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Abstract. White-box cryptography has attracted a growing interest from researchers in the last
decade. Several white-box implementations of standard block-ciphers (DES, AES) have been proposed
but they have all been broken. On the other hand, neither evidence of existence nor proofs of impos-
sibility have been provided for this particular setting. This might be in part because it is still quite
unclear what white-box cryptography really aims to achieve and which security properties are expected
from white-box programs in applications. This paper builds a first step towards a practical answer to
this question by translating folklore intuitions behind white-box cryptography into concrete security
notions. Specifically, we introduce the notion of white-box compiler that turns a symmetric encryption
scheme into randomized white-box programs, and we capture several desired security properties such
as one-wayness, incompressibility and traceability for white-box programs. We also give concrete exam-
ples of white-box compilers that already achieve some of these notions. Overall, our results open new
perspectives on the design of white-box programs that securely implement symmetric encryption.

Keywords: White-Box Cryptography, Security Notions, Attack Models, Security Games, Traitor trac-
ing.

1 Introduction

Traditionally, to prove the security of a cryptosystem, cryptographers consider attack sce-
narios where an adversary is only given a black-box access to the cryptographic system,
namely to the inputs and outputs of its underlying algorithms. Security notions are built on
the standard paradigm that the algorithms are known and that computing platforms can be
trusted to effectively protect the secrecy of the private key.

However attacks on implementations of cryptographic primitives have become a major
threat due to side-channel information leakage (see for example [17,27]) such as execution
time, power consumption or electromagnetic emanations. More generally, the increasing pen-
etration of cryptographic applications onto untrusted platform (the end points being possibly
controlled by a malicious party) makes the black-box model too restrictive to guaranty the
security of programs implementing cryptographic primitives.

White-box cryptography was introduced in 2002 by Chow, Eisen, Johnson and van
Oorschot [10,11] as the ultimate, worst-case attack model. This model considers an attacker
far more powerful than in the classical black-box model (and thus more representative of
real-world attackers); namely the attacker is given full knowledge and full control on both the
algorithm and its execution environment. However, even such powerful capabilities should
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not allow her to e.g. extract the embedded key3. White-box cryptography can hence be seen
as a restriction of general obfuscation where the function to protect belongs to some narrower
class of cryptographic functions indexed by a secret key. From that angle, the ultimate goal
of a white-box implementation is to leak nothing more than what a black-box access to the
function would reveal. An implementation achieving this strong property would be as secure
as in the black-box model, in particular it would resist all existing and future side-channel
and fault-based attacks. Although we know that general obfuscation of any function is im-
possible to achieve [1], there is no known impossibility result for white-box cryptography and
positive examples have even been discovered [14,7]. On the other hand, the work of Chow
et al. gave rise to several proposals for white-box implementations of symmetric ciphers,
specifically DES [10,20,32] and AES [11,6,33,18], even though all these proposals have been
broken [15,3,12,31,21,23,22,19].

Our belief is that the dearth of promising white-box implementations is also a consequence
of the absence of well-understood security goals to achieve. A first step towards a theoretical
model was proposed by Saxena, Wyseur and Preneel [28], and subsequently extended by
Wyseur in his PhD thesis [30]. These results show how to translate any security notion in
the black-box model into a security notion in the white-box model. They introduce the white-
box property for an obfuscator as the ability to turn a program (modeled as a polynomial
Turing machine) which is secure with respect to some black-box notion into a program secure
with respect to the corresponding white-box notion. The authors then give an example of
obfuscator for a symmetric encryption scheme achieving the white-box equivalent of semantic
security. In other words, the symmetric encryption scheme is turned into a secure asymmetric
encryption scheme. While these advances describe a generic model to translate a given notion
from the black-box to the white-box setting, our aim in this paper is to define explicit security
notions that white-box cryptography should realize in practice. As a matter of fact, some of
our security notions are not black-box notions that one would wish to preserve in the white-
box setting, but arise from new features potentially introduced by the white-box compilation.
Note that although we use a different formalism and pursue different goals, our work and
those in [28,30] are not in contradiction but rather co-exist in a wider framework.

Our Contributions. We formalize the notion of white-box compilers for a symmetric en-
cryption scheme and introduce several security notions for such compilers. As traditionally
done in provable security (e.g. [2]), we consider separately various adversarial goals (e.g.
decrypt some ciphertext) and attack models (e.g. chosen ciphertext attack), and then obtain
distinct security definitions by pairing a particular goal with a particular attack model. We
consider four different attack models in the white-box context: the chosen plaintext attack,
the chosen ciphertext attack, the recompilation attack and the chosen ciphertext and recom-
pilation attack. We formalize the main security objective of white-box cryptography which is
to protect the secret key as a notion of unbreakability. We show that additional security no-
tions should be considered in applications and translate folklore intuitions behind white-box

3 Quoting [10], the “choice of the implementation is the sole remaining line of defense and is precisely what is
pursued in white-box cryptography”.
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cryptography into concrete security notions; namely the one-wayness, incompressibility and
traceability of white-box programs. For the first two notions, we show an example of a simple
symmetric encryption scheme over an RSA group for which an efficient white-box compiler
exists that provably achieves both notions. We finally show that white-box programs are
efficiently traceable by simple means assuming that functional perturbations can be hidden
in them. Overall, our positive results shed more light on the different aspects of white-box
security and provide concrete constructions that achieve them in a provable fashion.

2 Preliminaries

Symmetric Encryption. A symmetric encryption scheme is a tuple E = (K,M,C, K,E,D)
where

– K is the key space,

– M is the plaintext (or message) space,

– C is the ciphertext space,

– K is a probabilistic algorithm that returns a key k ∈ K = range (K()),

– E is a deterministic encryption function mapping elements of K×M to elements of C,

– D is a deterministic decryption function mapping elements of K× C to elements of M.

We require that for any k ∈ K and any m ∈ M, D(k,E(k,m)) = m. Most typically, E
refers to a block-cipher in which case all sets are made of binary strings of determined length
and C = M.

Programs. A program is a word in the language-theoretic sense and is interpreted in the
explicit context of a programming model and an execution model, the details of which we
want to keep as abstracted away as possible. Programs differ from remote oracles in the
sense that their code can be executed locally, read, copied and modified at will. Successive
executions are inherently stateless and all the “system calls” that a program makes to ex-
ternal resources such as a random source or a system clock can be captured and responded
arbitrarily. Execution can be interrupted at any moment and all the internal variables iden-
tified by the program’s instructions can be read and modified arbitrarily by the party that
executes the program.

For some function f mapping some set A to some set B, we denote by prog (f) the set
of all programs implementing f . A program P ∈ prog (f) is said to be fully functional with
respect to f when for any a ∈ A, P (a) returns f(a) with probability 1. P is said to be
δ-functional (with respect to f) when P is at distance at most δ ∈ [0, 1] from f , i.e.

∆(P, f)
def
= Pr[a

$← A ; b← P (a) : b 6= f(a)] 6 δ .

The set of δ-functional programs implementing f is noted δ-prog (f). Obviously 0-prog (f) =
prog (f).
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Random Experiments. A random experiment is an interactive protocol played by a group
of probabilistic algorithms interacting together. Random experiments are also referred to as
(probabilistic) games and are expressed as just a list of actions involving the players. We
denote by

Pr [action1 ; action2 ; . . . ; actionn : event]

the probability that event occurs after executing action1, . . . , actionn in sequential order, the
probability being taken over the probability spaces of all the random variables involved in
these actions. One often refers to those as the random coins of the game (action1, . . . , actionn).

We denote by a
$← S the action of picking a independently and uniformly at random

from some set S, and by a← R(· · · ) the action of running algorithm R on some inputs and
naming a the value returned by R.

Other Notations. If A is some set, |A| denotes its cardinality. If A is some generator i.e.
a random source with some prescribed output range A, H(A) denotes the output entropy of
A as a source. Abusing notations, we may also denote it by H(a) for a ← A(· · · ). Finally,
when we write O(·) = ε, we mean that O is the oracle which, on any input, returns the
empty string ε.

3 White-Box Compilers

In this paper, we consider that a white-box implementation of the scheme E is a program
produced by a publicly known compiling function CE which takes as arguments a key k ∈ K
and possibly a diversifying nonce r ∈ R drawn from some randomness space R. We will
denote the compiled program by [Er

k] (or [Ek] when the random nonce r is implicit or does
not exist), namely [Er

k] = CE(k, r).
A compiler CE for E is sound when for any (k, r) ∈ K× R, [Er

k] exactly implements the
function E(k, ·) (i.e. it is fully functional). Therefore [Er

k] accepts as input any m ∈ M and
always returns the correct encryption c = E(k,m). At this stage, we only care about sound
compilers.

Remark 1. In the above definition, we consider white-box compilers for the encryption func-
tion. However, since we focus on deterministic encryption – E(k, ·) and D(k, ·) being inverse
of one another, we can swap roles without loss of generality and get compilers for the de-
cryption procedure. We will precisely do this in Section 7.

Note again that [Ek] differs in nature from E(k, ·). E(k, ·) is a mapping from M to C,
whereas [Ek] is a word in some programming language (the details of which we want to keep
away from) and has to fulfill some semantic consistency rules. Viewed as a binary string, it
has a certain bitsize size ([Ek]) ∈ N. Even though E(k, ·) is deterministic, nothing forbids
[Ek] to collect extra bits from a random tape and behave probabilistically. For an input
m ∈ M and random tape ρ ∈ {0, 1}∗, [Ek](m, ρ) takes a certain time time ([Ek](m, ρ)) ∈ N
to complete execution.
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3.1 Attack Models

The first step in specifying new security notions for white-box cryptography is to classify
the threats. This section introduces four distinct attack models for an adversary A in the
white-box model: the chosen plaintext attack (CPA), the chosen ciphertext attack (CCA), the
recompilation attack (RCA) and the chosen ciphertext and recompilation attack (CCA+RCA).
In all of these, we assume that the compiler CE is public, i.e. at any point in time, the
adversary A can select any key k ∈ K and nonce r ∈ R of her choosing and generate a
white-box implementation [Er

k] = CE(k, r) by herself.

In a chosen plaintext attack (CPA) the adversary can encrypt plaintexts of her choice
under E(k, ·). Indeed, even though the encryption scheme E is a symmetric primitive, the
attacks are defined with respect to the compiler that generates white-box programs imple-
menting E(k, ·): given any one of these programs, the adversary can always evaluate it on
arbitrary plaintexts at will. So clearly, chosen plaintexts attacks cannot be avoided, very
much like in the public-key encryption setting.

In a chosen ciphertext attack (CCA), in addition to the challenge white-box implemen-
tation [Er

k], we give A access to a decryption oracle D(k, ·), i.e. she can send decryption
queries c1, . . . , cq ∈ C adaptively to the oracle and be returned the corresponding plaintexts
m1, . . . ,mq ∈ M where mi = D(k, ci). Notice that this attack includes the CPA attack when
q = 0.

In a recompilation attack (RCA), in addition to the challenge white-box implementation
[Er

k], we give A access to a recompiling oracle CE(k,R) that generates other programs [Er′

k ]

with key k for adversarially unknown random nonces r′
$← R. In other words, we give A the

ability to observe other programs compiled with the same key and different nonces.

In a chosen ciphertext and recompilation attack (CCA+RCA) we give A (the challenge
white-box implementation [Er

k] and) simultaneous access to a decryption oracle D(k, ·) and
a recompiling oracle CE(k,R), both parametrized with the same key k.

Remark 2. We emphasize that the recompilation attack model is not artificial when dealing
with white-box cryptography. Indeed, it seems reasonable to assume that user-related values
can be embedded in the random nonce r ∈ R used to compile a (user-specific) white-box
implementation. Thus a coalition of malicious users can be modeled as a single adversary
with (possibly limited) access to a recompiling oracle producing white-box implementations
under fresh random nonces r′ ∈ R.

Remark 3. Notice that the recompilation attack may come in other flavors: the random
nonce r′ ∈ R could be adversarially known or even chosen. Typically, in a chosen recompila-
tion attack (CRCA), A is given access to a recompiling oracle CE(k, ·) that generates other
programs [Er′

k ] with key k for nonces r′ ∈ R of her choice. In the following, we will not focus
on this (stronger) attack model, as it seems much harder to achieve: having access to the
randomness of the compiler could prove fatal for the security of the compiler. We mention,
however, that it would be of great interest to design a compiler that achieves resistance even
in this extreme adversarial model.
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3.2 The Prime Goal: Unbreakability

Chow et al. stated in [10,11] that the first security objective of white-box cryptography is,
given a program [Ek], to preserve the privacy of the key k embedded in the program (see
also [16, Q1] and [30, Definition 2]). We define the following game, illustrated on Figure 1,
to capture that intuition:

1. randomly generate a key k ← K() and a nonce r
$← R,

2. the adversary A is run on input [Er
k] = CE(k, r),

3. A returns a guess k̂ ∈ K,

4. A succeeds if k̂ = k.

Notice that at Step 2, the adversary may have access to the decryption oracle D(k, ·) or to
the recompiling oracle CE(k,R), or both, depending on the attack model.

A

k ← K(), r
$← R

[Er
k] = CE(k, r)

[Er
k]

k̂
k̂

?
= k

Challenger

D(k, ·)

CE(k,R)

UBK-CCA

UBK-RCA

c′

m′

[Er′
k ]

Fig. 1. Illustration of the security game UBK-ATK

Let us define more concisely and precisely the notion of unbreakability with respect to
the attack model ATK (CPA, CCA, RCA or CCA+RCA).

Definition 1 (Unbreakability). Let E be a symmetric encryption scheme as above, CE
a white-box compiler for E and let A be an adversary. For ATK ∈ {CPA,CCA,RCA,CCA +
RCA}, we define

SuccUBK-ATKA,CE
def
= Pr

[
k ← K() ; r

$← R ; [Er
k] = CE(k, r) ; k̂ ← AO([Er

k]) : k̂ = k
]

where
O(·) = ε if ATK = CPA
O(·) = D(k, ·) if ATK = CCA
O(·) = CE(k,R) if ATK = RCA
O(·) = {D(k, ·),CE(k,R)} if ATK = CCA + RCA .

We say that CE is (τ, ε)-secure in the sense of UBK-ATK if for any adversary A running in
time at most τ , SuccUBK-ATKA,CE 6 ε.
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Note that in our setting, a total break requires the adversary to output the whole key k
embedded into [Er

k]. Basing UBK on the semantic security of k makes no sense here since it

is straightforward to ascertain, for some guess k̂, that k̂ = k by just checking whether the
value returned by [Er

k](m) is equal to E(k̂,m) for sufficiently many plaintext(s) m ∈ M. In
other words, the distributions {k, [Er

k]}k∈K,r∈R and {k′, [Er
k]}(k,k′)∈K2,r∈R are computationally

distinguishable. As a result, one cannot prevent some information leakage about k from [Er
k],

whatever the specification of the compiler CE .

Remark 4. Although not required in the above definition, for a white-box compiler to be
cryptographically sound, one would require that there exist some security parameter λ such
that ε/τ be exponentially small in λ and size ([Ek]) and time ([Ek](·)) be polynomial in λ. Oth-
erwise said, one aims to get a negligible ε/τ while keeping fair size ([Ek]) and time ([Ek](·)).

3.3 Security Notions Really Needed in Applications

When satisfied, unbreakability ensures that an adversary cannot extract the secret key of a
randomly generated white-box implementation. Therefore any party should have to execute
the program rather than simulating it with the secret key. While this property is the very least
that can be expected from white-box cryptography, it is rather useless on its own. Indeed,
knowing the white-box program amounts to knowing the key in some sense since it allows one
to process the encryption without restriction. As discussed in [30, Sect. 3.1.3], an attacker
only needs to isolate the cryptographic code in the implementation. This is a common threat
in DRM applications, which is known as code lifting. Although some countermeasures can
make code lifting a tedious task4 it is reasonable to assume that sooner or later a motivated
attacker would eventually recover the cryptographic code. That is why, in order to make the
white-box compilation useful, the availability of the white-box program should restrict the
adversary capabilities compared to the availability of the secret key.

One-Wayness. A natural restriction is that although the white-box implementation allows
one to encrypt at will, it should not enable decryption. In other words, it should be diffi-
cult to invert the program computations. In that case, the program is said to be one-way,
to keep consistency with the notion of one-wayness (for a function or a cryptosystem) tra-
ditionally used in cryptography. As already noted in [16], a white-box compiler achieving
one-wayness is of great interest as it turns a symmetric encryption scheme into a public-key
encryption scheme. This is also one of the many motivations to design methods for general
obfuscation [1,13].

Incompressibility of Programs. Another argument often heard in favor of white-box
cryptography is that a white-box program is less convenient to store and exchange than a

4 A work around to circumvent code lifting was proposed in [10,11] and consists in working with encoded variants
(see also discussion in [30, Sect. 3.2.3]). Namely, instead of implementing E(k, ·), one produces a white-box im-
plementation that is functionally equivalent to the encoded primitive E′(k, ·) = G ◦E(k, ·) ◦ F−1, where F and G
are randomly selected bijections. The annihilating encodings F and G−1 are then embedded in other parts of the
application such that they are hard to isolate and identify.
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mere secret key due to its bigger size. As formulated in [30, Sect. 3.1.3], white-box cryptog-
raphy allows to “hide a key in an even bigger key”. For instance, Chow et al. implementation
of AES [11] makes use of 800 KB of look-up tables, which represents a significant overhead
compared to a 128-bit key. Suppose this implementation was unbreakable in the sense of
Definition 1 (which we know to be false [3]), the question that would arise would be: what
is the computationally achievable minimum size of a program functionally equivalent to this
implementation? When a program is hard to compress beyond a certain prescribed size, we
shall say that this program is incompressible. Section 6 shows an example of computationally
incompressible programs for symmetric encryption.

Traceability of Programs. It is often heard that white-box compilation can provide trace-
ability (see for instance [30, Sect. 5.5.1]). Specifically, white-box compilation should enable
one to derive several functionally equivalent versions of the same encryption (or decryption)
program. A typical use case for such a system is the distribution of protected digital content
where every legitimate user gets a different version of some decryption software. If a malicious
user shares its own program (e.g. over the Internet), then one can trace the so-called traitor
by identifying its unique copy of the program. However, in a white-box context, a user can
easily transform its version of the program while keeping the same functionality. Therefore
to be effective, the tracing should be robust to such transformations, even in the case where
several malicious users collude to produce an untraceable software. We show in Section 7
how to achieve such a robust tracing from a compiler that can hide functional perturbations
in a white-box program. Accordingly, we define new security notions for such a white-box
compiler. Combined with our tracing scheme, a compiler achieving these security notions is
shown to provide traceable white-box programs.

4 One-Wayness

An adversarial goal of interest in white-box cryptography consists, given a white-box imple-
mentation [Er

k], in recovering the plaintext of a given ciphertext with respect to the embedded
key k. This security notion is even essential when white-box implementations are deployed
as an asymmetric primitive [16, Q4]. We define the following security game, illustrated on
Figure 2, to capture that intuition:

1. randomly select a key k ← K() and a nonce r
$← R,

2. generate the white box program [Er
k] = CE(k, r),

3. randomly select a plaintext m
$← M

4. compute its encryption c = E(k,m),
5. the adversary A is run on inputs [Er

k] and c,
6. A returns a guess m̂,
7. A succeeds if m̂ = m.

Notice that at Step 5, the adversary may have access to the decryption oracle D(k, ·) or
to the recompiling oracle CE(k,R) (or both) depending on the attack model. When A is
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A

k ← K(), r
$← R

[Er
k] = CE(k, r)

m
$← M

c = E(k,m)
[Er

k], c

m̂
m̂

?
= m

Challenger

D(k, ·)

CE(k,R)

OW-CCA

OW-RCA

c′

m′

[Er′
k ]

Fig. 2. Illustration of the security game OW-ATK

given access to the decryption oracle, the challenge ciphertext c itself shall be rejected by
the oracle.

Let us define more precisely the notion of one-wayness with respect to the attack model
ATK.

Definition 2 (One-Wayness). Let E be a symmetric encryption scheme as above, CE a
white-box compiler for E and A an adversary. For ATK ∈ {CPA,CCA, RCA,CCA+RCA}, let

SuccOW-ATK
A,CE

def
= Pr

[
k ← K() ; r

$← R ; [Er
k] = CE(k, r) ;

m
$← M ; c = E(k,m) ; m̂← AO([Er

k], c)
: m̂ = m

]
where

O(·) = ε if ATK = CPA
O(·) = D(k, ·) if ATK = CCA
O(·) = CE(k,R) if ATK = RCA
O(·) = {D(k, ·),CE(k,R)} if ATK = CCA + RCA .

We say that CE is (τ, ε)-secure in the sense of OW-ATK if A running in time at most τ
implies SuccOW-ATK

A,CE 6 ε.

Similarly to the unbreakability notion, it is obvious that any incorrect guess m̂ on m
can be rejected by comparing the value returned by [Er

k](m̂) with c. In other words, the two
distributions

{[Er
k], E(k,m),m}k∈K,r∈R,m∈M and {[Er

k], E(k,m),m′}k∈K,r∈R,m,m′∈M
are easily distinguishable. Moreover, there is an easy reduction from OW-ATK to UBK-ATK.
Clearly, extracting k from [Ek] enables one to use it and the challenge as inputs to the
(publicly available) decryption function D(·, ·) and thus to recover m.

5 Incompressibility of White-Box Programs

In this section, we formalize the notion of incompressibility for a white-box compiler. What
we mean by incompressibility here is the hardness, given a (large) compiled program [Ek],
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of coming up with a significantly smaller program functionally close to E(k, ·). A typical
example is when a content provider distributes a large encryption program (e.g. 100 GB or
more) and wants to make sure that no smaller yet equivalent program can be redistributed
by subscribers to illegitimate third parties. The content provider cannot prevent the original
program from being shared e.g. over the Internet; however, if compiled programs are provably
incompressible then redistribution may be somewhat discouraged by the size of transmissions.

We define (λ, δ)-INC as the adversarial goal that consists, given a compiled program [Ek]
with size ([Ek])� λ, in building a smaller program P that remains satisfactorily functional,
i.e. such that

size (P ) < λ and P ∈ δ-prog (E(k, ·)) .
This is formalized by the following game, also illustrated on Figure 3:

1. randomly select k ← K() and r
$← R,

2. compile [Er
k] = CE(k, r),

3. run A on input [Er
k],

4. A returns some program P ,
5. A succeeds if ∆(P,E(k, ·)) 6 δ and size (P ) < λ.

A

Challenger

k ← K(), r
$← R

[Er
k] = CE(k, r)

[Er
k]

P
∆(P,E(k, ·))

?
6 δ and size (P )

?
< λ

D(k, ·)

CE(k,R)

INC-CCA

INC-RCA

c′

m′

[Er′
k ]

Fig. 3. Illustration of the security game (λ, δ)-INC

Definition 3 ((λ, δ)-Incompressibility). Let E be a symmetric encryption scheme, CE a
white-box compiler for E and A an adversary. For ATK ∈ {CPA, CCA,RCA,CCA+RCA}, let

Adv
(λ, δ)-INC-ATK
A,CE

def
= Pr

k ← K() ; r
$← R ;

[Er
k] = CE(k, r) ;
P ← AO([Er

k])

: (∆(P,E(k, ·) 6 δ) ∧ (size (P ) < λ)


where

O(·) = ε if ATK = CPA
O(·) = D(k, ·) if ATK = CCA
O(·) = CE(k,R) if ATK = RCA
O(·) = {D(k, ·),CE(k,R)} if ATK = CCA + RCA .

We say that CE is (τ, ε)-secure in the sense of (λ, δ)-INC-ATK if having A running in time

at most τ implies that Adv
(λ, δ)-INC-ATK
A,CE 6 ε.
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Notice that for some values of λ and δ, the (λ, δ)-incompressibility may be trivially broken.
For example, the problem is trivial for δ = 1 as the user can always construct any program
smaller than λ bits with outputs unrelated to E(k, ·). Even though the definition allows any
δ ∈ [0, 1], the notion makes more sense (and surely is harder to break) when δ is taken small
enough. In that case, the adversary has to output a program which correctly encrypts nearly
all plaintexts (or at least a significant fraction).

It seems natural to hope that a reduction exists from INC-ATK to UBK-ATK: intuitively,
extracting k from [Ek] enables one to build a small program that implements E(k, ·). Let
λ(k) be the size of that program; it is easily seen that λ(k) is lower-bounded by

λ0 = H(k) + size (PE)

where H(k) is the average number of bits needed to represent the key k and PE the smallest
known program that implements the generic encryption function E(·, ·) that takes k,m as
inputs and returns E(k,m). When λ0 6 λ, a total break (i.e. recovering the key k) will allow
to break (λ, 0)-incompressibility by outputting a program P composed of PE and a string
representing k, which will be of size at most λ0 (6 λ).

On the other hand, denoting

λ+ = sup
k∈K,r∈R

size ([Er
k]) and λ− = inf

k∈K,r∈R
size ([Er

k]) ,

we also see that when λ > λ+, the challenge program [Er
k] given to A already satisfies

the conditions of a satisfactorily compressed program and A may then return P = [Er
k] as a

solution. (λ, δ)-INC is therefore trivial to break in that case. However, (λ, δ)-incompressibility
for λ 6 λ− may not be trivial to break. To conclude, the (λ, δ)-incompressibility notion makes
sense in practice for parameters λ ∈ (λ0, λ

−) and δ close to 0.

6 A Provably One-Way and Incompressible White-Box Compiler

In this section, we give an example of a symmetric encryption scheme for which there exists
a efficient one-way and incompressible white-box compiler. This example is a symmetric-key
variant of the RSA cryptosystem [26]. The one-wayness and incompressibility properties of
the compiler are provably achieved based on standard hardness assumptions related to the
integer factoring problem.

One-way Compilers from Public-Key Encryption. It is worthwhile noticing that any
one-way public-key encryption scheme straightforwardly gives rise to a symmetric encryption
scheme for which a one-way compiler exists. The symmetric key is defined as the secret key
of the asymmetric encryption scheme and encryption is defined as the function deriving
the public key from the secret key composed with the encryption procedure. The white-
box compiler then simply produces a program evaluating the encryption algorithm with the
public key embedded in it. The one-wayness of the compiler comes directly from the one-
wayness of the asymmetric scheme. Such an example of a one-way compiler is given in [28,
Theorem 3],[30, Sect. 4.8.2].
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We present hereafter another compiler obtained from the RSA cryptosystem and whose
one-wayness straightforwardly holds by construction. The main interest of our example is to
further satisfy (λ, 0)-incompressibility for any arbitrary λ. We first recall some background
on RSA groups.

6.1 RSA Groups

We consider a (multiplicative) group G of unknown order ω, also called an RSA group. A
typical construction for G is to take the group of invertible integers modulo a composite
number or a carefully chosen elliptic curve over a ring. Practical RSA groups are known to
be efficiently samplable in the sense that there exists a group generation algorithm G which,
given a security parameter n ∈ N, outputs the public description desc (G) of a random group
G together with its order ω. Efficient means that the random selection

(desc (G) , ω)← G(1n)

takes time polynomial in n. The parameter n determine the size of the returned order (i.e.
|ω| = n) and hence tunes the hardness of breaking the group. For security reasons, we require
the returned order ω to have a low smoothness. More specifically, we require that it satisfy
ϕ(ω) > 1

3
ω, where ϕ denotes the Euler’s totient function.5 The group descriptor desc (G)

intends to contain all the necessary parameters for performing group operations. Obviously
ω is excluded from the group description.

In the following, we shall make the usual hardness assumptions for RSA group generators.
Namely, we assume that the groups sampled by G have the following properties (formal
definitions for these security notions are provided in Appendix A):

Unbreakability – UBK[G]:
It is hard to compute the secret order ω of G from desc (G).

Hardness of Extracting Orders – ORD[G]:

It is hard to compute the order of a random group element x
$← G (or a multiple thereof)

from desc (G).

Hardness of Extracting Roots – RSA[G]:
For a random integer e ∈ [0, ω) such that gcd(e, ω) = 1, it is hard to compute the e-th
root of a random group element x ∈ G from e and desc (G).

Intuition tells that breaking a random group may be significantly easier when one can
make calls to an oracle performing an operation that seems to require the knowledge of the
hidden group order ω such that the extraction of e-th roots or computing the order of group
elements. It appears however that these two oracles are not equivalently powerful since for
practical RSA group generators, well-known results state that (see Appendix A):

Fact 1. Extracting orders in a random group is equivalent to breaking that group, i.e.
ORD[G] is hard iff UBK[G] is hard.

5 In practice, it is well known how to generate such groups. For instance, the multiplicative group Z∗pq with p and q
being safe primes has order ω = (p− 1)(q − 1) with ϕ(ω) ≈ 1

2
ω.
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Fact 2. Extracting roots in a random group does not seem to make that group any easier
to break.

6.2 The White-Box Compiler

We consider the symmetric encryption scheme E = (K,M,C, K,E,D) where:

1. E makes use of a security parameter n ∈ N,

2. K() randomly selects a group (desc (G) , ω) ← G(1n) and a public exponent e ∈ [0, ω)
such that gcd(e, ω) = 1, and returns k = (desc (G) , ω, e),

3. plaintexts and ciphertexts are group elements i.e. M = C = G,

4. given a key k = (desc (G) , ω, e) and a plaintext m ∈ G, E(k,m) computes me mod ω in the
group and returns that value,

5. given a key k = (desc (G) , ω, e) and a ciphertext c ∈ G, D(k, c) computes c
1
e
mod ω in the

group and returns that value.

It is clear that D(k,E(k,m)) = m for any k ∈ K and m ∈ M. Our white-box compiler CE is
then defined as follows:

1. CE makes use of an additional security parameter h ∈ N,

2. the randomness space R is the integer set [0, 2h/ω),

3. we define the blinded exponent f with respect to the public exponent e and a random
nonce r ∈ R as the integer f = e+ r · ω,

4. given a key k = (desc (G) , ω, e) ∈ K, and a random nonce r ∈ R, our white-box compiler
CE generates a program [Ek] which simply embeds desc (G) and f and computes mf for
any input m ∈ G.

According to the above definition, we clearly have that the white-box program [Ek] is a
functional program with respect to the encryption function E(k, ·). Moreover, we state:

Theorem 1. The white-box compiler CE is UBK-CPA secure under the assumption that
UBK[G] is hard, and OW-CPA secure under the assumption that RSA[G] is hard.

Proof. Given desc (G), the reduction selects a random integer f ∈ [0, 2h) and generates the
white-box program P computing mf for any m ∈ G. Assuming that f is co-prime to ω (which

occurs with probability ϕ(ω)
ω

> 1
3
), P is identical to the white-box program [Ek] generated

by CE on input r = bf/ωc and k = (desc (G) , ω, e) with e = f mod ω. Any adversary able
to extract k = (desc (G) , ω, e) from [Ek] then recovers the order ω of G, and can thus be
used to solve UBK[G]. Therefore CE is unbreakable if UBK[G] is hard. Similarly, it is easily
seen that any adversary able to break the one-wayness game i.e. given [Ek] and a challenge
c, can recover m such that c = me ∈ G, can be used to solve RSA[G] in a straightforward
fashion. ut
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6.3 Proving Incompressibility under Chosen Plaintext Attacks

We now show that CE is (λ, 0)-INC-CPA secure under UBK[G] as long as the security param-
eter h is slightly greater than λ. We actually show a slightly weaker result: our reduction
assumes that the program P output by the adversary is algebraic. An algebraic program P
(see [5,25]) with respect to group G has the property that each and every group element
y ∈ G output by P is computed as a linear combination of all the group elements x1, . . . , xt
that were given to P as input in the same execution. Relying on the definition of [25], P
must then admit an efficient extractor Extract (running in time τEx) which, given the code
of P as well as all its inputs and random tape for some execution, returns the coefficients αi
such that y = xα1

1 · · ·xαtt .

Theorem 2. For every h > λ + log2(3), the compiler CE is (τA, εA)-secure in the sense of
(λ, 0)-INC-CPA under the assumption that ORD[G] is (τ, ε)-hard, with

τA = τ − τEx and εA <
3

1− 3 · 2λ−h ε .

Proof. We build a reduction R which, given an adversary A running in time τA with a
non-negligible success

εA = Succ
(λ, 0)-INC-CPA
A,CE

breaks the security game ORD[G] in time τ = τA+τEx with probability ε > 1
3
(1−3 ·2λ−h)εA.

From (desc (G) , ω)← G(1n) and m∗
$← G, R is given desc (G), m∗ and returns ord (m∗).

The reduction starts by simulating the random selection k ← K() ; r
$← R ; [Ek] = CE(k, r).

This is simply done by randomly choosing an integer f ∈ [0, 2h) and building the white-box
program P that computes mf for any m ∈ G. If f is co-prime to ω (which occurs with

probability ϕ(ω)
ω

> 1
3
), then P is identical to the white-box program [Ek] generated by CE on

input r = bf/ωc and k = (desc (G) , ω, e) with e = f mod ω. Otherwise, if f is not co-prime
to ω, then the reduction fails.

NowR runsA([Ek]) to get some new program P which must satisfy the success conditions
of the (λ, 0)-INC-CPA game with probability εA, in which case P is of size size (P ) < λ and
for any m ∈ G, P (m) = E(k,m) = mf . By assumption P is algebraic; therefore running
Extract on P , m∗ and any random tape ρ ∈ {0, 1}∗ yields some α such that P (m∗, ρ) outputs
mα
∗ . Since for every m ∈ G, we have P (m) = mf , we deduce mα

∗ = mf
∗ , and hence f − α is

a multiple of ord (m∗). Then R simply returns f − α. The probability ε that R succeeds is
hence the joint probability that f is co-prime to ω, that A succeeds and that α is different
from f , that is:

ε =
1

3
· εA · Pr[α 6= f | gcd(f, ω) = 1 ∧ A succeeds] .

To complete the proof, we show hereafter that for any given random tape value ρ0, the
recovered α is different from f with probability greater than (1 − 3 · 2λ−h). Let us denote
by F ⊆ [0, 2h) the set of integers lower than 2h and co-prime to ω. By definition we have
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|F| > 2h/3. Let us further denote by B ⊆ F, the set of integers β ∈ F for which there exists
a program P with size (P ) < λ such that Extract(P,m∗, ρ) = β. Let us eventually denote:

Pβ = arg min
P

Extract(P,m∗,ρ)=β

size (P ) and sβ = size (Pβ) .

The program Pβ can be seen as a binary word of length sβ coding the integer β (with efficient
decoding function Extract(·,m∗, ρ)). Therefore, Shannon’s source coding Theorem [29] states
that the expected value of sβ is at least the entropy of β. Applying this result to the uniform
distribution over B, we deduce

1

|B|
∑
β∈B

sβ > log(|B|) .

Since by assumption sβ < λ for any β ∈ B, the above inequality implies |B| < 2λ. We deduce
that the probability that f lies in B satisfies Pr[f ∈ B] = |B|/|F| < 3 · 2λ−h. Now since the
attacker succeeds, we must have size (P ) < λ implying α ∈ B. Then the probability to have
α 6= f is at least the probability to have f /∈ B which is greater than (1− 3 · 2λ−h). ut

Remark 5. The white-box compiler can also be shown to be (λ, 0)-INC-CCA secure under
the (gap) assumption that ORD[G] remains hard when RSA[G] is easy. The reduction would
work similarly but with an oracle solving RSA[G] that it would use to simulate decryption
queries.

7 Traceability of White-Box Programs

One of the main applications of white-box cryptography is the secure distribution of valuable
content through applications enforcing digital rights management (DRM). Namely, some
digital content is distributed in encrypted form to legitimate users. A service user may then
recover the content in clear using her own private white-box-secure decryption software.

However, by sharing their decryption software, users may collude and try to produce a pi-
rate decryption software i.e. a non-registered utility capable of decrypting premium content.
Traitor tracing schemes [8,9,24,4] were specifically designed to fight copyright infringement,
by enabling a designated authority to recover the identity of at least one of the traitors
in the malicious coalition who constructed the rogue decryption software. In this section,
we show how to apply some of these techniques to ensure the full traceability of programs
assuming that slight perturbations of the programs functionality by the white-box compiler
can remain hidden to an adversary.

As opposed to previous sections, we interchange the roles of encryption and decryption,
considering that for our purpose, user programs would implement decryption rather than
encryption.
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7.1 Programs with Hidden Perturbations

A program can be made traceable by unnoticeably modifying its functionality. The basic idea
is to perturbate the program such that it returns an incorrect output for a small set of un-
known inputs (which remains a negligible fraction of the input domain). The set of so-called
tracing inputs varies according to the identity of end users so that running the decryption
program over inputs from different sets and checking the returned outputs efficiently reveals
the identity of a traitor. We consider tracing schemes that follow this approach to make
programs traceable in the presence of pirate coalitions. Of course, one must consider collu-
sions of several users aiming to produce an untraceable program from their own legitimate
programs. A tracing scheme that resists such collusions is said to be collusion-resistant.

In the context of deterministic symmetric encryption schemes, one can generically de-
scribe functional perturbations with the following formalism. Consider a symmetric encryp-
tion scheme E = (K,M,C, K,E,D) under the definition of Section 2. A white-box compiler
CE with respect to E that supports perturbation takes as additional input an ordered list of
dysfunctional ciphertexts c = 〈c1, . . . , cu〉 ∈ Cu and returns a program

[Dr
k,c] = CE(k, r; c)

such that [Dr
k,c](c) = D(k, c) for any c ∈ C \ c and for i ∈ [1, u], [Dr

k,c](ci) returns some
incorrect plaintext randomly chosen at compilation. We will say that CE hides functional
perturbations when, given a program instance P = [Dr

k,c], an adversary cannot extract
enough information about the dysfunctional input-output pairs to be able to correct P
back to its original functionality. It is shown later that perturbated programs can be made
traceable assuming that it is hard to recover the correct output of dysfunctional inputs. This
is formalized by the following game:

1. randomly select k ← K(), m
$← M and r

$← R,
2. compile [Dr

k,〈c〉] = CE(k, r; 〈c〉) with c = E(k,m),

3. run A on input (c, [Dr
k,〈c〉]),

4. A return some message m̂,
5. A succeeds if m̂ = m.

Definition 4 (Perturbation-Value Hiding). Let E be a symmetric encryption scheme,
CE a white-box compiler for E that supports perturbations, and let A be an adversary. Let

SuccPVHA,CE
def
= Pr

k ← K() ; m
$← M ; c = E(k,m) ;

r
$← R ; [Dr

k,〈c〉] = CE(k, r; 〈c〉) ;

m̂← AO(c, [Dr
k,〈c〉])

: m̂ = m

 .

where O is a recompiling oracle O(·) def
= CE(k,R; 〈c, ·〉) that takes as input a list of dysfunc-

tional inputs containing c and returns a perturbated program accordingly, under adversarially
unknown randomness. The white-box compiler CE is said (τ, ε)-secure in the sense of PVH
if A running in time at most τ implies SuccPVHA,CE 6 ε.
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A second security notion that we will make use of for our tracing construction relates
to the intuition that all perturbations should be equally hidden by the white-box compiler.
Namely, it should not matter in which order the dysfunctional inputs are given to the com-
piler: they should all appear equally hard to recover to an adversary. When this property
is realized, we say that the compiler achieves perturbation-index hiding. We formalize this
notion with the following game, where n > 1 and v ∈ [1, n− 1] are fixed parameters:

1. randomly select k ← K(),

2. for i ∈ [1, n], randomly select mi
$← M and set ci = E(k,mi),

3. for i ∈ [1, n] with i 6= v, randomly select ri
$← R and generate Pi = CE(k, ri; 〈c1, . . . , ci〉),

4. randomly pick b
$← {0, 1},

5. run A on inputs P1, . . . , Pv−1, Pv+1, . . . , Pn and (mv+b, cv+b),
6. A returns a guess b̂ and succeeds if b̂ = b.

Definition 5 (Perturbation-Index Hiding). Let E be a symmetric encryption scheme,
CE a white-box compiler for E that supports perturbations, and let A be an adversary. Let

AdvPIHA,CE
def
=

∣∣∣∣∣∣∣Pr

 k ← K() ; mi
$← M ; ci = E(k,mi) for i ∈ [1, n]

ri
$← R ; Pi = CE(k, ri; 〈c1, . . . , ci〉) for i ∈ [1, n], i 6= v

b
$← {0, 1} ; b̂← A({Pi}i 6=v,mv+b, cv+b)

: b̂ = b

− 1

2

∣∣∣∣∣∣∣ .
The white-box compiler CE is said to be (τ, ε)-secure in the sense of PIH if A running in
time at most τ implies AdvPIHA,CE 6 ε.

Note that in a PIH-secure white-box compiler, all entries in the list of its dysfunctional
inputs can be permuted with no (non-negligible) impact on the security of the compiler.

7.2 A Generic Tracing Scheme

We now give an example of a tracing scheme T for programs generated by a white-box
compiler CE that supports hidden perturbations. We formally prove that the identification
of at least one traitor is computationally enforced assuming that CE is secure in the sense
of PVH and PIH, independently of the total number n of issued programs. Under these
assumptions, T therefore resists collusions of up to n users i.e. is maximally secure. As
usual in traitor-tracing schemes, T is composed of a setup algorithm T .setup and a tracing
algorithm T .trace. These algorithms are defined as follows.

Setup algorithm. A random key k
$← K() is generated as well as n random input-output

pairs (mi, ci) where mi
$← M and ci = E(k,mi) for i ∈ [1, n]. T keeps perturbations =

((m1, c1), . . . , (mn, cn)) as private information for later tracing. For i ∈ [1, n], user i is (se-

curely) given the i-perturbated program Pi = CE(k, ri; 〈c1, . . . , ci〉) where ri
$← R. It is easily

seen that all Pi’s correctly decrypt any c 6∈ {ci, i ∈ [1, n]}. However when c = ci, user pro-
grams Pi, . . . , Pn return junk while P1, . . . , Pi−1 remain functional. Therefore T implements
a private linear broadcast encryption (PLBE) scheme in the sense of [4].
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1. evaluate p̂0 and p̂n
2. set a = 0 and b = n
3. while a 6= b− 1

3.1. set v = d(a+ b)/2e
3.2. evaluate p̂v
3.3. if |p̂v − p̂a| > |p̂v − p̂b| then set b = v else set a = v

4. return b as the identified traitor.

Fig. 4. Dichotomic search implemented by T .trace

Tracing algorithm. Given a rogue decryption program Q constructed from a set of user
programs {Pj | j ∈ T ⊆ [1, n]}, T .trace uses its knowledge of k and perturbations to identify
a traitor j ∈ T in O(log n) evaluations of Q as follows. Since Q is just a program and is
therefore stateless, the general tracing techniques of [24,4] are applicable. T .trace makes use
of two probability estimators as subroutines:

1. a probability estimator p̂0 which intends to measure the actual probability

p0 = Pr
[
m

$← M ; c = E(k,m) : Q(c) = m
]

when all calls Q makes to an external random source are fed with a perfect source. Since
the pirate decryption program is assumed to be fully or almost fully functional, p0 must
be significantly close to 1. It is classical to require from Q that p0 > 1/2.

2. a probability estimator p̂v which, given v ∈ [1, n], estimates the actual probability

pv = Pr [Q(cv) = mv]

where Q is run over a perfect random source again.

To estimate pv for v ∈ [0, n], Q is executed θ times (on fresh random tapes), where θ is an
accuracy parameter. Then, one counts how many times, say ν, the returned output is as
expected and p̂v is set to ν/θ. Finally, T .trace implements a dichotomic search as shown on
Fig. 4.

We state (see proof in Appendix B):

Theorem 3. Assume CE is secure in the sense of both PVH and PIH. Then for any subset
of traitors T ⊆ [1, n], T .trace correctly returns a traitor j ∈ T with overwhelming probability
after O(log n) executions of the pirate decryption program Q.

This result validates the folklore intuition according to which cryptographic programs can
be made efficiently traceable when properly obfuscated and assuming that slight alterations
can be securely inserted in them. It also identifies clearly which sufficient security properties
must be fulfilled by the white-box compiler to achieve traceability even when all users collude
i.e., in the context of total piracy.
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6. Julien Bringer, Hervé Chabanne, and Emmanuelle Dottax. White Box Cryptography: Another Attempt. Cryp-
tology ePrint Archive, Report 2006/468, 2006. http://eprint.iacr.org/.

7. Nishanth Chandran, Melissa Chase, and Vinod Vaikuntanathan. Functional Re-encryption and Collusion-
Resistant Obfuscation. In TCC 2012, volume 7194 of Lecture Notes in Computer Science, pages 404–421. Springer,
2012.

8. Benny Chor, Amos Fiat, and Moni Naor. Tracing Traitors. In Y. Desmedt, editor, CRYPTO 1994, volume 839
of Lecture Notes in Computer Science, pages 257–270. Springer-Verlag, 1994.

9. Benny Chor, Amos Fiat, Moni Naor, and Benny Pinkas. Tracing Traitors. IEEE Transactions on Information
Theory, 46(3):893–910, 2000.

10. Stanley Chow, Phil Eisen, Harold Johnson, and Paul C. van Oorschot. A White-Box DES Implementation for
DRM Applications. In Joan Feigenbaum, editor, DRM 2002, volume 2696 of Lecture Notes in Computer Science,
pages 1–15. Springer, 2002.

11. Stanley Chow, Phil Eisen, Harold Johnson, and Paul C. van Oorschot. White-Box Cryptography and an AES
Implementation. In SAC 2002, pages 250–270. Springer-Verlag, 2003.
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A Security Notions for RSA Group Generators

We now recall the different security notions associated to a group generator G as above.

Definition 6 (Unbreakability – UBK[G]). A probabilistic algorithm A is said to break the
RSA group generator G when it succeeds in recovering ω from desc (G) for a random group
G output by G. The security game is as follows:

1. randomly select (desc (G) , ω)← G(1n),
2. run A over desc (G),
3. A returns some value ω̂,
4. A succeeds if ω̂ = ω.

The success of A is defined as

Succ
UBK[G]
A,G = Pr

[
(desc (G) , ω)← G(1n) ;

ω̂ ← A(desc (G))
: ω̂ = ω

]
.

A is said to (τ, ε)-break G when it runs in time at most τ and Succ
UBK[G]
A,G > ε.
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Definition 7 (Hardness of Extracting Orders – ORD[G]). A is said to extract (mul-
tiplicative) orders on a random group G when given a random x ∈ G, A returns the order
y = ord (x) of x, or a multiple thereof. The security game is defined as follows:

1. randomly select (desc (G) , ω)← G(1n),

2. randomly select x
$← G,

3. run A over (desc (G) , x),
4. A returns some value ŷ,
5. A succeeds if xŷ = 1G.

The success of A is defined as

Succ
ORD[G]
A,G = Pr

[
(desc (G) , ω)← G(1n) ; x

$← G ;
ŷ ← A(desc (G) , x)

: xŷ = 1G

]
.

A is said to (τ, ε)-break ORD[G] when it runs in time at most τ and Succ
ORD[G]
A,G > ε.

Definition 8 (Hardness of Extracting Roots – RSA[G]). A is said to extract roots on
a random group G when given a random integer e ∈ [0, ω) such that gcd(e, ω) = 1, a random

x ∈ G, A returns the e-th root y = x
1
e
mod ω of x. The game is as follows:

1. randomly select (desc (G) , ω)← G(1n),

2. randomly select e
$← Z∗ω,

3. randomly select x
$← G,

4. run A over (desc (G) , e, x),
5. A returns some value ŷ,
6. A succeeds if ŷ = x

1
e
mod ω.

The success of A is defined as

Succ
RSA[G]
A,G = Pr

[
(desc (G) , ω)← G(1n) ; e

$← Z∗ω ;

x
$← G ; ŷ ← A(desc (G) , e, x)

: ŷ = x
1
e
mod ω

]
.

A is said to (τ, ε)-break RSA[G] when it runs in time at most τ and Succ
RSA[G]
A,G > ε.

Security Results for Known Constructions.

Claim (UBK[G] ⇐R1 ORD[G]). There is a known reduction R1 polynomial in n, h that
reduces UBK[G] to extracting orders within the group. More precisely, if R1 is given an
adversary that breaks the ORD[G] game with success probability εA, R1 can make use of A
to recover ω with probability εR1 > εA in time τR1 ≈ τA.

Claim (UBK[G] 6⇐R2 RSA[G]). There is no known reduction R2 polynomial in n, h that
reduces UBK[G] to extracting roots within the group. One may therefore assume that it
is hard to reduce UBK[G] to RSA[G]. This is sometimes referred to as the gap factoring
assumption.
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B Proof of Theorem 3

To prove Theorem 3, it is enough (see [4]) to prove the following:

– Property 0 : p(0) > 1/2.

– Property 1 : p(n) is negligibly close to 0.

– Property 2 : p(v) is negligibly close to p(v + 1) unless user v is a traitor.

These properties imply that there must be a substantial gap on the curve of v 7→ p(v)
for some vgap ∈ [0, n − 1] (i.e. |p(vgap) − p(vgap + 1)| � 0) and that the user identity vgap
for which that gap occurs is a traitor with overwhelming probability. Our tracing procedure
precisely searches for such a vgap using dichotomy.

Property 0 is true by assumption on the pirate decryption program Q. We show that the
other properties are also fulfilled under appropriate assumptions.

Proof (Property 1). We show that if PVH is (τ, ε)-hard, then p(n) 6 ε. We make use of
the following adversarial formalization. An adversary A is assumed to corrupt all users
i ∈ [1, n] by having access to the user decryption programs P1, . . . , Pn. A then outputs
a rogue decryption program Q. A wins the game if Q(c1) = m1, that is, if Q succeeds in
decrypting c1 although none of the Pi’s could. We see that A’s success probability is precisely
εA = Pr [Q(c1) = m1] = p(n). The total time τA taken by the adversary is defined to be the
running time of A to issue Q added to the execution time of Q itself.

We now build a reduction R which, given a pirate adversary A as above that runs in time
τA and outputs a rogue decryption program Q such that p(n) = εA, wins the PVH game
with probability εR = εA in time τR ≈ τA. R is given a PVH instance (c, Pc) where c is a
random ciphertext and Pc = CE(k, r; 〈c〉). R wants to return the correct output m = Dk(c)
of the perturbated entry c. To use the pirate adversary against the scheme, R has to produce
perturbated programs P1, . . . , Pn in accordance with the distribution as per our construction.
To do this, R sets c1 := c, P1 := Pc, picks random ciphertexts (c2, . . . , cn) and for i = 2 to
n, queries the recompiling oracle to get

Pi = O (〈c, c2, c3, . . . , ci〉) = CE(k, ri; 〈c, c2, c3, . . . , ci〉) = [Dri
k,〈c,c2,...,ci〉]

for some (unknown) ri
$← R. It is easily seen that P1, . . . , Pn perfectly comply with the

specification of the decryption programs assigned to end users in our construction. Now R
runs A on (P1, . . . , Pn) and obtains a rogue decryption program Q. R runs Q once to set
m := Q(c) and returns m to its challenger. Now by assumption,

εA = p(n) = Pr [Q(c1) = Dk(c1)] = Pr [Q(c) = Dk(c)] .

Finally, εR = Pr [Q(c) = Dk(c)] = εA and τR = τA +O(n) as claimed. ut

Proof (Property 2). We show that if the white-box compiler is (τ, ε)-secure in the sense of
PIH for some v ∈ [1, n−1], then |p(v)−p(v+1)| 6 ε. We prove this by defining an adversary
A that outputs a rogue decryption program Q such that |p(v)−p(v+1)| > εA. A is assumed
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to corrupt all users but one i.e. is only given programs P1, . . . , Pv−1, Pv+1, . . . , Pn, thereby
excluding Pv. The total time τA taken by the adversary is defined to be the running time of
A to return Q added to the execution time of Q itself.

We build a reduction algorithm R which, given an adversary A as above, wins the PIH
game with advantage εR > εA in time τR ≈ τA. R is given a PIH instance

(P1, . . . , Pv−1, Pv+1, . . . , Pn,mv+b, cv+b)

where

P1 = CE(k,R; 〈c1〉)
P2 = CE(k,R; 〈c1, c2〉)

...

Pv−1 = CE(k,R; 〈c1, c2, . . . , cv−1〉)
Pv+1 = CE(k,R; 〈c1, c2, . . . , cv−1, cv, cv+1〉)
Pv+2 = CE(k,R; 〈c1, c2, . . . , cv−1, cv, cv+1, cv+2〉)

...

Pn = CE(k,R; 〈c1, c2, . . . , cn〉) .

The reduction R shall eventually output a guess b̂ for b. To produce the end-user decryp-
tion programs expected by A, R just forward the n− 1 programs P1, . . . , Pv−1, Pv+1, . . . , Pn
and obtains a rogue decryption program Q ← A (P1, . . . , Pv−1, Pv+1, . . . , Pn). Then R runs
Q on cv+b with a fresh random tape. If Q(cv+b) = mv+b then b̂ := 1 is returned otherwise R
returns b̂ := 0. This completes the description of our reduction algorithm R. We see that

εR =
∣∣Pr [R = 1 | b = 1]− Pr [R = 1 | b = 0]

∣∣
=
∣∣Pr [Q(cv+b) = mv+b | b = 1]− Pr [Q(cv+b) = mv+b | b = 0]

∣∣
=
∣∣Pr [Q(cv+1) = Dk(cv+1)]− Pr [Q(cv) = Dk(cv)]

∣∣
=
∣∣p(v + 1)− p(v)

∣∣ > εA .

Concluding, this shows that εR > εA with τR ≈ τA as claimed. ut
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