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Abstract

The most influential broadcast encryption (BE) scheme till date was introduced in 2001 by Naor, Naor and
Lotspiech (NNL) and is based on binary trees. This paper generalizes the ideas of NNL to obtain BE schemes
based on k-ary trees for any k > 2. The treatment is uniform across all & and essentially provides a single
scheme which is parameterized by the arity of the underlying tree. We perform an extensive analysis of the
header length and user storage of the scheme. It is shown that for a k-ary tree with n users out of which r
are revoked, the maximum header length is min(2r — 1,n — r, [n/k]). An expression for the expected header
length is obtained and it is shown that the expression can be evaluated in O(rlogn) time. Experimental
results indicate that for values of r one would expect in applications such as pay TV systems, the average
header length decreases as k increases. The number of keys to be stored by any user is shown to be at most
(xr —2)4o(lo+1)/2, where £y = [log), n] and xy is the number of cyclotomic cosets modulo 2¥ —1. In particular,
when the number of users is more than 1024, we prove that the user storage required for £ = 3 is less than
that of £ = 2. For higher values of k, the user storage is greater than that for binary trees. The option of
choosing the value of k provides a designer of a BE system with a wider range of trade-offs between average
header length and user storage. The effect of layering on the k-ary tree SD scheme is also explored.

Keywords: Broadcast encryption; subset difference; trees; general arity; probabilistic analysis; header
length; transmission overhead; cyclotomic cosets; layering

1 Introduction

Broadcast Encryption (BE) deals with the problem of broadcasting encrypted data. For each transmission (or
session), there is a set of privileged users who should be able to decrypt the data and a set of revoked users who
should not be able to do so. In symmetric key BE, there is a center which initially distributes keys to all the users
and also broadcasts the encrypted data in each session. In each session, the data to be broadcast is encrypted
with a random session key using a symmetric key encryption algorithm. This session key is further encrypted
using other keys and the encryptions of the session key are sent as the header with the encrypted body. The
number of times the session key is encrypted for each session is called the header length. Any privileged user will
be able to use its secret information to correctly decrypt the session key from the header and hence the message
sent in the session. A fully resilient scheme ensures that an adversary with the secret information of all the
revoked users can not decrypt the broadcast correctly. Two important efficiency parameters for a BE scheme are
the header length; and the user storage which is the amount of secret information that each user has to store.

The most popular symmetric key BE scheme was proposed in 2001 by Naor, Naor and Lotspiech (NNL) and
was called the Subset Difference (SD) Scheme [NNLO1]. The NNL-SD scheme assumes the number of users to be
a power of two and these users are associated with the leaves of a full binary tree T°. This scheme has a storage
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requirement of O(log2 n) and a worst case header length of 2r — 1, where n is the total number of users and r is
the number of revoked users.

The idea of layering introduced by Halevy and Shamir [HS02] reduced the user storage of the NNL-SD
scheme from O(log? n) to O(log®/? n) at the cost of increased communication overhead. In [BS13b], this layering
strategy was generalized to obtain different trade-offs between the user storage and communication overhead.
An important optimization was the storage minimal layering that guaranteed minimal storage requirement that
could be achieved using layering for a given n.

1.1 Owur Contributions

In this work, we extend the ideas of NNL to k-ary trees for any £ > 2. Our treatment is general and unified, i.e.,
the same approach works for all values of k. Suppose n is a power of k, i.e., n = k‘ for some ¢y > 1 and consider
the users to be the leaf nodes of a full k-ary tree of height ¢y. Let ji,..., 7. 1 < c <k, be a set of sibling nodes
in this tree and ¢ is an ancestor of these nodes. Consider the set S of leaf nodes in the subtree formed by taking
away the subtrees rooted at jq,...,j. from the subtree rooted at 7. So, the set S is formed as a subset difference
of two sets of users. Subsets of users arising in this manner are called SD sets. The identification of the SD sets
is a key aspect of obtaining the k-ary tree scheme. This idea extends the idea of SD sets introduced for binary
trees in [NNLO1].

An intuition behind considering k-ary trees with k > 2 is that the number of SD sets grows with increasing
k and so the header length may come down at the cost of increasing the user storage. This, however, does not
turn out to be entirely true. Working out the details of the scheme and the resulting analysis shows up a rich
complexity of behavior which is not apparent at the outset. We provide an extensive analysis of the scheme
covering the following points.

Cover Generation Algorithm. A single cover generation algorithm which works for all k is developed. This
is an intuitively simple algorithm which uses just an array as the underlying data structure. Specializing this
algorithm for k& = 2 yields the cover finding algorithm given in [NNLO1]. The description of the algorithm turns
out to be considerably simpler that of [NNLO1].

Traitor Tracing. The NNL paper [NNLO1] provides a mechanism for tracing traitors. With some modification,
this idea also fits the k-ary BE scheme. It turns out that compared to binary trees, for k > 3, tracing traitors
can be done with lesser number of queries.

Header Length. For k-ary trees with n users, the maximum header length of a transmission with r revoked
users is shown to be min(2r — 1,n — r, [n/k]). Somewhat surprisingly, the first component, i.e., 2r — 1 is not
affected by k. We show that the bound of 2r — 1 is indeed achieved for values of k greater than 2. Average case
analysis of the header length is done under the assumption that the revoked set of users is distributed uniformly
among the set of all users. With this assumption, we derive an expression for the expected header length. The
method is to compute the probability that any internal node generates a subset in the header. Summing over
all these probabilities provide the expected header length. The expression for the expected header length can
be computed in O(rlogn) time and O(1) space. We have implemented the algorithm to compute the expected
header length and provide representative values to show the average header lengths for different values of k.

User Storage. During the initiation of the scheme, the center provides each user with sufficient information
so that it is able to generate any key corresponding to an SD set of which it is a member. This information is
measured in terms of the number of m-bit seeds that are required to be stored by any user. Here m is the size
of the key of the underlying symmetric cipher. The work of NNL provides a clever way to use a pseudo-random
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generator so that user storage consists of 1 + [logyn]([logan]| + 1)/2 seeds. The direct combination of this
idea with the SD sets of a k-ary tree makes the user storage to be 14 (2871 — 1)[log, n]([logy, n] + 1)/2 seeds.
We show that a modification based on the use of cyclotomic cosets modulo 2¥ — 1 reduces the user storage to
1+ (xx — 2)[logy, n]([log, n] + 1)/2 seeds, where x is the number of cyclotomic cosets modulo 2¥ — 1.

Tackling Arbitrary Number Of Users. When n is not a power of k, we show that a complete k-ary tree
structure can be used to construct the BE scheme. This is an analogue of complete binary trees used in data
structures. Average header length analysis of such schemes is performed using simulation studies.

Layering. The idea of layering is extended for the k-ary tree generalization of the SD scheme. The choice of
the layering strategy determines the user storage of the layered version of the scheme. A dynamic programming
algorithm is proposed to compute the layering strategies for which the user storage is minimum. This generalizes
the algorithm for k£ = 2 which was given in [BS13b].

Simulation Study Of The Header Length. We perform a simulation study of the average header length
for n = 10* (x = 3,...,8) users and for k = 2,...,8. Experimental results indicate that there is a cut-off value
such that for r/n > 0y, the average header length of the k-ary scheme is lesser than that of the binary tree based
scheme. Further, the value of §; decreases as k increases. This suggests that by increasing k, it is possible to
reduce the header length for lower values of r. This can be important for applications such as Pay-TV systems.
The trade-off is a one-time moderate increase in user storage.

In applications like [AAC] where the storage for the header is fixed in the standard, there is a threshold for
the maximum number of users that the system can accommodate. With decrease in the average header length,
the system can accommodate more number of revoked users on an average.

1.2 Previous And Related Works

Broadcast Encryption was introduced by Berkovitz and his scheme was based on “k out of n” secret shar-
ing [Ber91]. However, this scheme was “one-time” and the keys had to be updated after every use. BE was
first formally studied and the term Broadcast Encryption was coined by Fiat and Naor in [FN93]. The idea of
resiliency of a scheme against colluding users was also formally introduced in [FN93]. They proposed a number
of schemes that provided trade-offs between the user storage and the transmission length.

Broadcast Encryption for stateless receivers was first considered explicitly by Naor, Naor and Lotspiech
in [NNLO1]. They defined a generic framework, called Subset-Cover framework, encapsulating several previously
proposed revocation methods. The algorithms of the Subset-Cover framework are based on the principle of
covering all non-revoked users by disjoint subsets from a predefined collection. They proposed two tree-based
schemes namely the Complete Subtree (NNL-CS) scheme and the Subset Difference (NNL-SD) scheme.

Halevy and Shamir [HS02] reduced the user storage in the NNL-SD scheme by dividing the levels of the
underlying tree of the SD scheme into layers. The NNL-SD [NNLO1] and the HS-LSD [HS02] schemes assumed
the number of users to be a power of two. In [BS13b] the idea of layering was further explored to obtain various
layering strategies offering different trade-offs. One out of these optimizations was minimizing the user storage.

Two public key BE schemes were proposed in [Asa02] that assigned keys to subsets following the Complete
Subtree (CS) method of [NNLO1]. While the CS method assumed an underlying binary tree, the schemes
in [Asa02] were allowed to have arity greater than or equal to two. The paper does not discuss how to extend
the Subset Difference technique of [NNLO1]| for trees of arity greater than two.

The Subset Difference technique of [NNLO1] was extended for ternary trees in [FKTS08]. The key assignment
technique of [FKTS08] however could not be extended to higher arities. To quote from their paper (page 236 of
the WISA 2008 proceedings):
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“Howewver, in a general a-array tree with a > 4, there exists sets of nodes that are inconsecutive . ..
Our hash chain approach fails with regard to these inconsecutive points. Thus, the construction of
a coalition resistant a-array SD method with reasonable communication, computation, and storage
overhead is an open issue.”

For a given upper bound on the user storage of any BE scheme, a lower bound on the header length was
shown in [LS98]. Stateless and low-state BE in low-memory devices was considered in [GST04]. One-way chain
based BE schemes were proposed in [JHCT05] where the header length was brought down below r for the first
time, while the user storage requirement was quite large. The NNL-SD scheme can also be viewed as a special
case of this scheme.

There have been several works on the analysis of the tree based schemes. The analysis of the expected header
length for the NNL-CS, the NNL-SD and the HS-LSD schemes was done in [PB06]. This analysis was continued
in [EOPRO8] which showed that the standard deviations for these schemes are small compared to the means
as the number of users gets large. Therefore, the mean number is a good estimate of the number of necessary
encryptions used by these schemes. A detailed analysis of expected header lengths and algorithms to compute
them have been obtained in [BS13a]. Lower bounds on the header length of most subset cover algorithms for
different types of r were found in [AKO08]. Detailed worst case header length analysis for the NNL-CS and
NNL-SD schemes of [NNLO1] have been done in [MMWO09)].

2 Subset Cover Framework

The Subset-Cover framework for broadcast encryption was proposed in [NNLO1]. Almost every known sym-
metric key broadcast encryption scheme falls under this framework. It has three phases namely, initiation,
encryption and decryption. In the initiation phase, a collection S of subsets of N is created. Each subset in
S is assigned a secret key. A user gets the secret information which enables it to compute the secret keys of
all subsets S of users such that it is a member of S and S € §. Once this initiation phase is over, the system
is ready for secured broadcasting. The broadcast messages are sent to the users in blocks. Each block goes
with a new session. For each session, the center knows the set of revoked users R. It finds the set of subsets
Se = {Siy, Sig, - -+, 5, } C S from the collection S such that each privileged user is in some subset in S,. In other
words,

N\R= ] s
i€{it,emrin}

This set of subsets S, is called the subset cover and the algorithm to find S, is called the cover generation or
cover finding algorithm. A message block is encrypted with a random session key K, chosen anew for each
session and forms the body of the message. This session key is further encrypted for each subset S; in S., using
its key. These encryptions of the session key accompany the message body as the header. The number of subsets
in the cover h = |S,| is called the header length. For decryption, a privileged user first decrypts the session key
from the header, using which it decrypts the message block.

2.1 The (Binary Tree) Subset Difference Scheme
The Naor-Naor-Lotspiech Subset Difference (NNL-SD) scheme [NNLO01] is the most popular BE scheme and falls

under the Subset-Cover framework. The NNL-SD scheme assumes the number of users to be a power of two.
During initiation, the users are associated with the leaves of a full binary tree T°. A subtree of TV rooted at
node i in the tree is denoted as 7. A subtree 77 also identifies the set of users at its leaves. The subsets in the
collection S are of the form S; ; where S; ; consist of the leaf nodes of the subgraph 77\ 77 such that j (# i) is
a node in the subtree rooted at node i of 7.
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Keys are associated to each subset S;; € S as follows. Every internal (non-leaf) node i in 70 is assigned
a uniform random seed L;. All descendant nodes j in the subtree 7 are associated with seeds derived from
L; in the following manner. A cryptographic pseudo-random generator G : {0,1}* — {0,1}%" is chosen. The
output of G is thrice the length of its input. The three equal portions of the output are denoted as G(seed) =
G (seed)||Gpr(seed)||Gr(seed). Let a node i have some (random or derived) seed;. The left child of i gets the
derived seed G (seed;) and the right child of i gets the derived seed Gr(seed;). The derived seed for a node
j from the uniform random seed L; of an ancestor node i is denoted as L; ;. The key for the subset S;; is
Li,j = GM(LZ?J)

A user receives the secret information from which it can derive the secret keys of all subsets to which it
belongs. It is to be noted that if a user belongs to a subset S; ;, ¢ is an ancestor of the leaf corresponding to
the user and j (being in the subtree 77), is not an ancestor of that leaf. Let i be an ancestor of the leaf node
associated with the user. Let j; be a node directly attached to the path joining the user leaf and the node 1.
The seed derived from L; by the node j; is L; j,. The user receives this derived seed L; ;, as part of its secret
information. It can be seen that using L;;,, the user can derive the key for any subset S;; where j is in the
subtree rooted at node j;. Similarly, the user receives the seeds derived from L; for all nodes directly attached to
the path joining the leaf of the user and the ancestor i. From the derived seeds that the user gets, it can derive
the keys for all subsets S; ; to which it belongs.

A cover finding algorithm is described in [NNLO1] which allows the center to find a collection of subsets which
covers all the privileged users. We do not describe this here, since, later we provide a cover finding algorithm for
k-ary trees which has the binary tree cover finding algorithm as a special case.

3 The k-ary Tree Subset Difference Scheme

The description of the scheme is given in two parts — initiation and the cover generation algorithm.

3.1 Initiation

Fix the arity of the underlying tree to be a positive integer &k > 2 and let the number of users n to be a power of
k, say n = kfo. (Later, we describe how to handle the case when n is not a power of k.) Let 7° be a full k-ary
tree having n = k% leaf nodes. There are £y + 1 levels in 79. The root node is considered to be at level £y while
the leaf nodes are considered to be at level 0. The total number of nodes in 79 is

nk —1

E—1"

The users are assumed to be at the leaf nodes of 7. So, the set A/ of all users consists of the leaf nodes of 7.

L+k+k+. . +k° =

Numbering Of The Nodes In 7°. The nodes in 7° are numbered as follows: the root is numbered 0; the k
children of an internal node 7 are numbered from left to right‘as ki+1,ki+2, ..., ki+ k. The nodes in 7 are
identified by their numbers. So, the parent of any node i is L%J For a node i, we denote by 7 the subtree of

T9 rooted at i.

The Collection S. Let i be an internal node and suppose J is a set of nodes in 7 which have a common
parent (and so the nodes in J are siblings) such that 1 < |J| < k. Let S; j be the set of leaf nodes in the subgraph

T\ T
JjeJ
S; 7 is a subset of the leaf nodes of 70 and so a subset of the set of all users N. Define S to be the collection of
all possible S; ; and also V. Keys are assigned only to the subsets of users in S and to no other subsets of N.
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Figure 1: The k-ary tree 70 with k = 3 and n = 27 users. The subset Sp,¢5,6} contains all users (leaves) in the
subtree 7Y but not in 7° or 7. Hence, Soq5,6y = 113,14,15,22,23, ..., 39}.

Number Of Subsets In The Collection S. We count the number of subsets S; ; in §. Fix an internal node
¢ and suppose it is at level £. Let us now consider the number of subsets of nodes J such that S; ; is in S. There
are two conditions on J: all nodes in J have the same parent and 1 < |J| < k — 1. The common parent of the
nodes in J is an internal node in 7°. So an internal node in 77 gives rise to 2¥ — 2 possible subsets of nodes J.
The number of internal nodes in 7%is 1 +k+ k% +... + k=1 = (k* = 1)/(k — 1). So for a fixed node i at level ¢,
there are a total of (28 — 2)((k* —1)/(k — 1)) possible subsets S; .

In 79, there are k0~ internal nodes at level £. Therefore, the number of subsets generated by all the nodes
at level £ is (k* —1)/(k —1) x (2F — 2) x k%~ Summing this by varying ¢ from 0 to ¢y we get the total number
of subsets S; ; in S. Additionally, we have to count the set N of all users. Hence, the total number of subsets
in S is

bo ¢ k lo—1 k
B & Ko =1 g _on 27 — 2 N 2F — n—1
SI= @)Y W = T Yk =1 (nm k_l). (1)
For n = 16, and k = 2, the number of subsets in § is 159. For n = 16, and k£ = 4, the number of subsets
in § is 323. We observe that for a fixed n, the number of subsets in the collection increases with increasing
k. Intuitively, it seems that increasing the number of subsets in § by increasing k should decrease the header
length. This, however, is not always true. Later, we make a detailed analysis of both the maximum and the
average header length of the scheme.

Key Assignment To Subsets In S. Given an m-bit string, we need to obtain 2¥ — 1 m-bit strings. This is
achieved as follows:

Let G : {0,...,2" —2} x {0,1}™ — {0,1}™ be a cryptographic hash function. Define G, (seed) = G(o, seed).
This defines G, (seed) for an m-bit string seed and 0 < o < 2¥ —2. One advantage of this method is that given o
it allows directly “jumping” to a particular G, (seed). We note though that the description of the key assignment
method given below does not depend on the particular manner in which G, has been defined.

The key assigned to a subset S; ; is defined indirectly. The procedure is described as follows.

1. Every internal node 7 is assigned an independent and uniform random seed L;.

2. Every node j # i in the subtree 7" is assigned a seed L; (5, derived from L; using G in the following
manner.

(a) Suppose j is an immediate child of ¢ and write j as j = ki + s+ 1 for some 0 < s < k — 1. Define
LZ,{]} - GQS (Lz)
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(b) If j is not an immediate child of ¢, then let i = to,...,t, = j be a sequence of nodes from i to j. Let
tqg = ktg—1 + 8¢+ 1 where 0 < s, <k —1for 0 < g < p. Define L; ;3 = Gosp (Gasp—1 (- - Gas1 (Li)))-

3. Let j (possibly equal to i) be an internal node in 7% and let J C {kj + 1,kj + 2,...,kj + k} with
2 < |J| < k — 1. The previous step has already defined the seed L;jy- Let s be the unique integer in
{0,... 2k — 2} such that the k-bit binary representation of s encodes J, i.e., the bth bit of this binary
representation is 1 if and only if kj + b is in J. Define L; j = Gs(L; ;1)

4. For each possible subset S; ;, the above procedure defines the seed L; ;. The key assigned to the subset
Si,J is Go(Li”]).

Figure 2: Seeds derived by node 32 and its ancestors 3 and 10 from Lo. Lg 32y = G2(G1(G4(Lo))).

To illustrate the assignment of seeds, let us consider the tree 7° with k = 3 and n = 27 users as shown in
Figure 1. The internal nodes 0,...,12 get uniform random seeds L, ..., L1s respectively. The seeds derived
from Lo by nodes at levels 2 and 1 are as follows:

For level 2:
Lo, (13 = G1(Lo), Lo, 2y = G2(Lo), Lo (33 = Ga(Lo),
Lo (1,23 = G3(Lo), Lo, 2,33 = Ge(Lo), Lo,{1,3 = G5(Lo)-
For level 1:
Lo 14y = G1(G1(Lo)), Lo 5y = G2(G1(Lo)), Log6) = Ga(G1(Lo)),
Lo a5y = G3(G1(Lo)), Lo 56y = Ge(G1(Lo)), Lo a6y = Gs5(G1(Lo)),
Loty = G1(Ga(Lo)), Lo sy = G2(Ga(Lo)), Lo 9y = Ga(Ga(Lo)),
Lo 781 = G3(G2(Lo)), Lo g9y = G6(G2(Lo)), Lo 47,0y = G5(Ga(Lo)),
Lo q10y = G1(Ga(Lo)), Lo 11y = G2(G4(Lo)), Lo 12y = Ga(Ga(Lo)),
Lo 1011y = G3(Ga(Lo)), Logi1,12y = Ge(Ga(Lo)), Lo 10,12y = G5(Ga(Lo)).

Similarly, the seeds derived from Lg for subtrees at level 0 and their combinations, can be determined.
Figure 2 shows how node 32 of Figure 1 gets its derived seed from the uniform random seed L. There will
be seeds derived from every such L;.

Storage Per User. During initiation, a user will receive information (a set of derived seeds), from which it
can derive the keys of all subsets it belongs to and no more. A user is associated to a leaf node in 7°. The SD
subsets S; ; the user will belong to, will be rooted at some ancestor node 7 of that leaf. However, none of the
nodes in J will be an ancestor of that leaf. Thus, a user belongs to all subsets \S; (5, ;.3 for which
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e 7 is an ancestor of the user leaf, and
e none of the nodes ji,...,js are on the path joining the root node and the user leaf.

A user has to receive seeds such that it can generate the keys of all such subsets. We have already seen how keys
for subsets are derived from seeds assigned to nodes in 79. Out of these seeds, a user gets the derived seeds from
which it can generate the keys of subsets to which it belongs and no more.

The general strategy for assignment of seeds to users is as follows. Let us consider the path joining the user
leaf and the root node in 7. Let i be a node on this path and hence an ancestor of that user. The key for a
subset S; ; to which the user belongs will be derived from L;. None of the nodes in J are on the path joining
the user leaf and i (a part of the path with the root). Hence, the nodes in J are siblings that are either directly
attached to this path or are in a subtree attached to this path. The user gets the seeds derived from L; of all
nodes and their combinations that are directly attached with (or “falling-off” from) this path. Using these seeds
and G, the user can derive the keys of every subset S; ; to which it belongs and no more.

To illustrate the assignment of seeds to the users, let us again consider the tree in Figure 1. As an example,
we look at the information that has to be given to the user at leaf 13. For that, we first identify the subsets
to which the user at 13 belongs. The user at leaf 13 has three ancestor nodes 4,1 and 0. Hence, it belongs to
subsets of the form Sy 7, S1; and Sy, ; where nodes in the respective subsets J are not ancestors of the leaf 13.
If the user at leaf 13 gets the derived seed L (9}, it can derive using G, the key for any subset Sp ; where nodes
in J are in the subtree rooted at node 2. Similarly, with the derived seed L (3}, the user can derive the key
for any subset Sy ; where nodes in J are in the subtree rooted at node 3. Additionally, it needs the key for the
subset Sg 2.31. We know that, if the user at leaf 13 gets the derived seeds L; j for every ancestor node ¢ and the
set J has a node (or a combination of nodes) directly attached to the path joining the leaf 13 to the root node
0, it can derive the key for any subset it belongs to.

Using this strategy, the user at leaf node 13 gets the seeds for Sy ; for the following J: {2}, {3}, {2,3},
{5}, {6}, {5,6}, {14}, {15}, {14,15}. It gets the seeds for Sy ; for the following J: {5}, {6}, {5,6}, {14}, {15},
{14,15}. It gets the seeds for Sy ; for the following J: {14}, {15}, {14,15}. Hence, the user at leaf node 13 gets
the following seeds:

derived from Lg:
Ga(Lo), Ga(Lo), Ge(Lo),
G2(G1(Lo)), G4(G1(L0)), Go(G1(L ))
G2(G1(G1(Lo))), Ga(G1(G1(Lo))), Ge(G1(G1(Lo)))-
derived from Lq:
Ga(L1), Ga(L1), Ge(L1),
G2(G1(L1)), Ga(G1(L1)), Ge(G1(L1)).
derived from Ly:
Ga(Ly), G4(Ly), G6(Ly).

Next we compute the number of seeds that the user will have to store. The number of seeds derived from
seed L; of an ancestor node 7 at level £, will be 28~ — 1 for each level below £. Thus, the total number of derived
seeds due to node ¢ will be (28~ — 1)£. Since there are £y such ancestor nodes of the user at each level 1, ..., £,
the total number of seeds to be stored by the user will be

Lo
L+ -1 =1+ EO%; Vg1 1), (2)
=1

The addition of 1 in the above expression is due to the key that is assigned to the set N of all users. Each user
will be required to store this key to decrypt a message that is broadcast to all the users, i.e., when there are
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no revoked users. The factor (2°=! — 1) in (2) can be reduced using a modified method of distributing secret
information to the users. We describe how to do this in Section 6.

Full Resilience Against Colluding Users. Full resilience of a broadcast encryption scheme is ensured if the
collusion of all revoked users does not result in the correct decryption of the encrypted message. This holds for
the NNL-SD scheme and also holds for the current scheme in a similar manner. The cryptographic assumption
that is required is that for any seed, complete information about Gy(seed),. .., Gor_o(seed) does not reveal any
information about seed. Starting from this assumption, it is possible to argue in a manner similar to that done
in [NNLO1], that the scheme achieves full resilience.

3.2 Cover Finding Algorithm

Once the initiation is over and users have been given their secret information, the center can start broadcasting
encrypted messages to the set of privileged users. If there is no revoked user, the only set for which the messages
are encrypted is the set N of all users. Otherwise, for a given set of revoked users, the center finds the subset
cover using the iterative algorithm outlined below. The subset cover contains subsets of the form S; ; where all
nodes in J are siblings and hence are at the same level.

The algorithm runs on a list £ of nodes in 7° that lie on the paths joining revoked leaf nodes to the root node.
To start with, the list £ consists of all revoked leaves from left to right in 7°. In the course of the algorithm,
L is appended with all nodes on the paths joining the revoked leaves to the root. This is done as follows. Once
L is populated with the revoked leaves, the algorithm runs iteratively from left to right on L. In iteration ¢, it
considers the t** node j from the left in £. If j is not the root, the parent i of j is appended to L, if it is not
already present there. Hence £ keeps growing on the right, with nodes at higher levels on the tree (up to the
root) getting added to its right end. The root node eventually gets appended to £. The algorithm terminates
after working on the root node.

For each node j in £, a summary of requisite information about the subtree 77 is maintained in £ along with
the node j. Each node j in £ has an associated set SDnodes|j]. The set SDnodes[j] contains roots of all subtrees
that will be subtracted from 77, in case an SD subset is generated from node j. The cover finding algorithm
ensures that all nodes in SDnodes[j] for any node j are at the same level in 79. For each leaf node j in the
initial list £, SDnodes[j] = {;j}. If a node j gives rise to a subset S; ; in the algorithm, then J = SDnodes[j]. In
the course of the algorithm, each such node j from which a subset S} spnodes;) Should be generated, have to be
identified. To that end, each node in £ gets marked as “intermediate” or “covered” depending upon its position
in the tree. Every iteration of the algorithm works on a particular node and based on the mark of that node and
its siblings, subsets for the cover may or may not be generated. Let the t** node from the left in £ be denoted
by L[t]. The node L[t] is processed in the ¢! iteration.

The Algorithm. Takes as input the set R of revoked users and outputs the subset cover S,.

1. Form the initial list £ with all revoked leaf nodes at level 0 of 79. Mark each node j € £ as covered and
set SDnodes[j] = {j}.

2. Process nodes in £ from left to right. If £[t] is the root node, go to step 3. Otherwise, let ¢ be the parent
of L[t]. At the ™ iteration:

(a) If L[t] and L[t 4 1] have the same parent, skip the step below and continue to the next iteration for
L]t +1].

(b) Else, append i to L. Let {j1,...,jc} be the children of ¢ in £. The following mutually exclusive cases
occur:
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i. Case when all nodes ji, ..., j. are covered:
A. If ¢ < k, mark i as intermediate and set SDnodes[i] = {j1,...,jc}.
B. For ¢ = k, mark i as covered and set SDnodes[i| = {i}.

ii. Case when ¢ =1 and j; is intermediate:
Mark i as intermediate and copy SDnodes[j;] to SDnodes][i].

iii. Case when ¢ > 1 and there is at least one intermediate node in {j1,...,jc}:
For j € {j1,...,jc} that is intermediate, add S spnodes[;] t0 the cover S, and mark j as covered.
A. If ¢ < k, mark ¢ as intermediate and set SDnodes[i] = {j1,...,jc}
B. For ¢ = k, mark i as covered and set SDnodes[i] = {i}.

3. If the root node is marked as intermediate, add Sy spnodesjo) to the cover S..

When the iterations terminate at step 2 in the above algorithm, if the root is marked as covered, it implies that
all privileged users have been covered and hence no more SD subsets are added in step 3. The subset cover S,
output by the algorithm is a collection of subsets of the form S; spnodes|i-

Figure 3: The subset cover S, for R = {14,15,22} will contain the SD subsets S; (14,15}, S2 {22 and Sp {1 2

Algorithm Demonstration. To demonstrate the above algorithm, let us consider the revocation pattern
R = {14,15,22} in the tree 7Y with 27 users in Figure 3. The list £ that is operated on iteratively in the
algorithm, is eventually populated with the nodes {14,15,22,4,7,1,2,0}. These are nodes that lie on the paths
joining revoked users with the root node. Nodes 14,15 and 22 are initially covered. The parent 4 of 14 and 15
is appended to the list and marked as intermediate with SDnodes[4] = {14, 15}. Similarly, 7 is appended to the
list and marked as intermediate with SDnodes[7] = {22}. Next 1 is appended and marked as intermediate with
SDnodes[4] = {14, 15} copied to SDnodes[1]. Then 2 is appended and marked as intermediate with SDnodes[7] =
{22} copied to SDnodes[2]. Finally, 0 is appended to the list. Since 0 has two children in the list which
are not covered, the subsets S| spnodesi] @1d 52 spnodesfz] are added to the cover S.. Node 0 is marked as
intermediate with SDnodes[0] = {1,2}. Finally, the subset Sy spnodes|o] is added to S.. Hence, for R = {14, 15,22},
Se = {51,{14,15}> S2,{22}, S0,1,2} }-

Once the subset cover S, has been constructed, the message M is encrypted using a random session key, which
in turn is encrypted for each set in the cover. These encryptions of the session key are sent along with the
encrypted message as the header part of the cipher-text. The number of sets in the cover, also called the header
length, is the parameter determining the transmission overhead of the scheme.
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Nodes That Generate A Subset. Nodes in £ are the only nodes of 70 that are processed in the cover-finding
algorithm. Hence, subsets in the cover are generated from nodes in £ only. In other words, if S} spnodes|;] is in
the cover, then j € £ and SDnodes[j] C £. The following Lemma 1 identifies the properties of the node j and
the set of nodes SDnodes][j].

Lemma 1. Suppose S spnodes|j] S tn the subset cover. Node j and the nodes in SDnodes[j] have the following
properties:

(1-a) Not all k children of j are in L, and

(1-b) j is either the root or an internal node with a sibling in L.

(2-a) If SDnodes[j| = {v}, then v is either a leaf node or an internal node with all its children in L.

(2-b) If |SDnodes[j]| > 1, then all nodes of SDnodes|[j| are siblings.

(2-¢) For any node j, |SDnodes[j]| < k.

Proof. First we show that j is either the root or an internal node with a sibling in £. At step 3 of the cover
finding algorithm described above, we see that SD subsets of the form Spspnodesjo] may be generated. Hence,
node j can be the root. If node j is not the root, then the only other way a subset may be generated is in step
2-b-iii of the algorithm. In this step, the algorithm considers a node i in £ with a set {j1,...,j.} of its children
in £ where ¢ > 1. Every j € {ji1,...,j.} that is marked as intermediate at that point, generates a subset. Hence,
a non-root node j that generates a subset, must have a sibling in L.

Next, we show that not all k£ children of j are in £. The root node generates a subset in step 3 of the algorithm
only if it is marked as intermediate. A node j that generates a subset in step 2-b-iii, is marked as intermediate
until that point. Hence j is not marked covered until the subset S spnodes|j] i generated from it. This implies
that in previous iterations, when the children of j in £ were being processed, it was not marked as covered. A
node may be marked as covered in either (1) step 2-b-i-B or 2-b-iii-B when all its children are in £, or (2) step
2-b-iii after it has generated a subset. If j = L£[t], then until the ¢ iteration, j remains marked as intermediate
if the number of children of j in £ is less than k. Thus, not all k£ children of j are in L.

In the cover finding algorithm, step 1 and the three mutually exclusive steps within step 2-b are the only
places from where a set SDnodes[j] may arise. From step 1 of the algorithm, we see that for each leaf node j,
SDnodes|[j] is singleton. From steps 2-b-i-B and 2-b-iii-B, we see that if all k children of an internal node j are in
L, then SDnodes|j] is singleton. These are the only two ways in which SDnodes[j] for a node j can be singleton.

A set SDnodes[j] with more than one node is created only in steps 2-b-i-A and 2-b-iii-A. Clearly, the nodes
in SDnodes[j] have a common parent 7 and hence are siblings of each other. Hence, if |SDnodes[j]| > 1, then all
nodes in SDnodes[j] are siblings. It is also clear from steps 2-b-i-A and 2-b-iii-A that SDnodes[j] can have at
most k nodes. Hence, |SDnodes[j]| < k for any j. O

Correctness Of The Algorithm. We prove that the algorithm described above, generates subsets that were
assigned keys during initiation as has been described in Section 3.1. We also show that all privileged users are
in some subset in S, and no revoked user is included in any of the subsets.

Theorem 2. A subset S spnodes|j] generated by the algorithm is such that (1) 1 < |SDnodes[j]| < k, (2) all nodes
in SDnodes[j] are siblings of each other, and (3) j is their ancestor. The union of the subsets in S. include all
privileged leaves and no revoked leaves.

Proof. From Lemma 1 we know that all nodes in SDnodes|j] are siblings of each other and 1 < |[SDnodes[j]| < k.
It can be seen from steps 1 and 2-b of the algorithm that a node j; gets inserted into a set SDnodes[j] only if j
is an ancestor of jj.

A subset S sprodesi] Output by the algorithm, represents all leaf nodes in the induced subgraph

Ti \ UjGSDnodes[i] Tj .
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In other words, the subset S;spnodesi) has leaves in T that are not in the subtrees in SDnodes[i]. It can be
seen from steps 2-b-i and 2-b-iii that a covered node in L is always within some subtree in the set SDnodes of
its parent and ancestors thereon. Hence, once marked covered, a node is not in any set S; spnodes)i) I Se that is
included thereafter. From steps 1 and 2-b-1 of the cover finding algorithm, we know that each revoked leaf j is
in SDnodes|j] and hence in some subtree in SDnodes[i] for every ancestor i of j. This implies that a revoked leaf
can not be in any subset in S,.

We next show that any privileged leaf is in a subset in S.. Let us consider the path joining a privileged leaf
to the root in 7. Since the root node is in £, hence there will be at least one node on this path that is in £.
Let j1 be the node on this path that is in £ and is nearest to the privileged leaf. All subsequent nodes above j;

are in £. Again, since the root node is on the path (ji,...,0), at least one of the nodes on this path generate
a subset in S.. Let the node in (ji,...,0) that is nearest to the privileged leaf and generates a subset be j.
Either j = j; or j is an ancestor of ji on the path (ji,...,0). The subset S;spnodes|j] generated from node j has

all leaves in 77 but not in any of the subtrees in SDnodes[j]. The privileged leaf is in 77. We show that it is
not in any of the subtrees in SDnodes[j]. From steps 1 and 2-b in the algorithm, we know that SDnodes|j]| has
nodes that have been covered. Nodes between the privileged leaf and before j; are not in £ and hence cannot
be covered. Since j is the only node on the path (ji,...,7) that generates a subset, all nodes on this path are
intermediate until the subset Sj spnodes|;] 15 generated from j. Consequently, SDnodes[j] does not have any of the
nodes on the path joining the privileged leaf and j. Hence, the privileged leaf is not in any of the subtrees rooted
at nodes in Uj/esDnodes[j]Tj/. Hence, the privileged user is in the subset S; spnodes|j- O

Relation To The NNL-SD Scheme. The case k = 2 of the above scheme is exactly the NNL-SD scheme
described in [NNLO1]. So, the new scheme is a generalization of the NNL-SD scheme and subsumes it. One
important advantage of the new scheme is a uniform description of the cover generation algorithm irrespective
of the value of k. We note that this description is simpler than the description for k = 2 given in [NNLO01] which
is phrased in terms of Steiner trees. It turns out that the more elementary description of the cover generation
algorithm is cleaner which leads to an easier implementation.

Relation To The Ternary Tree Scheme In [FKTSO08]. For k£ = 3, the collection S that we consider
is the same as that in [FKTS08]. However, the method for assigning keys to these subsets is different. The
work [FKTS08] uses a hash chain method and mentions that it does not extend to k-ary trees for k > 4. On the
other hand, our method of distributing secret keys to the users is general and works for all k. In Section 6, we
describe a modified method of distributing secret keys which further lowers the user storage requirement.

3.3 Traitor Tracing

Traitor tracing is the mechanism to identify leaked user keys from a pirate decoder by treating it as a “black-box”.
Traitor tracing for the NNL-SD scheme was discussed in details in [NNLO1]. They showed that traitor tracing
can be done on any scheme that assigns keys to subsets which satisfy the bifurcation property. The bifurcation
property states that given any subset that is in the collection S and hence has been assigned a key, it is possible
to partition the set into two (or a constant number of) almost equal subsets from S. The bifurcation value is
defined to be the ratio of the size of the largest subset to that of the set itself.

For the k-ary tree SD scheme, a subset S; ; in its collection & is such that all nodes in the set J are siblings
and are in the subtree 7. If the parent of the nodes in J is 4, then the subset S; s is split into equal sized subsets
T7 where j is a child of 4 and j ¢ J. Thus, each child subtree of i whose root is not in J forms a subset in the
split. All the subsets formed by splitting S; ; will be of equal size and hence the bifurcation value in this case
is 1/(k — |J|). The worst case (maximum bifurcation value) occurs when there are two child subtrees of 7 that
are not in J (and are hence privileged). The maximum bifurcation value is 1/2. If the parent of nodes in J is
a descendant of ¢, then the subset S; ; will be split into exactly k subsets each formed from a child subtree of
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node ¢. There will be one subset formed from the child subtree of ¢ that contains the nodes in J. This subset
will be smaller than the rest of the & — 1 equal-sized subsets. The bifurcation value in this case will be 1/k.
All subsets in the collection S of the layered k-ary tree SD scheme belong to the collection of subsets that are
assigned keys in the k-ary tree SD scheme. Hence, the bifurcation property also holds for those subsets. Thus, a
traitor tracing mechanism can be devised for the scheme introduced in this work in a manner similar to the one
described in [NNLO1].

The number of queries required by the traitor tracing algorithm depends on the bifurcation value. At every
step of the traitor tracing algorithm, a subset S of users that contains a traitor is divided into subsets 51, ..., .S;
using the bifurcation property as mentioned above. Each subset S; is tested for containment of a traitor. The
ratio |S¢|/|S| is at most the bifurcation value. Lesser the bifurcation value, lesser is the size of the remaining
subset from which the traitors have to be traced. Hence, the traitor tracing algorithm will be more efficient.
The bifurcation value of the NNL-SD scheme is 2/3. The bifurcation value of the k-ary tree SD scheme is 1/2
for £ > 3. Hence, the traitor tracing mechanism for the k-ary tree SD scheme will be more efficient than the
NNL-SD scheme.

4 Header Length Analysis

When there are no revoked users, the header length is 1. Henceforth, we assume the set R of revoked users to
be non-empty.

Theorem 3. Fixr k > 2, n > 1 and 1 < r < n. Then the maximum header length that can be achicved is
min(2r — 1,n —r,n/k).

Note: When r is small, the bound 2r — 1 applies. For & = 2, the upper bound of 2r — 1 was given in [NNLO1].
The more general form of the bound for binary trees was mentioned in [BS13a]. For k = 3, it has been shown
that the scheme in [FKTSO08] has an upper bound of min(2r — 1,n/3).

Proof. The bound n — r on the header length arises since each of the n — r privileged users can be covered by
singleton subsets in the header.

The bound n/k is obtained as follows. Suppose the header consists of h subsets. Write h = hy+---+hi_1+hy
where for 1 < ¢ < k —1, h; is the number of subsets in the header having exactly ¢ privileged users and hy, is the
number of subsets in the header having at least k privileged users.

Suppose S is a subset counted in h; for some 7 in [1,k — 1]. From the cover finding algorithm, it necessarily
follows that the leaf nodes in S are siblings and the other siblings of the nodes in S are revoked. So, for each
subset S counted in h;, there corresponds a total of k users (i users in S and the other k — | S| revoked siblings of
the users in S). As a result, the total number of users accounted for by hi,..., hx_1 is k(hy 4+ -+ + hx_1). Since
each subset counted in hy has at least k users, the total number of users n is at least k(hy + -+ + hgp_1) + khg =
k(hi 4 -+ + hg—1 + hg) = kh. From this it follows that h < n/k.

Now, we turn to the bound 2r — 1. The subtree 77 may be written as a union of all its child subtrees. Hence,

T = U T
3’ €{kj+1,...kj+k}

Thus, the node j can be replaced by {kj+1,...,kj+k}. For a subset S; y € S, if j € J such that all k children
of j are in L, we replace j with {kj 4+ 1,...,kj+ k} in J to get J'.

J=\N{GHulkj+1,... kj+k}

We keep replacing nodes in J’ having k children in £ by their children until all nodes in J’ have less than k
children in £. Some nodes in J’ may have no children (leaf nodes) in £. These are revoked leaf nodes of T that
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were inserted in £ in step 1 of the algorithm. The new representation S of the subset cover S, will have
Sé = (Sc\ SLJ) UsS; .

However, the privileged users in \S; ;- are exactly the privileged users in S; ;. We do this for all subsets in S, to
complete the new representation S, of S..

We first show that all internal nodes in J’ generate a subset each. From Lemma 1 we know that for S; y € S,
all nodes in J are in £ and are siblings. During the transformation, a node j € J is replaced by k& nodes which
are also in £ and are siblings of each other. Hence, each node j € J’ has a sibling in £. Since j is in £ and has
less than k children, hence from step 2-b of the algorithm we know that it is marked as intermediate unless a
subset is generated from it. From step 2-b-iii we know that an intermediate node having a sibling in £, generates
a subset. Hence, a node in J' is either a revoked leaf node or an internal node that generates a subset.

We construct a graph T such that for each subset S; ;» in S/, node ¢ and all nodes in J’ are in Y. For every
subset S; ;- in 8., there is an edge (i,7) for each j € J' in Y. A node j € J' that is an internal node in 7°
generates a subset and hence is an internal node in Y. A leaf node in J' is a leaf node in T.

We first show that T is a forest with one or more component trees. Once a subset .S; ; is included in S, at step
2-b-iii of the algorithm, i is marked as covered and SDnodes[i] = i. Hence for an ancestor i; of 4, any descendant
of 7 is not in SDnodes[i1]. If S;, s, is included in the cover, it may have 4 in J;. Since i generates a subset in the
cover, the transformation of J; to Jj will not reach any descendant of i. Hence, J] will not have any descendant
of i. Consequently, there will be an edge (i,7) in T for each j € J’ but there will be no other edge between j
and any other ancestor of j. Since this is true for any node j € T, it is an acyclic graph. Additionally, the cover
might not have a subset generated from the root. Thus, components of T may not be connected. Hence, it is a
forest with one or more component trees.

The nodes in Y are either internal nodes in 7° that generate a subset each, or revoked leaf nodes. Hence,
the number of internal nodes in T is the number of subsets in the subset cover. For a subset S; ; € S if |J| =1,
then by Lemma 1 the node in J is either an internal node with all its k children in £ or a leaf node. In the
corresponding S; y € S, an internal node in j € J with all its k& children in £ has been replaced by its child
nodes. Hence, if a subset S; ; € S, is such that |J’| = 1, then the set J" has a single leaf node. Hence, if an
internal node ¢ in Y has only one child, it will be a leaf. Any other internal node in T will have at least two
children in Y.

The transformation ensures that each of the r revoked leaves of 70 is a leaf in Y. Hence, there can be at most
r internal nodes that have leaf nodes amongst their children in Y. The graph T is reduced to Y’ by merging an
internal node having a single leaf child, with its child. Consequently, Y’ is a forest with at most r leaves and
internal nodes in Y’ have at least two children each. Hence, there are at most » — 1 internal nodes in Y’. Thus,
the maximum number of internal nodes in T is r +r — 1 = 2r — 1. Hence, there can be at most 2r — 1 subsets
in the subset cover. O

This upper bound of 2r — 1 on the maximum header length can be achieved for a given r and any fixed value
of k provided n can be made as large as required. For k& = 2, this bound has been shown to be tight in [BS13a].
For k = 3, let us consider the tree 70 of Figure 4 where the set of revoked users is R = {13,16,22,25}. The
nodes in P are {13, 16,22,25,1,2,0}. The subsets in the cover are S4,{13}> 55,416} S7,{22}» 98,{25}s S1,{4,5}s 92,{7.8}
and Sp (1,2)- It can be seen from this figure that for higher arities (> 3), additional subtrees are added to all
the internal nodes. Assuming that the revoked users remain the same as marked in the figure, we notice the
following. The subset Sy (131 gets additional users that are attached to the node 4. Similarly, each of the subsets
S5.{16}> S7,{22}> 98 {25}s O1,{4,5}> S2,{7,8} and Sp (12} get the additional users attached to the nodes 5,7,8,1,2 and
0 respectively. Hence, this upper bound is tight for any arity k in general provided n can be chosen to be large.

For a given k and n = k% this maximum header length of 2r — 1 is achieved for r given by Lemma 4.

Lemma 4. For a given k and n = k%, the mazimum header length of 2r — 1 is achieved for r = 2f0~1,
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Figure 4: Example showing that the upper bound of 2r — 1 on the header length is tight for £k = 3. The subset
cover for R = {13,16,22,25} in the tree 7° with k¥ = 3, will contain the SD subsets Sy,013)> S5 {165 S7{22}

SS,{25}7 51,{4,5}7 52,{7,8} and So,{l,z}-

Proof. We prove this by induction on ¢y. For g =1, n =k and r = 1. Let j; be the only revoked leaf. The only
subset in the cover is Sy ;1 and hence the header length is 2r — 1 = 1. We assume that the maximum header
length that can be achieved for 2¢0=2 revoked users in a full tree of arity k and with k%~ users is 2001 — 1. Let
us consider a tree with n = k% users and r = 27! revoked users such that two of the subtrees (out of k) of
the root node, which are rooted at nodes j; and jo, have /2 = 2%~2 revoked users in each and the rest of the
subtrees of the root node do not have any revoked user in them. Since each of these two subtrees have k0~ users
in each, hence by assumption they give rise to 201 — 1 subsets each in the cover. Additionally, there will be a
subset Sy (;, j,1 in the cover. Hence, the total number of subsets generated by this construction for r = PACIR T
2x (20— +1=2r-1.

We need to show that these subsets do not combine to reduce the header length. Two SD subsets .S, spnodes|i]
and S;, spnodesji;] can be combined into one SD subset if (1) SDnodesi1] = {ia} or SDnodes[iz] = {i1} or (2) if
nodes in SDnodes]i1] are siblings of nodes in SDnodes[is]. Any two SD subsets S, spnodesiy] a0d S, SDnodes|is]
from the subtrees rooted at j; and jo respectively cannot satisfy either of the above two conditions. For the same
reason, the subset Sy (5, ;,3 cannot be combined with any of the SD subsets in these two subtrees. Hence, none
of these subsets combine to reduce the total number of subsets 2r — 1 in the subset cover. Hence, for r = 2f0~1,
the maximum header length of 2r — 1 is achieved for a fixed k and n = k. O

Effect Of £ On The Header Length. In the Subset-Cover framework, the subsets in the collection S are
used to cover the privileged users. It seems intuitive that if the number of subsets in the collection increases,
the number of subsets required to form a cover would decrease. As mentioned earlier, for n = 16, the number
of subsets in the collection for k£ = 4 is more than that for k¥ = 2. More subsets in the collection should reduce
the header length. In Figure 5 we see that the header length due to the given revocation pattern is smaller for
the 4-ary tree as compared to the 2-ary one. However, this may not always happen. In Figure 6, the revocation
pattern is such that the header length is smaller for the 2-ary tree as compared to the 4-ary one. Hence, we
see that the header length may not always reduce by increasing the arity. By Theorem 3, the maximum header
length is independent of the underlying arity k. The expected header lengths for different values of k& will give a
better idea about the effect of arity on the overall communication overhead.

4.1 Expected Header Length

Fix k, n and r. Consider the following random experiment. Randomly choose r out of the n users uniformly at
random one-by-one and without replacement. Consider the selected set of r users to be revoked. The expected
header length under this random experiment is given by the following result.
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Figure 5: Example where the header length of 4-ary is better than 2-ary: For n = 16 users, the header length
for R = {15,17} in the 2-ary tree is more for k = 2 than for k = 4. For k = 2, the subset cover S, =
{57’{15}, 58,{17}7 501{3}}. For k = 4, the subset cover Sc == {507{577}}.
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Figure 6: Example where the header length of 2-ary is better than 4-ary: For n = 16 users, the header length
for R = {15,16,23} in the 2-ary tree is more for k = 4 than for k¥ = 2. For k = 2, the subset cover S, =
{51’{7}, 527{23}}. For ]{3 = 4, the Subset cover SC = {517{5,6}’ 537{13}, S07{173}}.

Theorem 5. Fix k> 2, n = Ko >1and1<r<n. The expected header length in the k-ary tree SD scheme is

given by
k—1 k lo—1
lo—L
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Proof. Let X,,, be the random variable taking the value of the header length. The expected header length also
depends on £k and so strictly speaking we should be using the notation X, to denote this dependence. We
have chosen the simpler notation X, , since for a particular implementation, k& will be fixed and so clear from
the context.

Each subset in the cover S. is rooted at some internal node i of 7°. Each such node in the tree contributes
at most one subset to the cover. Let Xfw be the random variable associated with node ¢, that denotes its
contribution to the header length. Hence, Xfm, € {0,1}. The event Xfw = 1 occurs when there is a subset S; ;
in the cover and Xfw, = 0 otherwise. It can be seen from the cover finding algorithm described in Section 3.2
that the leaf nodes of 79 do not generate SD subsets. Hence, SD subsets are generated only from the internal
nodes in 70, It follows that

Xnp =X, 4+ X0+ + Xy (5)

where iy = T;ckjll —n — 1 is the last internal node as per the labeling of the tree 7°. By linearity of expectation,

E[X,,] = E[X3,] + BIX},]+ - + E[Xd,]. (6)

To find the expected header length, one needs to compute the values of E[Xfw] for each i € {0,1,...,i¢}. Since
X}, € {0,1}, the random variable X, . follows Bernoulli distribution. Hence, E[X}, . = 1] = Pr[X] . = 1]. Thus,
to compute the expected header length E[X,, ,] for a random revocation pattern, the probability Pr[Xfw = 1]
that a node i generates a subset has to be computed.

Let I be the set of all child nodes of i and let p be the parent node of i in 7°. Hence, [ = {ki+1,...,ki+k}
and p = [(i —1)/k|. Let J C I be a non-empty subset of child nodes of i. The event X, , =1 occurs when a
subset S; ; is in the cover. For a subset S; ; to be in the cover, the following have to be true with respect to
node i in 77°:

e At least one but not all child subtrees of i would contain some revoked nodes; and

e If i # 0 (for a non-root internal node), at least one sibling subtree of ¢ would contain a revoked node.

Figure 7: Example of a scenario for the event Xfw = 1 where a set \S; j occurs in the subset cover. Child nodes
of i marked with r are roots of subtrees containing at least one revoked user in each. Hence they are in the set J.
The other child subtrees of ¢ do not contain any revoked user. Hence they are in the set I\ J. Sibling subtrees
of i marked as sb contain at least one revoked user in each. Hence, at least one child subtree of i (not all) has
revoked users and at least one sibling subtree of ¢ has revoked users. Consequently, a subset rooted at node i is
generated.

In order to formulate these conditions when a subset S; ; rooted at node ¢ occurs in the subset cover, we
define some additional events with respect to the node ¢ and a non-empty subset of its child nodes J C I. The
event R;- (where j € J) is defined to occur when for a revocation pattern, the subtree rooted at node j contains at
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least one revoked user. Hence, event Ez occurs when the subtree rooted at node j does not contain any revoked
user. Let R} = /\je J R; be the event where each subtree rooted at nodes in J has at least one revoked user.
Hence, Rf, is the event where none of the subtrees rooted at nodes in J have any revoked user. For i # 0, event

R, is defined to occur when the union of all sibling subtrees of i (children of p other than i) contains at least
one revoked node. Hence, a subset S; ; is in the subset cover when the following condition is true

N\ Ri | ARy ARL
jed

= RyAR, AR,

N — nJ-

Since a subset \S; ; may occur for any non-empty set J C I, hence the event X,"M =1 can also be written as

\ ( /\R’b/\RI\J>

JCI,J#¢
These events (R, A RY A RZI\ ;) are mutually exclusive and they exhaustively form the event Xfw = 1. Hence,
we can write
Pr(X} , =1] = Z Pr[R., A RY A Ry, R . (7)
JCI;J#¢
It can be similarly seen that for the root node with children in {1,...,k}
PXO = Y PRI AL (5)
JC{1,.. k}; 4
The probability Pr[R:, A RY A R’I\ ;] can be written as
Pr[Rl, A Ry A R}\J] = Pr[Ri, A R! ]RI\J] X Pr[RI\J]
=(1- Pr[sz A R ]RI\J]) X Pr[RI\J]
=(1- Pr[RZb|RI\J] [R3|RI\J] + Pr[Ri, A R}, |R[\J]) x PrlRj, /]
[RZI\J] Pr[R A R"I\J] Pr[RZ A RZI\J] + Pr[Ri, A RZ A R’I\J]) 9)
and for the root node, Pr[R% A RI\J] can be written as
Pr[R) A PJI\J] = Pr[Rg\J] - Pr[RJ A R’I\J] (10)

For the computation of (9) and (10) above, we observe that the event Rif, occurs when at least one j € J does
not contain any revoked user. Now let us consider two events A and B in general such that the event A occurs
when all the sub-events Aq,..., A. occur. Hence, A = A1 A ... A A..

Pr[AAB] =Pr[A;A...NA.B]Pr[B
=Pr[A; V...V A|B|Pr[B
=Pr[Ay AB]+ ...+ Pr[A. A B] — Pr[Aj AAa AB] — ... — Pr[A._1 A A. A\ B]
.+ (=D (Pr[A AL A A AB)). (11)
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Now, when A = Rf'] where A; = R;t and B = Ri[\ 7, We get

Pr[RY ARy, = Pr[Ri ARy |+ ...+ Pr[RI ARy ]
~Pr[R] AR A R@,\J] ...~ Pr[Ri_ AR AR ]
Fo (—1)H (Pr[RZ A AR /\RlI\J]) (12)

Similarly, for the expression Pr[R’ A RI\ JA E] in (9) we get the following using the result in (11)

Pr[R) ARy, , ARL] = Pr[Ri AR} ARL]+...+Pr[Ri ARL ARy

—Pr[Ri AR, AR, ARL]—Pr[Ri_ AR, ARy, AR
bt (=1 (Pr[Rl AR AR;\JAR;b]). (13)

From (9), (12) and (13) we get

Pr[Ry, ARy ARy, ] =P[Ry, ] — Pr[RI, A Ry, | = Pr[R) A R

nJ
[RZI\J] Pr[RI, A RI\J]

—Pr[Ri AR | — ... — Pr[Ri AR

I\J]
+Pr[RE AR A R;\J] +Pr[Rl_ AR A R;\J]

RY ]+ Pr[Rl, ARl A RZI\J])

4 (- )C+2(Pr[RZ A... AR /\R’I\J])

+Pr[Ri ARy, AR+ ...+ Pr[Rl AR) ARy

—Pr[R] ARE /\RZI\J/\RSb]— Pr[R. AR AR,

Je—1 I\J A Réb]

b (—1)eH (Pr[R}l A... AR AR;\JARgb]). (14)

To find these probabilities, we define 7,.(n,z) to be the probability that r out of n elements are chosen
uniformly at random without replacement but x out of these n elements never get chosen. In other words,

)
()
Let the number of users in the subtree rooted at node i be A\’. Hence, the number of users in all the sibling
subtrees of i is A’ — A!. Hence, the sum of the number of users in the subtrees rooted at nodes in I\ J is

1r(n, ) = (15)
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A\ — died M. From (14) and (15) we get

Pr[R!, A R A R%I\J] =0, N =D N) = pe(n, AP =) W)

=Y jET
—np(n, AT — Z M) = (N — Z M)
g€} jeI\{je}
e A= > M)+ N = Y N)
J€I\{1.d2} J€N\{e-1.7c}

— 4 (=D (0, N)
+77T(n7)\p_ Z )‘J)++77T(n7 AP — Z AJ)

J€I\{} J€I\{je}
—1nr(n, AP — Z M) — . = np(n, NP — Z M)
jeN\{g1.g2} jeN{de—1,4c}
o (D) (n, Ap). (16)

Similarly for the root node, from (10), (12) and (15) we get

Pr[R; ARl ] = (n, A=Y V)

jed
—np(n, N — Z M) — . = ne(n, N — Z M)
jeI\{j} j€N\{je}
e A = > M) N = > V)
jeI\{jr.j2} je€N{je—1.5c}
— e (=D (n, ). (17)

From (6), (7), (8), (16) and (17) we get the algorithm for computing E[X,,,]. In Section 5, we discuss that
this scheme may be further extended for arbitrary number of users (instead of a power of k). In such a case,
the underlying tree may be assumed to be a complete tree (with users at the last two levels of the tree) instead
of a full tree. All the above expressions for computing probabilities are also valid for complete trees where the
number of users may not be a power of k.

However, for the k-ary tree SD scheme as it has been described here, the number of users is assumed to be a
power of k. Hence, n = k0. Let ¢ = |.J| be the cardinality of the set J of some child nodes of i. Hence, 0 < ¢ < k.
There are £ levels with internal nodes in the tree 7°. All subtrees rooted at level ¢ has the same number of leaf
nodes k‘. For a non-root i at level £ and a corresponding set of child nodes J (|.J| = ¢), the contribution to the
header can be computed from (16) as

Pr[Ri, AR, A R}

[\J] _ (n k_f o Ckéfl) - 777"(”, k€+1 o Ck;ffl)

_Z t+1< ) (n,kg—(c—t)ke_l)
+Z(_ t+1< >77r(n k£+1 ( _t)kéfl). (18)
t=1

Let 7. be the value of this probability given by (18) for a non-root node ¢ at level £ (1 < ¢ < {y—1) and |J| = c.
Since there are k¢ nodes at level ¢ in the tree 70, hence the contribution of all the nodes at level £ and a fixed
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Table 1: Table showing the performance of the algorithm for computing the expected header length. For each
k, we have chosen n to be k% and k® which are the two closest powers of k to 10%. The column MHLy /7 gives
the ratio of the mean header length MHL;, for k-ary tree to the number of revoked users r.

Hk:‘ n ‘ r ‘ MHLg /7 Hk‘ n ‘ T ‘ MHLg /7 H

10° | (1.24,1.24) 10° | (1.48,1.48)

2 | (2%6,227) | 10° | (1.23,1.24) || 3 | (316,317) | 105 | (1.43,1.46)
107 | (1.23,1.24) 107 | (1.00,1.31)
10° | (1.49,1.50) 10° | (1.47,1.48)

4] (413,41) | 106 | (1.45,1.49) || 5 | (5',5%2) | 10° | (1.40,1.46)
107 | (1.08,1.38) 107 | (0.83,1.32)
10° | (1.45,1.46) 10° | (1.42,1.43)

6 | (61°,6') | 105 | (1.38,1.45) || 7 | (7°,710) | 10° | (1.30,1.42)
107 | (0.82,1.32) 107 | (0.55,1.24)
10° | (1.38,1.42)

8 | (8%,87) | 106 | (1.05,1.37)
107 | (0.21,0.97)

value of ¢ is (k%~%)y.. For the root node 0 at level £y and a corresponding set of child nodes J C {1,...,k}
(|J| = ¢), the contribution to the header can be computed from (17) as

C

Pr[ROA RO || =mn(n kb — ko™ =N (=1 tH(C)Tn,kfo—c—tkgol. 19
(B3 ARy g1 = >t21()tn( (c—1) ) (19)

The value of this probability given by (19) for the root node at level ¢y and |J| = ¢ is denoted by g, .. Hence,
the expected header length for a given k, £y and r is given by

k—1 k lo—1
EXny] = Z <C) (’Yéo,c + Z (kéo—é),)/&C) . (20)

c=1 /=1
]

Algorithm To Compute The Expected Header Length. The result in Theorem 5 can be converted into
an algorithm to compute the expected header length. The algorithm takes as input the values of k, n and r.
Here n = kf for some ¢y > 1 and 1 < r < n. The algorithm computes the values of 7, . for each level £ in
the tree 70 and each value of ¢. For fixed values of £ and ¢, computing Ve, Tequires computing a fixed number
of n(-,+). One computation of 7,(-,-) requires O(r) multiplications. Hence, computing v, . also requires O(r)
multiplications. Since there are log; n+ 1 levels in the tree, hence computing the expected header length requires
O(rlogn) multiplications. The algorithm requires constant amount of space. Hence, we have an algorithm
requiring O(rlogn) time and O(1) space to compute the expected header length in the k-ary tree SD scheme for
given values of k, n and r.

We have implemented the algorithm. Table 1 provides examples of outputs of the algorithm for different
values of k, n and r.

5 Tackling Arbitrary Number Of Users

In the description of the scheme so far, we have assumed that n is a power of k. This may turn out to be
restrictive in practice. Here we describe how to modify the scheme so as to be able to handle arbitrary number
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of users. When n is a power of k, the underlying structure is a full k-ary tree. In the more general case where
n is not a power of k, we work with a complete k-ary tree. This is an analogue of complete binary trees used in
data structures to describe heap algorithms.

The structure of a complete k-ary tree can be described as follows. Let £y = [log,n] and k%~! < n < kfo.
By an abuse of notation, we denote by 7° the complete k-ary tree with n leaf nodes. The leaf nodes are at levels
0 and 1. Suppose that there are n; leaf nodes at level 0 and ns leaf nodes are at level 1. Let n = k%1 4§ with
1 <i < kfo —kf=1 Then a simple calculation shows that no = k=1 — [i/(k — 1)] and ny = n — ny. In T°,
consider the path joining the root node 0 to the right-most internal node at level 1. Clearly, all subtrees rooted
at nodes that are not on this path are full k-ary trees. In particular, subtrees rooted at nodes at level ¢ that are
to the left (respectively right) of this path are of height ¢ (respectively ¢ — 1). This path is consequently called
the dividing path. If n is not a power of k, then subtrees rooted on the dividing path may not be full k-ary trees.

Definition Of The Collection S. This remains unchanged, i.e., S still consists of N and subsets S; ; where
i is an internal node in 7° and J is a subset of nodes with a common parent in the subtree of 70 rooted at i.
The method for assigning keys to the subsets also remain unchanged. (In Section 6 later, we provide a different
method for assigning keys.)

User Storage. The actual number of seeds that a user will require depends on whether the user corresponds
to a leaf at level 0 or a leaf at level 1. This number is at least (2F~1 — 1)% and at most (2F~1 — 1)%7“).
All users are attached to some node of the dividing path. Users to the left of the dividing path and attached to
it at a level greater than 1, get (21 — 1)%?1) (maximum number of) seeds; users to the right of the dividing

path and attached to it at a level greater than 1, get (21 — 1)% (minimum number of) seeds. The number
of seeds assigned to users attached to the dividing path at level 1 (to the rightmost internal node), is in the
above mentioned range and can be easily calculated based upon the number of children of the last two nodes of
the dividing path.

Cover Generation Algorithm. The algorithm remains by and large the same. It is only at the initial stage
that some modification is required. The cover generation algorithm for full k-ary trees progresses by processing
the nodes in the list £ one by one. This list is maintained as a queue and is initialized by inserting all the revoked
users into it in the left-to-right order. All the users and so all the revoked users are necessarily at level 0.

In the case of complete trees, some of the users may be at level 1. So, the initialization of £ is done by
inserting all the revoked nodes at level 0 in the left-to-right order. At this point, the users at level 1 are not
inserted into the list. The nodes in £ are now processed one-by-one as in the cover generation algorithm. As
part of this processing, the parents of these nodes get appended to £. These parents are (internal) nodes at level
1. When the processing of the last revoked node at level 0 which is in £ is completed, all nodes at level 1 which
have at least one revoked child have been added to £ in the left-to-right order. Now, all nodes corresponding
to revoked users at level 1 are inserted into £. From this point onwards there is no further change in the cover
generation algorithm. It proceeds exactly as in the case of full trees and generates the cover. It is not difficult
to argue that the algorithm correctly generates the cover. We have implemented this cover generation algorithm
and used it in the analysis of average header length.

Header Length Analysis. Moving from a full to a complete k-ary tree does not affect the upper bound on
the header length of the algorithm. It is min(2r — 1,n —r, [n/k]). For expected header length, as in the case of
full k-ary trees, in theory, it is possible to develop an algorithm to compute the expected header length for the
complete k-ary tree SD scheme.

As before let Xfw be the binary valued random variable which takes the value 1 if and only if the node ¢
gives rise to a subset in the header. Hence, Pr[X}, . = 1] has to be computed using (16) and (17). To that end,



6 REDUCING USER STORAGE 23

the number of nodes under the subtree rooted at a node i has to be calculated and substituted appropriately
in the equations. Note that the subtrees rooted at nodes on the dividing path may or may not be full. Thus,
in order to compute Pr[X} . = 1] for a node i using (16) and (17) it is required to consider a large number of
cases depending on the relative position of a node with respect to the dividing path. While this can be done, the
resulting algorithm becomes quite complicated and becomes difficult to implement.

In view of this difficulty, we have chosen not to implement the exact algorithm for finding the expected header
length for complete k-ary trees. Instead, we have opted for a simulation study of the expected header length. For
given values of k, n and r, we generate random revocation patterns using Floyd’s algorithm [BF87] to sample r
users from the set of n users. For each such random revocation pattern, the cover generation algorithm finds the
exact cover and hence we get the header length for a particular revocation pattern. Taking the average of the
header lengths obtained on different runs gives a statistical estimate of the expected header length. The number
of iterations is chosen so that the average value of the header length stabilizes.

We have implemented this method. The result has been checked for accuracy in the following manner. In
the case when n is a power of k, we have developed and implemented the algorithm to find the actual value
of the expected header length. For such values of n, the results of the simulation study has been compared to
the output of the exact algorithm and has been found to have tallied very well. Later, we report comparative
performance analysis based on the simulation study of the expected header length.

6 Reducing User Storage

Given a k > 2, let n (not necessarily a power of k) be the number of users. By usi(n) we denote the maximum
number of m-bit seeds required to be stored by any of the n users in the system such that a user is able to
generate the key associated to any subset in S of which it is a member. From (2), it appears that usg(n) is
1+ (2871 —1)€y(Lo + 1)/2 where £y = [logj, n]. In comparison to the case k = 2, for k > 2, the factor (2¥=! — 1)
contributes to the blow up in the key size. In this section, we describe methods by which this blow-up can be
somewhat mitigated leading to values of usy which are lower than that given by (2). For small values of k, in
comparison to (2), the decrease in user storage that is attained is significant.

The reduction in user storage described in this section is achieved by deriving the seeds in a different fashion.
The collection & remains unaltered and so the cover generation algorithm does not change. Also, the header
length analysis (both maximum and expected), remains unaltered.

6.1 The Case £ =3

To explain the basic idea, we start by considering the case of k = 3. In this case, from (2) the maximum number
of seeds required to be stored by any user is 1 + 3¢y(¢p + 1)/2, where ¢y = [logzn]|. We show that this can be
reduced to 14 £y(¢p + 1).

Consider the tree 79 where each internal node has (at most) 3 children. (For ease of understanding, one may
initially assume 70 to be a full 3-ary tree.) Let j be an internal node of 7 and its children are nodes numbered
35 +1,35 42,35 + 3. Users in 77 get seeds derived from the seeds associated to j. There are two kinds of seeds
associated to j: the uniform random seed L; and the derived seed L; (;; where ¢ is some ancestor of j. For any
such seed L, there are seven seeds L, = G,(L), 0 < o < 6 which are derived from L. If L is of the form L; 15y,
then Lo is the key associated to the subset S; (53, while all the other L,’s are distributed to the users in 77 in
the following manner. (We identify o with their 3-bit binary representations.)

Users in T3f+1 get: Lo11, Lo1o, Loo1-
Users in T3]'+2 get: L101, L1007 LOOl-
Users in T3+3 get: L1109, L100, Lo1o-
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Hence, corresponding to the label L associated to j, each user in 77 gets three seeds. We show that by adopting
a different strategy for generating the L,’s, it is possible to provide each user in 77 with two seeds, from which
it can generate the three required seeds.

The idea is based on replacing G' by another cryptographic hash function H : {0,1,2} x {0,1}" — {0,1}"™.
For b=0,1,2, we denote H (b, seed) as Hp(seed). We define Gy (seed) to be Ha(seed). Suppose o is a t-bit string
by ---b;. Then H, is defined to be Hy, (- - - (Hp, (seed) - ).

Consider again a seed L associated with the internal node j from which seeds for users in 77 are to be derived.
For a t-bit binary string o with ¢ > 1, define L, to be equal to Hy(L). A simple way of viewing this is the
following. Consider an auxiliary full binary tree structure (independent of 7°) of height t. Each path from the
root to a leaf in this tree is of length ¢ and is encoded as follows. Moving to the left child from a node is encoded
by 0 and moving to the right child is encoded by 1. Then any node in the tree is encoded by a binary string o
which represents the path from the root to that node. The seed L is associated to the root node of the auxiliary
tree. The action of H on the seed of a node to derive the seeds of its children, results in the association of the
seed EU to the node encoded by o.

The different L’s to be distributed to the users in 77 are defined from the L’s by a suitable permutation on
the set of all 3-bit strings. More concretely, we define

Loo1 = Looo, Loi1 = Loo1, Loio = Lo1o, L110 = Lo11, L1oo = L1oo, L1o1 = Lio1, Looo = L110, L111 = L111-
The new assignment of seeds to users in 77 is as follows:

Users in 72711 get: Loo, L010
Users in 73712 get: Llo, LOOO
Users in 73713 get: L017 L100

Since L001 = EOOO = Ho(ioo), L011 = EOOl = H1 (Eoo) and L010 = E()lo, users in 7'3j+1 can generate the required
seeds. Similarly, the users in 7372 and 7%/*3 can generate the seeds required by them.

The above method shows that for any seed associated to any internal node j, the number of derived seeds to
be stored by users in 77 reduces to 2 from 3. As a result, the number of seeds required to be stored by any user
is (at most) 1 +2 x lo(lo+1)/2 =1+ £o(fy + 1). This is summarized in the following result.

Proposition 6. Suppose k = 3 and there are n users with {y = [logzn|. Then the mazimum number of m-bit
seeds required to be stored by any user is usg(n) =1+ lo(lo + 1).

Given n, the expressions for usy and us3 are as follows:
1
use(n) =1+ 3 X [logon] ([logan]| +1) and us3(n) =1+ [loggn] ([loggn] +1). (21)

It is interesting to form a comparative study of use and us3. This is done using the following sequence of results.

Lemma 7. Let { > 1. Let s be the least positive integer such that 2° > 3¢, Then 3{ +1 < 25 < 2572 < 3642 4 1,
In other words, there are at least three powers of two between 3¢ + 1 and 3¢+2 + 1.

Proof. Let 2° = 3¢ 4+ x for some x > 1. Since s is the least positive integer such that 2 > 3¢ it follows that
25=1 < 3. From this, we get 3//2+42/2 < 3% so that z < 3°. Now, 2512 < 342 if 4 x 3 +-40 < 32 if 2 < (5/4)3".
Since we already have z < 3¢, the result follows. O

Lemma 8. Let £ be a positive integer and s be the least positive integer such that 2° > 3¢+ 1. Then the following
holds.

1. If ¢ is even then 3s > 4(€ + 1). Further, the inequality is strict for even ¢ > 4.
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2. If £ > 5 is odd then 3s > 4(¢ + 1). Further, the inequality is strict for odd £ > 7.

Proof. We prove (1), the proof of (2) being similar. The proof is by induction on even ¢ > 2. The base case is
for £ = 2 and then s = 4 and so the result holds. For the induction step, we first note that by Lemma 7, there
are at least 3 powers of 2 between 3¢ + 1 and 372 4+ 1. So the least power of 2 which is greater than 3¢+2 4 1 is
at least 2°73. By induction hypothesis, we have 3s > 4(¢+ 1) and so 3(s +3) =35+ 9 > 4(£ + 1) +8 = 4(L + 3).
This shows the induction step. For £ = 4, the inequality is strict and by the induction step, it follows that the
inequality is strict for all even £ > 4. O

Lemma 9. Let { > 4 and s be the least positive integer such that 2° > 3' +1. Then for any n with 2°+1 < n <
31, usy(n) > uss(n).

Proof. From the range of n it follows that usg(n) = (¢+1)(¢+2). In the given range for n, usa(n) > (s+1)(s+2)/2.

We first prove the result by induction on even ¢ > 4. For ¢/ = 4, s = 7 and the result holds. For the
induction step, suppose the result holds for ¢, i.e., (s+1)(s+2)/2 > (£+1)(¢+2). Also, by Lemma 8, we have
3s > 4(¢ + 1). Consider the case for £ + 2. By Lemma 7, the least power of 2 which is greater than 32 4 1 is
at least 2°*3 and we have to consider n in the range 2573 + 1 < n < 33, In this range usz(n) = (£ 4 3)(£ + 4)
and usg(n) = (s +4)(s + 5)/2. The following computation shows the inductive step.

(s+4)(s+5)/2=3s+6+(s+1)(s+2)/2>4(l+1)+6+ (L+1)({+2)=(L+3)(L+4).

A similar argument by induction on odd ¢ > 5 shows the result. O

Lemma 10. Let ¢ > 7 and s be the least positive integer such that 25 > 3°+1. Then for any n with 3*+1 < n < 29,
usz(n) > usg(n).

Proof. In the given range, us3(n) = (¢4 2)(¢+3) and usz(n) = s(s+1)/2. The induction is by separate induction
for odd ¢ > 7 (with corresponding s = 12) and even ¢ > 8 (with corresponding s = 13). The base cases can be
directly verified. The separate induction steps follow by an argument similar to that for Lemma 9. O

We finally get the following result.

Proposition 11. Define I to be the following set of integers.
IT={3}U[22+ 1,32 U2* + 1,3% ] U [2° + 1,31 U 2" + 1,3°] U [2® + 1,3°] U [2!° + 1, oc].
Forn € 1, usa(n) > ussz(n) and for n € Z\ I, usa(n) < uss(n).

Proof. For n < 1024, the result can be seen by direct computations. (Some of the cases also follow from
Lemma 9.) For n > 1024, the combined effect of Lemma 9 and Lemma 10 shows the result. Ul

The above provides the complete comparison of the user storages for k = 2 and £ = 3 and precisely proves
that for n > 1024 the user storage required by the ternary tree based scheme is smaller than the user storage
required by the binary tree based scheme. A similar observation with lesser refinement and without proof was
made in [FKTSO08].
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6.2 The Case k=14

As in the case for k = 3, let j be an internal node and L be a seed associated with j. Users in 77 obtain seeds
L, derived from L using G, where in this case ¢ is a 4-bit string. More precisely, users in 797 1 < b < 4, get
seeds L, such that o is a non-zero 4-bit string whose bth position from the left is zero. So, for the label L, each
user in 77 gets 7 seeds.

In a manner similar to that of k = 3, it is possible to provide each user in 77 with 4 seeds such that from
these seeds all the required 7 seeds can be derived. The idea is again based on using the function H to define
certain seeds L’s and then define the L’s in terms of the L’s. The definition of the L’s using H is the same as
that in the case for k = 3. So, all we need to provide is the definition of L’s in terms of the L’s. This is done as
follows:

Lo111 = Loooo, Loi1o = Looo1, Loioo = Loo1o, Loio1 = Loo11, L1011 = Lo1oo, Loo11 = Loio1, Looio = Lo11o,
L1101 = L1001, L1oo1 = L1010, Looor = L1011, L1110 = L1100, L1100 = L1101, L1iooo = L1110, L1010 = L1111-

The distribution of seeds to the users in 77 is the following.

Users in T4+ get: fgo,iono,zomhimll-
Users in T4+2 get: Lo1,L101,L111

Users in 7473 get: L001,L10,L1101,L1110
Users in 7% %4 get: Looor, Loo1o, Loi10, L11-

Using these seeds, each user can create the L’s that it is supposed to get. For example, users in 74! should
be able to create Logo1, Loo1o, Loo11, L0100, Lo1o1, Lo11o, Loi11- These can be obtained from the seeds obtained by
the users in 74*! in the following manner.

Lo = Eoooo = HO(HO@:OO))? Lo11o = 20001 = Hl(Ho@oo));
Loioo = Looio = Ho(Hl(ALoo)); Loior = Loo11 = Hi(Hi(Loo));
Loo11 = Lo1o1; Looio = Lo110; Looor = L1o11-

In a similar manner, users in the other subtrees of 77 can create the seeds required by them. Corresponding to
the seed L associated with node j, the number of seeds to be stored by users in the subtree 7%%2 is 3, while
users in all the other subtrees require to store 4 seeds. From this we get the following result.

Proposition 12. Suppose k =4 and there are n users with £y = [log, n|. Then the mazimum number of m-bit
seeds required to be stored by any user is usy(n) = 14 209(Ly + 1).

Note that this is a significant improvement over the requirement of storing 1+ 3.5¢y(¢p+ 1) seeds as indicated
by (2). The value of usy(n), however, is greater than use(n) for n > 4. So, the user storage for binary trees is
lesser than that for 4-ary trees.

6.3 The Technique For General k&

Let k£ > 3 and consider the k-ary tree 70. As before, for any internal node j, there are two kinds of seeds
associated with it: the uniform random label L; and the label L; () derived from some ancestor ¢ of j. Let L be
any such seed. Users in the tree 77 get seeds derived from L with users in the subtree 7571t getting all seeds
L, = G5(L) where o is any non-zero k-bit string having a zero at position b from the left.

In the cases of K = 3 and k = 4, we have seen alternative ways of deriving L,. The idea has been to derive
the E s using H and then define the Ly’s in terms of the E s. For the case of general k, it is still possible
to derive the Ly’s using H. The problem, however, is in defining the L’s in terms of the L,’s. For k = 3 and
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k = 4, this has been done in a somewhat ad-hoc fashion and does not extend to the case for general k. Below
we describe a more systematic method of deriving the L,’s from L.

The idea is based on the notion of cyclotomic cosets. There are several equivalent ways of viewing cyclotomic
cosets. The description that we give below is primarily based on cyclic shifts of bit strings. This is equivalent to
the more conventional description [MS78] as we point out later.

Let o be a k-bit string. Then the cyclotomic coset containing o is the set of all k-bit strings that can be
obtained by one or more circular left shifts of o. Clearly there can be at most k elements in any cyclotomic coset
and further, the number of elements in a cyclotomic coset is necessarily a divisor of k. So, if k is a prime, then
the number of elements in any cyclotomic coset is either 1 or k. The all-zero string forms a cyclotomic coset by
itself as does the all-one string. These are the only two cyclotomic cosets consisting of single elements. Given k,
let x; denote the total number of cyclotomic cosets defined from k-bit strings.

The above can be described in terms of modulo arithmetic as follows. Let s be an integer in [0, 2% —2]. Then
25 mod 2F — 1 corresponds to a cyclic left shift of the k-bit binary representation of s. So, the cyclotomic coset
containing the k-bit binary representation of s is essentially also the set of integers s,2s mod 25 —1,. ...

If a is a generator of the field GF(2F), then « raised to the powers of elements (seen as integers) of one
cyclotomic coset form the roots of one irreducible polynomial. Using this correspondence, the number I(m) of
irreducible polynomials of degree m over GF'(2) is given as [MST78]

Im) = 3" ()2 (22)

dim

where p() is the Mobius function. The factorization of 22" — 1 consists of all irreducible polynomials whose
degrees divide k. The number of such polynomials is the number yj of cyclotomic cosets of k-bit strings and is
obtained by summing I(m) over all m which divides k. Using elementary results on the Mobius function, this
turns out to be the following expression

X =7 3 ()2t (23)

m

where ¢() is the Euler totient.

Given two binary strings ¢ and 7 of the same length, we define ¢ < 7 if the integer represented by o is less
than the one represented by 7. In the following, we will assume that the elements of any cyclotomic coset are
ordered from left-to-right based on < and the first element will be called the coset representative. Further, we
assume that the cyclotomic cosets are themselves ordered based on their coset representatives.

Let Cy, ..., C,, -1 be the ordering of the cyclotomic cosets. Then Cj is the coset containing the all-zero string
and C, _1 is the coset containing the all-one string. We will consider only the cosets C1,...,Cy, 2. These are
ordered in a matrix fashion with the ith row of the matrix consisting of the elements of C;. Examples of the
matrix for k =3, k =4 and k = 5 are given in Table 2. If &k is prime, each row of the matrix will have k strings
and if k is composite, the number of elements in the rows will be divisors of k.

Let us denote the matrix for k& by M®*). Let the columns of M*) be denoted by Vl(k), e Vk(k). Note that

if k£ is composite, some of the Vb(k) will have blanks (the empty string) in their components. The non-empty

) (k)

strings in any column Vb(k are obtained by a circular left shift of the corresponding elements in the column V.

Extending this, the non-empty strings in Vb(k) are obtained as circular left shifts by b places of the corresponding

elements in the column Vl(k). By construction, the first bit of each entry of Vl(k) is 0. By the left shift property,

the bth bit position of each non-empty string in V})(k) is 0.
Based on the matrix M*) we define an auxiliary tree T(%). This tree is not a sub-tree of 7°. (Note the
difference in the notation between 70 and 7)) Its role is to define the L,’s in a manner such that the number
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Table 2: Examples of M®*) for k =3, k=4 and k = 5.

k=3 | k=4 | k=5
00001 | 00010 | 00100 | 01000 | 10000
0001 | 0010 | 0100 | 1000 00011 | 00110 | 01100 | 11000 | 10001
001 [ 010 | 100 0011 | 0110 | 1100 | 1001 00101 | 01010 | 10100 | 01001 | 10010
011 | 110 | 101 0101 | 1010 00111 | 01110 | 11100 | 11001 | 10011
0111 | 1110 | 1101 | 1011 01011 | 10110 | 01101 | 11010 | 10101
01111 | 11110 | 11101 | 11011 | 10111

of seeds required to be stored by a user reduces from the number (2¥=! — 1) given by (2). There are a total of
k levels in T™) with the root at level 0 and the level numbers increasing as we move down the tree. The root

note of T™) has k children. By Tb(k), b=1,...,k, we denote the k subtrees rooted at these k nodes. Each Tb(k)
is a binary tree having k levels numbered 1 to £ — 1 and the the number of leaf nodes in Tb(k) is the number of

non-empty strings in the column Vb(k) of M. The root node of Tb(k) is labelled by (b,A), where A is the empty

(k)
b

string. (For simplicity, we sometimes write b instead of (b,A).) The other nodes of T, are labelled by a pair

(b,7), where 7 is a binary string which encodes the path from the root of Tb(k) to the node. The tree Tb(k) is not

balanced. The construction of Tb(k) based on Vb(k) is described as follows.

1. The bth bit of each non-empty string in Vb(k) is 0. This corresponds to the root node (b, A) of Tb(k) at level
numbered 1. Starting from the bth bit, we cyclically move right over the bit positions in the non-empty
strings of Vb(k). Apart from bit position b, there are k — 1 other positions in the non-empty strings in Vb(k).

To these positions correspond the levels numbered 2 to k of Tb(k).

2. There are two nodes at level numbered 2 of T, b(k) and these are labelled as (b,0) and (b,1). These nodes

)

have binary trees rooted at them. All strings in Vb(k whose (b+ 1)st bit position is 0 form the leaf nodes of

the tree rooted at (b,0). Similarly, all strings in Vb(k) whose (b + 1)st bit position is 1 form the leaf nodes
of the tree rooted at (b, 1).

3. Continuing the above, suppose the tree Tb(k) has been constructed up to level [ < k — 1. To construct the
nodes at level [ + 1, we look at the (b + [ + 1)th bit position (cyclically from the right) of the strings in

Vb(k). Let (b, 7) be a node at level [ of Tb(k), so that 7 is an (I — 1)-bit string. Then 07 is a substring in bit

positions b to b+1 in one of the strings in Vb(k). Considering bit position b+ 1+ 1, the string 07 is extended
in two possible ways: 070 and 071. This gives rise to two children of (b, 7) labelled as (b, 70) and (b, 71).

As a consequence of this construction, to the leaf nodes of Tb(k) are associated the seeds L, where o ranges over
the non-empty strings in Vb(k). The top-to-bottom order in Vb(k) corresponds to the left-to-right order of the leaf

nodes in Tb(k). The structure of T for k = 3,4 and 5 and the associated seeds L,’s are shown in Figures 8, 9
and 10 respectively.

Consider again an internal node j of 79 and a seed L associated with the node j from which seeds L,’s for
the users in the subtree 77 are to be derived. The derivation of these seeds is done with the structure of T*)
and two hash functions F': [1,¢] x {0,1}" — {0,1}" and H : {0,1,2} x {0,1}"" — {0,1}". The function H is as
used in Sections 6.1 and 6.2 while the function F is new. As before, we will use the notation Fp(-) and H.(-) to
denote the functions F(b,-) and H (c, -) respectively. For a binary string 7, the notation H, is as defined earlier.
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Figure 9: The structure of 7™,

The functions F' and H together replace the function G used in Section 3.1 in the following manner. For any
seed, the corresponding key is defined to be Ha(seed) which in Section 3.1 was defined as Go(seed). The bth
child of T is given the seed Eb = F,(L). For any other node of Tb(k) labelled by a pair (b, 7), we associate the
seed Eb’T = H.(Fy(L)) = H;(Lp). Any leaf node of Tb(k) is labelled by a pair (b, 7) and has an associated L,. We
define L, = Ebﬁ. This provides the definition of all the L,’s that are required to be distributed to the users in
the subtree 77,

We next look at the assignment of seeds to users. Each user in 7%+ should be given a set of seeds such that
it is able to generate all L, such that ¢ is a non-zero k-bit string whose bth position from the left is 0; also, it
should not be able to generate any other seed. This is achieved by giving each user a subset of the L’s.

The seeds distributed to the users in 7*310) are EQT such that the following condition holds. In the subtree
of T™) rooted at the parent of the node labelled (¢, 7) there is at least one leaf which is labelled by L, where the
bth bit from the left in o is 1.

For k = 5, the assignment is the following.

Users in 77+ get: 21,)\, Ez,o, 23,007 23,10, 24,000, §4,010-
Users in T2 get: L5, L1o, L200, L2,10, L3000, L3 010-
Users in 7773 get: Ly, Ls0, Lo, L1130, L2,0005 L2,010-
Users in 7714 get: L3, Lao, Ls00, Ls,10, L1000, L1,010-
Users in 7775 get: Loy, L3, Laoo, La,10, L5000, L5010

The total number of seeds assigned to any user is given by the following result.
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Figure 10: The structure of T®).

Proposition 13. Let k >3, n > 1 and ¢y = [log; n]. Then usg(n) = (xx — 2)(lo(lo + 1))/2.

k)

Proof. Consider the tree T(*). The root node has k children Tl(k), . ,T,E . Seeds of the form Eb,.r associated

with the nodes of these trees are assigned to the different users. The leaf nodes of Tb(k) are also labelled by the

seeds L,’s which are elements of Vb(k), the bth column of the matrix M*). Recall that the non-empty strings in
the bth column of M) are obtained by a cyclic left shift of the corresponding strings in the (b — 1)th column of
M®),

As a result, the ¢’s corresponding to the labels L,’s of the leaf nodes of Tb(k) are obtained by a cyclic left

shift of the respective (’s corresponding to the labels L¢’s of the leaf nodes of Tb(ﬁ)l. Due to this, the following

symmetry property holds. For b > 1, if the users in 751 get 2 seeds of the form ELT, then the users in 7%/+1
get (at most) x seeds of the form EbJ.

A consequence of this symmetry property is that the number of seeds given to the users in 7%/%1 is equal to
the number of seeds of the form ELT which are assigned to all the users. By construction, if 7 ends with a 0,
then the corresponding ELT is assigned to some user. So, the only seeds of the form ELT which are not assigned

to any user are those ending with a 1. These seeds correspond exactly to the nodes of Tl(k) which are the right
children of some node.
The number of leaf nodes of Tl(k) is the number of strings in Vl(k) which in turn is equal to x — 2. Since T: l(k)
is a binary tree, the number of internal nodes of T 1(k) is equal to xx — 3. So, the total number of nodes of T l(k)
is 2xr — 5. Each internal node has exactly one child node and so the number of nodes which are right children
is equal to the number of internal nodes of T’ l(k) which is xx — 3. As a result, the number of nodes of Tl(k) which
are labelled by (1,7) with 7 ending with 0 is equal to 2x; — 5 — (xx — 3) = xx — 2.
O

Note that y3 = 4 and x4 = 6 and so the user storage given by this result agrees with the user storage given
in Propositions 6 and 12 respectively. The methods of deriving the seeds, however, are different.

In Table 3, we provide a comparison of the user storage given by Proposition 13 to that given by (2). In
concrete terms, the reduction is quite significant. Comparing to the user storage for k£ = 2, the increase is only
a few times. This can be seen from the values of usy(n) and usg(n) for k > 2 and different values of n as given
in Table 5.

7 The Layered k-ary Tree Subset Difference Scheme

The idea of layering the levels of the underlying binary tree 79 of the NNL-SD scheme in order to reduce the
user storage was introduced in [HS02]. Here we apply the same technique to reduce the storage of the k-ary tree
generalization of the SD scheme.
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Table 3: Reduction of user storage achieved by Proposition 13 in comparison to 2. In each case, ¢y = [log; n].

k=3 k=4 k=5
Eqn. (2) 1+ 1.50(6p + 1) 1+ 3.50(6y + 1) 1+ 7506+ 1)
usg 1+€0(€0+1) 1+2€0(f0+1) 1+3€0(€0+1)
k=6 k=17 k=38
Eqn. (2) 1+ 15.550(@0 + 1) 1+ 31.5@0(60 + 1) 1+ 63.50y(¢y + 1)
usg 1+ 660(@0 + 1) 1+ 960(@0 + 1) 1+ 18.550(60 + 1)

As before, we work with an underlying full k-ary tree with n = k% leaf nodes. Nodes at equal distances from
the root are said to be at the same level. There are £y = logj, n levels in the tree 7. Some of these levels are
marked as special. A layer is defined to be the levels in between and including two consecutive special levels.
Hence, a layering strategy £ is defined by the numbers of the special levels £y > €1 > ... > {1 > {. = 0.

Let £ = (b, 01,...,0c—1,0c) be a layering strategy. There are e 4 1 special levels in £. An alternate represen-
tation of the layering strategy is by the length of each layer. For 1 < i < e, we define d; = ¢;_1 — ¢; so that d;’s
are positive integers whose sum is £y. At the same time, given any sequence of positive integers d = (d, ..., de)
whose sum is £, it is possible to define a layering scheme where ¢; = £y — 23:1 d;.

The Collection S And Key Assignment. Let j be an internal node in 7° having k children in 7° namely
{kj+1,...,kj+k}. Let JC {kj+1,...,kj+ k} such that 0 < |J| < k. Subsets in the collection S are of the
form S; ; as has been described in Section 3.1 for the k-ary tree SD scheme. Each internal node 7 is assigned a
uniform random seed L; as before. However, unlike the k-ary tree SD scheme, not all subsets of the form S; ; are
assigned keys. With the introduction of layering, only certain subsets of the form S; ; are assigned keys. These
subsets are of the following type:

e If i is at a special level, then J can be any set of nodes that are siblings in the subtree 7.

e If i is not at a special level, then J will be a set of nodes that are siblings in the subtree 7° and in the
same layer as i.

We have seen in Section 3 and Section 6 two different techniques to derive the key L; ; for a set S; ;. (One
may recollect here that the collection S of subsets remains unchanged for both key assignment techniques.) For
the layered version of the scheme, we assume that the second technique of Section 6 that requires lesser user
storage, is used to assign keys to subsets.

User Storage. Given a layering strategy £ = (£, 41,...,0c_1,¢.) in a tree with n = k% leaves, we compute
the number of seeds that a user needs to store. For an ancestor ¢ of the user that is at a special level ¢, the user
has to store (xx — 2) seeds derived by sets of nodes that are directly attached to (or “falling off from”) the path
between the user leaf and i. Hence the total number of seeds to be stored for an ancestor at a special level is
(xx —2)¢. Similarly, for an ancestor of the user that is at a non-special level ¢ which is between two special levels
li—q and ¢; (¢;—1 < £ < ¥;) the user has to store (x; — 2)(¢ — ¢;) seeds. Hence the user storage for the layering
strategy £ is

e—1 ¢;—1

storagef (£) = (xx — 2) ZE + Z Z (7 —Vliv1) (24)

1=0 j=l;11+1
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where £y = [log;, n]. The expression to compute storagek(£) in (24) for general k is derived by a similar logic as
used in [BS13b] for k = 2. The storage requirement derived for k = 2 from (24), is exactly the same as found
in [BS13b].

7.1 Storage Minimal Layering

Now, let us consider two extreme layering strategies and find their storage requirement. The first layering
strategy has only the top-most and bottom-most levels as special and hence £ = ({y,0). It can be easily seen
that this scheme is the same as the k-ary tree SD scheme and hence has the same storage requirement as that of
the k-ary tree SD scheme.

As more special levels are introduced in between these two levels, the user storage should go down. This is
because, the number of seeds derived from the nodes at non-special levels above the bottom-most layer, reduces
in the user storage.

However, we see that as we continue marking more and more levels as special, we finally get the layering
strategy € = (¢p,0o—1,...,1,0) where all the levels are marked as special. The resultant scheme is again exactly
the same as the k-ary tree SD scheme. Hence, as for binary trees in [BS13b], there should exist a layering strategy
of the k-ary trees that results in minimum storage.

For a given k and £, let SML’& (£p) denote a layering strategy £ (or equivalently given by the sequence of differ-
ences d), such that storagek(£) takes the minimum value among all possible layering strategies. Let #SMLE (Lo)
denote the storage requirement storagelg (£) for the storage minimal layering strategy £ = (£o, £1,...,Lc).

The storage minimal layering strategy SML’S (£p) can be found using a dynamic programming algorithm as
follows. We first fix the number of layers e in a layering strategy. Out of all the storage requirements of these
layering strategies one will be minimum. Let SML’S (e,fp) denote a layering strategy that requires minimum
storage amongst all layerings with e layers. The number of layers e can be at least 1 and at most ¢;3. Hence,
SMLIS (£p) will be the minimum of all these layering strategies over all values of e. So we get

#SMLE(6p) = min #SMLE (e, £y). (25)
<e<dp

1

Similarly, #SMLIO€ (e,p) is the minimum storage requirement amongst all the layering strategies for a given
number of layers e. So we get

#SMLE(e,lp) = min  storagel(fg, (1, ..., Le). (26)

(Lo,l1,--Le)

We write the expression to compute storagef (£o, f1, ..., /.) on the right hand side of (24) in a recursive fashion
as follows

(bo— 1) (bo — 41 — 1)
2

storagel (0o, 01, ..., 0e) = (xr — 2) ¥ (Eo + > + storagef (£1, ..., Le). (27)

Using (27) and (26), we get a recursive definition of #SMLE (e, £p) in terms of #SMLE(e — 1, ¢1) as follows

(bo—01)(bo — 41 — 1)
2

k _ . .
#SMLg (e, b)) = | Dnin, ((Xk 2) x <€0 +

> + #SMLE (e — 1,el)> . (28)

This recursive definition of (28) is the basis for our dynamic programming algorithm. A similar dynamic pro-
gramming algorithm to compute the SMLZ(£y) for layering in binary trees has been proposed in [BS13b]. The
above algorithm is a generalization using k-ary trees of that algorithm using binary trees.
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|  Rangeofn | (#SMLJ,#SMLj) || Rangeofn | (#SML§, #SMLY) |

{24 +1,...,3% (11,10) {26 4+1,...,3% (18,16)
{27+1,...,3%} (22,22) {2941,...,3% (30, 28)
{24+ 1,...,37} (40, 36) 272 1 1,...,3%) (45, 44)
2% +1,...,3%} (55,52) 2% +1,...,310} (61,60)
217 +1,...,3} (73,70) 29 +1,...,3%} (85,80)
{220 +1,...,35%}) (91,90) 222 41,...,3% (105, 100)
{223 +1,...,35%} (112,110) 2% 4+ 1,...,316} (126,122)
{228 +1,...,318} (148, 146)

Table 4: Ranges of n (< 2%0) such that #SML2Z > #SMLJ.

Empirical Analysis. In Proposition 6.2 we have seen that the storage requirement of the k-ary tree SD scheme
for k = 3 is lesser than that of k = 2 (the binary tree case) for n > 2. We know from [HS02, BS13b] that the
user storage of a subset difference based scheme can be reduced using different layering strategies. Hence, it is
of interest to check the effect of layering on the k-ary tree SD scheme.

We have implemented the dynamic programming algorithm for finding the storage minimal layering in the
k-ary tree SD scheme. Executing this algorithm for computing the storage minimal layering for k = 3 for different
values of n and comparing with the case when k = 2, we find the range of n where the storage due to k = 3 is less
than the storage due to k = 2. Table 4 lists those ranges for n < 23° and the corresponding storage requirements.

8 A Comparative Study

Table 5 provides a comparative study of the mean header length MHL; and the user storage usy as k varies
from 2 to 8. For the study, we have varied n from 10% to 10%. Since n is not a power of k, the complete tree
extension of the scheme described in Section 5 has been used. The reported results for MHL; has been done
using the simulation program. (Earlier, in Table 1 we have provided results based on running the algorithm for
computing the expected header length when n is a power of k.) User storage is obtained from Proposition 13.
We observe the following from Table 5:

e For small values of r/n, MHL,/r > MHLy/r while for larger values of r/n, MHLy/r < MHLy/r. This
indicates that for a given k > 2, there is a threshold value §; € (0,1) such that for r/n > d, the mean
header length of the k-ary tree SD scheme is smaller than that for k = 2.

e For a fixed k, the values of MHL /r are (almost) the same for a given ratio r/n for any arbitrary n. This
behavior is captured in Table 6 and the corresponding plot of its data is given in Figure 11. The almost
straight red line in Figure 11 shows the behavior for kK = 2. For other values of k, the points where the
respective curves intersect this straight line correspond to r/n = ;. These approximate values of J are
shown in Table 7. We see that as k increases the value of §; decreases and consequently, the performance
of the k-ary tree SD scheme is better than k& = 2 for a larger range of values of 7.

Practical Considerations. An important application of broadcast encryption is pay-per-view of cable TV and
DTH services. In cable TV systems, a set of basic channels are free to air and are not scrambled. Hence, everyone
with a cable TV connection can view these channels. All other channels are encrypted. For paid channels or
pay-per-view programmes, it is quite likely that the number of users subscribing to the channel/programme is
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Table 5: User storage and mean header lengths in the complete k-ary tree scheme for values of k between 2 and
8. For a fixed n, we report MHLy /r for three different choices of r namely, r = (0.1n,0.2n,0.4n).

H n \ k H usg \ MHLg /7 H n ‘ k H usg ‘ MHLg /7 H
2 || 55 (1.10,0.98,0.72) 2 || 105 (1.11,0.97,0.71)
3 || 56 (1.27,1.06,0.72) 311 90 (1.26,1.07,0.72)
4 | 60 (1.21,0.96,0.59) 4 || 112 (1.20,0.96,0.59)
103 [ 5[ 90 | (1.11,0.84,0.50) || 10* [ 5 [[126 | (1.11,0.84,0.49)
6 || 120 | (1.03,0.73,0.42) 6 || 252 | (1.02,0.73,0.41)
7 || 180 | (0.95,0.65,0.36) 7| 270 | (0.94,0.65,0.36)
8 || 340 (0.86,0.58,0.32) 8 || 510 | (0.86,0.58,0.31)
2 || 153 (1.11,0.97,0.71) 2 || 210 (1.11,0.97,0.71)
3| 132 (1.27,1.06,0.72) 3| 182 (1.27,1.07,0.72)
4 | 180 (1.20,0.96,0.59) 41220 | (1.20,0.96,0.59)
10° | 5 || 216 (1.11,0.84,0.49) 108 [ 5 | 270 (1.11,0.84,0.49)
6 || 336 (1.02,0.73,0.41) 6 | 432 (1.02,0.73,0.41)
7 || 378 | (0.94,0.65,0.36) 7 || 648 | (0.94,0.65,0.36)
8 || 714 | (0.87,0.58,0.31) 8 || 952 (0.87,0.58,0.31)
2 || 300 (1.11,0.97,0.71) 2| 378 (1.11,0.97,0.71)
3] 240 | (1.27,1.06,0.72) 31306 | (1.27,1.06,0.72)
1] 312 | (1.20,0.96,0.59) 4([420 | (1.20,0.96,0.59)
107 [5 ][ 396 | (L.11,0.84,0.49) || 10% [ 5 || 468 | (L.11,0.84,0.49)
6 || 540 (1.02,0.73,0.41) 6 | 792 (1.02,0.73,0.41)
7 || 810 (0.94,0.65,0.36) 71990 | (0.94,0.65,0.36)
8 || 1224 | (0.87,0.58,0.31) 8 || 1530 | (0.87,0.58,0.31)

Table 6: List of values of the ratio MHL /r (for any n) corresponding to the varying ratio r/n for each k. For a
given k > 2, the values in bold indicate the minimum value of r/n from where the scheme performs better than

that_for k = 2.
I r/n (0.01, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00)
2 (1.23, 1.18, 1.11, 0.97, 0.84, 0.71, 0.58, 046, 0.33, 0.22, 0.11, 0.00)
3 (1.46, 1.37, 1.27, 1.06, 0.88, 0.72, 0.57, 0.43, 0.31, 0.20, 0.10, 0.00)
4 (1.47, 1.35, 1.20, 0.96, 0.76, 0.59, 047, 0.36, 0.27, 0.18, 0.10, 0.00)
5 (1.44, 1.28, 1.11, 0.84, 0.63, 049, 0.39, 0.31, 0.24, 0.17, 0.09, 0.00)
6 (1.41, 1.22, 1.02, 0.73, 0.54, 041, 0.33, 0.27, 0.21, 0.15, 0.09, 0.00)
7 (1.38, 1.16, 0.94, 0.65, 0.47, 0.36, 0.28, 0.23, 0.19, 0.14, 0.08, 0.00)
8 (1.34, 1.11, 0.87, 0.58, 0.41, 0.31, 0.25, 0.21, 0.17, 0.13, 0.08, 0.00)
16 (1.22, 0.78, 0.55, 0.31, 0.21, 0.16, 0.13, 0.10, 0.09, 0.08, 0.06, 0.00)

Table 7: Values of the threshold 6.
[+] 3 [4]5[6([7][8] 16 ]
| 0x ] 0.44]0.19]0.11 ] 0.07 [ 0.05 | 0.04 [ <0.01 ||
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Figure 11: Plot showing how MHLy /r varies with r/n.

substantially less than the total number of customers n of the cable company. Hence, the number of revoked
users is of the magnitude of n.

As an example, in Table 5 consider a pay-TV application with n = 10® users. Supposing r to be about 0.4n
and assuming 128-bit keys, the bandwidth savings of k = 8 over k = 2 for that channel/programme is 244MB
per session. The user storage, on the other hand, increases from 5.9KB to 23.9KB. Due to steadily decreasing
memory prices, the cumulative benefit of savings in communication bandwidth over a period of time is likely to
outweigh the cost of extra memory.

For applications like content protection (DRM) in optical discs like HD-DVD and Blu-ray discs [AAC] the
amount of space reserved in the discs for the header is fixed. Since the header length of the NNL-SD scheme
is linear in the number of revoked users r of the system, it would be able to tolerate up to a fixed number of
revoked users (say) rmae. The generalization using k-ary trees brings down the average header length in most
cases (when r/n > ) and the worst case header length is at most as much as that for & = 2. Hence, the
threshold 7,4, will be larger for higher values of k£ and so the system will be able to tolerate more revocations.

9 Conclusion

The most popular BE scheme is the NNL-SD scheme [NNLO1] that is defined on a binary tree structure. We
present a generalization of the scheme which works with a k-ary tree for any k& > 2. As a result, our work
subsumes the NNL-SD scheme. We present detailed analysis of the user storage and the header length, the two
important efficiency parameters of a BE scheme. This shows that if the number of revoked users is of the order
of the number of total users, then using a k greater than 2 results in lower communication overhead at the cost
of increased user storage. For applications where the increase in user storage can be tolerated, our work provides
a wider variety of trade-off options between user storage and bandwidth.
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