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Abstract

Random number generators have direct applications in information security, online
gaming, gambling, and computer science in general. True random number generators
need an entropy source which is a physical source with inherent uncertainty, to ensure
unpredictability of the output. In this paper we propose a new indirect approach to
collecting entropy using human errors in the game play of a user against a computer. We
argue that these errors are due to a large set of factors and provide a good source of
randomness. To show the viability of this proposal, we design and implement a game,
conduct a user study in which we collect user input in the game, and extract randomness
from it. We measure the rate and the quality of the resulting randomness that clearly
show effectiveness of the approach. Our work opens a new direction for construction of
entropy sources that can be incorporated into a large class of video games.

1 Introduction

Randomness has a central role in computer science and in particular information security.
Security of cryptographic algorithms and protocols relies on keys that must be random. Random
coins used in randomized encryption and authentication algorithms and values such as nonces in
protocols, must be unpredictable. In all these cases, unpredictability of random values is crucial
for security proofs. There are also applications such as online games, gambling applications and
lotteries in which unpredictability is a critical requirement.

Poor choices of randomness in the past have resulted in complete breakdown of security and
expected functionality of the system. Early reported examples of bad choices of randomness
resulting in security failure include attack on Netscape implementation of the SSL protocol
[GW96] and weakness of entropy collection in Linux Pseudo-Random Generator [GPR06]. A
more recent high profile reported case was the discovery of collisions among secret (and public)
keys generated by individuals around the world [LHA+12, HDWH12]. Further studies attributed
the phenomenon partly due to the flaw in Linux kernel randomness generation subsystem.

In computer systems, true randomness is commonly generated by sampling a complex
external source such as disk accesses or time intervals between system interrupts, or is from
users’ inputs. Once some true randomness is generated, one can use pseudorandom generators to
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generate longer sequences whose unpredictability is computational. In all cases, unpredictability
of the output of the pseudorandom generator crucially depends on the randomness of the initial
true randomness. Importance of true randomness in computer systems has been well recognized
and operating systems such as Linux and Windows have dedicated subsystems for entropy
collection and randomness generation. These subsystems use internal system interrupts as well
as user generated events as entropy source. High demand on entropy pools, for example when a
computer runs multiple processes and algorithms that require randomness at the same time, can
result in either pseudorandom values instead of truly random values, or stopping the execution
until sufficient randomness become available.

The rate of randomness generation can be increased by including new sources of randomness
which in many cased requires new hardware. An attractive alternative that does not require
additional hardware is to use human assistance in randomness generation. This can be by
directly asking human to input random numbers or move the mouse randomly [ZLwW+09]. The
process is unintuitive and experiments in psychology have shown that the resulting randomness
has bias [Wag72].

In this paper, we propose a novel indirect approach to entropy collection from human input
in game play that uses games as a targeted activity that the human engages in, and as a by
product generates random values. Video games are one of the most widely used computer
applications and embedding entropy collection in a large class of such games provides a rich
source of entropy for computer systems.

1.1 Our work

Our main observation is that human, even if highly skilled, would not be able to have perfect
game play in video games because of a large set of factors related to human cognitive processes
and motor skill and coordination, limitations of computer interface including display, keyboard
and mouse, and unpredictability elements in the game. The combination of these factors in well
designed games results in the player “missing” the target in the game where although the goal
may appear simple, achieving it is not always possible. Games usually come with a scoring
system that rewards smaller “misses” of the target and provides incentive for further play.

We propose to use the error resulting from the confluence of the complex factors outlined
above, as an entropy source. The unpredictability in the output of this source is inherent in
the game design: that is a game that always results in win or loose is not “interesting” and
will not be designed. In contrast games in which the user can “loose” a good portion of rounds
are considered interesting. In a human game play randomness can be collected from different
variables in the game, including the timing of different actions, the size of the “miss” as well as
variables recording aspects of the human input such as angle of a shot, and so in each round,
even when the user wins, a good amount of entropy can be generated.

Randomness from human game play. Halprin et al. [HN09] proposed to use human input
in a game played against a computer as an entropy source. Their work was inspired by Rapport
et al.’s [RB92] experiments in psychology that showed a human playing a competitive zero-sum
game with uniform optimal strategy, generates better randomness compared to the case that
they are directly instructed to supply random inputs. Halprin et al. used an expanded version
(larger input set) of the game and replaced one of the users by the computer. The underlying
assumption in this approach is that the human sequence of actions, when engaged in a game
with uniform optimal strategy, simulates the game optimal strategy and so can be used as a
uniform source of randomness. For the choices of human to be close to random, Psychological
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results require that human is presented with few choices, otherwise the human will tend to
select certain choices with more probability. So Alimomeni et al. [ASNS14] proposed a game
design along the above game-theoretic approach in which human had only 3 choices and the
randomness extraction was done as part of the game design with no need for seed. They showed
that this design still keep the rate of min-entropy high because of the added extractor in the
game that needs no randomness.
The above approaches are fundamentally different from the approach in this paper that uses the
complexity of the process of generation of human input in the game, as the entropy source. Our
approach is more in the spirit of sampling a complex process such as disk access, now using
human and computer interaction as the complex process.

To use Halrin et al.’s approach in practice, one needs to design a two-party game with the
supporting game-theoretic analysis to show the optimal strategy is uniform. The next step is
to convert the game into an interesting game between the human and computer and validate
that human would play as expected (is able to simulate the optimal strategy). In contrast our
approach can be easily incorporated into video games such as target shooting games and does
not need new game designs.

Implementation. As a proof of concept we designed and implemented a multilevel archery
game, collected user inputs in the game and extracted randomness from the collected inputs.
For randomness extraction we used the approach in [BST03] that uses universal hash functions.
This allowed us to have provable randomness in the output of the extractor, as long as a good
estimate of the input entropy is given. To estimate the min-entropy of the input to the extractor
(min-entropy of the user input), we employed a set of min-entropy estimation tests proposed by
NIST and used a beta implementation by NIST1[BK12].

Our results clearly show that error variables, for example the distance between the target
and the trajectory of the arrow, provides a very good source of entropy. The experiments show
that the game can generate 15 to 21.5 bits of min-entropy per user shot using only the error
variable. The variation in the amount of min-entropy is due to the variations in the game level
and also varying levels of skill and learnability of users. Our experiments demonstrate that
although entropy decreases as players become more experienced, but the entropy of the error
variable will stay non-zero and even for the most experienced player at the lowest level of the
game, 15 bits entropy per shot can be expected. The details of the game, experiments analysis
of the users’ input sequences and the extraction algorithm are given in Section 4.

1.2 Applications

Random number generation in game consoles and smart phones. Game consoles
require true randomness for secure communication with the game servers, checking the digitally
signed games and firmware updates from the server and to provide randomness to the games
that is played. Lack of good random generation subsystems in these consoles may result in
attacks such as reported in [Hot10]. Incorporating our approach into the video games played in
such consoles would provide a method of generating randomness with high rate and verifiable
properties. Our approach also provides an ideal entropy source for small devices such as smart
phones that are used for gaming and have limited source of entropy.

User support for randomness generation in OS. An immediate application of our proposal
is to provide on-demand entropy source for OS random number generation module. In softwares

1The software was provided by Tim Hall and John Kelsey from NIST.
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such as PGP, Openssl, and GnuPG that need generation of cryptographic keys, using true
randomness is critical. Such applications rely on the random number generation of the OS which
may not havie true randomness available at the time of the request. Our proposed entropy
source can be used for entropy collection from users by asking them to play a simple game. Our
experiments showed that producing 100 bits of entropy required 6 runs of the game, making
the approach an effective solution in these situations.

Cryptography with unknown computing devices. In many scenarios the user terminal
is not well known to the user, or the terminal may not be capable of performing the required
cryptographic operations to generate good randomness. For example a terminal used in an
Internet Cafe although may wok correctly- but there is no guarantee that it generates good
randomness that is needed for secure connection to a remote server. Using our proposed method
of extracting random bits from game play, one can generate random bits without relying on the
terminal randomness generation subsystem.

Contributory random number generation. In virtualized environments, multiple users
share the same hardware (including CPU and RAM) and so the entropy pools of different users
share a substantial amount of entropy produced by the system’s shared hardware, resulting in
the risk of dependence between entropy pools of different users. This is an important concern
if the resulting randomness is used for key generation, potentially leading to attacks such as
those reported in [HDWH12]. Using users’ game play provides a source of randomness that is
independent from the underlying hardware and other users’ randomness.

1.3 Related works

The experimental psychology studies that suggested human’s input in games as a good source
of entropy [RB92, AF95], used a two-player game called matching pennies. This is a two-party
zero-sum game where each user chooses one face of a penny; the penny is thrown; user one
wins if the throws have matching faces, and the second if they do not. The game has uniform
optimal mixed strategy. The game generates at most one bit per user input. Halprin et al.
[HN09] based their work on these studies and used an extended two-dimensional version of
the matching penny game as a game between a human and a computer. Using this expanded
version the choice set of the user are points on a rectangle, resulting in increased number of
random bits per user input. In playing the game, the computer needed the same amount of
randomness, which in practice was supplied by a pseudo-random generator. For randomness
extraction, a method similar to ours was used which needed an estimate of the min-entropy of
the user generated sequence. Authors used a visual representation of the choices of the user on a
two dimensional grid to argue the require randomness of the sequence and so applicability of the
extractor approach. Our work however uses the best existing tests to quantify the min-entropy
of the user sequence and support the intuition behind the approach.

Users’ inputs through devices such as mouse and keyboard, has been widely used for
background entropy collection in computer systems. An example is Linux based systems
[GPR06] in which the operating system continuously runs a background process to collect
entropy from users’ inputs. Compared to our approach these entropy sources in general are
expected to have lower entropy rate when used for on-demand collection of entropy. This is
because of the repetitive patterns of mouse movements or key presses.

Organization In Section 2 we provide background and definitions and introduce our approach
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to randomness extraction. Section 3 describes our designed game and its generated sequence.
Section 4 explains the experiments and gives analysis of the sequences collected from users.
Finally in Section 5, we summarize our results and give the concluding remarks.

2 Preliminaries

We will use the following notations. Random variables are denoted by capital letters, such as X.
A random variable X is defined over a set X with a probability distribution PrX , meaning that
X takes the value x ∈ X with probability PrX(x) = Pr[X = x]. Uniform distribution over a set
X is denoted by UX or Un if X = {0, 1}n. The logarithms will be in base 2 throughout the paper.
Shannon entropy of X is denoted by H(X) and given by, H(X) =

∑
x∈X PrX(x) log Pr(x).

Shannon entropy, is an average measure of uncertainty. For example, consider a source X
that generates 0n with probability 0.99 and every other n-bit sequence with the same uniform
probability. For this source H(X) ≥ 0.01n which grows linearly with n. However the source
cannot be used as an entropy source because of the predictability of output. Min-entropy of a
source is a worst case measure and represents the best chance of the adversary in predicting
the output of an entropy source. The min-entropy H∞(X) of a random variable X is given by,
H∞(X) = − log maxx PrX(x). Note that for the example source X above, H∞(X) ≤ 1 which
matches our intuition about the randomness of X. Statistical distance measures closeness of
distributions and is used to measure closeness of the output of an entropy source to that of a
perfect entropy source. The statistical distance ∆(X, Y ) between two random variables X and
Y over the same range A, is given by ∆(X, Y ) = 1

2

∑
a∈A |PrX(a)− PrY (a)|. If ∆(X,UX ) ≤ ε,

then we say X is ε-biased or ε-close to uniform. We say X is almost truly random if X is
ε-biased for a sufficiently small ε. A sequence of random variables {Xi}ni=1 is called an almost
truly random sequence, if {Xi|Xi−1 = xi−1, . . . , X1 = x1}ni=1 is ε-biased. An entropy source is a
generator of sequences of symbols {xi}ni=1 each sampled from a random variable Xi, where all
Xi are defined over a finite set X . It is important to note that output symbols of an entropy
source may be correlated and not necessarily have the same distribution.

2.1 True Random Number Generators (TRNG)

A TRNG has two components: 1) An entropy source that generates possibly biased and
dependent sequence of random numbers. This in practice is by reading the output of a physical
source such as a lava lamp [C71], sampling a complex process such as disk access in a computer
system, or sampling user’s input. This sequence can be further sampled and quantized; and 2)
A function that is applied to the output of the first step, resulting in an almost truly random
sequence that removes the biases and dependencies among symbols of the input. The aim of a
TRNG is to generate an almost truly random sequence. The closeness to a true random sequence
is measured using statistical distance. The rate of a TRNG is the number of random output
bits per time unit (e.g. seconds). A commonly used functions in the last step of a TRNG are
extractors, briefly recalled below.

Randomness extractor. A randomness extractor [NZ96] is a function that transforms an
entropy source with non-uniform distribution to an almost truly random source.

Definition 2.1 For a family of distributions C, a deterministic ε-extractor is a function
ext : {0, 1}n → {0, 1}m that for every distribution X ∈ C, satisfies ∆(ext(X), Um) ≤ ε. A family
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of distributions is called extractable if there exists an extractor that satisfies the above property
for all distributions in the family.

Deterministic extractors can be used as long as it can be assumed that the output of the
entropy source is one of the distributions in the family C. For example, the family of Bernoulli
distributions with unknown probability p, is extractable by the Von Neumann extractor [vN51].
Many families of distributions are not deterministically extractable [Sha11].

Definition 2.2 For a family of distributions C, an ε-seeded extractor is a function ext :
{0, 1}n × {0, 1}s → {0, 1}m that for every distribution X ∈ C satisfies, ∆(ext(X,S), Um) ≤ ε,
where S is the uniform distribution over {0, 1}s.

An important family of distributions that are extractable by seeded extractors are k-sources: a
distribution X is a k-source if H∞(X) ≥ k. Although many entropy sources are extractable
using seeded extractors, but the the extractor seed needs a source of true randomness that may
not be available in practice. In [BST03], Barak et al. proposed a framework for randomness
extraction with guaranteed statistical property for the output, that can be seen as a compromise
between seeded and deterministic extractors.

Barak et al. framework. The motivation of this work is to extract randomness for crypto-
graphic applications where the adversary may influence the output of the entropy source. The
adversary’s influence is modelled by a class of 2t possible distributions generated by the source.
They proposed a randomness extractor with provable output properties (in terms of statistical
distance) for sources that have sufficient min-entropy while the output source symbols may be
correlated. The extraction uses t-resilient extractor which can extract from 2t distributions
(selected adversarially), all having min-entropy k. Certain hash functions are good t-resilient
extractors.

Theorem 2.1 [BST03] For every n, k,m and ε and l ≥ 2, an l-wise independent hash function
with a seed of length l is a t-resilient extractor, where t = l

2
(k −m− 2 log2(

1
ε
)− log2(l) + 2)−

m− 2− log2(
1
ε
).

An l-wise independent family of hash functions can be constructed using a polynomial hs(x) =∑
1≤i≤l aix

i−1 of degree l over the finite field GF (2n), where s = (a1, . . . , al) is the seed of the
extractor and x ∈ GF (2n) is the n-bit input.

The t-resilient extractors in Barak et. al’s approach reuses a truly random seed that is
hardwired into the system (e.g. at manufacturing time) and does not need new randomness
for every extraction. Although extractors enjoy sound mathematical foundations, in practice
the output of entropy sources are mostly processed using hash functions with computational
assumptions and so extractors have not been widely implemented in hardware or software. In
this paper we follow the framework of Barak et al.

3 Randomness from user errors

Consider a computer game in which the player aims to hit a target, and wins if the projectile
“hits” the target. There are many factors that contribute to the user missing the target even if
they play their “best”, making the game result uncertain. We propose to use the uncertainty
in the game’s result as the entropy source. Assuming a human is engaged in the game and
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plays their best, the uncertainty in the result will be due to a large set of factors including, 1)
limitations of human cognitive and motor skill to correctly estimate values, and calculate the
best response values (e.g. time limitations imposed by the game to calculate the best angle
and speed of throw) and perform the required action at the exact time, 2) limitation of input
devices for inputing the best values when they are known, for example limitation of a mouse
in pointing an arrow in a particular direction, and 3) unknown parameters of the game (e.g.
game’s hidden constants) and variabilities that can be introduced in different rounds. Other
human related factors that would contribute to the unpredictability of the results are, limited
attention span, cognitive biases, communication errors, limits of memory and the like. These
uncertainties can be amplified by introducing extra uncertainty (pseudo-randomness) in the
game: for example allowing the target to have slow movement. As a proof of concept for this
proposal, we designed and implemented an archery game, studied user generated sequences and
the randomness extracted from them. Below are more details of this work.

3.1 The Game

Our basic game is a single shooter archery game in which the player aims an arrow at a target
and wins if the arrow hits the target: the closer to the centre of the target, the higher the score.
A screenshot of the game is shown in Figure 1. The arrow path follows the laws of physics and
is determined by the direction of the shot, initial velocity of the arrow, and the earth gravity
pull force. This results in a parabolic path that the arrow will traverse to hit the target. The
player chooses an initial speed and angle of throw to hit the target. The game is available to
play at [Ali13].

Figure 1: Screenshot of the game Figure 2: The measurement of output

The target is shown by a circular disk on the screen. The game records the distance between
the center of the target and the trajectory (Figure 2). To display the trajectory on the screen,
graphic engine translates the location of the arrow into pixel values and show their locations on
the display. We however use the actual value of the distance between the center of the target
and the trajectory calculated using laws of physics (kinematic equations), and then round it off
to a 32 bit floating point number (the effective bits). The advantage of using this approach is
not only avoiding entropy loss, but also independence of the implementation and measurements
from the screen size and resolution of the end device. For the error variable we use the range
I = [−120, 120] with each sample read as a 32 bit floating point number, and represented as
[Sign(1bit), Exponent(8bits), Fraction(23 bits)].

We will refer to each shot, as a round of the game. After playing the game for a number of
rounds, the server will have a sequence of floating point numbers in the interval I = [−120, 120].

The range [-120, 120] can be adjusted depending on factors such as screen size and target
shape. One can use multiple seemingly unrelated variables in the game for the source of entropy.
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Examples are, the angle and initial velocity of the shot, time that takes for a user to make a shot,
and the time between two consecutive shots. We only analyze the entropy source corresponding
to the variable that represents the human error in hitting the target. The game was implemented
using HTML5 for ease of portability.

3.2 Game parameters and levels

Our initial experiments showed that the game parameters affect the final entropy. We designed
game levels with varying sets of parameters. The parameters that we alter in the game are: 1)
Location of the target, 2) Speed of the target movement, 3) Gravity force with two possible
direction, and 4) Wind speed and direction. These parameters can change for every player shot,
or stay constant during the game. There were other possibilities such as adding an obstacle (e.g.
a blocker wall) to force the player choose angles from a wider spectrum, putting time limit on
each shot to force the player to release the arrow faster, smaller target or farther target in the
screen that could be considered in future. The final game has 8 levels, 3 of which were used for
experiments labeled as A, B and C respectively. In level A, all parameters were “fixed” with
no change during the rounds, and so no input is used from the computer. In level B, a subset
of game parameters are changed in each round of the game and the values of the parameters
were shown in the interface so the player can decide based on that information. In level C, the
values of changing parameters of level B were not shown to the user (except the direction of
gravity and wind). The high uncertainty in this level of the game makes the players rely on
their intuition to play the game.

We did not perform a user study to show attractiveness of these levels but comments from
users indicated level B was the most appealing level.

3.3 Entropy source

The distance between O, the target center, and the trajectory at O′, is a 32 bit floating point
number. One can use quantization to map these numbers into ` bins. A simple quantization
is to consider circular areas, centered at O with linearly increasing distances: the first circle
will have radius r, the second 2r, etc. Now if O′ for a miss trajectory is in the first circle, it is
considered 0, the next one 1 and so on. A good quantization and extraction will ensure that
every element of the alphabet is generated “roughly” with the same relative frequency. To
have this property, we followed the randomness extraction framework of [BST03] with an extra
statistical evaluation step at the end. Our randomness extraction and evaluation has three steps.
i) Estimate min-entropy of the sequence; ii) Given the estimate, apply an appropriate extractor
(in our case pairwise independent hash function) on the sequence; and iii) Use statistical tests
to evaluate quality of the final output sequence.

We used the NIST tests [BK12] outlined in Appendix A, to estimate the min-entropy of our
sequences. Our experimental results showed that our entropy sources were not independent
and identically distributed (i.i.d). This was because for each data set, either the Directional
run or Covariance tests (part of shuffling tests) failed. We estimated the min-entropy of our
sequences assuming non-i.i.d sources. In the post processing step, sequences were converted to
truly random sequences, using extractors. We used a t-resilient extractor defined over a finite
field, and so floating point numbers needed to be translated into numbers in that field. One
naive approach was to cast the floating point numbers into an integer value corresponding to
the same bit representation of the floating point number. This method however will affect the

8



structure of the sequence. For example, the sequence of differences between two floating point
numbers (which represents the distance of the arrow from the target centre) will have a different
structure from the sequence of differences between their corresponding integer values if simply
casted. In order to maintain the structure of the entropy sequences in our experiments in Section
4, we added a processing step to convert the output sequence into a sequence of integers while
keeping the structure of the source as explained in Appendix C. The final output string (after
application of extractor) was evaluated using statistical tests. We used the TestU01 framework
[LS07b] with an implementation available at [LS07a]. This framework has implemented an
extensive sets of statistical tests including [BRS+10, Mar98].

3.4 From the entropy source to the output

We read 32 bit floating point numbers as the output of the entropy source and interpreted each
sample as a 32 bit integer as described in Appendix C. To use a min-entropy test, we needed a
sufficiently long sequence over an alphabet. We interpreted each 32 bits block as a collection
of subblocks of different lengths. We were limited by available user generated data and so the
size of the subblock depended on the experiment to ensure that a sufficiently long sequence was
available. We used the min-entropy test outlined in Appendix A and considered each sample as
32 1bit subblocks, and obtained an estimation of min-entropy per bit. We considered all bits
of the input, even those with low min-entropy in the estimation. Given the estimate of k bit
min-entropy for a single bit, we obtained an approximate value for min-entropy of each sample
as 32k. Here we effectively assumed bits have similar min-entropy which is reasonable since
our per-bit min-entropy estimation considered all bits. We performed the above calculations
for data from each player including all levels, resulting in minimum estimated min-entropy of
0.626 per bit. For 32 bits, we estimated 32× 0.626 ≈ 20 as the minimum min-entropy of the
source per 32 bits. Note that this minimum is over the data from all levels for each user, and
the minimum we reported earlier (15 bits) is the measured min-entropy for the most skilled user
in the simplest level.
We closely followed the framework explained in Section 2.1 by using a 32-wise independent
hash function, with ε = 2−2, and m = 11. Using theorem 2.1, the extractor was chosen to be
t-resilient with t = 16. Here 2t is the number of possible distributions chosen by the adversary.
Variations of the distribution due to the players experience could be modeled similarly. The
random seed for the extractor was generated from /dev/random in Linux. To examine the
properties of the final output sequence, we used the statistical tests Rabbit [LS07b]. Rabbit
set of tests includes tests from NIST [ea10] and DIEHARD [Mar98] with modified parameters
tuned for smaller sequences and hardware generators. We used an implementation of these tests
in [LS07a]. All tests were successfully passed.

4 Experimental setup and results

In this section, we present our experimental results. We asked a set of 9 players to play each
of the three levels at least 400 rounds. The rest of the levels were played for learning. Our
objective was to answer to the following:
1- The minimum entropy that can be expected in a single round: As noted earlier factors such as
user’s skill level before the game starts, and learning through playing the game, and the match
between the skill level and difficulty of the game will affect the final entropy of each round.

9



2- The change in min-entropy of a player over time: We examine how more experience and
familiarity with the game would affect the amount of entropy generated in a round.
3- The effect of the game level on min-entropy: In this experiment, we determine the best game
parameters that maximize the rate of the output entropy.

4.1 Entropy per round

We performed two sets of experiments to estimate the minimum entropy per round that can be
expected from the game.

4.1.1 Entropy of generated sequences for one player

In this experiment we measured the min-entropy of the sequences generated by each player.
We partitioned a player’s sequence of shots into 20 parts and measured the min-entropy for
each part per bit, i.e. considering each bit of a floating point number as one sample which gives
us 32 samples per round. The graph in Figure 3, demonstrates the maximum, minimum and
average min-entropy for each player, here a set of 9 players. We also repeated the experiment in
Appendix B for all players and Figure 4 illustrates the result of min-entropy in each bit for one
sample user, which is consistent with the experiment on data from all users.
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Figure 3: Min-entropy for players
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Figure 4: Min-entropy in blocks of bits (One user)

4.1.2 Sequence generated by the population

In this experiment, data from all users were considered as one. We then measured the min-
entropy (per bit) for this data set. Our estimation of min-entropy for the population shows that
the average min-entropy in the output is 0.643 per bit, so on average, with 5 shots (5× 32 bits)
one can generate 103 bits of min-entropy. The average time for each shot (over all players) was
approximately 2 seconds. Note that the estimation was higher than the average min-entropy of
all users (when min-entropy was measured separately) which is 0.61 because of higher estimation
of min-entropy by NIST tests for larger datasets as noted at the end of Appendix A.

4.2 Effect of players’ experience on min-entropy

An important factor in game design is the effect of players’ experience on the generated entropy.
Intuitively, we expect the entropy to decrease as players play more. In our game, one expects
more experienced players to hit closer to the target center more often and so less observable error,
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while an inexperienced player’s shot to appear more random. We estimated the min-entropy of
each of the game levels for 3 different players. Our results confirms this expectation. However it
shows that even the most experienced user at the lowest game level can generate good level of
entropy.

Figure 5 illustrates the change in min-entropy in each of the three game levels A, B and C,
as players gain more experience. Figure 5 also shows how the design of the game neutralizes
the affect of player’s experience to keep the average min-entropy high enough for randomness
extraction.

The graphs 5 and 6 are divided into three parts, each consisting of 3 graphs corresponding
to the 3 players. The three parts, left (from 0 to 20), middle (21 to 40) and right (41 to 60),
correspond to the levels A, B and C, respectively. We used 3 players with the highest (the blue
curves marked with letter H), average (the red curves with letter A) and lowest (the yellow
curves with letter L) scores for this experiment. An interesting observation about level C is
that the min-entropy does not necessarily decrease for a user which is expected from the fact
that game parameters are randomly changed and not known by the players.

4.3 Min-entropy and game levels

We considered the change in min-entropy over time for a level. That is reduction in entropy
as users become more skilled. We used the min-entropy estimation for all player’s data, when
partitioned into 20 sections as in previous experiment. The data corresponds to the sequence of
shots over time and so the first section of the data comes first -that is users starting the game-
then the second and the third sections as they get more experienced. We did this experiment
for data for all users to find the average trend of min-entropy.
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Figure 5: Min-entropy during level A, B, C for 3 users
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Figure 6: Average min-entropy change during levels over
all users

The graph is divided into three parts corresponding to the three levels as in previous section.
Figure 6 shows the results of all measurements in the left (level A), middle (level B), and right
(level C) parts. Level A shows a reduction in the min-entropy as the players become more
experienced, and it has the highest min-entropy decrease among the three levels. In level B,
the min-entropy fluctuates around the value 0.625 and is relatively stable. For level C however,
there is no clear trend in the data and this is true in general for all players, but the average
min-entropy is higher than levels A and B. One reason for the increase of min-entropy in level C
is probably the reluctance of players to play well over time due to the many unknown variables of
the game that makes it hard to win. This confirms the effect of non-deterministic and unknown
values of parameters which makes the skill level somewhat irrelevant.
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4.4 Randomness required by computer

As noted earlier, the least significant bits of the output corresponds to cumulation of small
errors in different part of the system and contribute most to the min-entropy. Thus even the
sequence collected from level A without any random input from the computer, could be used for
entropy generation. To confirm this observation we asked the most experienced player (with
highest score) to play level A again, after they had played levels A, B and C more than 1200
rounds. We measured the min-entropy for this data. The player had 20 arrows to hit the target
and with each shot to the center, a bonus arrow was given. The user played for 3 games, totaling
331 shots to the target. With 83% of the shots to the center, the estimated min-entropy of the
player in this 331 shots was roughly 0.521 per bit.

This suggests that the sequence generated by the game has a minimum min-entropy in-
dependent of the randomness used by the game (computer). For higher levels of game that
require randomness, one can use pseudorandom generators in real-time or generate the sequences
beforehand and use them as needed.

5 Concluding remarks

We proposed and analyzed a new approach to entropy collection using human errors in video
games. We verified the approach by developing a basic intuitive game and studied the sequences
generated by users.

Our experiments showed that with this simple design and considering the “worst” case
where the user was experienced and made the least error, the rate of entropy generation is
at least 15 bits per shot. This rate can be increased by adding variability to the game and
also using multiple measurable variables instead of only one. Adding variability to the game
increased the min-entropy by 7 bits per round. In choosing parameters one needs to consider
attractiveness of the game: increase in entropy can be immediately obtained if game constants
such as gravitational force in our case are changed without user’s knowledge. However this
would decrease the entertainment factor of the game. Studying these factors and in general the
randomness generated by users needs a larger user study which is part of our future work. For
the randomness extraction we implemented and used t-resilient extractors. The output from
extractors passed all statistical tests.
Our work opens a new direction for randomness generation in environments without computa-
tional capability or randomness generation subsystems, and provides an attractive solution in a
number of applications.

References

[AF95] P. Ayton and R. Falk. Subjective randomness in hide-and-seek games. In BOOK
of Abstracts of the 15th Bi-annual Conference on Subjective Probability, Utility and
Decision-Making, page 37, 1995.

[Ali13] Mohsen Alimomeni. Archery game, 2013. http://pages.cpsc.ucalgary.ca/

~malimome/game/.

[ASNS14] Mohsen Alimomeni, Reihaneh Safavi-Naini, and Setareh Sharifian. A true random
generator using human gameplay. In GameSec, pages 10–28, 2014.

12



[BK12] Elaine Barker and John Kelsey. Recommendation for the entropy sources used
for random bit generation, August 2012. http://csrc.nist.gov/publications/
drafts/800-90/draft-sp800-90b.pdf.

[BRS+10] Lawrence E. Bassham, III, Andrew L. Rukhin, Juan Soto, James R. Nechvatal,
Miles E. Smid, Elaine B. Barker, Stefan D. Leigh, Mark Levenson, Mark Vangel,
David L. Banks, Nathanael Alan Heckert, James F. Dray, and San Vo. Sp 800-22
rev. 1a. a statistical test suite for random and pseudorandom number generators
for cryptographic applications. Technical report, Gaithersburg, MD, United States,
2010.

[BST03] Boaz Barak, Ronen Shaltiel, and Eran Tromer. True random number generators
secure in a changing environment. In Workshop on Cryptographic Hardware and
Embedded Systems (CHES), number 2779 in LNCS, pages 166–180, 2003.

[C71] W.E. C. Display device, March 16 1971. US Patent 3,570,156.

[CT91] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley
Series in Telecommunications. John Wiley & Sons, Inc., 2nd edition, 1991.

[ea10] Rukhin et al. A statistical test suite for the validation of random number generators
and pseudo random number generators for cryptographic applications, 2010. http:
//csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf.

[GPR06] Zvi Gutterman, Benny Pinkas, and Tzachy Reinman. Analysis of the linux random
number generator. In Security and Privacy, 2006 IEEE Symposium on, pages
15–pp. IEEE, 2006.

[GW96] Ian Goldberg and David Wagner. Randomness and the netscape browser. Dr
Dobb’s Journal-Software Tools for the Professional Programmer, 21(1):66–71, 1996.

[HDWH12] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. Mining
your ps and qs: detection of widespread weak keys in network devices. In Proceedings
of the 21st USENIX conference on Security symposium, Security’12, pages 35–35,
Berkeley, CA, USA, 2012. USENIX Association.

[HN09] R. Halprin and M. Naor. Games for extracting randomness. In Proceedings of the
5th Symposium on Usable Privacy and Security, page 12. ACM, 2009.

[Hot10] George Hotz. Console hacking 2010-ps3 epic fail. In 27th Chaos Communications
Congress, 2010.

[LHA+12] ArjenK. Lenstra, JamesP. Hughes, Maxime Augier, JoppeW. Bos, Thorsten Klein-
jung, and Christophe Wachter. Public keys. In Advances in Cryptology CRYPTO
2012, volume 7417 of Lecture Notes in Computer Science, pages 626–642. Springer
Berlin Heidelberg, 2012.

[LS07a] Pierre L’Ecuyer and Richard Simard. Testu01, August 2007. http://www.iro.

umontreal.ca/~simardr/testu01/tu01.html.

[LS07b] Pierre L’Ecuyer and Richard Simard. Testu01: A c library for empirical testing of
random number generators. ACM Trans. Math. Softw., 33(4), August 2007.

13



[Mar98] George Marsaglia. Diehard, 1998. http://www.stat.fsu.edu/pub/diehard/.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of
Computer and System Sciences, 52(1):43–52, February 1996.

[RB92] A. Rapoport and D.V. Budescu. Generation of random series in two-person strictly
competitive games. Journal of Experimental Psychology: General, 121(3):352, 1992.

[Sha11] R. Shaltiel. An introduction to randomness extractors. Automata, Languages and
Programming, pages 21–41, 2011.

[vN51] John von Neumann. Various techniques used in connection with random digits. J.
Research Nat. Bur. Stand., Appl. Math. Series, 12:36–38, 1951.

[Wag72] W.A. Wagenaar. Generation of random sequences by human subjects: A critical
survey of literature. Psychological Bulletin, 77(1):65, 1972.

[ZLwW+09] Qing Zhou, Xiaofeng Liao, Kwok wo Wong, Yue Hu, and Di Xiao. True random
number generator based on mouse movement and chaotic hash function. Information
Sciences, 179(19):3442 – 3450, 2009.

A Entropy estimation of the source using NIST tests

To measure the min-entropy (or Shannon entropy) of a source one needs to assume certain
structure in the source distribution. For a list of n samples {si}ni=1 from a source S over the
finite set S, if we assume that the source S is i.i.d., that is samples are independently and
identically distributed, then having enough samples from the source allows us to estimate the
probability distribution of the source with high confidence and find the entropy as in [BK12]
(Section 9.2).

NIST draft [BK12] gives the requirements of entropy sources as well as proposing a number
of tests to estimate the min-entropy of the source in i.i.d. and non-i.i.d. case, both. The testing
method first checks whether the source can be considered i.i.d. NIST suggests the following
set of tests for i.i.d. sources (Section 9.1 of [BK12]): 6 shuffling tests, Chi-square test, test for
independence and goodness of fit. If all of the test are passed, the source is assumed to be i.i.d.
and then a conservative method is used to estimate the entropy of i.i.d. source. If any of the
tests are not passed however, the source is considered to be non-i.i.d., and a number of tests
are used to estimate the min-entropy. These second group of tests are collision test, partial
collection test, Markov test, compression test and the frequency test, each outputting a value as
the estimation of the min-entropy. The final min-entropy will be the minimum over all these
estimated values. While i.i.d. and non-i.i.d. tests provide an estimation of the entropy, they
may fail to detect anomalies in the source. Therefore, NIST defines a set of sanity checks that
will make sure this does not happen. The sanity checks contain two tests: Compression test
and collision test. If the sanity checks fail, no estimation will be given.

For our experiments, we obtained an unofficial version of the code (the code is not released
yet) and used it to estimate the min-entropy of our source. We ran tests to verify whether our
estimations are meaningful (our sanity checks), and also check consistency in the min-entropy
estimation for a data set from /dev/random in Linux. Our analysis showed that the estimation
from NIST set of tests are sound, but are very conservative (admitted in Section 9.3.1 of [BK12].
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Figure 7: Min-entropy of bits

For example, we expect to have roughly the same approximation of min-entropy for the data
in /dev/random. But the approximation from the NIST tests depended very much on the
number of samples given to the tests (which is quite intuitive and acceptable). This caused very
low estimates for a subset of our users with smaller sample size and in general, min-entropy
estimation in our experiments were conservative.

B Most important bits in the output

Different bits of the 32 bit representation of the error variable may have different amount of
entropy. In this experiment, we run the min-entropy estimation test individually on each bit of
the output (one bit per 32 bit sample). We also run the same min-entropy estimation test on t
consecutive bits of this 32-bit sample. We used a sliding window of t consecutive bits, shifting
one bit at a time, for t = 1, 2, 3, 4, 5. Figure 7 shows the result of this experiment.

Each point on the X-axis of each curve corresponds to the starting of a t-block. For t = 2
(second curve from below) for example, the first point corresponds to the block consisting of the
first and the second bits, the second point corresponds to the block corresponding to the second
and the third bits and so on. The Y-axis shows the min-entropy of the block. The graphs in
Figure 7a are for all the data from all users in all levels. The Figures 7b, 7c and 7d show the
result for for level A, level B and level C, individually (respectively).

The graph shows, the min-entropy of the most significant bit (MSB) is high and then the
following 5 bits have min-entropy close to zero. The MSB corresponds to the sign bit of the
floating point number as described in IEEE 754 for single precision floating point format. This
sign bit in the number shows if the arrow hits the target below or above the center. The next 5
bits are the first bits of the 8 bit exponent in this representation. Since the output of the game
is in the interval [−120, 120], the exponent part of the output numbers is less than 8 bits and so
these values have almost zero entropy. The rest of the bits in the output have high min-entropy.
This is specifically true for bits in locations 20 to 32. The graphs show that the higher entropies
are contributed by the less significant bits of the output, which correspond to small errors of
the players. These small errors are independent of the user and level of the game. This suggests
that the min-entropy contributed from these bits are present for all users and levels of the game.
Thus, even Level A of the game expects to generate good amount of min-entropy from these
bits. This conclusion is also confirmed by other experiments in section 4.
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C Converting floating point numbers to integers

In this step, we apply a function fi : I → Z to the sequence of floating point numbers generated
by the entropy source.

1 Divide I into 232 partitions.

2 Index each partition from −216 to 216.

3 For each number generated, return the index of the

partition containing the number.

This additional step applied on the source, does not decrease the entropy.

Theorem C.1 The conversion function fi does not decrease the entropy in terms of Shannon
and min-entropy.

Proof. Consider X as the distribution of the entropy source when generating one symbol. The
distribution of the source after applying the conversion function, would become fi(X). It is
simple to show that H(fi(X)) ≤ H(X) [CT91], with equality if and only if fi is an injective
function. Since the function fi is injective from the 32 bit floating point numbers to 32 bit
integers, for Shannon entropy, we have H(fi(X)) = H(X). For min-entropy we have the same
result:

H∞(fi(X)) = − log max
y

Pr[fi(X) = y]

= − log max
y

Pr[X ∈ fi−1(y)]

= − log max
x

Pr[X = x]

= H∞(X)

where y ∈ {2−16, . . . , 216} and x = fi−1(y) for all y. �

In general, applying a function on an entropy source will decrease the Shannon and min-
entropy unless the function has certain properties. For Shannon entropy being injective is the
necessary and sufficient condition to preserve the entropy. For min-entropy however, being
injective is sufficient but not necessary to preserve the entropy.
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