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Abstract
We study the problem of verifiable delegation of computation over outsourced data, whereby a pow-

erful worker maintains a large data structure for a weak client in a verifiable way. Compared to the
well-studied problem of verifiable computation, this setting imposes additional difficulties since the ver-
ifier needs to verify consistency of updates succinctly and without maintaining large state. In particular,
existing general solutions are far from practical in this setting.

We present a scheme for verifiable evaluation of hierarchical set operations (unions, intersections and
set-differences) applied to a collection of dynamically changing sets of elements from a given domain.
That is, we consider two types of queries issued by the client: updates (insertions and deletions) and data
queries, which consist of “circuits” of unions, intersections, and set-differences on the current collection
of sets.

This type of queries comes up in database queries, keyword search and numerous other applications,
and indeed our scheme can be effectively used in such scenarios. The computational cost incurred is
proportional only to the size of the final outcome set and to the size of the query, and is independent
of the cardinalities of the involved sets. The cost of updates is optimal (O(1) modular operations per
update).

Our construction extends that of [Papamanthou et al., Crypto 2011] and relies on a modified version
of the extractable collision-resistant hash function (ECRH) construction, introduced in [Bitansky et al.,
ITCS 2012] that can be used to succinctly hash univariate polynomials.
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1 Introduction
Outsourcing of storage and computation to the cloud has become a common practice for both enterprises and
individuals. In this setting, typically, a client with bounded computational and storage capabilities wishes to
outsource its database and, over time, issue queries that are answered by powerful servers.

We consider a client that outsources a datasetD to a server. The client can then issue the server informa-
tional queries that are answered according to D, or it can issue update queries that change D, for example
by inserting or removing elements. This model captures a variety of real-world applications such as out-
sourced SQL queries, streaming datasets and outsourced file systems. We also consider the more general
setting where multiple clients issue informational queries to D, but only one source client can issue update
queries. For an example, consider a small company that wishes to store its dataset on a cloud server while
accommodating queries from the company’s multiple clients.

In the above settings clients may want to verify the integrity of the server’s answers to protect themselves
against servers that behave maliciously, are compromised by an external attacker, or simply provide false
data due to bugs. Specifically, when answering a client query, the server will also compute a proof of the
integrity of the data used to compute the answer as well as the integrity of the computation itself. For this
purpose, we allow the client to perform some polynomial time preprocessing on D before outsourcing it to
the server, and to save a small verification state that allows it to verify the server’s proofs. When issuing
an update query, the client will also update its verification state. If the verification state can be made public
we say that the server’s proofs are publicly verifiable. Public verifiability is particularly important in the
multi-client setting.

In this work we study efficient mechanisms for securely outsourcing databases. Several different
measures of efficiency have been considered. First, we would like that the time it takes for the client to
verify a proof is short, ideally, some fixed polynomial in the security parameter that is independent of the
size of server’s computation cost and the size of D. Second, we would like the server’s computational
overhead in computing proofs to be minimal. Additional efficiency considerations include the proof size,
and the efficiency of update queries. The number of communication rounds should also be minimized. In
this work we concentrate on non-interactive solutions where the client sends a query and receives back an
answer and a proof in one round of interaction.

Set operations over outsourced databases. The focus of this work is on the problem of general set
operations in an outsourced setting. That is, we consider a dataset D that consists of m sets S1, ..., Sm,
where the clients’ queries are arbitrary set-operation over D represented as formulas of union, intersection,
and set-difference gates over some of the inputs S1, ..., Sm. The motivation for set operations comes
from their great expressiveness and the range of computations that can be mapped by them. Real-world
applications of general set operations include a wide class of SQL database queries, authenticated keyword
search with elaborate queries, access control management and similarity measurement, hence a practical
protocol would be of great importance.

1.1 Verifiable Computation - The Generic Approach
Our settings are closely related to the setting of verifiable computation that was extensively studied in recent
years. In verifiable computation the client outsources a computation to the server and receives an answer
that can be quickly verified. The main difference is that in verifiable computation we usually assume that
the input to the computation is short and known to both parties, while in our settings the server’s answers
are computed over the outsourced dataset that must also be authenticated.

This problem was addressed in the work of [15] on memory delegation. They propose a non-interactive
solution that is publicly verifiable for every polynomial time computable query over an arbitrary database.
Their solution is based on the assumption that Micali’s non-interactive CS proofs exist even without ran-
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dom oracles. One possible approach for designing a practical protocol is based on the memory delega-
tion solution where Micali’s CS proofs are replaced with a succinct non-interactive argument-of-knowledge
(SNARK) construction. Good candidates for such a SNARK include recent works of [4, 6, 29] that provide
more practical constructions.1

One major obstacle for implementing the generic approach described above (discussed already in [29]) is
that it only considers computations represented as boolean or arithmetic circuits. For example, in the context
of set operations, the transformation from formulas of set-operations to circuits can be extremely wasteful
as the number of sets participating in every query and the set sizes (including the size of the answer) may
vary dramatically between queries. Another source of inefficiency is that the generic approach considers a
universal circuit that gets the query, in the form of the set-operation formula, as input. Such universal circuit
introduces additional overhead. Overall, while asymptotically, the computational overhead of the server
can be made poly-logarithmic, identifying the constants involved is the main obstacle for using the generic
solution to implement secure outsourcing of set operations.

1.2 Our Result
In this work we propose a scheme for publicly verifiable secure delegation of set-operations. The main
advantage of our scheme over the generic approach is that is does not involve translating the problem to an
arithmetic or boolean circuit. In particular, the server will need to perform only 4N exponentiations in a
group with a symmetric bilinear pairing, where N is the sum of the sizes of all the intermediate sets in the
evaluation of the set formula (when the pairing is asymmetric, 8N exponentiations are required).

In our scheme, the verification state is of constant size, and proof verification time is O(δ + t) where t
is the size of the query formula and δ is the answer set size. The dependence on the answer size is inherent
since the client must receive the answer set from the server. We stress that the verification time (and proof
length) do not grow with the sizes of all other sets involved in the computation.

Our scheme also supports two types of updates: source updates and server-assisted updates. In a source
update, the source client maintains an update state of length O(m) (m is the number of sets in the dataset)
and it can add or remove a single element for every set in constant time. The source then updates the server
and all other clients with a new verification state. A source update does not require any party to compute
any proofs. Server-assisted updates are used to perform updates that change a large number of elements in
the dataset. The idea is for the client to delegate the update to the server (as in [15]). The client can set the
value of every set by applying a set-operation formula to the current state of the dataset. The answer to a
server-assisted update query includes a new verification state for the client and a proof that the update was
performed correctly. Verifying this proof with the old verification state requires the same time as verifying
informational queries and no update state. In the current version of the paper, the definition of the model
and the construction only consider source updates. In the full version of this paper we plan to extend the
definitions and the construction to support also server-assisted updates.

1.3 Overview of Techniques
The starting point for our construction is the scheme of Papamanthou, Tamassia and Triandopoulos [28] that
supports a single set operation (one union or one intersection). For a query consisting of a single union or
intersection over t sets, where the answer set is of size δ, the proof verification time in the scheme of [28]
is O(t + δ). The “naive” way to extend the scheme of [28] to support general set-operation formulas is to
have the server provide a separate proof for each intermediate set produced in the evaluation of the formula.
However, proving the security of this construction is problematic. The problem is that in the scheme of [28]
the proofs do not necessarily compose. In particular, it might be easy for a malicious server to come up
with a false proof corresponding to an incorrect answer set without “knowing” what this incorrect answer is

1We do not make the distinction between a SNARK with or without a long pre-processing phase since in our setting the client
anyhow performs some preprocessing over the entire dataset before outsourcing it.
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(if the malicious server would be able to also find the answer set, the scheme of [28] would not have been
secure). Therefore, to make the security proof of the naive scheme go though, the server would also have to
prove to the client that it “knows” all the intermediate sets produced in the evaluation of the query formula.
One way for the server to prove knowledge of these sets is to send them to the client, however, this will
result in a proof that is as long as the entire server computation.

Knowledge accumulators. To solve this problem we need to farther understand the structure of the proofs
in [28]. The construction of [28] is based on the notion of a bilinear accumulator [26]. We can think of a
bilinear accumulator as a succinct hash of a large set that makes use of a representation of a set by its
characteristic polynomial (i.e., a polynomial that has as roots the set elements). . The accumulators have
homomorphic properties that allow verifying relations between sets via arithmetic relations between the
accumulators of the sets. The main idea in this work is to use a different type of accumulator that has
“knowledge” properties. That is, the only way for an algorithm to produce a valid accumulation value is to
“know” the set that corresponds to that value. The knowledge property of our accumulator together with
the soundness of the proof for every single operation (one union or one intersection) allows us to prove the
soundness of the composed scheme. Our construction of knowledge accumulators is very similar to previous
construction of knowledge commitments in [6, 21]. The construction is based on the q-PKE assumption
which is a variant of knowledge-of-exponent assumption [16]. We capture the knowledge properties of
our accumulator by using the notion of an extractable collision-resistant hash function (ECRH), originally
introduced in [6] (we follow the weaker definition of ECRH with respect to auxiliary input, for which the
recent negative evidence presented in [8] do not apply and the distributions we consider here are not captured
by the negative result of [12] either).

We also need to change the way a single set operation is proven. Specifically, in [28], a proof for a
single union of sets requires one accumulation value for every element in the union. This will again result
in a proof that is as long as the entire server computation. Instead we change the proof for union so it only
involves a constant number of accumulation values. Additionally, we change the way single operations are
proven to support efficient generation of proofs for formulas that have gates with large fan-in.

The verification state and accumulation trees. In order to verify a proof in our scheme, the client only
needs to know the accumulation values for the sets that participate in the computation. Instead of saving
the accumulation values of all sets in the dataset, the client will only save a constant size verification state
that contains a special hash of these accumulation values. We hash the accumulation values of the sets in
the dataset using an accumulation tree, introduced in [27]. This primitive can be thought of as a special
“tree hash” that makes use of the algebraic structure of the accumulators to gain in efficiency (authentication
paths are of constant length).

Finally we note that the formal definition of our model, and consequently also the security analysis, use
the popular framework of authenticated data structures introduced in [32].

1.4 Combining our Approach with the Generic Approach
One disadvantage of our solution compared to the generic solution of [15] is that our proofs are not constant
in size and depend on the size of the query formula. One way to fix this is to compose our proofs with
generic SNARK’s. That is, we can consider a hybrid scheme where the server proves using a SNARK that it
knows a proof (following our scheme) for the validity of its answer. The security of the hybrid scheme can
be shown by a reduction to the security of our scheme based on the knowledge property of the SNARK (via
a standard composition argument [7]).

The advantage of using a hybrid scheme is that on one hand the proof size is constant and independent
of the size of the query (this follows from the succinctness of the SNARK). On the other hand, the hybrid
scheme might be much more practical than simply using a generic solution in terms of server computation
since the overhead of the circuit reductions might not be significant. This saving is due to the server using
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the SNARK only to certify a small computation (involving only the small verification circuit of our scheme).
Moreover, most of the server’s work, when answering the query, is certified using our scheme that is tailored
for set operations, resulting in less overhead for the server compared to the generic solution alone.

1.5 Related Work
The very recent work of [3] also considers a practical secure database delegation scheme supporting a
restricted class of queries. They consider functions expressed by arithmetic circuits of degree up to 2. Their
construction is based on homomorphic MAC’s and their protocol appears practical, however their solution
is only privately verifiable and it does not support deletions from the dataset. Additionally we note that the
security proof in [3] is not based on non-falsifiable assumptions. In a sense, that work is complementary to
ours, as arithmetic and set operations are two desirable classes of computations for a database outsourcing
scheme.

With respect to set operations, previous works focused mostly on the aspect of privacy and less on the
aspect of integrity [2, 11, 19, 22]. There exists a number of works from the database community that address
this problem [23, 34], but to the best of our knowledge, this is the first work that directly addresses the case
of nested operations.

Characteristic polynomials for set representation have been used before in the cryptography literature
(see for example [26, 28]) and this directly relates this work with a line of publications coming from the
cryptographic accumulators literature [13, 26]. Indeed our ECRH construction, viewed as a mathematical
object, is identical to a pair of bilinear accumulators (introduced in [26]) with related secret key values. Our
ECRH can be viewed as an extractable extension to the bilinear accumulator that allows an adversarial party
to prove knowledge of a subset to an accumulated set (without explicitly providing said subset). Indeed,
this idea is central to all of our proofs for validity of set-operation computations. It also allows us to use the
notion of accumulation trees which was originally defined for bilinear accumulators.

The authenticated data structure (ADS) paradigm, originally introduced in [32], appears exten-
sively both in the cryptography and databases literature (see for example [1, 20, 23, 25, 28, 35, 36]). A
wide range of functionalities has been addressed in this context including range queries and basic SQL joins.

2 Tools and Definitions
In the following, we denote with l the security parameter and with ν(l) a negligible function.2 We say that
an event can occur with negligible probability if its occurrence probability is upper bounded by a negligible
function. Respectively, an event takes place with overwhelming probability if its complement takes place
with negligible probability. In our technical exposition we adopt the access complexity model: Used mainly
in the memory checking literature [9, 18], this model allows us to measure complexity expressed in the
number of primitive cryptographic operations made by an algorithm without considering the related security
parameter. For example, an algorithm making k modular multiplications over a group of size O(n) where
n is O(exp(l)) for a security parameter l, runs in time O(k log n). In the access complexity model, this is
O(k) ignoring the “representation” cost for each group element (that is specified by l).

Bilinear pairings. Let G be a cyclic multiplicative group of prime order p, generated by g. Let also GT

be a cyclic multiplicative group with the same order p and e : G × G → GT be a bilinear pairing with
the following properties: (1) Bilinearity: e(P a, Qb) = e(P,Q)ab for all P,Q ∈ G and a, b ∈ Zp; (2)
Non-degeneracy: e(g, g) 6= 1; (3) Computability: There is an efficient algorithm to compute e(P,Q) for all
P,Q ∈ G. We denote with pub := (p,G,GT , e, g) the bilinear pairings parameters, output by a randomized
polynomial-time algorithm GenBilinear on input 1l.

2A function f(l) is negligible if for each polynomial function poly(l) and all large enough values of l, f(l) < 1/(poly(l).
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For cleaner presentation, in what follows we assume a symmetric (Type 1) pairing e. In Section 4 we
discuss the modifications needed to implement our construction in the (more efficient) asymmetric pairing
case (see [14] for a general discussion of types of pairings).

Our security analysis makes use of the following two assumptions over groups with bilinear pairings:

Assumption 1 (q-Strong Bilinear Diffie-Hellman [10]) For any poly-size adversary A and for q being a
parameter of size poly(l), the following holds:

Pr

[
pub← GenBilinear(1l); s←R Z∗p;

(z, γ) ∈ Z∗p ×GT ← A(pub, (g, gs, ..., gs
q
)) s.t. γ = e(g, g)1/(z+s))

]
≤ ν(l)] .

Assumption 2 (q-Power Knowledge of Exponent [21]) For any poly-size adversary A, there exists a
poly-size extractor E such that:

Pr


pub← GenBilinear(1l); a, s←R Z∗p;σ = (g, gs, ..., gs

q
, ga, gas, ..., gas

q
)

(c, c̃)← A(pub, σ); (a0, ..., an)← E(pub, σ)

s.t. e(c̃, g) = e(c, ga) ∧ c 6=
n∏
i=0

gais
i
for n ≤ q

 ≤ ν(l) .

Extractable collision-resistant hash functions. These functions (or ECRH for short) were introduced
in [6] as a strengthening of the notion of collision-resistant hash functions. The key property implied by an
ECRH is the hardness of oblivious sampling from the image space. Informally, for a function f , sampled
from an ECRH function ensemble, any adversary producing a hash value h must have knowledge of a value
x ∈ Dom(f) s.t. f(x) = h. Formally, an ECRH function is defined as follows:

Definition 1 (ECRH [6]) A function ensembleH = {Hl}l from {0, 1}t(l) to {0, 1}l is an ECRH if:
Collision-resistance For any poly-size adversary A:

Pr
h←Hl

[
x, x′ ← A(1l, h) s.t. h(x) = h(x′) ∧ x 6= x′

]
≤ ν(l) .

Extractability For any poly-size adversary A, there exists poly-size extractor E such that:

Pr
h←Hl

[
y ← A(1l, h);x′ ← E(1l, h)

s.t. ∃x : h(x) = y ∧ h(x′) 6= y

]
≤ ν(l) .

An ECRH construction from q-PKE. We next provide an ECRH construction from the q-PKE assumption
defined above. In [6] the authors provide an ECRH construction from an assumption that is conceptually
similar and can be viewed as a simplified version of q-PKE and acknowledge that an ECRH can be con-
structed directly from q-PKE (without explicitly providing the construction). Here we present the detailed
construction and a proof of the required properties with respect to q-PKE for extractability and q-SBDH for
collision-resistance.3

• To sample fromHl, choose q ∈ O(poly(l)), run algorithm GenBilinear(1l) to generate bilinear pairing
parameters pub = (p,G,GT , e, g) and sample a, s ←R Z∗p × Z∗p s.t. a 6= s. Output public key
pk = (pub, gs, ..., gs

q
, ga, gas, ..., gas

q
) and trapdoor information sk = (s, a). It should be noted that

the pk fully describes the chosen function h. Trapdoor sk can be used for a more efficient computation
of hash values, by the party initializing the ECRH .

3It should be noted that while the construction from [6] is conceptually similar, its collision resistance cannot be proven by a
reduction to q-SBDH; it is instead provable with a direct reduction to the computation of discrete logarithms in G.
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• To compute a hash value on x = (x1, ..., xq), output h(x) =
(∏

i∈[q] g
xis

i
,
∏
i∈[q] g

axis
i
)

.

Lemma 1 If the q-SBDH and q-PKE assumptions hold, the above is a (q · l, 2l)-compressing ECRH.

Proof: Extractability follows directly from the q-PKE assumption. To argue about collision-resistance, as-
sume there exists adversaryA outputting with probability ε, (x,y) such that there exists i ∈ [q] with xi 6= yi
and h(x) = h(y). We denote with P (r) the q-degree polynomial from Zp[r],

∑
i∈[q](xi − yi)ri. From the

above, it follows that
∑

i∈[q] xis
i =

∑
i∈[q] yis

i. Hence, while P (r) is not the 0-polynomial, the evaluation
of P (r) at point s is P (s) = 0 and s is a root of P (r). By applying a randomized polynomial factorization
algorithm as in [5], one can extract the (up to q) roots of P (r) with overwhelming probability, thus comput-
ing s. By randomly selecting c ∈ Z∗p and computing β = g1/(c+s) one can output (c, e(g, β)), breaking the
q-SBDH with probability ε(1− ε′) where ε′ is the negligible probability of error in the polynomial factoring
algorithm. Therefore any poly-size A can find a collision only with negligible probability. 2

One natural application for the above ECRH construction would be the compact computational repre-
sentation of polynomials from Zp[r] of degree ≤ q. A polynomial P (r) with coefficients p1, ..., pq can be

succinctly represented by the hash value h(P ) = (f, f ′) =
(∏

i∈[q] g
pis

i
,
∏
i∈[q] g

apis
i
)

.
Authenticated data structure scheme. Such schemes, originally defined in [28], model verifiable compu-
tations over outsourced data structures. Let D be any data structure supporting queries and updates. We
denote with auth(D) some authenticated information on D and with d the digest of D, i.e., a succinct
secure computational description of D. An authenticated data structure scheme ADS is a collection of the
following six polynomial-time algorithms:

1. {sk, pk} ← genkey(1k). Outputs secret and public keys sk and pk, given the security parameter l.
2. {auth(D0), d0} ← setup(D0, sk, pk): Computes the authenticated data structure auth(D0) and its

respective digest, d0, given data structure D0, the secret key sk and the public key pk.
3. {auth(Dh+1), dh+1, upd} ← update(u, auth(Dh), dh, sk, pk): On input update u on data structure
Dh, the authenticated data structure auth(Dh) and the digest dh, it outputs the updated data structure
Dh+1 along with auth(Dh+1), the updated digest dh+1 and some relative information upd. It requires
the secret key for execution.

4. {Dh+1, auth(Dh+1)dh+1} ← refresh(u,Dh, auth(Dh), dh, upd, pk): On input update u on data
structure Dh, the authenticated data structure auth(Dh), the digest dh and relative information upd
output by update, it outputs the updated data structureDh+1 along with auth(Dh+1) and the updated
digest dh+1, without access to the secret key.

5. {a(q),Π(q)} ← query(q,Dh, auth(Dh), pk): On input query q on data structure Dh and auth(Dh)
it returns the answer to the query a(q), along with a proof Π(q).

6. {accept, reject} ← verify(q, a(q),Π(q), dh, pk): On input query q, an answer a(q), a proof Π(q), a
digest dh and pk, it outputs either “accept” or “reject”.

Let {accept, reject} = check(q, a(q), Dh) be a method that decides whether a(q) is a correct answer for
query q on data structureDh (this method is not part of the scheme but only introduced for ease of notation.)
Then an authenticated data structure scheme ADS should satisfy the following:
Correctness. We say that ADS is correct if, for all l ∈ N, for all (sk, pk) output by algorithm genkey, for
all (Dh, auth(Dh), dh) output by one invocation of setup followed by polynomially-many invocations of
refresh, where h ≥ 0, for all queries q and for all a(q),Π(q) output by query(q,Dh, auth(Dh), pk), with
all but negligible probability, whenever check(q, a(q), Dh) accepts, so does verify(q, a(q),Π(q), dh, pk).
Security. Let l ∈ N be a security parameter and (sk, pk) ← genkey(1l) and A be a poly-size adversary
that is only given pk and has oracle access to all algorithms of the ADS. The adversary picks an initial state
of the data structure D0 and computes D0, auth(D0), d0 through oracle access to algorithm setup. Then,
for i = 0, ..., h = poly(l), A issues an update ui for the data structure Di and outputs Di+1, auth(Di+1)
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and di+1 through oracle access to algorithm update. At any point during these update queries, he can
make polynomially many oracle calls to algorithms prove and verify. Finally the adversary picks an index
0 ≤ t ≤ h + 1, a query q, an answer a(q) and a proof Π(q). We say that an ADS is secure if for all large
enough k ∈ N, for all poly-size adversaries A it holds that:

Pr

[
(q, a(q),Π(q), t)← A s.t

accept ← verify(q, a(q),Π(q), dt, pk) ∧ reject ← check(q, a(q), Dt)]

]
≤ ν(l)

where the probability is taken over the randomness of genkey and the coins of A.

2.1 Set Representation with Polynomials
Sets can be represented with polynomials, using the notion of characteristic polynomial, e.g., as introduced
in [19, 26, 28]. Given a setX = {x1, .., xm}, the polynomial CX(r) =

∏m
i=1(xi+r) from Zp[r], where r is a

formal variable, is called the characteristic polynomial of X (when possible we will denote this polynomial
simply by CX ). Characteristic polynomials constitute representations of sets by polynomials that have the
additive inverses of their set elements as roots. What is of particular importance to us is that characteristic
polynomials enjoy a number of homomorphic properties w.r.t. set operations. For example, given sets A,B
with A ⊆ B, it must hold that CB|CA and given sets X,Y with I = X ∩ Y , CI = gcd(CX , CY ).

The following lemma characterizes the efficiency of computing the characteristic polynomial of a set.

Lemma 2 ([30]) Given set X = x1, ..., xn with elements from Zp, characteristic polynomial CX(r) :=∑n
i=0 cir

i ∈ Zp[r] can be computed with O(n log n) operations with FFT interpolation.

Note that, while the notion of a unique characteristic polynomial for a given set is well-defined, from ele-
mentary algebra it is known that there exist many distinct polynomials having as roots the additive inverses
of the elements in this set. For instance, recall that multiplication of a polynomial in Zp[r] with an invertible
unit in Z∗p leaves the roots of the resulting polynomial unaltered. We define the following:

Definition 2 Given polynomials P (r), Q(r) ∈ Zp[r] with degree n, we say that they are associate (denoted
as P (r) ≈a Q(r)) iff P (r)|Q(r) and Q(r)|P (r).

Thus, associativity can be equivalently expressed by requesting that P (r) = λQ(r) for some λ ∈ Z∗p.
Note that although polynomial-based set representation provides a way to verify the correctness of set

operations by employing corresponding properties of the characteristic polynomials, it does not provide
any computational speedup for this verification process. Intuitively, verifying operations over sets of car-
dinality n, involves dealing with polynomials of degree n with associated cost that is proportional to per-
forming operations directly over the sets themselves. We overcome this obstacle, by applying our ECRH
construction (which can be naturally defined over univariate polynomials with coefficients in Zp, as al-
ready discussed) to the characteristic polynomial CX : Set X will be succinctly represented by hash value
h(CX) =

(
gCX(s), gaCX(s)

)
(parameter q is an upper bound on the cardinality of sets that can hashed), and a

operation of sets X and Y will be optimally verified by computing only on hash values h(CX) and h(CY ).

A note on extractability. In the above, we are essentially using a pre-processing step representing sets as
polynomials, before applying the extractable hash function on the polynomial representations. We cannot
define the ECRH directly for sets since, while every set has a uniquely defined characteristic polynomial,
not every polynomial is a characteristic polynomial of some set. Hence extractability of sets (using only
public key information) is not guaranteed. For example, an adversary can compute an irreducible polyno-
mial Y ∈ Zp[r], of degree > 1, and output h(Y ). Since Y has no roots, no extractor (without access to
the secret key) can output a set for which Y is the characteristic polynomial (it can however extract poly-
nomial Y with overwhelming probability). In fact, defined directly over sets with elements from Zp, the
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function ensemble {Hl}l with an internal computation of the characteristic polynomial, can be shown to
be extractable collision-resistant under the ECRH2 definition recently introduced in [17]. In the context of
a cryptographic protocol for sets, additional mechanisms need to be deployed in order to guarantee that a
given hash value corresponds to the characteristic polynomial of some set. For our ADS construction, we
will combine the use of the ECRH construction for sets, with an authentication mechanism deployed by the
source in a pre-processing phase. This will allow any client to verify the authenticity and freshness of the
hash values corresponding to sets that are input to its query.

3 An ADS scheme for hierarchical set operations
An authenticated data structure (ADS) is a protocol for secure data outsourcing involving the owner of a
dataset (referred to as source), an untrusted server and multiple clients that issue computational queries over
the dataset. The protocol consists of a pre-processing phase where the source uses a secret key to compute
some authentication information over the dataset D, outsources D along with this information to the server
and publishes some public digest d related to the current state of D. Subsequently, the source can issue
update queries for D (which depend on the data type of D), in which case, the source updates the digest
and both the source and the server update the authentication information to correspond consistently with the
updated dataset state. Moreover, multiple clients (including the source itself), issue computational queries q
addressed to the server, which responds with appropriate answer α and proof of correctness Π. Responses
can be verified both for integrity of computation of q and integrity of data used (i.e., that the correct query
was run on the correct dataset D) with access only to public key information and digest d. The service
offered to clients in this setting is that the received answers are “as-good-as” being directly computed by the
trusted source. A restricted version of this setting, is a two-party model where the owner of D outsources it
to a server and issues updates and computational queries, benefiting in both storage and computation cost.

Here we present an ADS supporting hierarchical set operations. We assume a data structureD consisting
ofm sorted sets S1, ..., Sm, consisting of elements from Zp,4 where sets can change under element insertions
and deletions; here, p is a l-bit prime number and l is a security parameter. If M =

∑m
i=1 |Si|, then the

total space complexity needed to store D is O(m+M). The supported class of queries is any set-operation
formula over a subset of the sets Si, consisting of unions and intersections.

The basic idea is to use the ECRH construction from Section 2 to represent sets Si by the hash values
h(CSi) of their characteristic polynomials. For the rest of the paper, we will refer to value h(CSi) as hi,
implying the hash value of the characteristic polynomial of the i-th set ofD or the i-th set involved in a query,
when it is obvious in the context. Recall that a hash value h consists of two group elements, h = (f, f ′). We
will refer to the first element of hi as fi, i.e., for a set Si = (x1, ..., xn), fi = g

∏n
j=1(xj+s) and likewise for

f ′i . For the authenticity of these values, an authentication mechanism similar to Merkle trees (but allowing
more efficient updates) will be deployed by the source.

Each answer provided by the server is accompanied by a proof that includes a number of hash values for
all sets computed during answer computation, the exact structure of which depends on the type of operations.
The verification process is essentially split in two parts. First, the client verifies the validity of the hash values
of the sets used as input by the answer computation process (i.e., the validity of sets specified in q) and
subsequently that the hash values included in the proof respect the relations corresponding to the operations
in q, all the way from the input hash values to the hash value of the returned answer α. The key technique is
that by using our ECRH construction we can map relations between input and output sets in a set operation,
to similar relations in their hash values. This allows the verification process to run in time independent of the
cardinality of involved sets and only linear to the length of q and αmaking it asymptotically as fast as simply
reading the input and output. In the following sections, we present the algorithms of our construction.

4Actually elements must come from Z\{s, 1, ...,m}, because s is the secret key in our construction and them smallest integers
modulo p will be used for numbering the sets.
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3.1 Setup and Updates
During the setup phase, the source computes the m hash values h(CSi) of sets Si and then deploys an
authentication mechanism over them, that will provide proofs of integrity for these values under some public
digest that corresponds to the current state of D. This mechanism should be able to provide proofs for
statements of the form “hi is hash of the i-th set of the current version of D.”

There is a wide variety of such mechanisms that can be deployed by the owner of D and the choice
must be made with optimization of a number of parameters in mind, including digest size, proof size and
verification time, setup and update cost and storage size. For example, using a standard collision resistant
hash function, the owner can compute the hash of the string h1||...||hm as a single hash value. However,
a single update in D will require O(m) work in order to compute the updated digest from scratch. On the
other hand, the owner can use a digital signature scheme to sign a hash representation of each set. This
yields an update cost of O(1) (a single signature computation) but the digest consists of m signatures.

Another popular authentication mechanism for proofs of membership are Merkle hash trees [24] that
provide logarithmic size proofs, updates and a single value digest. Such a mechanism, allows the server to
provide proofs that a value hi belongs in the set of hash values of the sets in D. An alternative to Merkle
trees, introduced in [27] (and specifically in the bilinear group setting in [28]) are accumulation trees. The
difference between them is that their security is based on different cryptographic assumptions (secure hash-
ing versus bilinear group assumptions) and, arguably more importantly, accumulation trees yield constant
size proofs (independently of the number of elements in the tree) and constant time updates. Another useful
property of the accumulation tree is that it can be computed using the same ECRH construction we will be
using for the rest of the algorithms of our scheme. Thus, we can avoid the cost for additional public/secret
key generation and maintenance. In our construction, we use the accumulation tree to verify the correctness
of hash values for the sets involved in a particular query. On a high level, the public tree digest guarantees
the integrity of the hash values and in turn the hash values validate the elements of the sets.

An accumulation treeAT is a tree with d1/εe levels, where 0 < ε < 1 is a parameter chosen upon setup,
andm leaves. Each internal node of T has degreeO(mε) and T has constant height for a fixed ε. Intuitively,
it can be seen as a “flat” version of Merkle trees. Each leaf node contains the (first half of the) hash value of
a set Si and each internal node contains the (first half of the) hash of the values of its children. Since, under
our ECRH construction, hash values are elements in G we will need to map these bilinear group elements
to values in Z∗p at each level of the tree before they can be used as inputs for the computation of hash values
of higher level nodes. This can be achieved by a function φ that outputs a bit level description of hash
values under some canonical representation of G (see below). The accumulation tree primitive we are using
here was introduced in [28] where the corresponding “hashing” function used was the bilinear accumulator
construction from [26]. We are implicitly making use of the fact that the outputs of our ECRH construction
can be interpreted as pairs of accumulation values of sets.

Now we present the setup and update algorithms or our ADS construction:

Algorithm {sk, pk} ←genkey(1l). The owner of D runs the sampling algorithm for our ECRH construc-
tion, chooses an injective5 function φ : G \ {1G} → Z∗p, and outputs {φ, pk, sk}.

Algorithm {auth(D0), d0} ← setup(D0, sk, pk). The owner of D computes values fi = g
∏
x∈Si

(xi+s) for
sets Si. Following that, he constructs an accumulation tree AT over values fi. A parameter 0 < ε < 1
is chosen. For each node v of the tree, its value d(v) is computed as follows. If v is a leaf corresponding
to fi then d(v) = f

(i+s)
i where the number i is used to denote that this is the i-th set in D (recall that, by

definition, sets Si contain elements in [m + 1, ..., p − 1]). Otherwise, if N(v) is the set of children of v,
then d(v) = g

∏
u∈N(v)(φ(d(u)+s) (note that the exponent is the characteristic polynomial of the set containing

5The restriction that φ is injective is in fact too strong. In practice, it suffices that it is collision-resistant. A good candidate for
φ is a function that uses a CRHF to hash the bit-level description of an element of G to Z∗p.
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the elements φ(d(u)) for all u ∈ N(v)). Finally, the owner outputs {auth(D0) = f1, ..., ft, d(v) ∀v ∈
AT , d0 = d(r)} where r is the root of AT .

Algorithm{auth(Dh+1), dh+1, upd} ← update(u, auth(Dh), dh, sk, pk). For the case of insertion of el-
ement x in the i-th set, the owner computes x + s and η = fx+si . For deletion of element x from Si, the

owner computes (x+ s)−1 and η = f
(x+s)−1

i . Let v0 be the leaf of AT that corresponds to the i -th set and
v1, ..., vd1/εe the node path from v0 to r. Then, the owner sets d′(v0) = η and for j = 1, ..., d1/εe he sets
d′(vj) = d(vj)

(φ(d′(vj−1))+s)(φ(d(vj−1))+s)
−1

. He replaces node values in auth(Dh) with the corresponding
computed ones to produce auth(Dh+1). He then sets upd = d(v0), ..., d(r), x, i, b where b is a bit denoting
the type of operation and sends upd to server. Finally, he publishes updated digest dh+1 = d′(r).

Algorithm {Dh+1, auth(Dh+1), dh+1} ← refresh(u,Dh, auth(Dh), dh, upd, pk). The server replaces
values in auth(Dh) with the corresponding ones in upd, dh with dh+1 and updates set Si accordingly.

The runtime of setup is O(m+M) as computation of the hash values using the secret key takes O(M)
and the tree construction has access complexity O(m) for post-order traversal of the tree as it has constant
height and it has m leaves. Similarly, update and refresh have access complexity of O(1).

Remark 1 Observe that the only algorithms that make explicit use of the trapdoor s are update and setup
when updating hash value efficiently. Both algorithm can be executed without s (given only the public key)
in time that is proportional the size of D.

3.2 Query Responding and Verification
As mentioned before, we wish to achieve two verification properties: integrity-of-data and integrity-of-
computation. We begin with our algorithms for achieving the first property, and then present two protocols
for achieving the second one, i.e., for validating the correctness of a single set operation (union or intersec-
tion). These algorithms will be used as subroutines by our final query responding and verification processes.

3.2.1 Authenticity of hash values

We present two algorithms that make use of the accumulation tree deployed over the hash values of Si in
order to prove and verify that the sets used for answering are the ones specified by the query description.

Algorithm π ← QueryTree(pk, d, i, auth(D)) The algorithm computes proof of membership for value xi
validating that it is the i-th leaf of the accumulation tree. Let v0 be the i-th node of the tree an v1, ..., vd1/εe
be the node path from v0 to the root r. For j = 1, ..., d1/εe let γj = g

∏
u∈N(vj)\{vj−1}

(φ(d(u))+s)
(note that

the exponent is the characteristic polynomial of the set containing the elements φ(d(u)) for all u ∈ N(v)
except for node vj−1). The algorithm outputs π := (d(v0), γ1), ..., (d(vd1/εe−1), γd1/εe).

Algorithm {0, 1} ← VerifyTree(pk, d, i, x, π). The algorithm verifies membership of x as the i-th leaf of
the tree by checking the equalities: (i) e(d(v1), g) = e(x, gigs); (ii) for j = 1, ..., d1/εe − 1, e(d(vj), g) =

e(γj , g
φ(d(vj−1))gs); (iii) e(d, g) = e(γd1/εe, g

φ(d(vd1/εe−1))gs). If none of them fails, it output accept.
The above algorithms make use of the property that for any two polynomials A(r), B(r) with C(r) :=

A(r) · B(r), for our ECRH construction it must be that e(f(C), g) = e(f(A), f(B)). In particular for
sets, this allows the construction of a single-element proof for set membership (or subset more generally).
For example, for element x1 ∈ X = {x1, ..., xn) this witness is the value g

∏n
i=2(xi+s). Intuitively, for the

integrity of a hash value, the proof consists of such set membership proofs starting from the desired hash
value all the way to the root of the tree, using the sets of children of each node. The following lemma
(stated in [28], for an accumulation tree based on bilinear accumulators; it extends naturally to our ECRH
construction) holds for these algorithms:
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Lemma 3 ([28]) Under the q-SBDH assumption, for any adversarially chosen proof π s.t. {j, x∗, π) s.t.
VerifyTree(pk, d, j, x∗, π)→ 1, it must be that x∗ is the j-th element of the tree except for negligible proba-
bility. Algorithm QueryTree has access complexityO(mε logm) and outputs a proof ofO(1) group elements
and algorithm VerifyTree has access complexity O(1).

3.2.2 Algorithms for the single operation case

The algorithms presented here are used to verify that a set operation was performed correctly, by checking a
number of relations between the hash values of the input and output hash values, that are related to the type
of set operation. The authenticity of these hash values is not necessarily established. Since these algorithms
will be called as sub-routines by the general proof construction and verification algorithms, this property
should be handled at that level.

Algorithm for Intersection. Let I = S1∩ ...∩St be the wanted operation. Set I is uniquely identified by
the following two properties: (Subset) I ⊆ Si for all Si and (Complement Disjointness) ∩ti=1(Si \ I) = ∅.
The first captures that all elements of I appear in all of Si and the second that no elements are left out.

Regarding the subset property, we argue as follows. Let X,S be sets s.t. S ⊆ X and |X| = n. Observe
that CS |CX , i.e. CX can be written as CX = CS(r)Q(r) where Q(r) ∈ Zp[r] is CX\S . The above can be
verified by checking the equality:

e(fS ,W ) = e(fX , g) ,

whereW = gQ(s). If we denote withWi the values gCSi\I(s), the subset property can be verified by checking
the above relation for I w.r.t each of Si.

For the second property, we make use of the property that CSi\I(r) are disjoint for i = 1, ..., t if and only
if there exist polynomials qi(r) s.t.

∑t
i=1 CSi\I(r)qi(r) = 1, i.e. the gcd of the characteristic polynomials

of the the complements of I w.r.t Si should be 1. Based on the above, we propose the algorithms in Figure 1
for the case of a single intersection:

Algorithm{Π, fI} ← proveIntersection(S1, ..., St, I, h1, ..., ht, hI , pk).

1. Compute values Wi = gCSi\I (s).

2. Compute polynomials qi(r) s.t.
∑t
i=1 CSi\I(r)qi(r) = 1 and values Fi = gqi(s).

3. Let Π = {(W1, F1), ..., (Wt, Ft)} and output {Π, fI}.

Algorithm{accept,reject} ← verifyIntersection(f1, ..., ft,Π, fI , pk).

1. Check the following equalities. If any of them fails output reject, otherwise accept:
• e(fI ,Wi) = e(fi, g) ∀i = 1, ..., t
•

∏t
i=1 e(Wi, Fi) = e(g, g)

Figure 1: Intersection
Algorithm for Union. Now we want to provide a similar method for proving the validity of a union
operation of some sets. Again we denote set U = S1 ∪ ... ∪ St and let hi be the corresponding hash values
as above. The union set U is uniquely characterized by the following two properties: (Superset) Si ⊆ U for
all Si and (Membership) For each element xi ∈ U , ∃j ∈ [t] s.t. xi ∈ Sj . These properties can be verified,
with values Wi, wj for i = 1, ...t and j = 1, ..., |U | defined as above checking the following equalities
(assuming hU is the hash value of U ):

e(fi,Wi) = e(fU , g) ∀i = 1, ..., t

e(gxjgs, wj) = e(fU , g) ∀j = 1, ..., |U | .

The problem with this approach is that the number of equalities to be checked for the union case is linear
to the number of elements in the output set. Such an approach would lead to an inefficient scheme for
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general operations (each intermediate union operation the verification procedure would be at least as costly
as computing that intermediate result). Therefore, we are interested in restricting the number of necessary
checks. In the following we provide a union argument that achieves this.

Our approach stems from the fundamental inclusion-exclusion principle of set theory. Namely for set
U = A ∪ B it holds that U = (A + B) \ (A ∩ B) where A + B is a simple concatenation of elements
from sets A,B (allowing for multisets), or equivalently, A + B = U ∪ (A ∩ B). Given the hash values
hA, hB the above can be checked by the bilinear equality e(fA, fB) = e(fU , fA∩B). Thus one can verify
the correctness of hU by checking a number of equalities independent of the size of U by checking that
the above equality holds. In practice, our protocol for the union of two sets, consists of a proof for their
intersection, followed by a check for this relation. Due to the extractability property of our ECRH, the fact
that hI is included in the proof acts as a proof-of-knowledge by the prover for the set I , hence we can remove
the necessity to explicitly include I in the answer.

There is another issue to be dealt with. namely that this approach does not scale well with the number of
input sets for the union operation. To this end we will recursively apply our construction for two sets in pairs
of sets until finally we have a single union output. Let us describe the semantics of a set union operation
over t sets. For the rest of the section, without loss of generality, we assume ∃k ∈ N s.t. 2k = t, i.e., t
is a power of 2. Let us define as U (1)

1 , ..., U
(1)
t/2 the sets (S1 ∪ S2), ..., (St−1 ∪ St). For set U is holds that

U = U1 ∪ ... ∪ Ut/2 due to the commutativity of the union operation.

All intermediate results U (j)
i will be represented by their hash values h

U
(j)
i

yielding a proof that is of size
independent of their cardinality. One can use the intuition explained above, based on the inclusion-exclusion
principle, in order to prove the correctness of (candidate) hash values h

U
(1)
i

corresponding to sets Ui and,
following that, apply repeatedly pairwise union operations and provide corresponding arguments, until set
U is reached. Semantically this corresponds to a binary tree T of height k with the original sets Si at the t
leafs (level 0), sets U (1)

i as defined above at level 1, and so on, with set U at the root at level k. Each internal
node of the tree corresponds to a set resulting from the union operation over the sets of its two children
nodes. In general we denote by U (j)

1 , ..., U
(j)

t/2j
the sets appearing at level j.

We propose the algorithms in Figure 2 for proof construction and verification for a single union:

For ease of notation we denote by A,B the two sets corresponding to the children nodes of each non-leaf node of T , by U, I
their union and intersection respectively and by F the final union output.
Algorithm{Π, fF } ←proveUnion(S1, ..., St, U, h1, ..., ht, hU , pk).

1. Initialize Π = ∅.
2. For each U (j)

i of level j = 1, ..., k, corresponding to sets U, I as defined above, compute U, I and values hU , hI .
Append values hU , hI to Π.

3. For each U (j)
i of level j = 1, ..., k, run algorithm proveIntersection(A,B, hA, hB , pk) to receive (ΠI , fI) and append

ΠI to Π. Observe that sets A,B and their hash values have been computed in the previous step.

4. Output {Π, fF }. (hF has already been computed at step (2) but is provided explicitly for ease of notation).

Algorithm{accept,reject} ← verifyUnion(f1, ..., ft,Π, fF , pk).

1. For each intersection argument {ΠI , fI} ∈ Π run verifyIntersection(fA, fB ,ΠI , fI , pk). If for any of them it outputs
reject, output reject.

2. For each node of T check the equality e(fA, fB) = e(fU , fI). If any check fails, output reject.

3. For each hash value hU ∈ Π check e(fU , ga) = e(f ′U , g) and likewise for values hI . If any check fails output reject,
otherwise accept.

Figure 2: Union

Analysis of the algorithms. Let N =
∑t

i=1 |Si| and δ = |I| or |F | respectively, depending on the type
of operations. For both cases, the runtimes of the algorithms are O(N log2N log logN log t) for proof
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construction and O(t + δ) for verification and the proofs contain O(t) bilinear group elements. A proof of
the complexity analysis for these algorithms can be found in Section 3.4.

It can be shown that these algorithms, along with appropriately selected proofs-of-validity for their input
hash values can be used to form a complete ADS scheme for the case of a single set operation. Here however,
these algorithms will be executed as subroutines of the general proof construction and verification process
for our ADS construction for more general queries, presented in the next section. In the full version of the
paper, we present similar algorithms for the set difference operation

3.2.3 Hierarchical Set-Operation queries

We now use the algorithms we presented in the previous subsection to define appropriate algorithms query,
verify for our ADS scheme. A hierarchical set-operations computation can be abstracted as a tree, the nodes
of which contain sets of elements. For a query q over t sets S1, ..., St, corresponding to such a computation,
each leaf of the tree T contains an input set for q and each internal node is related to a set operation (union
or intersection) and contains the set that results to applying this set operation on its children nodes. Finally
the root of the tree contains the output set of q. In order to maintain the semantics of a tree, we assume that
each input is treated as a distinct set, i.e., t is not the number of different sets that appear in q, but the total
number of involved sets counting multiples. Another way to see the above, would be to interpret t as the
length of the set-operations formula corresponding to q.6

Without loss of generality, assume q is defined over the t first sets of D. For reasons of simplicity we
describe the mode of operation of our algorithms for the case where all sets Si are at the same level of the
computation, i.e., all leafs of T are at the same level. The necessary modifications in order to explicitly
cover the case where original sets occur higher in T , are implied in a straight-forward manner from the
following analysis, since any set Si encountered at an advanced stage of the process can be treated in the
exact same manner as the sets residing at the tree leafs. The algorithms for query processing and verification
of our ADS scheme are described in Figure 3.

Intuitively, with the algorithms from the previous section a verifier can, by checking a small number of
bilinear equations, gain trust on the hash value of a set computed by a single set operation. Observe that,
each prover’s algorithm “binds” some bilinear group elements (the first parts of the input hash values) to a
single bilinear group element (the first part of the hash value of the output set). We made explicit use of that,
in order to create a proof of union for more than two sets in the previous section. Here we generalize it, to
be able to obtain similar proofs for hierarchical queries containing intersections and unions. The proof for q
is constructed by putting together smaller proofs for all the internal nodes in T . Let Π be a concatenation of
single union and single intersection proofs that respect q, i.e., each node in T corresponds to an appropriate
type of proof in Π. The hash value of each intermediate result will also be included in the proof and these
values at level i will serve as inputs for the verification process at level i+ 1. The reason the above strategy
will yield a secure scheme is that the presence of the hash values, serves a proof by a cheating adversary
that he has “knowledge” of the sets corresponding to these partial results. If one of these sets is not honestly
computed, the extractability property allows an adversary to either attack the collision-resistance of the
ECRH or break the q-SBDH assumption directly, depending on the format of the polynomial used to cheat.

Observe that the size of the proof Π is O(t + δ). This follows from the fact that the t proofs πi consist
of a constant number of group elements and Π is of size O(t) since each of the O(|T |) = O(t) nodes
participates in a single operation. Also, there are δ coefficients bi therefore the total size of Π is O(t + δ).

6More generally q can be seen as a DAG. Here, for simplicity of presentation we assume that all sets Si participate only once
in q hence it corresponds to a tree. This is not a limitation of our model but to simplify the execution of the algorithms, every
set encountered is treated uniquely. This can incur a redundant overhead in the analysis, that is avoidable in practice (e.g., by not
including duplicate values in proofs).
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D is the most recent version of the data structure and auth(D), d be the corresponding authenticated values and public digest.
Let q be a set operation formula with nested unions and intersections and T be the corresponding semantics tree. For each
internal node v ∈ T let R1, ..., Rtv denote the sets corresponding to its children nodes and O be the set that is produced by
executing the operation in v (union or intersection) over Ri. Finally, denote by α = x1, ..., xδ the output set of the root of T .

Algorithm {α,Π} ← query(q,D, auth(D), pk).

1. Initialize Π = ∅.
2. Compute proof-of-membership πi for value fi by running QueryTree(pk, d, i, auth(D)) for i ∈ [t] and append πi, fi

to Π.

3. For each internal node v ∈ T (as parsed with a DFS traversal):
• Compute set O and its hash value hO = h(CO).
• If v corresponds to a set intersection, obtain Πv by running proveIntersection(R1, ..., Rt, h1, ..., ht, O, hO, pk).

For each subset witness Wi ∈ Π corresponding to polynomial CRi\O , compute values W̃i = gaCRi\O(s). Let
Wv = {W1, ...,Wtv}. Append Πv,Wv, hO to Π.

• If v corresponds to a set union, obtain Πv by running proveUnion(R1, ..., Rt, h1, ..., ht, O, hO, pk). Append
Πv, hO to Π.

4. Append to Π the coefficients (c0, ..., cδ) of the polynomial Cα (already computed at step 3 and output {α,Π)}.
Algorithm {accept,reject} ← verify(q, α,Π, d, pk). For internal node v ∈ T , let η1, ..., ηtv denote the hash values of its
children node sets ∈ Π (for internal nodes at level 1, the values ηi are the values fi).

1. Verify the validity of values fi. For each value fi ∈ Π run VerifyTree(pk, d, i, fi, πi). If it outputs reject for any of
them, output reject and halt.

2. For each internal node v ∈ T (as parsed with a DFS traversal):
• Check the equality e(fO, ga) = e(g, f ′O). If it does not hold, reject and halt.
• If v corresponds to a set intersection:

(a) Run verifyIntersection(η1, ..., ηtv ,Πv, fO, pk), If it outputs reject, output reject and halt.
(b) For each pair Wi, W̃i ∈ Πv , check the equality e(Wi, g

a) = e(W̃i, g). If any of the checks fails, output
reject and halt.

• If v corresponds to a set union, run verifyUnion(η1, ..., ηtv ,Πv, fO, pk). If it outputs reject, output reject and
halt.

3. Validate the correctness of coefficients c. Choose z ←R Z∗p and compare the values
δ∑
i=0

ciz
i and

δ∏
i=1

(xi + z). If they

are not equivalent, output reject and halt.

4. Check the equality e(
δ∏
i=0

gcis
i

, g) = e(fα, g). If it holds output accept, otherwise reject.

Figure 3: General Set-Operations Proof Construction and Verification

The runtime of the verification algorithm is O(t + δ) as steps 2,3 takes O(t) operations and steps 4,5 take
O(δ). A proof of the complexity analysis for these algorithms can be found in Section 3.4.

3.3 Main Result
We can now state the following theorem that is our main result.

Theorem 1 The scheme AHSO = {genkey, setup, query, verify, update, refresh} is a dynamic ADS
scheme for queries q from the class of hierarchical set-operations formulas involving unions, intersections
and set difference operations. Assuming a data structureD consisting ofm sets S1, ..., Sm, and a hierarchi-
cal set-operations query q involving t of them, computable with asymptotic complexity O(N) with answer
size δ, AHSO has the following properties: (i) correct and secure under the q-SBDH and the q-PKE as-
sumptions; (ii) the complexity of algorithm genkey is O(|D|); (iii) that of setup is O(m+ |D|) (iv) that of
query is O(N log2N log logN log t+ tmε logm) for 0 < ε ≤ 1 and it yields proofs of O(t+ δ) group ele-
ments; (v) that of verify is O(t+ δ); (vi) and those of update and refresh are O(1); (vii) the authenticated
data structure consists of O(m) group elements; (viii) the public digest d is a single group element.
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Proof: LetAADS be an adversary for andAHSO scheme. Recall theAADS is given a public key generated
by genkey containing a description of an ECRH h. AADS then calls setup with the parameter D0 and
subsequently makes additional oracle calls to the algorithms update, refresh, verify, proof, of AHSO.
Finally AADS outputs {α,Π, q,Dk, auth(Dk), dk} where Π is a proof that contains images of the hash h.
We show that there exists an extractor E that except with negligible probability over the choice of h, when
E is given h, outputs a pre-image for every valid image of h in Π. We cannot directly use the extraction
property of the ECRH since the adversary AADS is getting access to oracles for the algorithms of AHSO
and we do not have access to the code of these oracles. The idea of this proof is to use the fact that all the
algorithms ofAHSO (except genkey) can be executed over the initial databaseD0 in polynomial time given
only the public key h (see Remark 1), and therefore there exists an adversaryA′ADS that internally emulates
A′ADS together with its oracles and outputs the same asAADS . LetA′i be the adversary that emulatesA′ADS
and outputs the i’th hash value hi in proof Π contained in the output ofA′ADS . It follows from the properties
of the ECRH that there exists an extractor Ei for A′i that outputs a pre-image of hi whenever hi is indeed in
the image of h. Therefore there exists a single extractor E that outputs the pre-images for all valid hi’s with
overwhelming probability. Finally, observe that valid hash values hi are efficiently recognizable as elements
of G.

As a building block for our proof, we prove the following lemma:

Lemma 4 If the q-SBDH assumption holds, then for any poly-size adversary A that upon input pk outputs
(S1, ..., St, O,Π, fO) s.t. (i) verifyIntersection(f(CS1), ..., f(CSt),Π, fI , pk) (resp. verifyUnion) accepts
and (ii) f(CO) = fO, O = ∩ti=1Si (resp. O = ∪ti=1Si) with all but negligible probability.

Proof: We examine the two cases separately.
Intersection. Let us assume that there exists A that outputs S1, ..., St, O,Π, fO s.t. verifyIntersection
accepts and O 6= I := ∩ti=1Si, with non-negligible probability. We will construct an adversary A′ that
breaks the q-SBDH assumption. For ease of notation we denote CSi = Qi(r) and CO = P (r).

Since O 6= I , either it contains an element x s.t. x 6∈ I , or there exists element x ∈ I s.t. x 6∈ O (or
both happen at the same time). Let us deal with the first case. Since x ∈ O ∧ x 6∈ I , there must exist set Sj
s.t. x 6∈ Sj . Therefore for the term (x + r) it is true that (x + r) 6 |Qj(r) and (x + r)|P (r). It follows that
there exist efficiently computable F (r), κ s.t. Qj(r) = (x + r)F (r) + κ. Also let H(r) be polynomial s.t.
(x+ r)H(r) = P (r). The following equalities must hold:

e(fO,Wj) = e(fj , g)

e(g,Wj)
P (s) = e(g, g)Qj(s)

e(g,Wj)
(x+s)H(s) = e(g, g)(x+s)Qj(s)+κ(

e(g,W )H(s)e(g, g)−Qj(s)
)κ−1

= e(g, g)
1
x+s .

It follows that A′ can, by outputting the above value break the q-SBDH for point x. Hence, this case can
happen only with negligible probability.

It remains to deal with the second case, conditioned on the first not happening. Namely, there exists
x ∈ I that is omitted by answer O, i.e. O is a common subset of Si but not the maximal one. There
must exist x ∈ I s.t. x /∈ O therefore it must be that x ∈ (Si \ O) for all i = 1, ..., t. Let polynomials
Ri(r) = CSi\O. Observe that because the verifier accepts, it must be that e(g,Wi) = e(g, g)Qi(s), hence
Wi = gRi(s). From the above it must hold that Ri(r) = (x+r)R′i(r) for some R′i(r) ∈ Z[r]. The following
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must be true:

t∏
i=1

e(Wi, Fi) = e(g, g)

(
t∏
i=1

e(gR
′
i(s), Fi)

)x+s
= e(g, g)

t∏
i=1

e(gR
′
i(s), Fi) = e(g, g)

1
x+s .

From the above,A′ can break the q-SBDH assumption for point x. It follows thatO is the maximal common
subset of Si’s with all but negligible probability.

If we denote the two cases as E1, E2, we showed that Pr[E1],Pr[E2|Ec1] are negligible probabilities.
Since E1, E2 cover all possible cheating adversary strategies, the claim follows by a simple union bound.

Union. Let us assume that there exists A that outputs S1, ..., St, O,Π, fO s.t. verifyUnion accepts and
O 6= U := ∩ti=1Si, with non-negligible probability. We will construct an adversary A′ that either finds
a collision in h, or breaks the q-SBDH assumption. For ease of notation we denote CSi = Qi(r) and
CO = P (r). We begin by providing a proof for t = 2, i.e., a union of two sets A ∪B.

Upon receiving the output from A, adversary A′ runs the extractor EA (the existence of which is guar-
anteed by our analysis in the start of the proof of Theorem 1) for value hI∗ ∈ Π to receive polynomial R(r)
s.t. gR(s) = hI∗ with overwhelming probability.

Claim 1 R(r) ≈a CI where I = A ∩B, with all but negligible probability.

Proof of Claim. The following two relations must hold:

e(g,WA)R(s) = e(g, g)QA(s)

e(g, g)QA(s)·QB(s) = e(g, g)R(s)·P (s).

First we will prove that R(r) can be written as a product of degree 1 polynomials. Assume there exists
irreducible polynomial R′(r) of degree> 1 and polynomial J(r) s.t. R(r) = R′(r)J(r). It follows that
R(r)P (r) 6= QA(r)QB(r) (since only one of them has irreducible terms of degree greater than 1), however
from the above equality h(R(r)P (r)) = h(QA(r)QB(r)) therefore by outputting R(r) · P (r), QA(r) ·
QB(r) (in coefficient form), A′ finds a collision in the ECRH. This can happen with negligible probability
hence R(r) can be written as a product of degree 1 polynomials with all but negligible probability.

From this it follows that A′ can, by running a probabilistic polynomial factorization algorithm, find
roots xi s.t. R(r) = λ

∏
i∈[deg(R)](xi+ r). Note that upon input polynomial R(r), value λ can be efficiently

computed correctly by a polynomial factorization algorithm, with all but negligible probability, and the value
λ−1 is also computable efficiently since p is a prime.

Let X be the set containing the additive inverses of the roots xi
7 and observe that CX =

λ
∏
i∈[deg(R)](xi + r). If X 6= I , A′ can output {A,B,X, P i∗ = (hλ

−1

X ,W λ
A,W

λ
B, F

λ−1

A , F λ
−1

B )}. It is
easy to verify that the above is satisfying proof for the claim that X = A ∩ B (i.e., verifyIntersection ac-
cepts), whileX 6= I . By our previous analysis for the intersection case, this can only happen with negligible
probability. This concludes the proof of the claim. �

7The case where X has a root that is also a root of I but with cardinality > 1 can easily be dealt with as follows. Since the term
(x+ s) appears in the exponent in both sides of the bilinear relation, A′ can remove it from both hands, until at the end it remains
only in one of them. After that happens, the consequent analysis holds. Similar argument can be made for the union case thus in
the following we skip this part of the analysis.
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Consequently, the following must be true:

e(g, g)QA(s)QB(s) = e(g, g)R(r)P (r)

e(g, g)
∏
x∈A(x+s)

∏
x∈B(x+s) = e(g, g)P (s)λ

∏
x∈A∩B(x+s)

e(g, g)
∏
x∈A∪B(x+s) = e(g, g)λP (s).

In case polynomials CA∪B and λP (r) are not equivalent, due to the above equality A can by outputting
them find a collision in the ECRH. Therefore it must be that with overwhelming probability λP (r) = CU .
Again, if λ 6= 1 then the two polynomials form a collision for the ECRH, therefore with all but negligible
probability, O = U .

Let us now turn our attention to the case of a generalised union over k sets (assume wlog that k is a
power of 2). Consider the binary tree T that captures this union operation as described in Section 3.2.2.
Observe that this tree consists only of O(poly(l)) nodes (2t− 1 in practice) hence A′ can efficiently run an
extractor for all intermediate hash values corresponding to internal nodes of T (as per our former analysis)
to compute the related polynomials correctly, with overwhelming probability.

We will prove that the polynomial CO(r), corresponding to hO, is an associate of CU by showing that
this is true for all intermediate polynomials and their corresponding sets. We will do this by an induction on
the levels of T .

level-1 Let P (1)
i (r) be the extracted polynomials for all first level nodes. Let us assume that there exists node

v in the first level such that P (r) := P
(1)
v (r) 6≈a CU(1)

i

where U (1)
i is the corresponding correct union

of its two children nodes.
With a similar argument as above, P (r) can be written as a product of degree 1 polynomials with
all but negligible probability (otherwise a collision in the ECRH can be found). Let X be the set
containing the additive inverses of the roots xi of P (r). It follows that P (r) = λCX for some
efficiently computable λ ∈ Z∗p. Similar as above, if X 6= U

(1)
i , A′ can output {A,B,X,Π∗ =

(hλ
−1

X , hλI ,W
λ−1

A ,W λ−1

B , F λA, F
λ
B)}. It is easy to verify that this consists a satisfying proof for the

claim A ∪ B = X , which by our previous analysis can happen with negligible probability and the
claim follows.

level-j Assuming that this holds for the polynomials on level j we will show that it also holds for level
j + 1. Let us assume that this not the case. It follows that there must exist node v of the tree on level
j + 1 the children of which have extracted polynomials QA(r), QB(r), the corresponding extracted
output polynomial is P (r) and the corresponding extracted polynomial for the intersection be H(r).
Assuming P (r) is not an associate of CU we will construct an adversary that finds a collision in the
ECRH similar to above.
By assumption, QA(r) = λA

∏
i∈[|A|](xi + r) and likely for QB(r) (recall that these are associate

polynomials of the correctly computed corresponding set at level j) for sets A,B. If P (r) contains an
irreducible factor of degree > 1, our previous analysis shows that a collision for the ECRH is found.
Therefore P (r) can be written as a product of degree 1 polynomials and a scalar and there exist an
efficiently computable set X and λ ∈ Z∗p s.t. P (r) = λCX . Similar as above, if X 6= A ∪ B, A′

can output {A,B,X,Π∗ = (hλ
−1

X , h
λ/λA·λB
I ,W λB

A ,W λA
B , F

λ−1
B

A , F
λ−1
A

B )}. It is easy to verify that this
consists a satisfying proof for the claim A∪B = X , which by our previous analysis can happen with
negligible probability and the claim follows.
Since this holds for every node of level j + 1, this concludes our induction proof.

Hence with all but negligible probability, the claim holds for the value hO. As per the intersection case, it
must be that with all but negligible probability O = U . 2
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For the proof of our main result we make use of Lemmas 4 and 3. Let AADS be a poly-size adversary
that upon input the public key pk of our ECRH construction, is given oracle access to all algorithms of
AHSO. AADS picks initial state D0 for the data structure and computes auth(D0), d0 through oracle
access to setup(). Consequently he chooses a polynomial number of updates and with oracle access to
update() computes Di+1, auth(D0), di+1 for i = 0, ..., h. Also, he receives oracle access to algorithms
query,verify,refresh. Finally, AADS outputs {α′,Π, q,Dk, auth(Dk), dk} where k is between 0 and h+ 1
and denotes the snapshot of the data structure to which the query q is to be applied. We want to measure the
probability that verify(α′,Π, q, pk, dk) outputs accept and algorithm check(Dk, q, α

′) outputs reject (i.e.,
α′ is not equal to the set produced by applying operations in q on dataset Dk).

Assuming AADS can succeed in the above game with non-negligible probability ε, we will use him
to construct A′ that finds a collision in the ECRH with non-negligible probability. A′ works as follows.
Upon input pk of ECRH, he sends it to AADS . Following that, he provides oracle interface to A. Finally,
he receives {α′,Π, q,Dk, auth(Dk), dk} from A and runs corresponding extractor EAADS to receive hash
pre-images for all hash vales in Π.

Let S1, ..., St be the sets in Dk over which q is defined. First A′ computes honestly q over Si, and
receives the correct output α and all intermediate sets. Then he runs verify on the received tuple and checks
if α 6= α. If verification fails or α = α′ he aborts (i.e. he only proceeds if AADS wins the ADS game).
Following that, A′ checks if f(CSi) = fi for i = 1, ..., t. If any of the checks fails, he aborts. Then
A′ compares the correctly computed set for each node v ∈ T and the corresponding extracted polynomial
which we denote by Pv(r). Given polynomial Pv(r) for each node,A′ checks if it is an associate polynomial
of the characteristic polynomial of the corresponding honestly computed set. If this does not hold for some
node v, he aborts. Finally, he outputs the pair of polynomials Proot(r), Cα′ .

First, note thatA′ runs in time polynomial in the security parameter, since bothAADS and EAADS run in
polynomial time, the set computations can be done in polynomial time and polynomial associativity is also
decidable in polynomial time by long division. Regarding, his success probability in finding a collision we
argue as follows.

Let E′ be the event that A′ succeeds in finding a collision and B the event that AADS wins the ADS
game. By assumption Pr[B] > ε for non-negligible ε, a function of l. Observe that, conditioned on not
aborting, the probability ofA′ to find a collision is at least (1−ν∗(l)) where ν∗(l) is the sum of the negligible
errors in the output of the extractor and the randomized factorization algorithm, which by a union bound is
an upper bound for the total error probability. This holds because, since A′ did not abort, the verification
succeeded and AADS provided a false answer which implies that the polynomials output are not equivalent
yet they have the same hash values. Overall Pr[E′] = Pr[E′|¬abort] Pr[¬abort] ≥ (1− ν∗(l)) Pr[¬abort].

Let EV be the event that verify accepts during the first step of A′ and α 6= α′. Also, let E1 be the
event that all f(CSi) = fi for i = 1, ..., t given that verify accepts and E2 be the event that all extracted
polynomials are of the form Pv(r) ≈a CO also given that verify accepts. Also, let E3 be the event that
the polynomials Cα∗(r) and

∑δ−1
i=0 cir

i are equivalent given that verify accepts. By Lemma 3, Pr[E1] >
1 − ν1(l) and Pr[E3] > 1 − ν3(l) since, by the Schwartz-Zippel lemma [31], the probability that two non-
equivalent polynomials of degree δ agree on a point chosen uniformly at random is ≤ d/2l in this case,
which is negligible in l. Also, by assumption Pr[EV ] ≥ ε.

We argue about Pr[E2] as follows:

Claim 2 Pr[E2] > 1− ν2(l) .

Proof of Claim. Equivalently, we will prove that for all internal nodes v ∈ T , with corresponding extracted
polynomial Pv(r), it must be that Pv(r) ≈a CO where O is the correctly computed set corresponding to v
when computing q over Si, with all but negligible probability.
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As in the proof of Lemma 4, we will prove this by an induction on the levels of T (in fact, since T
is not a balanced tree, the induction is over the nodes themselves in the order they are accessed by a DFS
traversal).

level-1 If the operation for v is a union, the claim immediately holds from Claim 1 above, for the tree Tv
corresponding to the union operations defined in v over its children.
If the operation for v is an intersection, then if Pv(r) has a factor that is an irreducible polynomial of
degree > 1, then let Ri(r), R̃i(r) be the corresponding extracted polynomials for the pair of values
Wi, W̃i in the proof. Since the verification process succeeds, it follows that e(fO,Wi) = e(fi, g).
Since by assumption, f(CRi) = fi, (slightly abusing the notation, we assume that Si = Ri) it follows
that the polynomials CRi(r), Pv(r) · R(r) form a collision for the ECRH for some index i. On the
other hand, if Pv(R) can be written as a product of degree 1 polynomials, it follows that it can be
written as λCX for some set X and A′ could output appropriate proof for the claim ∩tvi=1Ri = X ,
in the exact same manner as we demonstrated in proof of Lemma 4, which can only happen with
negligible probability and this concludes the base case of the induction.

general step Let us assume that the statement holds for all the children of node v, we show it also holds for v.
Assuming there exists such node v, we can separate into two cases.
If the operation at v is an intersection, then let Q1(r), ..., Qtv(r) be the extracted polynomials cor-
responding to its children nodes. By assumption Qi(r) = λiCOi where Oi are the correctly com-
puted sets up to that point according to q. Similar as for the case for level-1, if Pv(r) contains
a factor that is an irreducible polynomial of degree > 1, A′ can find a collision in the ECRH.
Therefore, with all but negligible probability, Pv(r) can be written as λCX for some efficiently com-
putable set X = {x1, ..., x|X|)}. Hence A′ can output {O1, ..., Otv , X,Π

∗ = (hλ
−1

X ,W
λ/λi
i , F

λi/λ
i ;

i = 1, ..., tv)}. It is easy to verify that the above is a satisfying proof for the claimX = ∩tvi=1Oi which
by Lemma 4 can happen with negligible probability.
If the operation at v is a union, then we argue as follows. Let Tv be the tree corresponding to the
union operations defined in v over its children. Observe that the only difference between this case and
the case analysed previously in the proof of Lemma 4 is that the polynomials at the leafs of tree Tv
are not characteristic polynomials necessarily. However, by assumption, they are polynomials of the
form λiCOi where Oi are the correctly computed sets up to that point according to q. A′ can produce
a satisfying proof for an incorrect set, in the exact same manner as described in the general step of our
induction proof for Claim 1 above. Hence, with all but negligible probability, Pv(r) ≈a CO, which
concludes our induction proof.

Therefore, the claim follows. �
It follows by the way we defined these events that the overall abort probability of A′ is (using a union

bound) Pr[abort] ≤ Pr[EcV ] + Pr[Ec1] + Pr[Ec2] + Pr[Ec3] = 1 − ε + ν ′(l) where ν(l)′ is the sum of the
three negligible probabilities. Hence Pr[¬abort] ≥ 1 − 1 − ε + ν ′(l) = ε − ν ′(l). We showed above
that Pr[E′] ≥ (1 − ν∗(l)) Pr[¬abort] ≥ ε(1 − ν(l)) (for an appropriately defined negligible function ν(l))
which is non-negligible. This contradicts the collision resistance of the ECRH h and the security ofAHSO
follows. 2

Corollary 1 If the server maintains a list of m fresh proofs π1, ..., πm for the validity of values fi, refresh
has complexity O(m2ε logm), in order to update the mε proofs πi affected by an update, and query has
complexity O(N log2N log logN log t+ t).

Corollary 2 In a two-party setting, where only the source issues queries, proofs consist of O(t) elements.

For Corollary 1 the following modifications are made to the scheme:
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• The server upon receiving D, authD, d, pk computes and stores m proofs π1, .., πm by running the
algorithm VerifyTree for each value fi corresponding to Si. These values are computed in time
m1+ε logm.
• Upon receiving a query request, the server performs t lookups to find the corresponding proofs πi

(instead of computing them on-the-fly) and includes them in the proof.
• Upon receiving an update, modifying fi → f∗i , let π1, ..., πmε) be the proofs that corresponds to

the value fi and its mε − 1 siblings in the accumulation tree. The server computes updated proofs
π∗1, ..., π

∗
mε by running QueryTree mε, hence this takes overall time m2ε logm.

Likewise for Corollary 2:
• Upon receiving query q, the server runs query skipping step (4).
• Upon receiving α,Π, the source computes

∏δ
i=1(xi + s) in time O(δ) using the secret key s. He then

runs verify replacing steps (3),(4) with a single check of the equality e(g
∏δ
i=1(xi+s), g) = e(fa, g).

3.4 Complexity Analysis for the algorithms of the scheme
Recall that we are using the access complexity model and we are measuring primitive operations in Z∗p
ignoring the cost (that in practice is Õ(l) for a security parameter l).

Intersection

This is the most complicated argument in terms of asymptotic analysis and it will be useful for the consec-
utive ones, therefore we will provide an elaborate analysis. The algorithm proveIntersection consists of the
following steps:

1. Compute values Wi for i = 1, ..., t.
2. Compute polynomials qi(r).
3. Compute values Fi.

For simplicity of presentation, we will assume without loss of generality that all t sets have cardinality n
and we denote N = tn. From Lemma 2 step (1) can be done with

∑
i∈[t] n log n operations which can be

bound by O(N logN).8

For the greatest common divisor computation, we will be making use of the extended Euclidean algo-
rithm presented in [33] which, for two polynomials a(r), b(r) of degree n runs in timeO(n log2 n log logn).
The algorithms outputs three polynomials u(r), v(r), g(r) s.t. u(r)a(r) + v(r)b(r) = g(r) and g(r) is the
gcd(a(r), b(r)) and u, v are known as Bezout coefficients of a, b. Observe that g(r) can be at most of degree
n and by the analysis of the algorithm, deg(u) < deg(b) − deg(g) and deg(v) < deg(a) − deg(g). In our
case, it is thus true that the degrees of polynomials u, v, g are all upper bounded by n.

The gcd(P1, ..., Pt) can be recursively computed as gcd(gcd(P1, ..., Pt/2), gcd(Pt/2+1, ..., P (t)) and
this can be applied repeatedly all the way to first computing the pairwise gcd of all consecutive pairs of
polynomials and following that the gcd of each pair of gcd′s all the way to the top. In order to better analyse
the complexity of step (2), let us introduce the following conceptual construction that captures exactly this
recursive approach. Let T be a binary tree with polynomials CSi\I at the t leafs. Each internal node is
associated with one major polynomial which is the gcd of the major polynomials of its two children nodes,
and two minor polynomials, which are the corresponding Bezout coefficients. The tree must be populated
(all polynomials of internal nodes computed) as follows. For the nodes that are parents of leafs, compute
the gcd of their children nodes and the corresponding Bezout coefficients. Following that, for each level of
the tree all the way up to the root, the nodes are populated by computing the gcd of the gcd’s stored in their
two children nodes. It follows that the root of T stores the gcd(CS1\I , ..., CSt\I).

8A tighter bound would be O(N logn). However we do not wish to capitalize on the fact that we assumed all sets are of the
same size, since this is an assumption for ease of notation. Hence we provide this more general bound.
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Let us now analyse how long it takes to populate the nodes of T . By the analysis of the extended
Euclidean algorithm, it follows that each of the nodes that are parents of leafs can be populated in time
O(n log2 n log logn). Since the degrees of the gcd polynomials higher in T can only be lower, it fol-
lows that the same bound holds for all nodes. Since there exist O(t) nodes, T can be populated in time
O(N log2N log logN).

Following that, we need to compute polynomials qi(r). Observe that each such polynomial can be
computed after populating T as the product of exactly O(log t) polynomials each of which can be at most
of degree n. We start by proving the following.

Claim 3 Having populated T , all the polynomials qi(t) for i = 1, ..., t can be computed by 2t−2 polynomial
multiplications.

Proof of Claim. We will prove the above by induction on the number of sets t. For t = 2, having populated
the tree, polynomials q1(r), q2(r) are already stored at the root. Hence we need 2 · t−2 = 0 multiplications.
If this is true for t = j we will show it is true for 2j. Observe that for two sibling sets, the polynomials
qi(r), qi+1(r) can be written as qi = h(r)u(r) an qi+1 = h(r)v(r) where u, v are the corresponding
Bezout coefficients stored in their parent. The polynomials hk(r) for k = 1, ..., j (each associated with
one grand-parent node of the leafs in T ) can be computed with 2j − 2 multiplications by the assumption.
Hence each polynomial qi(r) can be computed with one additional multiplication for a total of 2j additional
multiplications. Thus the overall number of multiplications to compute q1(r), ..., q2j(r) is 4j − 2 = 2t− 2,
which concludes our proof of the claim. �

Since each of qi(r) can be at most of degree O(n log t), an upper bound on the complexity of each of
these multiplications is O((n log t) log(n log t)), by using fast multiplication with FFT interpolation. By
the above claim, there are O(t) such multiplication therefore the overall complexity for the computation
of the polynomials qi(r) is O(N logN log t log log t). Finally, the output of this procedure is the poly-
nomial coefficients of the qi’s hence the values Fi can be computed in time O(N log t) since each qi has
degree at most n log t. Since t ≤ N , from the above analysis the overall complexity of proveIntersection is
O(N log2N log logN).

Algorithm verifyIntersection consists of O(t) bilinear pairings. Finally the size of the proof Π is O(t)
group elements (in practice 2t elements).

Union

We begin with the proof Π for a union of two sets A,B with cardinalities nA, nB (denote N = nA +
nB). The intersection argument for I = A ∩ B can be computed in time O(N log2N log logN) from the
above analysis. The value hU can be computed in time O(N logN) from Lemma 2, hence the algorithm
proveUnion for two sets runs is time O(N log2N log logN).

For the general case, let use denote with ni the cardinality of each set Si and let N =
∑

i∈[t] ni. Finally
we denote with Nv the sum of the cardinalities of the sets of its children nodes of each node v ∈ T . Each of
the first level nodes is related to valueNi for i = 1, ..., t/2 s.t.

∑t/2
i=1Ni ≤ N). Hence computing the proofs

for all first level nodes of T can be done in time
∑t/2

i=1Ni log2Ni log logNi which can be upper bound
by O(N log2N log logN). Moreover, this bound is true for all levels of T since due to the commutativity
of the union operation, no elements will be left out (in the worst case the sets are disjoint, hence |U | =
N) and since we have exactly log t levels in the tree, the algorithm proveUnion in general runs in time
O(N log2N log logN log t).

Each proof for a pair of sets can be verified by checking O(1) bilinear equalities and since there are
exactly t − 1 such arguments, the runtime of verifyUnion is O(t). The proof for each node v consists of
8 group elements and there are t − 1 such arguments, hence the size of the argument is O(t) (in practice,
8(t− 1) elements).
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Observe that (similar to the generalised union case) the proof construction and verification consists of con-
structing (and verifying) a series of proofs as dictated by the structure of T . Hence the complexity of the
algorithms will be characterized from the complexity of the algorithms for the single operation case. As
before we denoteNv for each node v ∈ T as the sum of the cardinalities of the sets of its children nodes and
tv as the number of its children nodes. Also let N =

∑
v∈T NV . The construction of the argument for each

node can be made in timeO(Nv log2Nv log logNv log tv). If t is the length of the set operation formula cor-
responding to q, it follows that tv ≤ t hence the above can be also bound as O(Nv log2Nv log logNv log t).
Finally the cost to compute Π is equal to the sum of computing all of the respective proofs, which can be
written as O(N log2N log logN log t). Also, each of the proofs πi is computed in time O(mε logm) and
since there are t of them, the overall complexity for query is O(N log2N log logN log t+ tmε logm).

Each proof can be verified by checking O(tv) bilinear equalities. Since each node has a single parent
it follows that the runtime of verify is O(|T |). However, |T | ≤ 2t since all operations are defined over at
least two sets, hence verify consists of O(t) operations. Each atomic proof in Π consists of O(tv) group
elements and therefore the total size of Π is O(t+ δ).

4 Extensions and Implementation Decisions
Reducing the proof size. The size of proof Π can be reduced to being independent of the size of the
final answer α. Observe that what makes the proof be of size O(t + δ) is the presence of coefficients c.
However, given α itself, coefficients c = (c0, ..., cδ−1) can be computed using an FFT algorithm in time
O(δ log δ). An alternative to the above scheme would be to omit c from the proof and let the verifier upon
input α compute the coefficients by himself to run the last step of verify. That would give a proof size of
O(t) and verification time of O(t + δ log δ). Since in most real world applications δ � t, a proof that has
size independent of δ is useful, especially if one considers that the additional overhead for verification is
logarithmic only. Of course the communication bandwidth is still O(t + δ) because of the answer size, but
it does not extend to the proof size.

A note on the public key size. A downside of our construction -and all other constructions that are provably
secure under a q-type assumption- is the large public key size. More specifically, the public key pk is of
size linear to the parameter q where q is an upper bound on the size of the sets that can be hashed. This
holds not only for the original sets S1, ..., Sm but for any set that can result from hierarchical set operations
among them thus a natural practical bound for q is |D|. While computing this public key cannot be avoided
and it is necessary for proof computation at the server, a client that needs to verify the correctness of query
q with corresponding answer α of size δ, only needs the first max{t, δ} elements of the public key. By
deploying an appropriate authentication mechanism (digital signatures, Merkle trees, accumulation trees
etc.) to validate the elements of pk, a scheme that relieves clients from the necessity to store a long public
key can be constructed. Ideally the necessary public key elements should be transmitted alongside proof Π
and cached or discarded at the behest of the client.

Symmetric vs. Asymmetric pairings. Throughout the presentation of our scheme, we assumed implicitly
that the pairing e(·, ·) is symmetric (i.e., Type-1 pairing). For example for the construction of the union
argument for the operation A ∪ B, the value fB appears both in term e(fA, fB and term e(fB, g) and we
assumed that in both cases the same value is used as input for the pairing, as is the case if e is symmetric.
However, many times asymmetric pairings are preferable for implementation purposes since they are much
faster than asymmetric ones in terms of computation. This is not a serious problem for our scheme as there
is an easy way to circumvent it.

A pairing e : G1 × G2 → GT is asymmetric if G1 6= G2 but both are of prime order p and let g1, g2
be respective generators. Observe that e(gP (s)

1 , g2) = e(g2, g
P (s)
2 ) is an efficiently checkable equality that
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verifies that two hash values (their first parts) f1 = g
P (s)
1 , f2 = g

P (s)
2 have the same pre-image but are

computed in G1 and G2 respectively. Therefore, by including both values f1A, f
2
A in the proof, the case of

an asymmetric pairing can be accommodated. By verifying the above equality a prover can be sure that
both values refer to the same characteristic polynomial and use either one of them selectively, as dictated
by the argument verification algorithm. By using the naive approach of including the “dual” hash value of
each element in the proof, we see that the proof size can at most double but maintains the same asymptotic
behaviour, i.e., proofs have sizeO(t+δ) and the same holds for the runtime of the verification algorithm. In
practice, a smarter approach can be taken where only necessary elements are added (the ones that participate
in union arguments and, of these, half can be “routed” through G1 and the other half through G2). Another
by-product of using an asymmetric pairing it that the public key size is doubled (g1, ..., gs

q

1 , ..., g2, ..., g
sq
2 )

and likewise for the setup phase cost for the source. Note that no isomorphism between G2 and G1 is
explicitly used in the above process, hence our construction can work both with Type-2 and Type-3 pairings.
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