
Smashing MASH-1∗

Vladimir Antipkin

Abstract

MASH-1 is modular arithmetic based hash function. It is presented in Part 4
of ISO/IEC 10118 standard for one and a half decade. Cryptographic strength of
MASH-1 hash function is based on factorization problem of an RSA modulus along
with redundancy in the input blocks of compression functions. Despite of this, we
are able to introduce two large classes of moduli which allow practical time collision
finding algorithm for MASH-1. In one case even multicollisions of arbitrary length
can be constructed.

Keywords: hash-functions based on modular arithmetic, collision at-
tack, MASH-1

1 Introduction

It becomes a common opinion that nowadays hash functions are work-
ing horses of modern cryptography. They are key ingredients in nu-
merous schemes like public-key encryption, digital signatures, message-
authentication codes or multiparty functionalities.

For the last years the focus on hash functions has dramatically increased,
because of new attacks, mainly on MD hash functions family. All attention
of cryptographic community was fixed on so called dedicated hash func-
tions, or hash functions built upon a block cipher. As far as we know,
hash-functions based on modular arithmetic didn’t raise much interest in
researches.

Hash functions based on modular arithmetic are particularly suitable for
environments in which implementations of modular arithmetic of sufficient

∗This work was supported by Academy of cryptography of the Russian Federation

1

length are already available. Anyway these hash functions are not widely
adopted because of relatively poor performance.

Two constructions, MASH-1 and MASH-2 (for Modular Arithmetic Se-
cure Hash), came as a result of a thorough design process and have been
standardized in ISO/IEC 10118-4 [1] in 1998. The two hash functions dif-
fer only in the exponent used in the compression function while MASH-1
is obviously the fastest. Up to date there are no published results which
would threaten security of any of these hash functions.

In this paper we present two classes of moduli which could be proper
RSA moduli and simultaneously allow efficient construction of collisions
for MASH-1 hash function. The fact of the existence of such moduli show
that malicious third party who provide these moduli is able to forge users
of MASH-1 algorithm.

2 Description of MASH hash functions

In this section we give a brief description of MASH hash functions. For
detailed description we refer to [1]. Let N be an RSA modulus and LN
denote its length in bits. Let Lφ be a number divisible by 16 and Lφ + 1 ≤
LN ≤ Lφ + 16. Properly padded input data D of length divisible by

Lφ
2 is

right-appended with
Lφ
2 bits of the binary representation of the length of

the original (unpadded) data string. The resulting string is divided into a
sequence of q half-blocks: D = D1|| . . . ||Dq, Di ∈ VLφ

2

, i = 1, . . . , q.

Every half-block Di is than expanded to full block Bi ∈ VLφ, i = 1, . . . , q,
in the following manner. Each consecutive half-byte of Di is prepended
with a half-byte consisting of four binary ones, i = 1, . . . , q.

The hashing process consists of iteration of compression function and a
finalization stage. Compression function φ : VLφ × VLφ → VLφ is defined as
follows:

φ(Bi, Hi−1) = ((((Hi−1 ⊕Bi) ∨ E)e mod N) ∼ Lφ)⊕Hi−1,

where H0 = IV is an initialization vector fixed to all zeroes string, E is
a constant block equal to four ones (in the left-most position) followed by

2

Lφ− 4 zeros, exponent e is equal to 2 for MASH-1 and to 257 for MASH-2
(this is the only difference between these hash functions), ∼ is truncate
operation to the corresponding number of right-most bits.

After all expanded data blocks proceed through compression function a
finalization stage begins in the following manner. The intermediate block
Hq is represented as Hq = Hq1||Hq2||Hq3||Hq4, Hq1, Hq2, Hq3, Hq4 ∈ VLφ

4

.

Then we define

Y0 = Hq3, Y1 = Hq1, Y2 = Hq4, Y3 = Hq2,

Yi = Yi−1 ⊕ Yi−4, i = 4, . . . , 15,

Dq+i = Y2i−2||Y2i−1, i = 1, . . . , 8.

Data blocks Dq+i, i = 1, . . . , 8, are processed through expansion process
and compression function iteration with IV equal to Hq. As a result we
obtain Hq+8 ∈ VLφ and a hash value H = Hq+8 mod p, where p is a prime

number with bit length at most
Lφ
2 and three high order bits equal to ones.

Up to date the best known (2nd) preimage and collision attacks on

MASH hash functions are universal attacks, which require about 2
Lφ
2 and

2
Lφ
4 operations correspondingly. In spite of the fact that no efficient at-

tacks are known that exploit the factorization of the modulus, it is com-
mon opinion that knowledge of the factorization may reduce the security
level. Therefore it is strongly recommended that factors of the modulus
are kept secret. Our attacks (described below) do not take any advantage
of knowledge of factors of the modulus.

3 First class of weak modulus of MASH-1

Let us first investigate the problem (which is of independent interest) of
finding fixed points of compression function, i.e. strings Hj−1 such that
φ(Bj, Hj−1) = Hj−1. We are looking for conditions on modulus N , strings
Hj−1 and Bj, such that

φ(Bj, Hj−1) = ((((Hj−1 ⊕Bj) ∨ E)e mod N) ∼ Lφ)⊕Hj−1 = Hj−1. (1)

3

Equation (1) holds only if

(((Hj−1 ⊕Bj) ∨ E)e mod N) ∼ Lφ = 0. (2)

Since E 6= 0 and 0 < (Hj−1 ⊕Bj) ∨ E < 2Lφ < N , then

((Hj−1 ⊕Bj) ∨ E)2 mod N 6= 0.

Last inequality means that (1) follows

2Lφ ≤ ((Hj−1 ⊕Bj) ∨ E)2 mod N < N.

The number of possible values of ((Hj−1 ⊕Bj) ∨ E)2 mod N , for which

equation (2) holds, do not exceed
⌊
N

2Lφ

⌋
. We can find all of them by the

exhaustive search. They have the form 2Lφ ·v, 1 ≤ v ≤
⌊
N

2Lφ

⌋
, but in general

assumptions we do not know the factors of N and so we are not able to
find roots by modulus N . So we will consider only those numbers 2Lφ · v,
for which we can find roots easily. These are numbers with integer roots.

Since Lφ is an even number, then 2
Lφ
2 is a root from 2Lφ. Consequently,

it is necessary that a quadratic root of v exists in integers. In the latter

case, A = 2
Lφ
2
√
v is a root of ((Hj−1 ⊕Bj) ∨ E)2 mod N in integers. But

A < 2
Lφ+16

2 , and if Lφ > 18 then A < 2Lφ−1. According to the description
of MASH-1, the following inequality holds

2Lφ−1 < 2Lφ − 2Lφ−4 ≤ (Hj−1 ⊕Bj) ∨ E < 2Lφ.

Thus the value A = 2
Lφ
2
√
v is not suitable.

Anyway, A = N − 2
Lφ
2
√
v can be suitable: this number is also a root of

((Hj−1 ⊕Bj) ∨ E)2 by modulus N . We need that 2Lφ − 2Lφ−4 ≤ A < 2Lφ,
which leads to

2Lφ < N < 2Lφ + 2
Lφ
2
√
v. (3)

Hence LN = Lφ + 1 and according to 2Lφ · v < N we have v = 1, i.e.
((Hj−1 ⊕Bj) ∨ E)2 mod N = 2Lφ. In addition, the following equality must
hold

(Hj−1 ⊕Bj) ∨ E = N − 2
Lφ
2 . (4)

4

Define N =
Lφ/4∑
i=0

ni2
4i, Bj =

Lφ/4−1∑
i=0

b
(j)
i 24i, Hj−1 =

Lφ/4−1∑
i=0

h
(j−1)
i 24i, N −

2
Lφ
2 =

Lφ/4−1∑
i=0

wi2
4i. Relation (3) implies that

• nLφ/4 = 1,

• wi = ni if i < Lφ/8,

• ni = 0 if Lφ/8 ≤ i < Lφ/4,

• wi = 0xf if Lφ/8 ≤ i < Lφ/4.

Here 0xf is a hexadecimal representation of 15. Because of equation (4)

and the fact, that b
(j)
i = 0xf if i is odd, the following conditions on values

of h
(j−1)
i , b

(j)
i , ni must hold:

h
(j−1)
i ⊕ b(j)

i = ni, for even i < Lφ/8,

h
(j−1)
i = ni ⊕ 0xf, for odd i < Lφ/8,

h
(j−1)
i ⊕ b(j)

i = 0xf, for even Lφ/8 ≤ i < Lφ/4− 1,

h
(j−1)
i = 0, for odd Lφ/8 < i < Lφ/4− 1,

h
(j−1)
i , arbitrary for i = Lφ/4− 1,
ni = 0, for Lφ/8 < i < Lφ/4,
nLφ/4 = 1.

(5)

The fulfilment of these conditions implies (1). Obviously, these conditions
are not contradictory.

If j = 1 then H0 = 0 and equation (1) holds if the following conditions
are satisfied: 

ni, arbitrary for even i < Lφ/8,
ni = 0xf, for odd i < Lφ/8,
ni = 0, for Lφ/8 ≤ i < Lφ/4,

b
(j)
i = ni, for even i < Lφ/8,

b
(j)
i = 0xf, for even Lφ/8 ≤ i < Lφ/4− 1,
nLφ/4 = 1.

(6)

5

Using the same approach it is possible to find intermediate and data
values such that the resulting compression function values differ only in
one bit, i.e.

φ(Bj, Hj−1) = ((((Hj−1 ⊕Bj) ∨ E)2 mod N) ∼ Lφ)⊕Hj−1 = Hj−1 ⊕ 2k,
(7)

for certain k, 0 ≤ k < Lφ, or equivalently

(((Hj−1 ⊕Bj) ∨ E)2 mod N) ∼ Lφ = 2k. (8)

Using similar computations we obtain that k must be even, and the fol-
lowing inequality should hold

2Lφ < N < 2Lφ + 2
k
2 . (9)

At the same time
(Hj−1 ⊕Bj) ∨ E = N − 2

k
2 . (10)

From (9) we obtain that bits of N , starting from bit number k/2, are all
equal to zero (with the exception of bit number Lφ + 1), i.e.

• ni = 0 if
⌈
k
8

⌉
≤ i < Lφ/4;

• left-most 4− t bits of ni are equal to zero if i =
⌊
k
8

⌋
and t ≡

(
k
2

)
(mod

4), t 6= 0.

Denote N − 2
k
2 =

Lφ/4−1∑
i=0

wi2
4i. Bits of N − 2

k
2 , starting from bit number

k/2, are all equal to 1, i.e.

• if i ≥
⌈
k
8

⌉
, then wi = 0xf ;

• if i =
⌊
k
8

⌋
, then left-most 4 − t bits of wi are all equal to 1, where

t ≡
(
k
2

)
(mod4), t 6= 0;

• other bits of wi coincide with the corresponding bits of ni.

6

Equation (10) holds if the following conditions on h
(j−1)
i , b

(j)
i , ni fulfil.

h
(j−1)
i ⊕ b(j)

i = ni, for even i < bk/8c ,
h

(j−1)
i = ni ⊕ 0xf, for odd i < bk/8c ,
h

(j−1)
i ⊕ b(j)

i = 0xf, for even dk/8e ≤ i < Lφ/4− 1,

h
(j−1)
i = 0, for odd dk/8e ≤ i < Lφ/4− 1,

h
(j−1)
i , arbitrary for i = Lφ/4− 1,

h
(j−1)
i = wi ⊕ 0xf, for odd i = bk/8c ,
h

(j−1)
i ⊕ b(j)

i = wi, for even i = bk/8c ,
left-most bits of N starting from k

2 are all equal to zero,
nLφ/4 = 1.

(11)

For j = 1 and H0 = 0 fulfilment of the following conditions is enough
for equation (7) to hold.

b
(1)
i = ni, for even i < bk/8c ,
ni = 0xf, for odd i < bk/8c ,
b

(1)
i = 0xf, for even dk/8e ≤ i < Lφ/4− 1,
wi = 0xf, for odd i = bk/8c ,
b

(1)
i = wi, for even i = bk/8c ,

left-most bits of N starting from k
2 are all equal to zero,

nLφ/4 = 1.

(12)

Proceeding from derived results, we will built a collision for MASH-1
with weak modulus. Let k = k1, 0 < k1 < Lφ, 16|k1. Suppose modulus N
is chosen in such a way that 2th, 6th and 7th conditions of (12) are fulfilled
(since k/8 is even number, we do not consider 4th condition). We choose
the first data block B1 of the first message according to the remaining
conditions of (12). After its transformation we get H0 = IV = 0, H1 =
2k1. The second data block B2 of the first message is chosen according to
conditions of (11) when k = k1. It is easy to notice that B2 = B1 ⊕ 2k1.
After the transformation of the second block we get H2 = H1 ⊕ 2k1 =
2k1 ⊕ 2k1 = 0.

Let us choose k = k1 + 2. Since bk1/8c = b(k1 + 2)/8c we get that
2th, 6th and 7th of (12) are fulfilled for previously chosen N . That’s

7

why we can choose the first block B1 of the second message according
to the remaining conditions of (12) when k = k1 + 2 (note that values
wi, i = k1/8 are different for k = k1 and k = k1 + 2). As a result of
the transformation of the first block we get H0 = IV = 0, H1 = 2k1+2.
The second block B2 of the second message is chosen according to (11)
when k = k1 + 2. In this case B2 = B1 ⊕ 2k1+2, and as a result we get
H2 = H1⊕2k1+2 = 2k1+2⊕2k1+2 = 0. For these messages intermediate hash-
values after the first round are different, but intermediate hash-values after
the second round are the same. Since lengths of the messages are the same,
we get the desired collision.

It is obvious, that the described construction can be easily transformed
to obtain multi-collisions.

4 Second class of weak modulus of MASH-1

Now let us consider another approach for collision finding. We will look
for so called single block collision or collision for compression function, i.e.
we will try to find such values Hj−1, B

(1)
j and B

(2)
j , that

φ(B
(1)
j , Hj−1) = φ(B

(2)
j , Hj−1). (13)

From (13) it follows that

(((Hj−1 ⊕B(1)
j) ∨ E)

2
mod N) ∼ Lφ = (((Hj−1 ⊕B(2)

j) ∨ E)
2

mod N) ∼ Lφ,

which deliberately holds if

((Hj−1 ⊕B(1)
j) ∨ E)

2
≡ ((Hj−1 ⊕B(2)

j) ∨ E)
2

mod N.

Since we do not know the factors of N , we can only examine the case

((Hj−1 ⊕B(1)
j) ∨ E) = −((Hj−1 ⊕B(2)

j) ∨ E)(modN),

i.e.
((Hj−1 ⊕B(1)

j) ∨ E) + ((Hj−1 ⊕B(2)
j) ∨ E) = N. (14)

Define A1 = (Hj−1 ⊕ B(1)
j) ∨ E and A2 = (Hj−1 ⊕ B(2)

j) ∨ E. From (14) it
follows that LN = Lφ + 1 and at least 4 left-most bits of N are all equal

8

to 1. Half-bytes of A1 and A2 with odd numbers coincide and are equal to
h

(j−1)
i ⊕ 0xf , i = 1, 3, . . . , with the exception of left-most half-byte, which

is equal to 0xf .
Further we will investigate whether modulus N can be represented as a

sum of A1 and A2. Define Aj =
Lφ/4−1∑
i=0

a
(j)
i 24i, j = 1, 2. We have

N = A1 + A2 =

Lφ/8−1∑
i=0

(a
(1)
2i + a

(2)
2i)28i +

Lφ/8−1∑
i=0

2a
(1)
2i+12

8i+4. (15)

Hence three left-most bits of each half-byte with odd numbers of N are
equal to three right-most bits of corresponding half-byte with odd numbers
of A1 and A2.

Let us consider the five left-most bits of N . It follows from (15), that

they should be equal to the binary representation of a
(1)
0 + a

(2)
0 . On the

other hand a
(1)
0 + a

(2)
0 ≤ 15 + 15 < 31. Hence if all five left-most bits of N

are equal to 1, i.e. N ≡ 31(mod32), then N can not be represented as a
sum A1 +A2. If at least one of five left-most bits is equal to zero, then we
can obtain a

(1)
0 6= a

(2)
0 in such a way, that five left-most bits of N are equal

to a
(1)
0 + a

(2)
0 .

Let us consider the bits of N with numbers starting from 8i to 8i + 4.
These bits are equal to the binary representation if a

(1)
2i + a

(2)
2i + ε, where ε

is a bit of A1 with number 8i− 1. Obviously, for every values of these bits,
it is always possible to obtain such a

(1)
2i , a

(2)
2i , ε, that their sum is equal to

the necessary value.
Hence, if LN = Lφ + 1, 4 left-most bits of N are equal to 1 and N 6=

31(mod 32), then we can always obtain such numbers A1 and A2 (and A1 6=
A2), that N = A1 + A2 and half-bytes of A1 and A2 with even numbers
coincide.

Let N be represented in the mentioned above manner. We chose for
Hj−1 an arbitrary number, that is less then 2Lφ, and whose half-bytes
with odd numbers are inverse of half-bytes with odd numbers of A1 (with

exception of left-most half-byte). Than we can obtain such B
(1)
j and B

(2)
j ,

that Ai = (Hj−1 ⊕ B(i)
j) ∨ E, i = 1, 2. In this case (13) holds and we get a

9

collision for compression function (with chosen value of Hj−1).
Let us consider the case j = 1. This lead us to the following additional

condition: half-bytes of A1 and A2 with odd numbers are equal to 0xf .
This implies that bits of N with numbers 8t1 + t2, t1 = 0, 1, . . ., t2 ∈
{5, 6, 7}, must be equal to 1, and each set of five bits with numbers 8t1, 8t1+
1, . . . , 8t1 + 4, t1 = 1, 2, . . . must contain at least one bit equal to 1. In this
case it is possible to represent N as a sum A1 + A2. Now we are left to
take A1 and A2 as the values for B

(1)
1 and B

(2)
1 , and get a collision.

5 Conclusion

We have demonstrated the existence of weak moduli which lead to the total
break of collision resistance of MASH-1 hash function. Our attacks do not
use any knowledge of secret factors of the modulus. Users of MASH-1 hash
function can be enforced to use weak modulus by malicious third party who
is capable of their generation.

References

[1] ISO/IEC 10118, Information technology — Security techniques —
Hash-functions, Part 1: General, 2000, Part 2: Hash-functions us-
ing an n-bit block cipher algorithm, 2000. Part 3: Dedicated hash-
functions, 2003. Part 4: Hash-functions using modular arithmetic,
1998.

10

