

Z2 = s2(Y2), Z1 = s1(Y1), Z0 = s0(Y0)

For diffusion layer with the input and output of the layer being Z and U , it can
be denoted as:

U7 = Z6, U6 = Z4, U5 = Z7, U4 = Z5, U3 = Z2, U2 = Z0, U1 = Z3, U0 = Z1

All the above details are concluded in Figure 2. Since take advantage of key
scheduling algorithm, we also give the description here. 80-bit master K is de-
noted as K = [k79, k78, ..., k0. Set the first round key to be k0 = [k79, ..., k48].
Then for each of the subkey used in the following round, we do the following
updating process before outputting the leftmost 32 bits of K.

1. K = K <<< 29
2. [k79, ..., k76] = S9[k79, ..., k76], [k75, ..., k72] = S9[k75, ..., k72]
3. [k50, ..., k46]⊕ [i]2

Step 2 is the main non-linear operation we will need to consider in detail, and
we do not care about step 3.



Fig. 2. LBlock

4 Impossible differential attack on 23 rounds of LBlock

We take advantage of the 14 round impossible differential path (00000000, 000∗
0000) 6→ (000000 ∗ 0, 00000000), which is also used in [10]. Now we add four
rounds before and five rounds after to attack in total 23 rounds of LBlock. Since
the differential property is rather symmetric, we could also attack in the five
rounds before and four rounds after pattern. Here for the simplicity, we only
demonstrate the first one. Figure 3 demonstrates the differential path for the
first four and the last five rounds. Our first task is to collect the plaintext and
ciphertext pairs that could be used to launch the attack. By propagating the
input and output impossible differential in the backward and forward directions,
we can get part of the differences of the plaintext and ciphertext pairs. Usually,
we first collect pairs that satisfy the plaintext differnece, and then filter the pairs
according to the ciphertext difference. However, this approach is time consuming
since it first needs to collect a huge amount of data to start with. Here we
propose to construct plaintext and ciphertext pairs using conditional impossible
differential, which will help to bypass the plaintext and ciphertext difference
conditions as well as the first round conditions free of cost.

First let’s fix plaintext L0,[0,3,5∼7] to be some random value in F 4
2 . L0,[1,2,4]

take all the 16 values and we get 212 plaintexts. Now for each k0,[1,2,4], compute
R0,1 = S2(L0,2⊕k0,2), R0,4 = S4(L0,4⊕k0,4) and R0,6 = S1(L0,1⊕k0,1). Take all
the 16 values for R0,[0,2], then we have 212×28 = 220 plaintexts for each of the 12-



Fig. 3. Differential path for the first four rounds (left side) and last five rounds (right
side). αi and βi denote some non-zero 4-bit difference.

bit subkey k0,[1,2,4]. Any pair taken from them will satisfy the plaintext difference
and first round conditions. Now query the corresponding ciphertexts and sort the
data according to L23,7, R23,[2,6,7] where there are no output difference. Then we
can directly generate 220×2−1 × 2−4×4 = 223 pairs for each of the 12-bit subkey.
Actually, we can further filter the pairs before guessing any key bits. It is based
on the following observation.



Theorem 1. For every S-Box, each input difference leads to average 6.06 pos-

sible output differences. And given each possible input and output pair, there are

on average 21.4 legal key candidates.

So if both input and output differences to an S-box are known, we know part
of them are illegal and can be filtered immediately. By investigating the first four
and last five rounds, we conclude the following 12 conditions, and from them we
are able to filter part of the plaintext and ciphertext pairs.

– Round 1: α0 → α4, α2 → α3.
– Round 2: α1 → α2.
– Round 3: α0 → α1.
– Round 20: β0 → β3, β2 → β4.
– Round 21: β3 → β7, β4 → β5.
– Round 22: β7 → βc, β5 → βb, β6 → βa, β2 → β7.

Note that all the above differences α and β appear in the plaintext and
ciphertext difference, and that’s why we can use the above condition to further
filter the legal pairs by a very quick table lookup. Each of the above condition
will allow one pair to pass with probability 6.06

16 = 2−1.4. Thus there remains
223−1.4×12 = 26.2 pairs. Let’s suppose these 26.2 pairs form one structure, and
we can build similar structures by taking one of the following procedures. (1),
changing the fixed values of L0,[0,3,5∼7], R0,[3,5,7]. (2), changing the values of
R0,[1,4,6] by xoring a constant in F 4

2 . We can do (1) since we have not chosen
those values yet. For the case of (2), we can explain in this way: in the previous
construction, we actually require for example R0,1 = S2(L0,2 ⊕ k0,2) and R

′

0,1 =

S2(L
′

0,2 ⊕ k0,2). Thus of course R0,1 ⊕ R
′

0,1 = S2(L0,2 ⊕ k0,2) ⊕ S2(L
′

0,2 ⊕ k0,2).

However, this equation still hold if we add a constant C to both R0,1 and R
′

0,1.
Remember we only need conditions on differences not the exact values. Another
point here is that the plaintexts by adding the constant C for one subkey actually
has been obtained by another subkey. In other words, the total data complexity
will not increase, and many plaintexts can be shared among different subkeys. As
a result, we can maximumly build 212+4×8 = 244 structures for each of the subkey
k0,[1,2,4]. Suppose we take n structures, then for each of the subkey k0,[1,2,4], we
have 2n+6.2 legal pairs, and the data complexity is 2n+20.
Key recovery.

The key scheduling algorithm of LBlock is designed in a stream cipher way.
At each round, 8-bit subkey go through non-linear S-Box. It is easy to see that as
long as the consecutive 80-bit subkey can be recovered, we can easily recover the
master key. We start by guessing the subkey bits used in the first four and last
five rounds. And by taking advantage of the key scheduling algorithm, we finally
map the guessed key bits to the consecutive 80-bit key at round 18. Impossible
differential analysis will allow us to reduce the key space, and we brute force
search the rest of the space to target the correct key candidate. We investigate
round by round as follows.
Round 22.



There are 4 × 4 bit conditions to satisfy at round 22. First let’s check the
condition ∆R22,0 = 0, which involves guessing k22,[50∼53], the remaining pairs is
2n+6.2−2.6 = 2n+3.6 since we have already filtered 21.4 pairs in the data collection
phase. We proceed in the similar way for other 4-bit conditions and we will not
explain them again. The complexity is around 2×212+4×2n+6.2× 1

8×23 ≈ 2n+15.68

23-round encryptions. Then we do key filtering by using key schedule algorithm.
Guess k22,[54∼57], then by tracing back the key scheduling algorithm, we know
k8,[52∼57] after shifting operation, and k9,[52∼55]. Guess k8,[51,58] so that the 8-bit
input to the two S-Boxes are known. Thus we have a 4-bit filtering condition
from k9,[52∼55], which leaves 212+4+2 × 2−4 = 214 keys. Guess k19,[59], then we
have 2-bit filtering condition between k19 and k20. Thus the number of remaining
keys become 214+1−2 = 213.

For the second 4-bit condition (∆R22,6 = 0), we need to guess k22,[54∼57],
which is already known by computing backward from the known subkey bits.
The remaining pairs becomes 2n+3.6−2.6 = 2n+1. It takes 2×213×2n+3.6× 1

8×23 =

2n+10.10 23 round encryptions.

For the third 4-bit condition (∆R22,7 = 0), we need to guess k22,[62∼65]. The
legal number of pairs decreases to 2n+1 × 2−2.6 = 2n−1.6. It takes 2 × 213+4 ×
2n+1 × 1

8×23 = 2n+11.48 23 round encryptions.

Before the fourth condition, we perform key filtering process. Guess k22,[66∼69]

and k6,[22], by computing backwards, we find k5,64 and k2,[65∼67] have already
been guessed, which result in a 4-bit condition. Thus there remains 217 × 25 ×
2−4 = 218 key candidates. Then proceed the fourth condition checking (∆R22,4 =
0). There remains 2n−1.6−2.6 = 2n−4.2, and it takes 2 × 218 × 2n−1.6 × 1

8×23 =

2n+9.88 23 round encryptions. After processing round 23, we can further reduce
the key candidates. Guess k17,[60,61], we can compute k16,[62] and k5,[58,59], which
are already known. Then the key candidates are reduced to 218+2−3 = 217.

Round 21.

Round 21 has 4 × 3 − 1.4 × 2 = 9.2 bits conditions to satisfy. For each of
the conditions, we only list the key bits that are required to be guessed, while
ignore the ones which are already known. For checking condition ∆R21,6 = 0,
we need to guess k21,[79,0∼2. The remaining pairs is 2n−4.2 × 2−2.6 = 2n−6.8. It

takes 2× 217+4 × 2n−4.2 × 2
8×23 = 2n+11.28 23 round encryptions.

To check condition ∆R21,1 = 0, we need to guess k22,[70∼73], k21,[7∼10]. Notice
that this condition is not pre-filtered at the data collection phase, so we have a
4-bit condition here. Thus there remains 2n−6.8 × 2−4 = 2n−10.8 legal pairs. It
takes 2× 221+8 × 2n−6.8 × 2

8×23 = 2n+16.68 23 round encryptions.

For the last condition∆R21,7 = 0 in round 21, we guess k21,[78] and k21,[11∼14].
The numnber of pairs get remained is 2n−10.8 × 2−2.6 = 2n−13.4. It takes 2 ×
229+5 × 2n−10.8 × 2

8×23 = 2n+17.68 23 round encryptions.

Round 1.

After processing Round 21, we go back to the first five rounds to proceed
round 1. There are in total two 4-bit conditions in Round 1 and both of them
have been pre-filtered and thus only 2 × 2.6 = 5.2 bit conditions remained.
Let’s guess k0,[48∼50], k1,[27∼30] and k0,[47], then according to key scheduling



algorithm, we can derive k12,[50,51], which are known already. So we first filter
the key candidates to leave 234+8−2 = 240 key candidates. Then we proceed
checking condition ∆R1,1 = 0. We have 2n−13.4×2−2.6 = 2n−16 pairs remaining,
and it takes 2× 240 × 2n−13.4 × 2

8×23 = 2n+21.10 23 round encryptions.

To check the other condition ∆R1,4 = 0, we need to guess k1,[35∼38]. Thus
the remaining pairs become 2n−16 × 2−2.6 = 2n−18.6, and it takes 2 × 240+4 ×
2n−16 × 2

8×23 = 2n+22.48 23 round encryptions.

Round 20 (Condition 1).

For round 20, there are two 4-bit conditions, and we choose to proceed only
one ∆R20,1 = 0 first and check the other one after proceeding round 2. By
doing so, we can control the computational complexity in a mild way by taking
advantage of the key scheduling algorithm. To check ∆R20,1 = 0, we will have
to guess 12-bit key k20,[36∼39], k21,[19∼22] and k22,[74∼77]. After checking 2.6-
bit filtering condition, there remains 2n−18.6 × 2−2.6 = 2n−21.2 pairs. It takes
2× 244+12 × 2n−18.6 × 3

8×23 = 2n+32.46 23 round encryptions.

Round 2.

Since the computational complexity is relatively high, by proceeding round 2,
we wish to obtain more key bits information than what we actually guessed. First
guess k0,[77∼79] and k10,[0], then we can derive k11,[0,77,79] which leaves 256+4−3 =
257 key candidates. Guess k1,[39∼42] and k14,[40], we can derive k15,[38,39] (known),
which leaves 257+5−2 = 260 key candidates. Guess k2,[6∼9], k4,[10] and k15,[11],
derive k16,[9∼11] (known), which result in 260+6−3 = 263 key candidates. Now we
know all the subkey bits in order to check ∆R2,4 = 0. There remains 2n−21.2 ×
2−2.6 = 2n−23.8 pairs, and it takes 2× 263 × 2n−21.2 × 3

8×23 = 2n+36.86 23 round
encryptions to test.

Round 20 (Condition 2).

Now let’s check the second condition ∆R20,7 = 0 of round 20. First guess
k20,[41∼43] and k15,[44], then we derive k3,[40∼42] which are known. Key candidates
becomes 263+4−3 = 264. Then guess k21,[27∼30] and k10,[26], derive k9,[27,28] which
are also known. There remains 264+5−2 = 267 key candidates. To filter 2.6-
bit condition, the remaining pairs become 2n−23.8 × 2−2.6 = 2n−26.4. It takes
2× 267 × 2n−23.8 × 3

8×23 = 2n+38.26 23 round encryptions to test.

Round 3.

Check the condition ∆R3,4 = 0 in round 3 which is the last round before
the IDC path. We need to guess 8-bit of k0, 8-bit of k1, 4-bit of k2 and 4-bit
of k3. However, most of the subkey bits are already known, which remains only
k2,[11∼13] to guess. Guess k2,[11∼13] along with k4,[14], then derive the already
known bit k5,[11]. Guess k15,[15] and derive the known bits k16,[12∼14]. Then the
number of key candidates becomes 267+4+1−1−3 = 268. The remaining legal pairs
become 2n−26.4× 2−2.6 = 2n−29, and it takes 2× 268× 2n−26.4× 4

8×23 = 2n+37.08

23 round encryptions to test.

Round 19. One 4-bit condition ∆R19,0 = 0 in round 19 requires to guess only
k20,[31] while other bits are known at present. Notice that the condition has not
been pre-filtered, thus there remains 2n−29 × 2−4 = 2n−33 pairs. The computa-
tional complexity is 2× 269 × 2n−29 × 4

8×23 = 2n+35.48 23 round encryptions.



Round 18.
If the guessed key passed the 4-bit condition in round 18, it must be a wrong

key and can be discarded from the key candidate list. Guess k21,[23∼26] which are
the only bits needed for checking condition ∆R18,7 = 0. We can derive k20,[26]
which is known. Thus up to now, we have guessed in total 269+4−1 = 272 subkey
bits which exists in different rounds. We want to target the 80-bit master key
K18 at round 18. However, at present we only know 63-bit of K18, which is
not yet enough. Before filtering the 72-bit subkey, let’s merge the key bits first.
Guess K18,[32∼35], then we can derive k17,[37] and k6,[29,30,35,36], which are known.
Now the guessed number of key candidates become 272+4−5 = 271. Further
guess K19,[3∼6], derive k18,[8] and k7,[6,7] which are known and the guessed key
candidates finally shrink down to 271+4−3 = 272, and we have known 74-bit of
K18. Finally we can check the last condition to filter these 272 key candidates.
There remains 272 × (1 − 2−4)2

n−33

keys. For each of the remaining keys, we
brute force search the remaining 6-bit of K18. Thus the complexity of this step
can be computed as 2× 272 × (1 + (1− 2−4) + · · ·+ (1− 2−4)2

n−33
−1)× 6

8×23 +

272 × (1 − 2−4)2
n−33

× 26.
Complexity.

Since we put the number of structures (data complexity) in the computa-
tional complexity as a variable, we can always take the balance between the
data complexity and computational complexity. For example let’s take n = 37,
then the data complexity will be 257 which is less than the whole code block.
Computational complexity is computed by adding all the cost in each of the
steps. As a result, we get 237+15.68+237+10.10+237+11.48+237+9.88+237+11.28+
237+16.68 + 237+17.68 + 237+21.10 + 237+22.48 + 237+32.46 + 237+36.86 + 237+38.26 +
237+37.08 + 237+35.48 + 271.37 + 276.51 ≈ 277.4 23 rounds encryptions.

5 Conclusion

In this paper, we investigate the impossible differential attack by considering the
key scheduling algorithm. Previous works usually treat the subkey used in the
first and last rounds to be independent ones. But in fact the subkey bits are not
independent and are generated by key scheduling algorithm. It is rather easy to
observe the relation when the key scheduling algorithm just simply reuses the
master key bits such as XTEA, etc, however, we point out that even the key
scheduling algorithm involves non-linear operations such as S-Box, we can still
exploit the relation which can be used to reduce the time complexity to improve
the number of rounds we can attack. As an application, we investigate LBlock
and achieve attacking 23 rounds in single key model without using the whole
code block, which is the best single key attack so far.
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