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ABSTRACT

In the field of collusion-resistant traitor tracing, Oosterwijk et al. recently determined the optimal suspicion
function for simple decoders. Earlier, Moulin also considered another type of decoder: the generic joint decoder
that compares all possible coalitions, and showed that usually the generic joint decoder outperforms the simple
decoder. Both Amiri and Tardos, and Meerwald and Furon described constructions that assign suspicion levels
to c-tuples, where c is the number of colluders. We investigate a novel idea: the tuple decoder, assigning a
suspicion level to tuples of a fixed size. In contrast to earlier work, we use this in a novel accusation algorithm
to decide for each distinct user whether or not to accuse him. We expect such a scheme to outperform simple
decoders while not being as computationally intensive as the generic joint decoder. In this paper we generalize
the optimal suspicion functions to tuples, and describe a family of accusation algorithms in this setting that
accuses individual users using this tuple-based information.

Keywords: Collusion resistance, traitor tracing.

1. INTRODUCTION

1.1 Collusion attacks on watermarking

Forensic watermarking is a means for tracing the origin and distribution of digital content. Before distribution,
the content is modified by embedding an imperceptible watermark, which plays the role of a personalized serial
number. Once an unauthorized copy of the content is found, the identities of those users who participated in its
creation can be determined. A tracing algorithm outputs a list of suspicious users.

The most powerful attacks against watermarking are collusion attacks, in which multiple attackers (the
‘coalition’) combine their differently watermarked versions of the same content; the observed differences point to
the locations of the hidden marks.

In the past two decades several types of collusion-resistant codes have been developed. The most popular
type in the recent literature is the class of bias-based codes. These were introduced1 by Tardos in 2003. The
original paper was followed by a flurry of activity, e.g. improved analyses,2–7 code modifications,8–10 decoder
modifications11–13 and various generalizations.14–17 The advantage of bias-based versus deterministic codes is
that they can achieve a code length ` as short as ` ∝ c2, i.e. quadratic in the coalition size c.

Two kinds of tracing algorithms were previously considered: (i) simple decoders, where the decision whether
to accuse a user is based only on this user’s codeword, and (ii) joint decoders,11–13,18 where this decision may also
depend on codewords of other users. These joint decoders generally accuse the complete coalition (a c-tuple).
The more practical constructions employ a simple decoder as a bootstrapping step, and then build from there
to find the complete coalition.

Tardos’ scheme worked with a binary code and a simple decoder. Its ‘suspicion function’ for computing a
level of suspicion for single users was improved15 and the scheme was generalized to q-ary alphabets. However,
it turns out19 that the suspicion function yields sub-optimal fingerprinting rates, i.e. rather far below the
fingerprinting capacity20–22 and far below the best achieved dynamic code rate.23,24 When the colluder strategy
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is known (or can be estimated), one can specifically optimize the suspicion functions.26 It turns out that the
optimal suspicion function against the interleaving attack asymptotically achieves capacity,25 whatever strategy
the colluders employ.

1.2 Contributions

The capacity for joint decoders is generally larger than that for simple decoders.21 However, there are many
capacities in between that have been largely unstudied. In this work we turn our attention to tuple decoders
which offer a trade-off between the short code length and high complexity of the joint decoder, and the longer
code length and linear complexity of the simple decoder.

Our contributions in this work are threefold:

• We generalize our earlier work26 and optimize suspicion functions that assign suspicion levels to t-tuples.
Using functional derivation methods we obtain suspicion functions that for large c maximize the expected
score for the coalition, allowing the tracer to distinguish best between them and the innocent users. We
present results for the Combined-Digit Model and the Restricted-Digit Model.

• We consider a set of often-considered attack strategies. We substitute these attacks into the generic formulas
and obtain closed-form expressions for optimal suspicion functions associated with these attacks.

• We propose a new manner of deploying t-tuple suspicion functions. Traditionally, these have only been
used iteratively (with the exception of c-tuple suspicion functions), in order to build up to “full” c-tuples
with which one then hopes to catch the complete coalition at once. We argue that they are a more powerful
tool and employ them to decide whether a specific user should be accused or not. Based on the suspicion
levels of all t-tuples the specific user is part of, we decide whether to accuse him or not.

1.3 Outline

We start our paper by introducing our notation and a few key concepts in Section 2. In Section 3 we introduce
the performance indicator(s) for a t-tuple decoder, and find the suspicion function that optimizes this for a given
collusion attack under the Gaussian assumption. In Section 4 we obtain closed-form formulas for this optimal
suspicion function against common attacks. In Section 5 we introduce our novel accusation algorithm. Finally,
we discuss our results in Section 6.

2. PRELIMINARIES

Simple decoders attribute a level of suspicion to each user individually, based on the similarity of the user ID to
that embedded in the pirated document. Very suspicious users, whose level exceeds some threshold, are accused.

A good traitor tracing system accuses the right people: the probability of falsely accusing an innocent user
should stay within bounds and the probability of not accusing any guilty users as well. Setting the threshold is
a delicate task: set it too low, and the probability of falsely accusing innocent users rises. Set it too high, and
the probability of not accusing any guilty users rises.

Let µt,g denote the expected average level of suspicion attributed to tuples of t users of whom g are guilty
and t − g are innocent and let σ2

t,g be its variance. We derive, for each tuple size t and number of guilty users
g in the tuple, the optimal function that assigns an level of suspicion to tuples of size t, such that the expected
average level of suspicion assigned to t-tuples that consist entirely of guilty users is maximized, while keeping
the average level of suspicion assigned to tuples that consist entirely of innocent users centered (with zero mean)
and normalized (with unit variance).



2.1 A note on notation

We denote sets by calligraphic letters. In particular, we reserve A for the discrete alphabet of q symbols,
sometimes indexed explicitly as A = {0, . . . , q − 1}. We define [`] := {1, . . . , `}. We will use the shorthand
notation of [gkit−k] for a t-tuple consisting of k guilty users and t− k innocents.

We denote tuples by letters in boldface. We stress the fact that x is a tuple (and no longer a singleton as in
our previous work) by writing ~x. We use multi-index notation, e.g. for the q-tuple m we define the sum |m| =∑
α∈Amα of components, and for the vector p of identical dimension we define the product pm :=

∏
α∈A p

mα
α

of component-wise powers, and the multinomial coefficient
(
c
m

)
:= c!/

∏
α∈Amα!.

We denote random variables by capital letters and their realizations in lower case. For probability mass
or density functions we use abbreviated notation of the form fy|p := fY |P (y|p) . We abbreviate conditional
expectations as EM |p[. . .] = EM [. . . |P = p]. An expectation taken over all probabilistic degrees of freedom is
written as an E[. . .] without subscripts.

We use the Pochhammer symbol (c)g to denote the falling factorial (c)g :=
∏g
k=1(c−k+ 1) = c(c−1) · · · (c−

g + 1).

We use the Kronecker delta δx,y to denote the function which evaluates to 1 when x = y and to 0 when x 6= y.

When taking a partial derivative of a function, any dependencies among its variables are not enforced until

after differentiation. In particular, to calculate ∂f(y|p)
∂px

||p|=1, the fact that the |p| = 1 is not enforced until after
differentiation.

2.2 Bias-based tracing; simple decoder

The content contains ` abstract ‘locations’ into which a q-ary symbol can be embedded. For each location i ∈ [`]
independently, the tracer draws a bias vector P i = (Pi,α)α∈A from a distribution fP . The biases satisfy Pi,α ≥ 0
and |P i| = 1. A symmetric Dirichlet distribution was taken,15 with concentration parameter κ > 0,

fp = pκ−1Γ(qκ)/[Γ(κ)]q. (1)

For q = 2 it is customary to set κ = 1
2 , turning (1) into the arcsine distribution for the component p1. However,

in that case the support has to be reduced to p1 ∈ [δ, 1 − δ], with cutoff parameter δ > 0, in order to avoid
statistical problems due to extremely unlikely events. The probability density function then becomes

fp1 =
1

2 arcsin(1− 2δ)

1√
p1(1− p1)

. (2)

As the cutoff parameter is typically chosen so small that it vanishes, we will neglect it in our analysis. The
number of users is n. For each i ∈ [`] and each j ∈ [n], the tracer draws a random symbol Xi,j ∈ A according to
the categorical distribution with parameter P i, i.e. P[Xi,j = α|P i = pi] = pi,α independent of j. The symbol
Xi,j is embedded into the content of user j in location i.

The coalition of attackers is denoted as C ⊂ [n], with |C| = c. In some attack models, e.g. the Combined-
Digit Model (Section 2.3), they are allowed to do signal processing attacks such as introducing noise and fusing
symbols. In the Restricted-Digit Model (RDM) they are only allowed to select one colluder’s symbol (denoted
as yi) in location i. In the simple decoder approach, the tracer determines a score Sj for each user j by adding
independently computed sub-scores Si,j for each location i; these are based on pi, Xi,j and the colluders’ output
in location i. If the score exceeds a threshold, user j is accused.

Tardos1 introduced a (simple decoder) score system for the RDM at q = 2 that was later15 symmetrized
and generalized to q > 2. The sub-scores for each location are computed using a ‘suspicion function’ g as
Si,j = g(xi,j , yi,pi) with

g(x, y,p) =


√

(1− py)/py if x = y

−
√
py/(1− py) if x 6= y.

(3)



It has the special property that the Si,j of innocent users has expectation 0 and variance 1.

Given the symmetries present in the code generation and accusation algorithm, it is usually assumed that the
attackers apply a strategy that acts at every location independently. Furthermore, we assume that the colluders
take equal risks. In such an attack model, the colluders’ decision in location i depends only on the tallies
Mi,α = |{j ∈ C|Xi,j = α}| (with α ∈ A). The tallies satisfy |M i| = c, and they are multinomially distributed,
with density fm|p =

(
c
m

)
pm. The attack strategy may be probabilistic.

2.3 Combined-Digit Model (CDM)

The CDM16 allows colluders to mix symbols and to introduce noise (see Figure 1). In each location, the symbols
that are mixed are assumed to have equal power. The set of symbols that the colluders choose to mix is denoted
as Ψ ⊆ A with mα > 0 for each α ∈ Ψ. The attack strategy is parametrized by a set of probabilities fψ|m.
The tracer has a detector that outputs a set Φ ⊆ A of observed symbols. The joint effects of the noise and the
mixing lead to probability distributions fΦ|Ψ, where it is possible that the noise introduces symbols in Φ that
are absent in Ψ. Simple-decoder score systems were introduced in.16,17

P
code generation−−−−−−−−−−→

fM|P
M

colluder mix−−−−−−−−→
fΨ|M

Ψ
tracer detection−−−−−−−−−−→

fΦ|Ψ
Φ

Figure 1. A schematic depiction of the CDM.

The CDM reduces to the RDM when the noise strength is sent to zero and the detector unerringly observes
Φ = Ψ, forcing the colluders to output a single symbol, Ψ = {Y }. For the RDM, a strategy is parametrized by
a set of probabilities fy|m.

3. MEASURING PERFORMANCE UNDER THE GAUSSIAN ASSUMPTION

Tracing large coalitions requires relatively long codes. Since the level of suspicion of a tuple is calculated by
adding (independent and identically distributed) intermediate values over all positions of the code, it generally
tends to a Gaussian distribution (for a fixed tuple size t), assuming that the distribution of these intermediate
values does not drastically change when c or n is increased. Under this Gaussian assumption, the distribution of
user scores is characterized by just two parameters: the mean and the variance. For large coalitions, it therefore
suffices to know the expectation and variance of the level of suspicion to estimate the performance of bias-based
traitor tracing schemes.

3.1 Expected average suspicion of various types of tuples

A tuple of t distinct users consists either entirely of innocent users, entirely of guilty users, or is a mixture of
both. Specifically, it consists of any number of guilty users between 0 and t. Given a suspicion function ht, each
of these t+ 1 types of tuples has a different expected average level of suspicion.

Let us first consider the case of t-tuples that consist entirely of innocent users. In the combined-digit model,
the expected level of suspicion assigned to such tuples and its variance are simply

µt,0 = E[ht] = EPEM |PEΦ|ME ~X|P [ht( ~X,Φ,P )] = EPEΦ|PE ~X|P [ht( ~X,Φ,P )]; (4)

σ2
t,0 = E[(ht − µt,0)2] = E[h2t ]− µ2

t,0 = EPEΦ|PE ~X|P [h2t (
~X,Φ,P )]− µ2

t,0. (5)

Next, we consider the other extreme: t-tuples that consist entirely of guilty users. There are (c)t such t-tuples.
In any specific position where symbols were distributed according to bias vector p = (px)x∈A, where the coalition
received symbols according to tally vector m = (mx)x∈A, and where the detector recognized symbols according
to vector φ = (φx)x∈A, the level of suspicion ht(~x,φ,p) is assigned to

∏t
k=1

(
mxk −

∑
j<k δxj ,xk

)
distinct tuples.

If a guilty user has been selected to contribute the first symbol x1 to the tuple, then there are not mx1
but



mx1 − 1 other guilty users left with that same symbol, and so on. The average level of suspicion assigned to
t-tuples consisting entirely of guilty users is thus

1

(c)t

∑
~x∈At

 t∏
k=1

(
mxk −

∑
j<k

δxj ,xk

)ht(~x,φ,p) (6)

and the expected average

µt,t = EPEM |PEΦ|M

 1

(c)t

∑
~x∈At

 t∏
k=1

(
Mxk −

∑
j<k

δxj ,xk

)ht(~x,Φ,P )

 . (7)

Finally, we consider the intermediate cases of t-tuples that consist of g guilty and t− g innocent users, with
0 < g < t. As long as the suspicion function ht is symmetric (invariant under permutations of ~x), the expected
average µt,g taken over the unordered symbol-tuple x is equal to that taken over tuples with some specific
ordering. We consider ordered tuples in which the guilty users are placed in front and the innocents at the
end. Assume for a moment that the t − g innocent users have already been selected. Then there are (c)g ways
(permutations) to select the remaining g guilty users from the coalition of c colluders. The expected average
level of suspicion assigned to t-tuples that consist of g guilty and t− g innocent users is thus

µt,g = EPEM |PEΦ|MEXg+1|P · · ·EXt|P 1

(c)g

∑
x1∈A

· · ·
∑
xg∈A

 g∏
k=1

(
Mxk −

∑
j<k

δxj ,xk

)ht((x1, . . . , xg, Xg+1, . . . , Xt),Φ,P )

 . (8)

3.2 Standardized expressions for the expected averages

Each type of tuple has a different expected average level µt,g of suspicion. In particular, the expectations are
of different forms: all are taken over the bias vector P and the detection vector Φ, but where guilty users are
involved (g > 0), the expectation is also taken over the tally vector M . Moreover, for each of the t− g innocent
users involved, the expectation is also taken over the symbols Xg+1, . . . , Xt received by those users.

In this subsection we standardize the form of the expected averages by rewriting the expectation µt,g to the
same form of that of µt,0. In the next subsection, where we phrase our objective mathematically as a constrained
functional optimization, this will allow us to apply the method of Lagrange multipliers to instantly derive the
suspicion function ĥt,g that maximizes the expected average µt,g for t-tuples with g distinct guilty users in front,
while keeping the level of suspicion assigned to t-tuples that consist entirely of innocent users centered (µt,0 = 0)
and normalized (σ2

t,0 = 1).

3.2.1 The combined-digit model

In the combined-digit model, the random variables involved are the vector P of biases, the tuple M of tallies, the
tuple Ψ of symbols output by the coalition, the tuple Φ of detected symbols and the tuple ~X of symbols received
by the t-tuple of users. The most general suspicion function we study is therefore of the form ht(~x,φ,ψ,m,p),
a function of the realizations of all random variables involved.

Lemma 3.1. An optimal suspicion function of the form ht(~x,φ,ψ,p) does not depend on φ. An optimal
suspicion function of the form ht(~x,φ,ψ,m,p) depends neither on φ nor ψ.

Proof. The set ψ contains more information about the attacks than the set φ. Likewise, the tallies m contain
more information than ψ.

To determine the optimal suspicion functions of the increasingly general form ht(~x,φ,p), ht(~x,φ,ψ,p), and
ht(~x,φ,ψ,m,p), it suffices to study the forms ht(~x,φ,p), ht(~x,ψ,p), and ht(~x,m,p), respectively. Since the
last form ht(~x,m,p) no longer depends on the collusion attack (and the digit model, for that matter), we
postpone its discussion to a separate subsection on what we call the Tally Model.



Lemma 3.2. Let the suspicion function ht be of the form ht(~x,φ,p). Then the expected average suspicion µt,g
can be expressed as a weighted expectation of ht,

µt,g = E[wg · ht] (9)

with weight function

wg((x1, . . . , xg),φ,p) :=
EM |p

[
fφ|M

∏g
k=1

(
Mxk −

∑
j<k δxj ,xk

)]
fφ|p · (c)g · px1 · · · pxg

=
1

fφ|p · (c)g
∂g(|p|cfφ|p)

∂px1 · · · ∂pxg

∣∣∣∣
|p|=1

(10)

that has unit mean

EX1|p · · ·EXg|p[wg((X1, . . . , Xg),φ,p)] = EΦ|p[wg((x1, . . . , xg),Φ,p)] = 1. (11)

Proof. We rewrite the expected average (8) as a weighted expectation of ht:

µt,g = EPEM |PEΦ|MEXg+1|P · · ·EXt|P 1

(c)g

∑
x1∈A

· · ·
∑
xg∈A

 g∏
k=1

(
Mxk −

∑
j<k

δxj ,xk

)ht((x1, . . . , xg, Xg+1, . . . , Xt),Φ,P )

 (12)

= EPEM |PEΦ|P

[
fΦ|M

fΦ|P
EXg+1|P · · ·EXt|P[

1

(c)g
EX1|P · · ·EXg|P

[∏g
k=1

(
MXk −

∑
j<k δXj ,Xk

)
PX1
· · ·PXg

ht( ~X,Φ,P )

]]]
(13)

= EPEΦ|PE ~X|P

EM |P
[
fΦ|M

∏g
k=1

(
MXk −

∑
j<k δXj ,Xk

)]
fΦ|P · (c)g · PX1

· · ·PXg
ht( ~X,Φ,P )

 (14)

= E[wg · ht]. (15)

When taking the partial derivative
∂g(|p|cfφ|p)
∂px1 ···∂pxg

, the fact that |p| = 1 is not enforced until after differentiation.

Since

fφ|p = EM |p[fφ|M ] =
1

|p|c
∑
m

(
c

m

)
pmfφ|m, (16)

we find that

∂g(|p|cfφ|p)

∂px1
· · · ∂pxg

=
∑
m

(
c

m

)( g∏
k=1

mxk −
∑
j<k δxj ,xk

pxk

)
pmfφ|m (17)

=
|p|c · EM |p

[
fφ|M

∏g
k=1

(
Mxk −

∑
j<k δxj ,xk

)]
px1 · · · pxg

(18)

so

wg((x1, . . . , xg),φ,p) :=
EM |p

[
fφ|M

∏g
k=1

(
Mxk −

∑
j<k δxj ,xk

)]
fφ|p · (c)g · px1

· · · pxg
=

1

fφ|p · (c)g
∂g(|p|cfφ|p)

∂px1
· · · ∂pxg

∣∣∣∣
|p|=1

. (19)



The weight function has unit expectation, both taken over the symbols

EX1|p · · ·EXg|p[wg((X1, . . . , Xg),φ,p)]

=
1

fφ|p · (c)g
EM |p

[
fφ|MEX1|p · · ·EXg|p

[∏g
k=1

(
MXk −

∑
j<k δXj ,Xk)

pX1 · · · pXg

]]
(20)

=
1

fφ|p · (c)g
EM |p

fφ|M ∑
x1∈A

· · ·
∑
xg∈A

g∏
k=1

Mxk −
∑
j<k

δxj ,xk

 (21)

=
1

fφ|p · (c)g
EM |p

fφ|M ∑
x1∈A

· · ·
∑

xg−1∈A

g−1∏
k=1

(
Mxk −

∑
j<k

δxj ,xk

) ∑
xg∈A

Mxg −
∑
j<g

δxj ,xk

 (22)

=
1

fφ|p · (c)g
EM |p

fφ|M ∑
x1∈A

· · ·
∑

xg−1∈A

g−1∏
k=1

(
Mxk −

∑
j<k

δxj ,xk

) (c− g + 1)

 (23)

=
1

fφ|p · (c)g−1
EM |p

fφ|M ∑
x1∈A

· · ·
∑

xg−1∈A

g−1∏
k=1

Mxk −
∑
j<k

δxj ,xk

 (24)

=
1

fφ|p
EM |p

[
fφ|M

]
= 1 (25)

as well as over the detected symbol

EΦ|p[wg((x1, . . . , xg),Φ,p)] =
∑
φ

fφ|p
EM |p

[
fφ|M

∏g
k=1

(
Mxk −

∑
j<k δxj ,xk

)]
fφ|p · (c)g · px1

· · · pxg
(26)

=
∑
φ

EM |p
[
fφ|M

∏g
k=1

(
Mxk −

∑
j<k δxj ,xk

)]
(c)g · px1 · · · pxg

(27)

=
EM |p

[∏g
k=1

(
Mxk −

∑
j<k δxj ,xk

)]
(c)g · px1

· · · pxg
(28)

=

∑
m

(
c
m

)
pm

∏g
k=1

(
mxk −

∑
j<k δxj ,xk

)
(c)g · px1 · · · pxg

(29)

=
1

(c)g

∑
m

(
c

m

)
pm

g∏
k=1

mxk −
∑
j<k δxj ,xk

pxk
(30)

=
1

(c)g

∂g

∂px1 · · · ∂pxg

∑
m

(
c

m

)
pm

∣∣∣∣∣
|p|=1

(31)

=
1

(c)g

∂g|p|c

∂px1
· · · ∂pxg

∣∣∣∣
|p|=1

=
(c)g|p|c−g

(c)g

∣∣∣∣
|p|=1

= 1. (32)

When the colluders’ output ψ is known, we have the following result:

Lemma 3.3. Let ht be of the form ht(~x,ψ,p). Then the expected average suspicion µt,g can be expressed as a
weighted expectation of ht,

µt,g = E[wg · ht] (33)



with weight function

wg((x1, . . . , xg),ψ,p) :=
EM |p

[
fψ|M

∏g
k=1

(
Mxk −

∑
j<k δxj ,xk

)]
fψ|p · (c)g · px1

· · · pxg
=

1

fψ|p · (c)g
∂g(|p|cfψ|p)

∂px1
· · · ∂pxg

∣∣∣∣
|p|=1

(34)

that has unit mean

EX1|p · · ·EXg|p[wg((X1, . . . , Xg),ψ,p)] = EΨ|p[wg((x1, . . . , xg),Ψ,p)] = 1. (35)

Proof. For suspicion functions ht of the form ht(~x,ψ,p), the expected average is

µt,g = EPEM |PEΨ|MEXg+1|P · · ·EXt|P 1

(c)g

∑
x1∈A

· · ·
∑
xg∈A

 g∏
k=1

(
Mxk −

∑
j<k

δxj ,xk

)ht((x1, . . . , xg, Xg+1, . . . , Xt),Ψ,P )

 . (36)

Note the similarity between equations (36) and (12). The proof proceeds analogously with Ψ instead of Φ.

3.2.2 The restricted-digit model

The restricted-digit model is a special case of the combined-digit model.

Corollary 1. Let ht be of the form ht(~x, y,p). Then the expected average suspicion µt,g can be expressed as a
weighted expectation of ht,

µt,g = E[wg · ht] (37)

with weight function

wg((x1, . . . , xg), y,p) :=
EM |p

[
fy|M

∏g
k=1

(
Mxk −

∑
j<k δxj ,xk

)]
fy|p · (c)g · px1

· · · pxg
=

1

fy|p · (c)g
∂g(|p|cfy|p)

∂px1
· · · ∂pxg

∣∣∣∣
|p|=1

(38)

that has unit mean

EX1|p · · ·EXg|p[wg((X1, . . . , Xg), y,p)] = EY |p[wg((x1, . . . , xg), Y,p)] = 1. (39)

Proof. Follows directly from Lemma 3.3 when reducing the tuple ψ of symbols output by the coalition to the
singleton ψ = (y).

3.2.3 The tally model

When even the tallies m of the symbols received by the coalition are known, we have the following result:

Lemma 3.4. Let ht be of the form ht(~x,m,p). Then the expected average suspicion µt,g can be expressed as a
weighted expectation of ht,

µt,g = E[wg · ht] (40)

with weight function

wg((x1, . . . , xg),m,p) :=

∏g
k=1

(
mxk −

∑
j<k δxj ,xk

)
(c)g · px1

· · · pxg
=

1

fm|p · (c)g
∂g(|p|cfm|p)

∂px1
· · · ∂pxg

∣∣∣∣
|p|=1

(41)

=
1

pm · (c)g
∂gpm

∂px1
· · · ∂pxg

∣∣∣∣
|p|=1

(42)



that has unit mean

EX1|p · · ·EXg|p[wg((X1, . . . , Xg),m,p)] = EM |p[wg((x1, . . . , xg),M ,p)] = 1. (43)

Proof. For suspicion functions ht of the form ht(~x,m,p), the expected average is

µt,g = EPEM |PEXg+1|P · · ·EXt|P 1

(c)g

∑
x1∈A

· · ·
∑
xg∈A

 g∏
k=1

(
Mxk −

∑
j<k

δxj ,xk

)ht((x1, . . . , xg, Xg+1, . . . , Xt),M ,P )

 . (44)

We rewrite it as a weighted expectation of ht

µt,g = EPEM |PEXg+1|P · · ·EXt|P

 1

(c)g
EX1|P · · ·EXg|P

∏g
k=1

(
MXk −

∑
j<k δXj ,Xk

)
PX1
· · ·PXg

ht( ~X,M ,P )

 (45)

= EPEM |PE ~X|P

∏g
k=1

(
MXk −

∑
j<k δXj ,Xk

)
(c)gPX1

· · ·PXg
ht( ~X,M ,P )

 (46)

= E[wg · ht]. (47)

Since

fm|p =
1

|p|c

(
c

m

)
pm, (48)

we find that

∂g(|p|cfm|p)

∂px1
· · · ∂pxg

∣∣∣∣
|p|=1

=

(
c

m

)( g∏
k=1

mxk −
∑
j<k δxj ,xk

pxk

)
pm =

|p|c · fm|p
∏g
k=1

(
mxk −

∑
j<k δxj ,xk

)
px1
· · · pxg

(49)

and

∂gpm

∂px1
· · · ∂pxg

∣∣∣∣
|p|=1

=

(
g∏
k=1

mxk −
∑
j<k δxj ,xk

pxk

)
pm =

pm
∏g
k=1

(
mxk −

∑
j<k δxj ,xk

)
px1
· · · pxg

(50)

so

wg((x1, . . . , xg),m,p) :=

∏g
k=1

(
mxk −

∑
j<k δxj ,xk

)
(c)g · px1 · · · pxg

=
1

fm|p · (c)g
∂g(|p|cfm|p)

∂px1 · · · ∂pxg

∣∣∣∣
|p|=1

(51)

=
1

pm · (c)g
∂gpm

∂px1
· · · ∂pxg

∣∣∣∣
|p|=1

. (52)



The weight function has unit expectation, both taken over the symbols

EX1|p · · ·EXg|p[wg((X1, . . . , Xg),m,p)]

=
1

(c)g
EX1|p · · ·EXg|p

∏g
k=1

(
MXk −

∑
j<k δXj ,Xk

)
pX1
· · · pXg

 (53)

=
1

(c)g

∑
x1∈A

· · ·
∑
xg∈A

g∏
k=1

Mxk −
∑
j<k

δxj ,xk

 (54)

=
1

(c)g

∑
x1∈A

· · ·
∑

xg−1∈A

g−1∏
k=1

(
Mxk −

∑
j<k

δxj ,xk

) ∑
xg∈A

Mxg −
∑
j<g

δxj ,xk

 (55)

=
1

(c)g

∑
x1∈A

· · ·
∑

xg−1∈A

g−1∏
k=1

(
Mxk −

∑
j<k

δxj ,xk

) (c− g + 1) (56)

=
1

(c)g−1

∑
x1∈A

· · ·
∑

xg−1∈A

g−1∏
k=1

Mxk −
∑
j<k

δxj ,xk

 (57)

= 1 (58)

as well as taken over the tally vector

EM |p[wg((x1, . . . , xg),M ,p)] =
EM |p

[∏g
k=1

(
Mxk −

∑
j<k δxj ,xk

)]
(c)g · px1

· · · pxg
(59)

=

∑
m

(
c
m

)
pm

∏g
k=1

(
mxk −

∑
j<k δxj ,xk

)
(c)g · px1

· · · pxg
(60)

=
1

(c)g

∑
m

(
c

m

)
pm

g∏
k=1

mxk −
∑
j<k δxj ,xk

pxk
(61)

=
1

(c)g

∂g

∂px1
· · · ∂pxg

∑
m

(
c

m

)
pm

∣∣∣∣∣
|p|=1

(62)

=
1

(c)g

∂g|p|c

∂px1
· · · ∂pxg

∣∣∣∣
|p|=1

(63)

=
(c)g|p|c−g

(c)g

∣∣∣∣
|p|=1

(64)

= 1. (65)

3.3 Suspicion functions that maximize the expected suspicion

Theorem 3.5. In each of the cases above (we use � as a placeholder for y, φ or ψ), the suspicion function ĥt,g
that maximizes the expected average suspicion µt,g is the centered and normalized weight function

ĥt,g(~x,�,p) =
wg((x1, . . . , xg),�,p)− 1√

Var[wg]
(66)



using only the symbols of the first g users in the t-tuple. With this suspicion function, the maximum expected
average suspicion is

µ̂t,g =
√

Var[wg]. (67)

Proof. To find the suspicion function ĥt,g that maximizes the expected average suspicion µt,g of tuples that
consist of g guilty and t− g innocent users, under the constraints that tuples of innocent users have a suspicion
with zero mean µt,0 = 0 and unit variance σ2

t,0 = 1, we define the Lagrangian

L(h, λ1, λ2) := E[wg · ht]− λ1E[ht]− 1
2λ2(E[h2]− 1) (68)

with Lagrange multipliers λ1 and λ2. Let ĥt,g be such that δL
δĥt,g

= 0. ThenD(wg−λ1−λ2ĥt,g) = 0, whereD is the

product of the probability densities of the random variables. So ĥt,g =
wg−λ1

λ2
. The first constraint, E[ĥt,g] = 0,

implies that λ1 = E[wg] = 1 and the second constraint, E[ĥ2t,g] = 1, implies that λ22 = E[(wg − λ1)2] = Var[wg].

From the previous lemmas, we conclude that

µ̂t,g = E[wg · ĥt,g] =
E[(wg)

2 − 1]√
Var[wg]

=
Var[wg]√
Var[wg]

=
√

Var[wg]. (69)

Corollary 2. The maximum expected average suspicion µ̂t,g of t-tuples that consist of g guilty and t−g innocent

users, attained by the suspicion function ĥt,g, is equal to the maximum expected average suspicion µ̂g,g of g-tuples

that consist entirely of g guilty users, attained by the suspicion function ĥg,g. In a formula, µ̂t,g = µ̂g,g.

Proof. The maximum expected average suspicion µ̂t,g depends on g ≤ t, but not explicitly on t itself. So

µ̂t,g =
√

Var[wg] = µ̂g,g. (70)

Note that this corollary requires our choice of using ordered tuples, and thus on the possibility of having
an asymmetric suspicion function h. In other words, by optimizing µ̂t,g we specifically chose to optimize the
average score of a [ggit−g]-tuple, with all colluders in front. Since all possible orderings of the t-tuple are assumed
to be calculated, this will give the maximum average score. Intuitively, otherwise one would have to consider
a symmetrized version, decreasing the average suspicion µt,g by concurrently optimizing all permutations of
[ggit−g]-tuples. This difference is illustrated in Figure 2 for pairs.

0

[ig]

Asymmetric h

µg

[gi]

0

Symmetric h

µg√
2

[ig]
[gi]

µg

Figure 2. The average suspicion µt,g for [gi] and [ig] pairs with an asymmetric suspicion function h (left) and with a
symmetric suspicion function h (right), compared to the simple decoders average µg.

We therefore restrict our attention to optimal suspicion functions of the form ht,t.



Lemma 3.6. For ĥt,t,

µt,g =
µ̂2
g,g

µ̂t,t
(71)

Proof. Since

EXg+1|P · · ·EXt|P [wt((x1, . . . , xg, Xg+1, . . . , Xt),Φ,P )] (72)

=
1

fφ|p · (c)t · px1
· · · pxg

EM |p

[
fφ|MEXg+1|p · · ·EXt|p

[∏t
k=1(MXk −

∑
j<k δXj ,Xk)

pXg+1 · · · pXt

]]
(73)

=
1

fφ|p · (c)t · px1
· · · pxg

EM |p

fφ|M ∑
xg+1∈A

· · ·
∑
xt∈A

t∏
k=1

(Mxk −
∑
j<k

δxj ,xk)

 (74)

=
1

fφ|p · (c)t · px1 · · · pxg
EM |p

fφ|M ∑
xg+1∈A

· · ·
∑

xt−1∈A

t−1∏
k=1

(Mxk −
∑
j<k

δxj ,xk)

 ∑
xt∈A

(Mxt −
∑
j<t

δxj ,xk)

 (75)

=
1

fφ|p · (c)t · px1 · · · pxg
EM |p

fφ|M ∑
xg+1∈A

· · ·
∑

xt−1∈A

t−1∏
k=1

(Mxk −
∑
j<k

δxj ,xk)

 (c− t+ 1)

 (76)

=
EM |p

[
fφ|M

∏g
k=1(Mxk −

∑
j<k δxj ,xk)

]
fφ|p · (c)g · px1

· · · pxg
= wg((x1, . . . , xg),φ,p) (77)

we find that

E[wg · wt] = EPEΦ|PEX1|P · · ·EXt|P
[
wg((X1, . . . , Xg),Φ,P ) · wt( ~X,Φ,P )

]
(78)

= EPEΦ|PEX1|P · · ·EXg|P
[
wg((X1, . . . , Xg),Φ,P )EXg+1|P · · ·EXt|P

[
wt( ~X,Φ,P )

]]
(79)

= EPEΦ|PEX1|P · · ·EXg|P
[
w2
g((X1, . . . , Xg),Φ,P )

]
= E[w2

g ] (80)

and thus

µt,g = E[wg · ĥt,t] =
E[wg · wt]− E[wg · 1]√

Var[wt]
=

E[wg · wt]− 1√
Var[wt]

=
E[w2

g ]− (E[wg])
2√

Var[wt]
=

Var[wg]√
Var[wt]

=
µ̂2
g,g

µ̂t,t
. (81)

Lemma 3.7. For ĥt,t and any 0 ≤ s ≤ t, we have that

µ̂t,t ≥
µ̂s,s + µ̂t−s,t−s√

2
. (82)

Proof. Consider the (normalized) suspicion function

ht,t((x1, . . . , xt),φ,p) =
1√
2

(
ĥs,s((x1, . . . , xs),φ,p) + ĥt−s,t−s((xs+1, · · · , xt),φ,p)

)
. (83)

Taking expectations on both sides yields the claimed statement.

In particular, the previous lemma can be used to relate the optimal average score to that of the simple decoder
µ̂t,t ≥

√
t µ̂1,1. If we assume that µ̂t,t = αµ̂1,1, with α ≥

√
t, then from Lemma 3.6 we obtain that µt,1 = 1

α µ̂1,1

when using the optimal suspicion function ĥt,t. In other words, the better the suspicion function works against
[gt]-tuples, the worse it performs against tuples with fewer colluders. This is schematically illustrated below in
Figure 3.



0

[i]

Simple decoder h(x, ·,p)

µg

[g]

0

[it]

Tuple decoder ĥ((x1, . . . , xt), ·,p)
←−

µg√
t

[it−1g]...
[igt−1]

. . .

µg

−→

√
t · µg

[gt]

Figure 3. Improvements by moving to a tuple decoder (right) from a simple decoder (left). The more the [gt] peak lies to
the right, the more the inner peaks shift towards 0 by Lemma 3.6.

4. DEFENDING AGAINST COMMON COLLUSION STRATEGIES

1. The interleaving attack randomly selects an attacker and outputs his symbol.

2. The all-high attack is special as it breaks the symbol-symmetry. It assumes that the alphabet can be
ordered in some meaningful way, and outputs the largest received symbol. For a binary alphabet (q = 2),
this attack is known as the all-1 attack, as it will output a 1 if the coalition has received one.

3. The random-symbol attack randomly selects a received symbol, irrespective of the tally vector m, and
outputs it. For a binary alphabet (q = 2), this attack is known as the coin-flip attack.

4. The majority voting attack outputs the symbol that was received most often by the coalition. In case
multiple symbols are received equally often, a random symbol is chosen among them.

5. The minority voting attack outputs the symbol that was received least often (but at least once) by the
coalition. When multiple symbols are received equally often, a random symbol is chosen among them.

The first three attacks will be treated in detail below. The other two are listed for completeness.

4.1 The interleaving defense

The interleaving attack is a collusion strategy where the coalition randomly selects an attacker and outputs
his symbol, such that the probability that symbol y is output, given that the coalition had received symbols
according to the tally vector m, fy|m =

my
c .

Proposition 1 (Prop. 7).26 Against the interleaving attack, for singletons the weight function is given by

w1(x, y,p) = 1 +
1

c

(
δx,y
py
− 1

)
(84)

and the optimal suspicion function is

h1,1(x, y,p) =
1√
q − 1

(
δx,y
py
− 1

)
. (85)

Proposition 2. Against the interleaving attack, the weight function for t-tuples is

wt(~x, y,p) = 1 +
1

c

t∑
k=1

(
δxk,y
py
− 1

)
= 1 +

t∑
k=1

(w1(xk, y,p)− 1) . (86)



and the optimal suspicion function for t-tuples is the normalized sum of the optimal suspicion function for the t
singletons

ĥt,t(~x, y,p) =
1√
t

t∑
k=1

ĥ1,1(xk, y,p) =
1√

t(q − 1)

(∑t
k=1 δxk,y
py

− t

)
(87)

Proof. We find

|p|cfy|p =
1

c

∑
m

(
c

m

)
pmmy =

py
c

∂

∂py

∑
m

(
c

m

)
pm =

py
c

∂|p|c

∂py
= py|p|c−1. (88)

so
∂
(
|p|cfy|p

)
∂px1

= δx1,y|p|c−1 + (c− 1)py|p|c−2 (89)

Thus
∂t
(
|p|cfy|p

)
∂px1

· · · pxt
=

(c)t
c

t∑
k=1

δxk,y|p|c−t +
(c)t+1 · py

c
|p|c−t−1 (90)

is true for t = 1. If (90) is true for some t, then

∂t+1
(
|p|cfy|p

)
∂px1

· · · pxt+1

=
(c)t+1

c

t∑
k=1

δxk,y|p|c−t−1 +
(c)t+1δxt+1,y

c
|p|c−t−1 +

(c)t+2 · py
c

|p|c−t−2 (91)

=
(c)t+1

c

t+1∑
k=1

δxk,y|p|c−t−1 +
(c)t+2 · py

c
|p|c−t−2 (92)

so (90) also holds for t+ 1. We have thus shown by mathematical induction that (90) holds for all values of t.

So the centered weight function for t-tuples is the sum of t centered weight functions for singletons:

wt(~x, y,p) =
1

fy|p · (c)t
∂t(|p|cfy|p)

∂px1 · · · ∂pxt

∣∣∣∣
|p|=1

=

∑t
k=1 δxk,y
cpy

+
c− t
c

= 1 +
1

c

t∑
k=1

(
δxk,y
py
− 1

)
(93)

= 1 +

t∑
k=1

(w1(xk, y,p)− 1) . (94)

Thus

Var[wt] = Var

[
t∑

k=1

w1(xk, y,p)

]
= t ·Var[w1] =

t(q − 1)

c2
=

t∑
k=1

Var[w1(xk, y,p)]. (95)

and hence

ĥt,t(~x, y,p) =
1√
t

t∑
k=1

ĥ1,1(xk, y,p) =
1√

t(q − 1)

(∑t
k=1 δxk,y
py

− t

)
(96)

Proposition 3. When the interleaving attack is used against the interleaving defense, then µt,t = 1
c

√
t(q − 1),

achieving capacity for any bias distribution fp.

Proof.

µt,t =
√

Var[wt] =
1

c

√
t(q − 1) (97)

Since the simple and joint capacities are equal for the interleaving attack, the last result is to be expected.
Nothing can be gained here from going to a tuple decoder.



4.2 The all-high defense

The all-high attack

fy|m = δy,max(α∈A:mα>0) =

{
1 if my > 0 and my+1 = · · · = mq−1 = 0

0 else
(98)

outputs the highest symbol among those received by the coalition.

Note that this is the only attack we consider that breaks symbol symmetry and assumes an ordering of
the alphabet. This is a special case of the so-called preferred-sequence attack, in which the colluders have a
predetermined ranking of the symbols. The results below generalize to the preferred-sequence attack. Recall our
shorthand notation ak := p0 + · · · pk.

Proposition 4. Against the all-high attack, the optimal suspicion function is ĥt,t = (wt − 1)/
√

Var[wt], with

wt(~x, y,p) =


(
ac−ty − ac−ty−1

)
/
(
acy − acy−1

)
if max1≤k≤t(xk) < y

ac−ty /
(
acy − acy−1

)
if max1≤k≤t(xk) = y

0 if max1≤k≤t(xk) > y.

(99)

Proof. We find

fy|p = EM |p[fy|M ] = P[My > 0,My+1 = · · · = Mq−1 = 0] (100)

= P[My+1 = · · · = Mq−1 = 0]− P[My = · · · = Mq−1 = 0] =
acy
|p|c
−
acy−1
|p|c

(101)

so

∂t
(
|p|cfy|p

)
∂px1 · · · pxt

=


(c)t

(
ac−ty − ac−ty−1

)
if max1≤k≤t(xk) < y

(c)t · ac−ty if max1≤k≤t(xk) = y

0 if max1≤k≤t(xk) > y.

(102)

So the weight function is

wt(~x, y,p) =
1

fy|p · (c)t
∂t(|p|cfy|p)

∂px1
· · · ∂pxt

∣∣∣∣
|p|=1

=


(
ac−ty − ac−ty−1

)
/
(
acy − acy−1

)
if max1≤k≤t(xk) < y

ac−ty /
(
acy − acy−1

)
if max1≤k≤t(xk) = y

0 if max1≤k≤t(xk) > y.

(103)

We will use the shorthand notation aB =
∑
β∈B pβ for B ⊆ A.

4.3 The random-symbol defense

The random symbol attack selects one of the received symbols uniformly at random. Tallies are disregarded, but
a symbol can only be chosen it its tally is nonzero. The attack is parametrized by

fy|m = (1− δmy,0)/|{α ∈ A : mα > 0}|. (104)

Proposition 5. For the random-symbol attack we find

|p|cfy|p =
acA − acA\{y}

q
+

∑
B(A: y∈B

acB − acB\{y}
|B|(|B|+ 1)

. (105)



Against the random-symbol attack, the optimal suspicion function is ĥt,t = (wt − 1)/
√

Var[wt], with

wt(~x, y,p) =



1

fy|p

1

q
+

∑
B(A

x1,...,xt,y∈B

ac−tB
|B|(|B|+ 1)

 if ∃k : xk = y

1

fy|p

1− (1− py)c−t

q
+

∑
B(A

x1,...,xt,y∈B

ac−tB − ac−tB\{y}
|B|(|B|+ 1)

 if ∀k : xk 6= y

(106)

Proof. For the random-symbol attack, the probability fy|m that the symbol y is produced, is 0 if my = 0. It

is 1
q if for all α ∈ A, mα > 0. It is 1

q−1 if my > 0 and there is exactly one symbol α1 ∈ A for which mα1
= 0. It

is 1
q−2 if my > 0 and there are exactly two distinct symbols α1, α2 ∈ A for which mα1

= mα2
= 0, etc. This can

be written in additive form using indicator functions:

fy|m = 1
q1{my>0}

+
(

1
q−1 −

1
q

)
1{my>0}1{∃α1:mα1=0}

+
(

1
q−2 −

1
q−1

)
1{my>0}1{∃α1:mα1=0}1{∃α2 6=α1:mα2=0}

+ · · ·+
(
1− 1

2

)
1{my>0}

· 1{∃α1:mα1
=0} · · ·1{∃αq−1 6=α1,...αq−2:mαq−1

=0}. (107)

Note that

P[My > 0] = 1− P[My = 0] =
|p|c − acA\{y}

|p|c
(108)

and for each proper subset B ( A with y ∈ B, it holds that

P[My > 0 and ∀α /∈ B,Mα = 0] = P[∀α /∈ B,Mα = 0]− P[My = 0 and ∀α /∈ B,Mα = 0] (109)

=
acB − acB\{y}
|p|c

. (110)

Since fy|p = EM |p[fy|M ], and for all sets V,W, it holds that 1V1W = 1V∩W , and E[1V ] = P[V], we find

|p|cfy|p =
acA − acA\{y}

q
+

∑
B(A: y∈B

(
1

|B|
− 1

|B|+ 1

)(
acB − acB\{y}

)
.

which simplifies to equation (105). Differentiating t times yields the weight function.

5. ACCUSATION

We describe a family of accusation algorithms that decides for each individual user, whether or not to accuse
him to be part of the coalition. We use the tuple decoder not to accuse entire tuples, but to better accuse single
users.

For the simple decoder (t = 1), any user whose level of suspicion exceeded some fixed threshold was accused.
Once we start looking at pairs, there are three types, consisting of two, one or no innocent users. Distinguishing
an innocent from a guilty user requires determining whether he is in N − c − 1 [i2] pairs and c [gi] pairs, or in
N − c [gi] pairs and c− 1 [g2] pairs. This is depicted in Figure 4.
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Figure 4. Distinguishing innocent from guilty users in a pair decoder.

For the joint decoder (t ≥ 2), we thus start out with two thresholds: one called zt,0, less than and close to
µt,0 = 0 to determine if many tuples lie in the [it] range, and another called zt,t, close to µt,t, to check if a tuple
lies in the [gt] range. We accuse any user who is part of some t-tuple with a suspicion that exceeds zt,t, but is
part of no t-tuple with a suspicion below zt,0. We bound the probabilities of two types of error: a false positive
error FP, where an innocent user is falsely accused, and a false negative error FN, where no colluder is accused.

The picture above generalizes: an innocent user is part of many tuples of type [it] and in none of type [gt].
A guilty user is in none of type [it] and in c− 1 tuples of type [gt].

Let ĥ
(i)
t,t(u) be the level of suspicion attributed to tuple u in segment i. For a code of ` segments, let

st(u) :=
∑`
i=1 ĥ

(i)
t,t(u) be the total score of that tuple over all segments.

We repeatedly make use of the fact that, for any two sets S and T ,

P[S ∪ T ] = P[S] + P[T ]− P[S ∩ T ] ≤ P[S] + P[T ] (111)

and
P[S ∩ T ] = P[S|T ] · P[T ] ≤ P[S] · P[T ] (112)

and thus for a tuple (Si)1≤i≤t of t sets,

P

[
t⋃
i=1

Si

]
≤

t∑
i=1

P[Si] and P

[
t⋂
i=1

Si

]
≤

t∏
i=1

P[Si]. (113)

Phrased in terms of events E and F , this means that

P[E or F ] ≤ P[E] + P[F ] and P[E and F ] ≤ P[E] · P[F ] (114)

and for a tuple (Ei)1≤i≤t of events

P [∃(1 ≤ i ≤ t) : Ei] ≤
t∑
i=1

P[Ei] and P [∀(1 ≤ i ≤ t) : Ei] ≤
t∏
i=1

P[Ei]. (115)

The false positive probability of accusing innocent user j is

P[FP] = P
[(
∀ tuplej : S > zt,0

)
and

(
∃ tuplej : S > zt,t

)]
≤ P

[
∀ tuplej : S > zt,0

]
(116)

≤
t−1∏
k=0

(
P[S[gkjit−k−1] > zt,0]

)(c)k(n−c−1)t−k−1 . (117)



where tuplej indicates a t-tuple containing user j. We can use the Markov bound and write, for any α > 0,

P[S[gkjit−k−1] > zt,0] = P
[
exp

(
αS[gkjit−k−1]

)
> exp(αzt,0)

]
≤

E
[
exp

(
αS[gkjit−k−1]

)]
exp(αzt,0)

(118)

=
E
[
exp

(
α
∑`
d=1 h

(d)

[gkjit−k−1]

)]
exp(αzt,0)

=
E
[∏`

d=1 exp
(
αh

(d)

[gkjit−k−1]

)]
exp(αzt,0)

(119)

=

(
E
[
exp

(
αh[gkjit−k−1]

)])`
exp(αzt,0)

. (120)

We choose r1 such that for x small enough,

1 + x ≤ exp(x) ≤ 1 + x+ r1x
2 (121)

and bound

(
E
[
exp

(
αh[gkjit−k−1]

)])`
exp(αzt,0)

≤

(
1 + αE

[
h[gkjit−k−1]

]
+ r1α

2E
[
h2[gkjit−k−1]

])`
exp(αzt,0)

(122)

=

(
1 + αµt,k + r1α

2(σ2
t,k + µ2

t,k)
)`

exp(αzt,0)
. (123)

To make the bound as tight as possible, we choose the parameters r1 and α that satisfy equation (121) and
minimize this above expression. Knowing the moments, this gives us one relation between the code length ` and
the threshold zt,0 as a function of a chosen maximum false positive probability.

Concerning the false negative error, for any guilty user j, the probability he is not accused is

P[FN] = P[
(
∃ tuplej : S < zt,0

)
or
(
∀ tuplej : S < zt,t

)
] ≤ P[∃ tuplej : S < zt,0] + P[∀ tuplej : S < zt,t] (124)

where

P[∃ tuplej : S < zt,0] ≤
t−1∑
k=0

P[∃[gkjit−k−1] : S < zt,0] ≤
t−1∑
k=0

(c)k(n− c)t−k−1P[S[gkjit−k−1] < zt,0] (125)

and

P
[
∀ tuplej : S < zt,t

]
≤ P

[
∀[gt−1j] : S < zt,t

]
≤
(
P[S[gt−1j] < zt,t]

)(c−1)t−1
. (126)

In equation (125), we can use the Markov bound and write, for any β > 0,

P[S[gkjit−k−1] < zt,0] = P
[
exp

(
−βS[gkjit−k−1]

)
> exp(−βzt,0)

]
≤

E
[
exp

(
−βS[gkjit−k−1]

)]
exp(−βzt,0)

(127)

=
E
[
exp

(
−β
∑`
d=1 h

(d)

[gkjit−k−1]

)]
exp(−βzt,0)

=
E
[∏`

d=1 exp
(
−βh(d)

[gkjit−k−1]

)]
exp(−βzt,0)

(128)

≤
(
E
[
exp

(
−βh[gkjit−k−1]

)])`
exp(−βzt,0)

. (129)

We choose r2 such that
1 + x ≤ exp(x) ≤ 1 + x+ r2x

2 (130)



and bound

(
E
[
exp

(
−βh[gkjit−k−1]

)])`
exp(−βzt,0)

≤

(
1− βE

[
h[gkjit−k−1]

]
+ r2β

2E
[
h2[gkjit−k−1]

])`
exp(−βzt,0)

(131)

=

(
1− βµt,k+1 + r2β

2(σ2
t,k+1 + µ2

t,k+1)
)`

exp(βzt,0)
. (132)

To make the bound as tight as possible, we choose the parameters r2 and β that satisfy equation (130) and
minimize this above expression.

In equation (126), we can again use the Markov bound and write, for any γ > 0,

P[S[gt−1j] < zt,t] = P
[
exp

(
−γS[gt−1j]

)
> exp(−γzt,t)

]
≤

E
[
exp

(
−γS[gt−1j]

)]
exp(−γzt,t)

(133)

=
E
[
exp

(
−γ
∑`
d=1 h

(d)
[gt−1j]

)]
exp(−γzt,t)

=
E
[∏`

d=1 exp
(
−γh(d)[gt−1j]

)]
exp(−γzt,t)

(134)

≤
(
E
[
exp

(
−γh[gt−1j]

)])`
exp(−γzt,t)

. (135)

We choose r3 such that
1 + x ≤ exp(x) ≤ 1 + x+ r3x

2 (136)

and bound

(
E
[
exp

(
−γh[gt−1j]

)])`
exp(−γzt,t)

≤

(
1− γE

[
h[gt−1j]

]
+ r3γ

2E
[
h2[gt−1j]

])`
exp(−γzt,t)

(137)

=

(
1− γµt,t + r3γ

2(σ2
t,t + µ2

t,t)
)`

exp(γzt,t)
. (138)

To make the bound as tight as possible, we choose the parameters r3 and γ that satisfy equation (136) and
minimize this above expression.

Knowing the moments, this gives us another relation between the code length ` and the thresholds zt,0 and
zt,t as a function of a chosen maximum false negative probability.

Note that we now have a system of equations with more degrees of freedom. This will potentially allow the
selection of better accusation algorithm parameters.

5.1 Generalizing the accusation algorithm

The previously described accusation algorithm uses two thresholds: one to check that no tuple containing user j
lies in the [it] range, and another to check that at least one lies in the [gt] range. Potentially one could introduce
other thresholds as well, for example zt,t−1 to check whether enough tuples lie in the [igt−1] plus the [gt] ranges.

6. DISCUSSION

We have investigated the optimization of the performance indicator µt,t for bias-based traitor tracing in the
joint-decoder setting. A straightforward Lagrangian approach under the Gaussian assumption yields a simple
expression (Theorem 3.5) for the optimal t-tuple suspicion function in a wide variety of contexts, e.g. CDM
and RDM, binary and q-ary, and any tuple size t. While we usually assume that t ≤ c, the formulas easily
generalize to larger tuples as well. The result is again a Neyman-Pearson score for the hypothesis j ∈ C against
the hypothesis j 6∈ C, based on single segments of the code word.



The h function we obtain with the Lagrangian method depends either on the collusion strategy or on the
coalition’s symbol tallies m. These quantities are usually unknown to the tracer. Our optimization approach
does not allow for deriving suspicion functions that are based purely on data known to the tracer.

In Section 3 we speculated on the use of the m-dependent suspicion function in the EM algorithm or as a
consistency check for candidate coalitions. Further exploration is left for future work.

For several q-ary attacks in the RDM we have derived the optimal suspicion function. We have investigated
the performance indicator µt,t in many combinations of suspicion function and attack strategy. In some cases
analytic results are obtained.

Our other main contribution in this paper is a novel accusation algorithm. We propose to use a t-tuple
decoder to decide whether to accuse a single user, and describe the first family of constructions that achieves
this. In the style of the original proofs of Tardos, we show how to obtain guarantees on the false positive and
false negative probabilities for specific collusion attacks.

Future work will focus on (a) investigating what code length improvements can be achieved against the
various listed attacks; (b) constructing better accusation algorithms in the spirit of Section 5; (c) investigating
the theoretical capacities of a t-tuple decoder given a certain strategy; (d) simulations using these tuple decoders;
(e) iterative joint decoders employing the m-dependent suspicion functions as consistency check.
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[23] Laarhoven, T., Doumen, J., Roelse, P., Škorić, B., and de Weger, B., “Dynamic Tardos traitor tracing
schemes,” IEEE Transactions on Information Theory 59(7), 4230–4242 (2013).

[24] Laarhoven, T., Oosterwijk, J.-J., and Doumen, J., “Dynamic traitor tracing for arbitrary alphabets: Divide
and conquer,” in [IEEE International Workshop on Information Forensics and Security (WIFS) ], 240 –245
(2012).
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