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Abstract

A key-homomorphic pseudorandom function (PRF) family {Fs : D → R} allows one to efficiently
compute the value Fs+t(x) given Fs(x) and Ft(x). Such functions have many applications, such as dis-
tributing the operation of a key-distribution center and updatable symmetric encryption. The only known
construction of key-homomorphic PRFs without random oracles, due to Boneh et al. (CRYPTO 2013), is
based on the learning with errors (LWE) problem and hence on worst-case lattice problems. However, the
security proof relies on a very strong LWE assumption (i.e., very large approximation factors), and hence
has quite inefficient parameter sizes and runtimes.

In this work we give new constructions of key-homomorphic PRFs that are based on much weaker LWE
assumptions, are much more efficient in time and space, and are still highly parallel. More specifically,
we improve the LWE approximation factor from exponential in the input length to exponential in its
logarithm (or less). For input length λ and 2λ security against known lattice algorithms, we improve the
key size from λ3 to λ bits, the public parameters from λ6 to λ2 bits, and the runtime from λ7 to λω+1

bit operations (ignoring polylogarithmic factors in λ), where ω ∈ [2, 2.373] is the exponent of matrix
multiplication. In addition, we give even more efficient ring-LWE-based constructions whose key sizes,
public parameters, and incremental runtimes on consecutive inputs are all quasi-linear Õ(λ), which is
optimal up to polylogarithmic factors. To our knowledge, these are the first low-depth PRFs (whether
key homomorphic or not) enjoying any of these efficiency measures together with nontrivial proofs of 2λ

security under any conventional assumption.

1 Introduction

A pseudorandom function (PRF) family [GGM84] F = {Fs : D → R} is a finite set of (deterministic)
functions with common domain D and range R (both finite), for which a randomly chosen Fs ← F cannot
be efficiently distinguished from a uniformly random function U : D → R, given adaptive oracle access. The
index s of function Fs is often called its (secret) key or seed. The family F is key homomorphic if the set of
keys has a group structure and if there is an efficient algorithm that, given Fs(x) and Ft(x) (but not s or t),
outputs Fs+t(x).

Naor, Pinkas, and Reingold [NPR99] constructed, in the random oracle model, a very simple key-
homomorphic PRF family based on the decisional Diffie-Hellman problem, and gave applications like
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distributing the operation of a Key Distribution Center. Recently, Boneh et al. [BLMR13] constructed the
first key-homomorphic PRFs without random oracles, and described many more applications (all of which are
very efficient in their use of the PRF), including symmetric-key proxy re-encryption, updatable encryption,
and PRFs secure against related-key attacks (cf. [BC10, LMR14]). The construction of Boneh et al. is based
on the (appropriately parameterized) learning with errors (LWE) problem [Reg05], and builds upon ideas
used in the non-key-homomorphic LWE-based PRFs of Banerjee, Peikert, and Rosen [BPR12].

One drawback of the construction and proof from [BLMR13] is its rather strong LWE assumption
and, by consequence, large parameters and runtimes. For example, to obtain a PRF of input length λ
with exponential 2λ provable security against known lattice attacks, the secret keys and public parameters
respectively need to be at least λ3 and λ6 bits, and the runtime to evaluate the function is at least λ7 bit
operations (to produce λ2 output bits), not counting some polylogarithmic logO(1) λ factors. It is worth
noting that among the several LWE-based PRFs given in [BPR12], the most highly parallelizable “direct”
construction (which can be implemented in TC0 ⊆ NC1) relies on roughly the same strong assumptions
and so has similarly low efficiency as the one from [BLMR13]. However, the synthesizer-based construction
(in TC1 ⊆ NC2) and sequential GGM-based one from [BPR12] can be proved secure under much weaker
LWE assumptions, and hence can have much better parameters and runtimes. A natural question, therefore, is
whether there exist key-homomorphic PRFs with similar security and efficiency characteristics.

Our results. In this work we answer the above question in the affirmative, by giving new constructions of
key-homomorphic PRFs that have substantially better efficiency, and still enjoy very high parallelism. As
compared with [BLMR13], we improve the key size from λ3 to λ bits, the public parameters from λ6 to λ2 bits,
and the runtime from λ7 to λω+1 bit operations (always omitting logO(1) λ factors), where ω ∈ [2, 2.373] is the
exponent of matrix multiplication. Functions having these parameters can be implemented in TC1 ⊆ NC2,
though seemingly not in TC0 or NC1.

We also give even more efficient key-homomorphic PRFs based on the ring-LWE problem [LPR10,
LPR13]. Compared with the ring-based analogue of [BLMR13], and again ignoring logO(1) λ factors, here
our keys and public parameters are only λ bits (improving upon λ3 and λ4, respectively), and the runtime
is only λ2 bit operations to produce λ output bits (from λ5 to produce λ2). In addition, the incremental
computation of our PRF on successive inputs (e.g., in a counter-like mode) has runtime only λ. See Figure 1
for a full comparison with [BPR12, BLMR13].

To our knowledge, ours are the first low-depth PRFs (whether key homomorphic or not) having nontrivial
proofs of exponential 2λ security under any conventional assumption along with quasi-optimal Õ(λ) key
sizes or incremental runtimes, or quasilinear Õ(λ) nonincremental runtime per output bit. For example, the
GGM construction [GGM84] can have small keys and quasilinear nonincremental runtime per output bit
(using a quasi-optimal PRG), but it is highly sequential. The Naor-Reingold constructions [NR95, NR97],
which are highly parallel, have at least quadratic λ2 key sizes and runtime per output bit, even assuming
exponential security of the underlying hard problems. And factoring-based constructions [NRR00] fare much
worse due to subexponential-time factoring algorithms.

In their parallelism and underlying LWE assumptions, our functions are qualitatively very similar to the
synthesizer- and GGM-based ones from [BPR12] (see Figure 1); however, the constructions and proofs are
completely different. Instead, our construction can be seen as a substantial generalization of the one of Boneh
et al. [BLMR13], in that theirs is an instantiation of ours with a linear-depth “left spine” tree. By contrast,
our construction can be securely instantiated with any binary tree, thanks to a new proof technique that may
be of use elsewhere. The shape of the tree determines the final parameters and parallelism of the resulting
function: roughly speaking, its “left depth” determines the strength of the LWE assumption in the proof,
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while its “right depth” determines its parallelism. Interestingly, a complete binary tree turns out to be very
far from optimal for the parameters we care about. Optimal trees can be found efficiently using dynamic
programming, and provide input lengths that are roughly the square of those yielded by complete binary trees.
This is all discussed in detail in the next section, where we present and analyze our construction.

Reference KH? Expan Sequen Key Params Time/Out Out

this work Y 1 λ− 1 λ [λ] λ2 [λ] λω [λ] λ [λ]

this work Y ≈ log4 λ ≈ log4 λ λ [λ] λ2 [λ] λω [λ] λ [λ]

[BLMR13] Y λ− 1 1 λ3 [λ3] λ6 [λ4] λ5 [λ3] λ2 [λ2]

[BPR12, GGM] N 1 λ λ [λ] λ2 [λ] λ2 [λ] λ [λ]

[BPR12, synth] N log2 λ log2 λ λ3 [λ2] 0 [0] λω−1 [λ] λ2 [λ]

[BPR12, direct] N λ 1 λ5 [λ3] 0 [0] λ4 [λ2] λ2 [λ2]

Figure 1: Example instantiations of our key-homomorphic PRF (for input length λ and provable 2λ security
against the best known lattice algorithms) as compared with prior lattice-based PRFs. “KH” denotes whether
the construction is key homomorphic, while “Expan” and “Sequen” are respectively the expansion and
sequentiality (as defined in Equations (2.4), (2.7)) of the tree T used in the instantiation (or, for prior
constructions, their close analogues). Omitting polylogarithmic logO(1) λ factors, “Key” and “Params” are
respectively the bit lengths of the secret key and public parameters; “Time/Out” is the best known runtime (in
bit operations) per output bit, where ω ∈ [2, 2.373] is the exponent of matrix multiplication; and “Out” is the
output length in bits. The quantities in brackets refer to the ring-based construction given in Section 2.4.

Other related work. Our construction is reminiscent of those from several recent works on fully homo-
morphic encryption, attribute-based encryption, and garbled circuits, e.g., [GSW13, BV14, BGG+14]. In
particular, these works obtain relatively good LWE assumptions and parameters by appropriately scheduling
“bit decomposition” operations to ensure small noise growth, usually at the expense of increased sequentiality.
Our work also falls within this theme, though our proof techniques are completely different.

Organization. In Section 2 we give our construction and a detailed analysis of its security and efficiency.
In Section 3 we give the proof of the security theorem, first providing an overview of the key ideas in
Section 3.1, and giving the formal proof in Section 3.3 (after recalling some necessary technical background
in Section 3.2).

2 Construction and Analysis

In this section we define and analyze our key-homomorphic PRF, and compare it with prior LWE-based
constructions. The construction involves various parameters (e.g., matrix dimension n, modulus q, tree T )
which are all chosen so that the algorithms are polynomial-time in the security parameter λ. As in [BLMR13],
we work in a model where the PRF family is defined with respect to some random public parameters that are
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known to all parties, including the adversary. These parameters may be generated by a trusted party, or by the
user along with the secret key.

We first recall some standard background. For an integer modulus q ≥ 1, let Zq = Z/qZ denote
the quotient ring of integers modulo q. For an integer p ≤ q, define the modular “rounding” function
b·ep : Zq → Zp as bxep = bpq · xe, and extend it coordinate-wise to vectors and matrices over Zq. Let
` = dlog qe and define the “gadget” (column) vector

g = (1, 2, 4, . . . , 2`−1) ∈ Z`q,

and the (deterministic) “binary decomposition” function g−1 : Zq → {0, 1}` as follows: identifying each
a ∈ Zq with its integer residue in {0, . . . , q − 1}, let g−1(a) = (x0, x1, . . . , x`−1) ∈ {0, 1}` where
a =

∑`−1
i=0 xi2

i is the binary representation of a. Note that by definition, 〈g,g−1(a)〉 = a for all a ∈ Zq,
which explains our choice of notation.1

Similarly, for vectors and matrices over Zq we define the function G−1 : Zn×mq → {0, 1}n`×m by
applying g−1 entry-wise. Notice that for all A ∈ Zn×mq we have

G ·G−1(A) = A, where G = gt ⊗ In = diag(gt, . . . ,gt) ∈ Zn×n`q (2.1)

is the block matrix with n copies of gt as diagonal blocks, and zeros elsewhere.
For a full (but not necessarily complete) binary tree T—i.e., one in which every non-leaf node has two

children—let |T | denote the number of its leaves. If |T | ≥ 1 (i.e., T is not the empty tree), let T.l, T.r
respectively denote the left and right subtrees of T (which may be empty trees).

We now define our function families.

Definition 2.1. Given matrices A0,A1 ∈ Zn×n`q and a full binary tree T of at least one node, define the
function AT : {0, 1}|T | → Zn×n`q recursively as

AT (x) =

{
Ax if |T | = 1

AT.l(xl) ·G−1(AT.r(xr)) otherwise,
(2.2)

where in the second case we parse x = xl‖xr for xl ∈ {0, 1}|T.l|, xr ∈ {0, 1}|T.r|.

Construction 2.2 (Key-Homomorphic PRF). The function family

FA0,A1,T,p =
{
Fs : {0, 1}|T | → Zn`p

}
is parameterized by matrices A0,A1 ∈ Zn×n`q , a binary tree T , and a modulus p ≤ q, which may all be
considered public parameters. A member of the family is indexed by some s ∈ Znq , and is defined as

Fs(x) :=
⌊
st ·AT (x)

⌉
p
. (2.3)

1These are just particular definitions of g,g−1 that we fix for convenience. Our constructions and proofs only require that g−1

be deterministic, and that g−1(a) be a “short” integer vector such that 〈g,g−1(a)〉 = a for all a ∈ Zq . Alternatives include using
a signed ternary decomposition, or a larger (or mixed-radix) base; the bounds in the security theorem are easily adapted to such
choices.
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For security based on LWE, we take A0,A1 and the secret key s to be uniformly random over Zq; see
Theorem 2.3 below for a formal security statement. Similarly to LWE, it may also be possible to prove
security when the entries of s are drawn from the LWE error distribution (see [ACPS09]). However, most
applications of key-homomorphic PRFs need to use uniformly random secret keys anyway, so we do not
pursue this question further.

Because rounding is nearly linear, i.e., ba+ bep = baep + bbep + e for some e ∈ {0,±1}, it is easy to see
that the family FA0,A1,T,p defined above is “almost” additively key homomorphic, as defined in [BLMR13].
That is, for any keys Fs, Ft in the family, we have

Fs+t(x) = Fs(x) + Ft(x) + et,

where ‖e‖∞ ≤ 1. As long as the entries of the error term e are sufficiently smaller than the output modulus p,
this near-homomorphism is sufficient for all the applications described in [BLMR13], and for obtaining
security against related-key attacks [LMR14].

Notice that the vast majority of the cost of computing Fs(x) is in computing AT (x), which can done
“publicly” without any knowledge of the secret key s.2 This property can be very important for the efficiency
of certain applications, such as the homomorphic evaluation of Fs given an encryption of s. In addition, notice
that if AT (x) has been computed and all the intermediate matrices saved, then AT (x′) can be incrementally
computed much more efficiently for an x′ that differs from x in just a single bit. Specifically, one only needs
to recompute the matrices for the internal nodes of T on the path from the leaf corresponding to the changed
bit to the root. As in [BPR12], this can significantly speed up successive evaluations of Fs on related inputs,
e.g., in a counter-like mode using a Gray code.

Relation to [BLMR13]. Our key-homomorphic PRF can be viewed as a substantial generalization of the
one of Boneh et al. [BLMR13]. Specifically, their construction can be obtained from ours by instantiating
it with a tree T that consists of a “left spine” with leaves for all its right children. Because all the right
subtrees are just leaves, the only matrices ever decomposed with G−1 are A0 and A1. Therefore, we can
replace them in the public parameters by the binary matrices Bb = G−1(Ab), yielding the construction
Fr(x) = brt ·

∏|x|
i=1Bxiep from [BLMR13].3

The use of a “left-spine” tree T (as in [BLMR13]) yields an instantiation which is maximally parallel—in
our language (defined below), it has sequentiality s(T ) = 1. The major drawback is that it also has maximal
expansion e(T ) = |T | − 1. In our security theorem (Theorem 2.3 below), the LWE approximation factor and
modulus q grow exponentially with e(T ), so using a tree with large expansion leads to a very strong hardness
assumption, and therefore large secret keys and public parameters. By contrast, using trees T with better
expansion-sequentiality tradeoffs allows us obtain much better key sizes and efficiency. See the discussion in
the following subsections and Figure 1 for further details.

2.1 Security

In our security proof, the modulus q and underlying LWE error rate, and hence also the dimension n needed to
obtain a desired level of provable security, are largely determined by a certain parameter of the tree T which

2For a few choices of the tree T , it can be faster to compute st ·AT (x) left-to-right without explicitly computing AT (x), but
such trees are rare and yield bad parameters.

3Here we have ignored the small detail that in our construction, the matrix Ax1 corresponding to the leftmost leaf in the tree is not
decomposed, so our instantiation is actually Fs(x) = bst ·Ax1 ·

∏|x|
i=2 Bxie. However, it is easy to verify that in the construction

of [BLMR13], the secret key may be of the form rt = stG for some s ∈ Zn
q . Then rtBx1 = stAx1 , which corresponds to our

construction.
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we call the expansion e(T ). Essentially, the expansion is the maximum number of terms of the form G−1(·)
that are ever consecutively multiplied together when we unwind the recursive definition of AT , or AT ′ for
related trees T ′ considered in the security proof. Formally, the expansion of T is defined by the recurrence

e(T ) =

{
0 if |T | = 1

max{e(T.l) + 1 , e(T.r)} otherwise.
(2.4)

This is simply the “left depth” of the tree, i.e., the maximum length of a root-to-leaf path, counting only edges
from parents to their left children.

We can now state our main security theorem.

Theorem 2.3. Let T be any full binary tree, χ be some distribution over Z that is subgaussian with parameter
r > 0 (e.g., a bounded or discrete Gaussian distribution with expectation zero), and

q ≥ p · r
√
|T | · (n`)e(T ) · λω(1). (2.5)

Then over the uniformly random and independent choice of A0,A1 ∈ Zn×n`q , the family FA0,A1,T,p with
secret key chosen uniformly from Znq is a secure PRF family, under the decision-LWEn,q,χ assumption.

An outline of the proof, which contains all the main and new ideas, is given in Section 3.1; the formal
proof appears in in Section 3.3.

Notice that the modulus-to-noise ratio for the underlying LWE problem is q/r ≈ (n log q)e(T ), i.e.,
exponential in the expansion e(T ). Known reductions [Reg05, Pei09, BLP+13] (for r ≥ 3

√
n) guarantee

that such an LWE instantiation is at least as hard as (quantumly) approximating various lattice problems in the
worst case to within ≈ q/r factors on n-dimensional lattices. Known algorithms for achieving such factors
take time exponential in n/ log(q/r) = Ω̃(n/e(T )), so in order to obtain provable 2λ security against the
best known lattice algorithms, the best parameters we can use are

n = e(T ) · Θ̃(λ) and log q = e(T ) · Θ̃(1). (2.6)

These parameters determine the runtimes and key sizes of the construction, as analyzed below.
We conclude this discussion of security by remarking that, as in [BPR12, BLMR13], and in contrast

with essentially all lattice-based encryption schemes, it is possible that our PRF is actually secure for much
smaller parameters than our proof requires. For example, taking q = poly(n) even for large e(T ), with
p|q to ensure that rounding produces “unbiased” output, may actually be secure—but we do not know how
to prove it. (We also do not know of any effective attacks against such parameters.) The reason for this
possibility is that the function itself does not actually expose any low-error-rate LWE samples to the attacker;
they are used only in the proof as part of a thought experiment. Whether any of the constructions from this
work or [BPR12, BLMR13] can be proved secure for smaller parameters under a standard assumption is a
fascinating open question. For the remainder of the paper, we deal only with parameters for which we can
prove security under (ring-)LWE.

2.2 Size, Time, and Depth

Here we briefly analyze the secret key and public parameter sizes, runtime, and circuit depth of our PRFs,
always normalizing to 2λ provable security under standard lattice assumptions. In some cases these quantities
are not very practical (or even asymptotically good), especially when the tree T has large expansion. In
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Section 2.4 we give a much more efficient construction using ring-LWE, which can be quasi-optimal in key
size, public parameters, and depth (simultaneously).

The secret key, which is a uniformly random element of Znq , has size Θ(n log q), which is e(T )2 · Θ̃(λ) by
Equation (2.6). The public parameters, being two n×n` matrices over Zq, are Θ(n2 log2 q) = e(T )4 · Θ̃(λ2)
bits.

For runtime, computing AT (x) from scratch takes one decomposition with G−1 and one (n × n`)-
by-(n` × n`) matrix multiplication over Zq per internal node of T . (As mentioned above, incremental
computation of AT (x) on related inputs can be much faster.) Using naı̈ve matrix multiplication, this is a total
of Θ(|T | ·n3 log2 q) ring operations in Zq, which translates to e(T )6 · Θ̃(λ4) bit operations by Equation (2.6)
(even using quasi-linear-time multiplication in Zq, which is needed only when log q 6= Õ(1)). This can
be improved somewhat using asymptotically faster matrix multiplication, but still remains a rather large
Ω(|T | · nω log2 q), where ω ≥ 2 is the exponent of matrix multiplication.

For certain trees T our construction is highly parallelizable, i.e., it can be computed by a low-depth circuit.
First, notice that each Zq-entry of st ·AT (x) (and hence each Zp-entry of the PRF output) can be computed
independently. This is because each column of AT (x) can be computed independently, by induction and the
fact that G−1 works independently on the columns of AT.r(xr). Next, since linear operations over Zq can be
computed by depth-one arithmetic circuits (with unbounded fan-in), the circuit depth of our construction
is proportional to the maximum nesting depth of G−1(·) expressions when we fully unwind the definition
of AT . We call this the sequentiality s(T ) of the tree T , which is formally defined by the recurrence

s(T ) =

{
0 if |T | = 1

max{e(T.l) , e(T.r) + 1} otherwise.
(2.7)

This is simply the “right depth” of the tree, i.e., the maximum length of a root-to-leaf path, counting only
edges from parents to their right children.

2.3 Instantiations

Here we discuss some interesting instantiations of the tree T and the efficiency properties of the resulting
functions; see Figure 1 for a summary. Generally speaking, for a given tree size |T | (the PRF input length)
there is a tradeoff between expansion e(T ) and sequentiality s(T ). Flipping this around, given bounds e, s
we are interested in obtaining a largest possible tree T such that e(T ) ≤ e and s(T ) ≤ s; let t(e, s) denote
the size of such a tree. At first blush, it may be surprising that under the simplifying restriction e = s, a
complete binary tree of depth s is very far from optimal! To see this, notice that

t(e, s) =

{
1 if e = 0 or s = 0

t(e− 1, s) + t(e, s− 1) otherwise.
(2.8)

The base cases follow from the fact that only a single leaf satisfies the bounds, and in the recursive case, the
first and second terms respectively denote the sizes of the optimal left and right subtrees. It is easy to verify
that this recurrence is simply the one that defines the binomial coefficients:

t(e, s) =

(
e+ s

e

)
=

(
e+ s

s

)
.

One can also efficiently construct an optimal tree for given e, s using dynamic programming.
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For example, if we restrict to e = s, then by Stirling’s approximation we get that t(e, s) =
(
2s
s

)
≈ 4s/

√
sπ.

Said another way, we can get a PRF with input length |T | where the expansion and sequentiality are both
≈ log4(|T |). By contrast, a complete binary tree with these parameters has size only 2s ≈

√
|T |. By

Theorem 2.3 and Equation (2.6), this means we can get a PRF with input length λ and security 2λ having
sequentiality O(log λ) and secret keys of quasi-optimal bit length Õ(λ).

By ignoring parallelism, one can reduce the expansion even further by letting T be a “right spine” with
leaves for all its left children. Then e(T ) = 1 and s(T ) = |T | − 1, yielding even better parameters: the
underlying LWE assumption has a nearly polynomial nω(1) approximation factor, and for security level 2λ

we still obtain secret keys of quasi-optimal bit length Õ(λ); moreover, here the hidden factors are at least a
log λ factor smaller than in the case above.

2.4 Ring Variant

Due to the several matrix multiplications (of dimension at least n) involved in computing AT (x), our
LWE-based construction is not very practically efficient. Fortunately, we can obtain a much more efficient
analogue based on the ring-LWE problem [LPR10]. Here we just describe the construction and analyze its
efficiency. The proof of security based on ring-LWE proceeds in essentially the same way as the one for our
main construction, and is therefore omitted.

For concreteness, let R ∼= Z[X]/(Xn + 1) where n is a power of two, which is known as the 2nth
cyclotomic ring. (The construction and analysis may be generalized to arbitrary cyclotomic rings using
the tools developed in [LPR13].) For a modulus q, let Rq = R/qR ∼= Zq[X]/(Xn + 1), and define a
suitable “gadget” vector g ∈ R`q and deterministic function g−1 : Rq → R`, so that g−1(a) is “short” and
〈g,g−1(a)〉 = a for all a ∈ Rq. (E.g., we may let g = (1, 2, 4, . . . , 2`−1) ∈ R`q and define g−1(a) so that
each of its R-entries has {0, 1}-coefficients with respect to an appropriate “short” Z-basis of R.) Extend g−1

to row vectors over Rq by applying g−1 entry-wise.

Construction 2.4. Fix some row vectors a0,a1 ∈ R`q, and for a binary tree T , define aT : {0, 1}|T | → R`q
recursively as

aT (x) =

{
ax if |T | = 1

aT.l(xl) · g−1(aT.r(xr)) otherwise,
(2.9)

where in the second case we parse x = xl‖xr for xl ∈ {0, 1}|T.l|, xr ∈ {0, 1}|T.r|.
We define the function family

Fa0,a1,T,p =
{
Fs : {0, 1}|T | → R`p

}
,

which is parameterized by row vectors a0,a1 ∈ R`q, a binary tree T , and a modulus p ≤ q. A member of the
family is indexed by some s ∈ R (or Rq), and is defined as

Fs(x) := bs · aT (x)ep. (2.10)

Analysis. Evaluating aT (x) from scratch takes one decomposition with g−1 and one vector-matrix multi-
plication of dimension ` = log q over Rq per internal node of T , for a total of O(|T | · `2) ring operations
in Rq. Ring operations in Rq can be performed in O(n log n) scalar operations over Zq, and g−1 can be
computed in O(n log q) time. Using a tree T with expansion e(T ) = Õ(1), by Equation (2.6) we can get a
PRF with input length λ and 2λ security (under conventional assumptions) running in Õ(λ2) bit operations
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to output at least λ bits. When T has polylogarithmic depth, the incremental cost per invocation is reduced to
Õ(λ) bit operations, which is quasi-optimal.

As an optimization, and analogously to the LWE-based construction, each Rq-entry of aT (x) ∈ R`q can
be computed independently in O(|T | · `) ring operations each. Therefore, we can compute each Rp-entry of
the output (yielding at least n output bits) in just O(|T | · `) ring operations. This may be useful in applications
that do not need the entire large output length.

3 Security Proof

In this section we prove Theorem 2.3, which says that Fs(x) = bst ·AT (x)ep from Construction 2.2 is a
PRF under the LWE assumption, for appropriate parameters.

3.1 Proof Outline

We start with an overview of the proof, which highlights the central (new) ideas. (For technical reasons,
the formal proof proceeds a bit differently than this outline, but the main ideas are the same.) The basic
strategy, first used in [BPR12], is to define a sequence of hybrid games where the function inside the
rounding operation b·ep changes in ways that are indistinguishable to the adversary, either statistically or
computationally. As in prior works [BPR12, BLMR13], these changes include introducing small additive
terms that are “rounded away” and hence preserve the input-output behavior (with high probability), and
replacing LWE instances with uniformly random ones. In addition, we introduce a new proof technique
described within.

Let T be any full binary tree, and suppose its leftmost leaf v is at depth d > 1. (If d = 1, then |T | = 1
and the function is trivially a PRF based on the “learning with rounding” problem, which is as hard as LWE
for our choice of parameters, or even slightly better ones [BPR12, AKPW13].) In the real attack game, the
adversary has oracle access to Fs(·), which, by unwinding the definition of AT , is of the form

Fs(x) =
⌊
st ·AT (x)

⌉
p

=

⌊
st ·Ax0 ·

d∏
i=1

G−1(ATi(x
′
i))︸ ︷︷ ︸

ST (x′)

⌉
p

,

where subtree Ti is the right child of v’s ith ancestor, and x = x0‖x′ = x0‖x′1‖ · · · ‖x′d where |x0| = 1 and
|x′i| = |Ti| for all i.

We next consider a hybrid game in which st ·Ab for b ∈ {0, 1} is replaced by an LWE vector st ·Ab +etb,
for some short error vectors e0, e1. That is, the adversary instead has oracle access to the function

F ′s,e0,e1(x) :=
⌊
(st ·Ax0 + etx0) · ST (x′)

⌉
p

=
⌊
st ·AT (x) + etx0 · ST (x′)

⌉
p
.

Because ex0 and any matrix of the form G−1(·) are short, etx0 ·ST (x′) is short. More precisely, its entries are
of magnitude bounded by ≈ (n log q)d, which is much less than q/p because d ≤ e(T ) and by assumption
on q. Therefore, the additive term etx0 · ST (x′) is very unlikely the change the final rounded value, i.e.,
with high probability F ′s,e0,e1(x) = Fs(x) for all the adversary’s queries x. Therefore, this hybrid game is
statistically indistinguishable from the real attack.
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In the next hybrid game, we replace each st · Ab + etb for b ∈ {0, 1} by uniformly random and
independent utb, i.e., the adversary has access to the function

F ′′u0,u1
(x) :=

⌊
utx0 · ST (x′)

⌉
p

=

⌊
utx0 ·G

−1(AT1(x′1)) ·
d∏
i=2

G−1(ATi(x
′
i))︸ ︷︷ ︸

S′T (x′)

⌉
p

. (3.1)

Since ST (x′) can be efficiently computed from the public parameters Ab and the adversary’s queries x, this
game is computationally indistinguishable from the previous one, under the LWE assumption.

At this point, we would like to be able to proceed by replacing the terms utx0 ·G
−1(AT1(x′1)) with some

“noisy” variants, then replace those with uniform and independent vectors for all values of x0‖x′1, etc. Indeed,
this is possible if x′1 consists of a single bit (i.e., if |T1| = 1 and hence AT1(x′1) = Ax′1

), using “non-uniform
LWE” exactly as is done in [BLMR13]. Unfortunately, non-uniform LWE does not appear to be sufficient
when x′1 is more than one bit (i.e., when |T1| > 1), because the matrices AT1(x′1) are not independent for
different values of x′1. And requiring |Ti| = 1 for all i makes T have maximal expansion e(T ) = |T | − 1.

Our main new proof technique is a way to deal with the above issue. Going back to Equation (3.1), as
“wishful thinking” suppose that each ub was of the form utb = stb ·G for some (uniform, say) sb ∈ Znq . Then
the G factor would undo the decomposition G−1(·), and the adversary would have access to the function

F ′′′s0,s1(x) :=
⌊
stx0 ·AT1(x′1) · S′T (x′)

⌉
p

=
⌊
stx0 ·AT ′(x

′)
⌉
p
,

where T ′ is the full binary tree obtained from T by removing its leftmost leaf v and promoting v’s sibling
subtree T1 to replace their parent. Notice that the above function is just two independent members of our
function family instantiated with tree T ′. Moreover, T ′ has expansion e(T ′) ≤ e(T ), because expansion is
just “left depth.” Therefore, the above function would be a PRF simply by induction on |T |.

Unfortunately, our “wishful thinking” fails in a very strong sense: a uniformly random ut is highly likely
to be very far from any vector of the form st ·G. However, because Gt ·Znq is a subgroup of Zn`q , a uniformly
random vector u ∈ Zn`q can be decomposed as ut = st ·G+vt where s ∈ Znq is uniform, and v is uniform in
(some canonical set of representatives of) the quotient group Zn`q /(Gt · Znq ) and independent of s. Therefore,
the function in Equation (3.1) is equivalent to the function

F ′′′s0,s1,v0,v1
(x) :=

⌊
stx0 ·AT ′(x

′) + vtx0 · ST (x′)
⌉
p
,

where T ′ and x′ are exactly as in the previous paragraph. Note that vb is not short, so the extra additive term
above does not simply “round away”—but we do not need it to. The main point is that vb may be chosen
independently of (and hence without knowledge of) sb by the simulator, and then the additive term may
be efficiently computed from it and other public information. Essentially, this allows us to complete the
proof by induction on |T |. (Again, the actual proof is structured a bit differently, to allow us to simulate the
independent additive terms inside the rounding operation.)

3.2 Additional Background

Games and indistinguishability. In our security proof, we model interaction with the adversary through a
series of probabilistic experiments called games. For an adversary A interacting with two games H0 and H1,
the distinguishing advantage of A, which is implicitly a funtion of the security parameter λ, is defined as
AdvH0,H1(A) = |Pr[A accepts in H0]−Pr[A accepts in H1]|. Two games H0 and H1 are computationally
distinguishable, denoted H0

c
≈ H1, if AdvH0,H1(A) = negl(λ) for any efficient adversary A.
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Spectral norm. The spectral norm s1(S) of a real matrix S is defined as maxu‖Su‖2 = maxv‖Stv‖2,
taken over all unit vectors u,v. Equivalently, it is maxx‖Sx‖2/‖x‖2, taken over all x 6= 0. The spectral
norm is clearly submultiplicative: s1(S ·T) ≤ s1(S) · s1(T).

Lemma 3.1. If S is a binary (i.e., 0-1) m-by-m matrix, then s1(S) ≤ m.

Proof. For any vector x ∈ Rm, we have

‖Sx‖22 =
m∑
i=1

∣∣∣ m∑
j=1

Sijxj

∣∣∣2 ≤ m( m∑
j=1

|xj |
)2
≤ m2

m∑
j=1

|xj |2 = m2‖x‖22,

where the first equality follows from the definition of the Euclidean norm, the first inequality follows
from the triangle inequality and the fact that |Sij | ≤ 1 for all i, j, and the second inequality follows from
Cauchy-Schwarz. This proves the claim.

Subgaussian random variables. In our constructions it is convenient to analyze the behavior of “error”
terms using the standard notion of subgaussian random variables. (For further details and full proofs,
see [Ver12].) A real random variable X (or its distribution) is subgaussian with parameter r ≥ 0 if for
all t ∈ R, its (scaled) moment-generating function satisfies E[exp(2πtX)] ≤ exp(πr2t2). By a Markov
argument, X has Gaussian tails, i.e., for all t ≥ 0 we have (where we define 0/0 = 0 in case t = r = 0)

Pr[|X| ≥ t] ≤ 2 exp(−πt2/r2). (3.2)

(If E[X] = 0, then Gaussian tails also imply subgaussianity.) Any B-bounded centered random variable X
(i.e., E[X] = 0 and |X| ≤ B always) is subgaussian with parameter B

√
2π. In addition, the discrete

Gaussian distribution DZ,r over Z, which assigns probability proportional to exp(−πz2/r2) to each z ∈ Z,
is subgaussian with parameter r [MP12, Lemma 2.8].

Subgaussian random variables satisfy Pythagorean additivity: if X1, X2 are independent subgaussians
with respective parameters r1, r2, then X1 +X2 is subgaussian with parameter

√
r21 + r22. By induction this

extends to the sum of any finite number of independent subgaussians.
A random real vector x is subgaussian with parameter r if for all fixed unit vectors u, the marginal

〈u,x〉 ∈ R is subgaussian with parameter r. (In particular, each coordinate of x is subgaussian with
parameter r.) It follows directly from the definition that the concatenation of independent subgaussians
with common parameter r is also subgaussian with parameter r. Pythagorean additivity clearly extends to
subgaussian vectors, by linearity. In addition, if x is subgaussian with parameter r then Sx is subgaussian
with parameter r · s1(S), since 〈u,Sx〉 = 〈Stu,x〉.

Learning with errors. We use the following form of the learning with errors (LWE) problem, due to
Regev [Reg05]. For a positive integer dimension n, a modulus q ≥ 2, and a probability distribution χ over Z,
the decision-LWEn,q,χ assumption is that for for any polynomially bounded m,w,

(A← Zn×mq ,Bt = St ·A + Et ∈ Zw×mq )
c
≈ (A← Zn×mq ,Bt ← Zw×mq ),

where on the left St ← Zw×nq and Et ← χw×m. (The assumption for w = 1 implies the assumption for
larger w, by a routine hybrid argument.)

For χ = DZ,r where r ≥ 3
√
n, and under mild conditions on the form of the modulus q, the decision-

LWEn,q,χ assumption holds true assuming that various problems on n-dimensional lattices are hard for
quantum algorithms to approximate to within Õ(n · q/r) factors in the worst case [Reg05]; see also [Pei09,
BLP+13] and references therein for similar statements assuming only classical (non-quantum) hardness.
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3.3 Proof of Security Theorem

In this section we give the formal proof of Theorem 2.3. We restate it here for the reader’s convenience.

Theorem 2.3. Let T be any full binary tree, χ be some distribution over Z that is subgaussian with parameter
r > 0 (e.g., a bounded or discrete Gaussian distribution with expectation zero), and

q ≥ p · r
√
|T | · (n`)e(T ) · λω(1). (2.5)

Then over the uniformly random and independent choice of A0,A1 ∈ Zn×n`q , the family FA0,A1,T,p with
secret key chosen uniformly from Znq is a secure PRF family, under the decision-LWEn,q,χ assumption.

To aid the proof we first define a couple of auxiliary function families. The first family simply consists of
the “pre-rounded” counterparts of the functions Fs ∈ F = FA0,A1,T,p.

Definition 3.2. For A0,A1 ∈ Zn×n`q and a full binary tree T , the family G = GA0,A1,T is the set of
functions Gs : {0, 1}|T | → Zn`q indexed by some s ∈ Znq , and defined as Gs(x) := st ·AT (x) (where we
define AT (ε) := G for the empty tree T ). We endow G with the distribution where s ← Znq is chosen
uniformly at random.

Note that Fs(x) = bGs(x)ep.
The next family G̃ consists of functions that are certain “noisy” versions of the functions in G. The

family E of “error functions” used in the definition is a family of functions from {0, 1}|T | to Zn`, and is
formally defined in Definition 3.6 below. An important point is that the functions in E ∈ E have exponentially
large keys, but they may be efficiently sampled “lazily,” as values E(x) are needed. See the discussion
following Definition 3.6 for details.

Definition 3.3. For A0,A1 ∈ Zn×n`q and a full binary tree T , the family G̃ = G̃A0,A1,T is the set of
functions G̃s,E : {0, 1}|T | → Zn`q indexed by some Gs ∈ G and E ∈ E = EA0,A1,T , and defined as
G̃s,E(x) := Gs(x) + E(x). We endow G̃ with the distribution where Gs ← G and E ← E are chosen
independently.

Proof of Theorem 2.3. We show below that with overwhelming probability, the rounding of Gs ∈ G agrees
with the rounding of essentially any corresponding G̃s,E ∈ G̃ on all the attacker’s queries, because the outputs
of the error functions E ∈ E are small. We also prove in Theorem 3.8 below that G̃ is a PRF family without
any rounding, and hence with rounding as well. It follows that the rounding of Gs ← G (i.e., Fs ← F)
cannot be distinguished from a uniformly random function, as desired. We now proceed more formally, by a
sequence of games.

Game H0. This is the real PRF attack game: we choose public parameters A0,A1 ← Zn×n`q and an
Fs ← F , and the attacker gets A0,A1 and oracle access to Fs(·). Equivalently, we choose Gs ← G and the
attacker gets oracle access to bGs(·)ep.

Game H1. We choose A0,A1 as above and a G̃s,E ← G̃, by choosing Gs ← G and E ← E . Note that we
choose E (and hence G̃) “lazily” as the attacker makes queries (see the remarks following Definition 3.6).
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The attacker is given A0,A1 and oracle access to bG̃s,E(·)ep, but with one exception: on query x, define the
“bad event” BADx for that query to be⌊

G̃s,E(x) + [−R,R]n`
⌉
p
6= {bG̃s,E(x)ep},

where R = r
√
|T | · (n`)e(T ) · ω(

√
log λ). That is, BADx indicates whether any entry of G̃s,E(x) ∈ Zn`q is

“too close” to another element of Zq that rounds to a different value in Zp. Note that because q/p� R, a
y ∈ Zq is “too close” in this sense if and only if by −Rep 6= by +Rep, so BADx can be efficiently detected
given only the value of G̃s,E(x). If BADx occurs any of the attacker’s queries, then the game immediately
aborts.

In Lemma 3.7 below, we show that for any fixed x ∈ {0, 1}|T |, with overwhelming probability over
the choice of E ← E , it is the case that E(x) ∈ [−R,R]n`. Therefore, for any fixed x we have G̃s,E(x) ∈
Gs(x) + [−R,R]n`. Hence bG̃s,E(x)ep = bGs(x)ep as long as BADx does not occur, and the attacker’s
queries are answered exactly as they are in H0, conditioned on the game not aborting. It follows that for any
(potentially unbounded) attacker A,

AdvH0,H1(A) ≤ Pr[some BADx occurs in H1 with attacker A] + negl(λ). (3.3)

We do not directly bound the probability that some BADx occurs in H1, but instead defer to the analysis of
the next game, where we can show that it is indeed negligible.

Game H2. We choose A0,A1 as above, and U to be a uniformly random function from {0, 1}|T | to Zn`q
(defined “lazily” as the attacker makes queries). The attacker is given A0,A1 and oracle access to bU(·)ep,
with the same “bad event” and abort condition as in H1, but defined relative to U instead of G̃s,E .

In Theorem 3.8 below, we show that G̃ is a PRF family under the LWE assumption from the theorem
statement, i.e., no efficient adversary can distinguish (given oracle access) between G̃s,E ← G̃ and a uniformly
random function U : {0, 1}|T | → Zn`q . Because the BADx event in H1 (respectively, H2) for a query x can
be tested efficiently given query access to G̃ (resp., U ), a trivial simulation implies that for any efficient
attacker A, we have AdvH1,H2(A) ≤ negl(λ). For the same reasons, it also follows by a straightforward
simulation that for any efficient attacker A,

|Pr[some BADx occurs in H1 with A]− Pr[some BADx occurs in H2 with A]| ≤ negl(λ).

In H2, because U is a uniformly random function, for any particular query x the probability that BADx
occurs is bounded by (2R+ 1) · (n`) · p/q, which is negl(λ) by assumption on q. By a union bound over all
poly(λ) queries of an efficient A, and then applying Equation (3.3), we therefore have that

Pr[some BADx occurs in H1 with A] = negl(λ) ⇒ AdvH0,H1(A) = negl(λ).

Game H3. We choose A0,A1 and a uniformly random function U as above, and give the attacker oracle
access to bU(·)ep. For each query x we define the event BADx as in game H2, but still answer the query
and continue with the game even if BADx occurs. From the above analysis of H2 it follows that for any
(potentially unbounded) attacker A making poly(λ) queries, we have

AdvH2,H3(A) ≤ Pr[some BADx occurs in H2 with A] = negl(λ).

13



Finally, observe that bU(·)ep is a truly random function from {0, 1}|T | to Zn`p , up to the bias involved in
rounding the uniform distribution on Zq to Zp. Because q ≥ p · λω(1), this bias is negligible (and there is no
bias if p divides q).

By the triangle inequality, it follows that for any efficient A, we have AdvH0,H3(A) = negl(λ), and this
completes the proof.

We next define the “error function” family E = EA0,A1,T and prove the claims used in the above proof.
To define the error functions we first need a couple of simple definitions.

Definition 3.4 (Pruning). For a full binary tree T of at least one node, define its pruning T ′ = pr(T )
inductively as follows: if |T.l| ≤ 1 then T ′ := T.r; otherwise, T ′.l := pr(T.l) and T ′.r := T.r. We let T (i)

denote the ith successive pruning of T , i.e., T (0) = T and T (i) = pr(T (i−1)).

In other words, pruning a tree node removes its leftmost leaf v and replaces the subtree rooted at v’s
parent (if it exists) with the subtree rooted at v’s sibling. Notice that pruning cannot increase the tree’s
expansion (i.e., left depth; see Equation (2.4)): e(T ′) ≤ e(T ).

Definition 3.5. Given A0,A1 ∈ Zn×n`q and a full binary tree T of at least one node, define the function
ST : {0, 1}|T |−1 → Zn`×n` recursively as follows:

ST (x) =

{
I (the identity matrix) if |T | = 1

ST.l(xl) ·G−1(AT.r(xr)) otherwise,
(3.4)

where x = xl‖xr for |xl| = |T.l| − 1, |xr| = |T.r|.

Notice that if T ′ = pr(T ) and x = x1‖x′ ∈ {0, 1}|T | for |x1| = 1, then it follows directly from the definitions
(recalling that Aε(ε) = G) and by induction that

AT (x) = Ax1 · ST (x′), (3.5)

G · ST (x′) = AT ′(x
′). (3.6)

Definition 3.6 (Error Functions). For public matrices A0,A1 ∈ Zn×n`q and a full binary tree T , the family
E = EA0,A1,T consists of functions from {0, 1}|T | to Zn`, defined inductively as follows.

• For |T | = 0, the sole function in E is defined simply as E(ε) := 0.

• For |T | ≥ 1, a function in E is indexed by some e0, e1 ∈ Zn` and E′0, E
′
1 ∈ E ′ = EA0,A1,T ′ , where T ′

is the pruning of T . For x = x1‖x′ ∈ {0, 1}|T |, the function is defined as

Ee0,e1,E′0,E
′
1
(x) := etx1 · ST (x′) + E′x1(x′).

For a given error function distribution χ over Z, we endow E with the distribution where e0, e1 ← χn`

and E′0, E
′
1 ← E ′ are all chosen independently.

Note that a function E ∈ E is fully specified by exponentially (in |T |) many error vectors (namely, one ew
for each w ∈ {0, 1}≤|T |), and the value E(x) is fully determined by those ew where w is a prefix of x
(and A0,A1). This large number of error vectors is what prevents G̃ itself from being usable as a PRF family.
However, as needed in the proof of Theorem 2.3 (game H1), a function E ← E can be sampled “lazily” as
values E(x) are needed, since each value of E(x) depends on only a small number of the error vectors.

We now prove the claim used in the analysis of game H1 above.
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Lemma 3.7. Let A0,A1 ∈ Zn×n`q , let T be any full binary tree, and let χ be a subgaussian distribution
over Z with parameter r > 0, used to sample the error functions from the family E = EA0,A1,T . Then for any
x ∈ {0, 1}|T | and forE ← E , the vectorE(x) ∈ Zn` is subgaussian with parameter at most r

√
|T | ·(n`)e(T ).

In particular, for R = r
√
|T | · (n`)e(T ) · ω(

√
log λ) we have E(x) ∈ [−R,R]n` except with negligible

probability in λ (over the choice of E).

Proof. First note that for |T | = 0 we have E(x) = 0, which satisfies the claim. For |T | ≥ 1 we proceed by
induction, assuming the claim for the pruning T ′ of T , for which e(T ′) ≤ e(T ). Let E = Ee0,e1,E′0,E

′
1
← E .

By definition, all the eb ← χn` and E′b ← EA0,A1,T ′ are mutually independent, and E(x) = etx1 · ST (x′) +
E′x1(x′), where x = x1‖x′.

• By unrolling the recursion in Definition 3.5, we see that ST (x′) is the product of d separate G−1(·)
components, where d ≤ e(T ) is the depth of the leftmost leaf of T . The G−1(·) components in the
product are n`-by-n` binary matrices, all of which have spectral norm bounded by n`, by Lemma 3.1.
By submultiplicative property of the spectral norm, this implies that s1(ST (x′)) ≤ (n`)e(T ).

• Because each vector ex1 ← χn` is subgaussian with parameter r, it follows that etx1 · ST (x′) is
subgaussian with parameter r · s1(ST (x′)) ≤ r · (n`)e(T ).

• By the induction hypothesis, E′x1(x′) is subgaussian with parameter r
√
|T ′| · (n`)e(T

′) ≤ r
√
|T | − 1 ·

(n`)e(T ), and is independent of ex1 .

• By Pythagorean additivity of subgaussians, we conclude that E(x) is subgaussian with parameter
r
√
|T | · (n`)e(T ), as claimed.

The “in particular” part of the claim follows from the fact that each entry of E(x) is subgaussian with the
same parameter, the Gaussian tail bound for subgaussians, and the union bound.

We finally prove that the function family G̃ from Definition 3.3 is pseudorandom.

Theorem 3.8. For any n, q ≥ 1 and error distribution χ over Z, any full binary tree T , and over the
uniformly random and independent choice of A0,A1 ∈ Zn×n`q , the family G̃ = G̃A0,A1,T is pseudorandom,
assuming the hardness of decision-LWEn,q,χ.

Proof. We proceed through a series of games, one for each bit of the input. In each successive game, we
modify the function family G̃ a little, until we are left with the family of all functions from {0, 1}|T | to Zn`q
(with uniform distribution), and we show that each successive game is computationally indistinguishable
under the LWE assumption from the theorem statement.

To define the games formally, we first need some notation. For a bit string x of length at least i, let
x(i) = x1x2 · · ·xi denote the string of its first i bits, and let x(i) denote the remainder of the string. Where
A0,A1 and T are clear from context, let G(i) = GA0,A1,T (i) and similarly for E(i). Let P ⊂ Zn` denote an
arbitrary set of representatives of the quotient group Zn`q /Gt · Znq , and define a family of auxiliary functions

V(i) = V(i)A0,A1,T
as follows.

Definition 3.9. For public matrices A0,A1 ∈ Zn×n`q , a full binary tree T , and 0 ≤ i ≤ |T |, the family

V(i) = V(i)A0,A1,T
consists of functions from {0, 1}|T | to Zn`, and is defined inductively as follows.
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• The sole function in V(0) is defined simply as V (x) := 0.

• For i ≥ 1, a function in V(i) is indexed by some vw ∈ Zn` for every w ∈ {0, 1}i, and some
V ′ ∈ V(i−1). The function is defined as

V{vw},V ′(x) := vtx(i) · ST (i−1)(x(i)) + V ′(x).

We endow V(i) with the distribution where the vw ← P and V ′ ← V(i−1) are all chosen independently
and uniformly.

Similarly to the family E of error functions, the description of a function in V(i) consists of an exponential
(in i) number of vw vectors, and can be sampled lazily.

We now define game Hi for 0 ≤ i ≤ |T |.

Game Hi. Choose A0,A1 ← Zn×n`q independently, and lazily sample Gsw ← G(i) and Ew ← E(i) for
each w ∈ {0, 1}i, and V ← V(i). Give the adversary A0,A1 and oracle access to the function

H(x) := Gsx(i)
(x(i)) + Ex(i)(x

(i)) + V (x). (3.7)

Claim 3.10. Game H0 corresponds to the real attack game against the family G̃, and game H|T | corresponds
to oracle access to a uniformly random function.

Proof. The first claim follows by definition of G̃ = G̃A0,A1,T , and because V(0) consists solely of the zero
function. For the second claim, for i = |T | we have x(i) = x, x(i) = ε, and T (i) = ε (the empty tree), so by
Definitions 3.2, 3.6, and 3.9,

H(x) = Gsx(ε) + Ex(ε) + V (x) = stx ·G + vtx + V ′(x).

Since sx ∈ Znq ,vx ∈ P are uniformly random and independent for each x, and P is a set of representatives
of the quotient group Zn`q /Gt · Znq , the values stx ·G + vtx ∈ Zn`q are uniformly random and independent.
Since V ′ is independent of these as well, H is a uniformly random function.

It remains to prove that successive games are computationally indistinguishable. To do so we define the
following games H ′i for 1 ≤ i ≤ |T |.

Game H ′i. Choose A0,A1 ← Zn×n`q independently, and lazily sample uw ← Zn`q and Ew ← E(i) for each
w ∈ {0, 1}i, and V ′ ← V(i−1). Give the adversary A0,A1 and oracle access to the function

H ′(x) = utx(i) · ST (i−1)(x(i)) + Ex(i)(x
(i)) + V (x). (3.8)

Claim 3.11. For 1 ≤ i ≤ |T |, games Hi and H ′i are equivalent.

Proof. We can write each uniformly random uw ∈ Zn`q for w ∈ {0, 1}i as utw = stw · Gt + vtw, where
sw ∈ Znq and vw ∈ P are uniformly random and independent. Therefore, we can rewrite the function H ′(·)
from Equation (3.8) as

H ′(x) =
(
stx(i) ·G + vtx(i)

)
· ST (i−1)(x(i)) + Ex(i)(x

(i)) + V ′(x)

= stx(i) ·G · ST (i−1)(x(i)) + Ex(i)(x
(i)) +

(
vtx(i) · ST (i−1)(x(i)) + V ′(x)

)
= Gsx(i)

(x(i)) + Ex(i)(x
(i)) + V (x),
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where in the final equality we have used Equation (3.6), and we have defined V (x) to be the second
parenthesized component of the previous expression. Notice that all the functions Gsx(i)

, Ex(i) , and V are

drawn independently from G(i), E(i), and V(i) (respectively), and this proves the claim.

Claim 3.12. For 0 ≤ i ≤ |T | − 1, games Hi and H ′i+1 are computationally indistinguishable under the
LWE assumption from the theorem statement.

Proof. To prove the claim, we design an efficient simulator S which receives as input a pair of matrices
(A,Bt) ∈ Zn×2n`q × ZQ×2n`q , where Q = poly(λ) is the minimum of 2i and the number of queries that
the adversary makes. The simulator parses A = [A0 | A1] where A0,A1 ∈ Zn×n`q and gives them to the
adversary. It lazily samples a V ← V(i) and an Ew ← E(i+1) for every w ∈ {0, 1}i+1. Then for each query x
from the adversary, if a vector btx(i) has not already been defined, it lets btx(i) be a previously unused row
of Bt. It parses btx(i) = (btx(i)‖0

| btx(i)‖1), where bx(i)‖b ∈ Zn`q for each b ∈ {0, 1}. It then answers the
query with the value

J(x) := btx(i+1)
· ST (i)(x(i+1)) + Ex(i+1)

(x(i+1)) + V (x).

This completes the description of S.
We now analyze the behavior of S for the two distributions of (A,Bt) from the decision-LWE problem.

In both cases, A is uniformly random and so the public parameters are properly distributed. When B is
uniformly random, it can be seen by inspection that the function J is drawn from the same distribution as the
function H ′ in game H ′i+1 described in Equation (3.8), so the simulator exactly emulates game H ′i+1.

We now analyze the other case, namely, Bt = St ·A+Et for independent St ← ZQ×nq and Et ← χQ×2n`.
Then letting stx(i) , (e

t
x(i)‖0

| etx(i)‖1) respectively be the rows of St,Et corresponding to the row of Bt used

as btx(i) , we have

J(x) =
(
stx(i) ·Axi+1 + etx(i)‖xi+1

)
· ST (i)(x(i+1)) + Ex(i+1)

(x(i+1)) + V (x)

= stx(i) ·AT (i)(x(i)) +
(
etx(i)‖xi+1

· ST (i)(x(i+1)) + Ex(i)‖xi+1
(x(i+1))

)
+ V (x)

= Gsx(i)
(x(i)) + Ex(i)(x

(i)) + V (x),

where in the second equality we have used Equation (3.5), and in the last expression we have defined
Ex(i)(x

(i)) to be the parenthesized component from the previous expression. Notice that by the distributions
of all the variables, the functions Gsw , Ew (for each queried prefix w ∈ {0, 1}i) and V are all drawn
independently from G(i), E(i), and V(i), so in this case the simulator exactly emulates game Hi.

Because the two LWE input distributions are computationally indistinguishable by assumption and S is
efficient, it follows that Hi and H ′i+1 are computationally indistinguishable, and the claim is proved.

By repeated application of Claims 3.11 and 3.12, we have that H0
c
≈ H ′1 ≡ H1

c
≈ H ′2 ≡ · · · ≡ H|T |−1

c
≈

H ′|T | ≡ H|T |, and so H0
c
≈ H|T | by the triangle inequality. This completes the proof of Theorem 3.8.
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