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Abstract. In this paper we present new constraints to EPCglobal Class 1 Generation 2 (EPC-
C1 G2) standard which if they have been considered in the design of EPC-C1 G2 complaint
authentication protocols, lead to prevent predecessor’s protocols’ weaknesses and also present
the secure ones. Also in this paper as an example, we use Pang et al. EPC-C1 G2-friendly
protocol which has been recently proposed, to show our proposed constraints in EPC-C1 G2
standard. Pang et al.’s protocol security analysis show how its security claim based on untrace-
ability and resistance against de-synchronization attacks is ruined. More precisely, we present
very efficient de-synchronization attack and traceability attack against the protocol. Finally,
take Pang et al. protocol’s vulnerability points, we present new conditions to design EPC-C1
G2 complaint protocols and based on it we propose a secure (EPC-C1 G2) RFID authentication
scheme which is a good sample to EPC-C1 G2 complaint protocols.

keywords: RFID, Mutual Authentication, EPC-C1 G2, Cyclic Redundancy Code, Pseudo
Random Number Generator, De-synchronization, Traceability Attack.

1 Introduction

One of the most important standards for RFID passive tags is EPC Class 1 Generation 2
(or in short term EPC-C1 G2) proposed by EPCglobal. This standard was adopted in 2004
and 18 months later (March-April 2006) ratified by ISO and published as an amendment to
ISO-18000-6c [2] standard. EPC C1 G2 defines a platform for the interoperability of RFID
protocols, by supporting an on-chip 16-bit Pseudo-random number generator (PRNG), a
16-bit cyclic redundancy code (CRC16) and lightweight operations such as XOR and ‖. The
most important properties of EPC-C1 G2 are summarized as below:

1. Tags are passive.
2. Tags operate on the UHF band (860-960 MHz).
3. Tags cannot support conventional cryptographic primitives.
4. Tags include on chip limited storage and computational resources for security purposes.

However, the original protocol is known to be insecure [5]. To improve the security of this
standard, several protocols have been proposed which are compliant to this standard. Al-
though in EPC-C1 G2 standard it has been approved the use of CRC function, PRNG
function and lightweight operations such as XOR and ‖. However this standard does not
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determine the conditions and constraints which are related to input operation of CRC and
PRNG functions until the resulting protocol is immune against all kind of active and pas-
sive attacks. In this paper, we consider such above conditions over one case which is Pang
et al. EPC-C1 G2 - friendly protocol. Recently Pang et al. in [3], have analyzed two recent
proposals in the context called RAP [6] and LADP [7] and discussed their vulnerabilities.
In both of these protocols, on the reader’s query, the tag sends IDSi = H(Ki) as a part of
its response to the reader query. Although Ki is updated at the end of each query, however,
as long as the tag has not updated its secret, this message can be used to trace the tag
holder object. To overcome this problem, they have proposed an scheme based on a cyclic
redundancy code (CRC) and a pseudo-random number generator in accordance with the
EPC Class-1 Generation-2 specification. [3], which we call it PLHAW that comes from the
first letter of the protocol’s authors name. The authors of PLHAW claimed their protocol’s
resistance against common attacks. However, in this paper we scrutinize its security showing
how an active adversary can efficiently de-synchronize the tag and the reader. So after this
attack the reader and tag cannot authenticate each other in the further transactions. In
addition, we show that PLHAW protocol does not provide a better security against trace-
ability attacks compared to its predecessors. Hence, PLHAW proposal as an EPC-C1 G2
compliant protocol also does not provide the expected security. These results indicating use
of CRC function with ‖ as its input operation does not guarantee the security of protocol
at all. Finally, by profiting PLHAW vulnerability points, we present a new constraint for
designing EPC-C1 G2 complaint protocols and according to it present a new secure EPC-C1
G2 authentication protocol.

1.1 Importance and Impact of paper

In this paper, we present new conditions on EPC-C1 G2 standard which leads to design secure
protocols. To prove our claim, we will show important security faults on Pang et al. protocol
(i.e.PLHAW ), which is EPC-C1 G2 complaint protocol. In the other hand, PLHAW protocol
which is published in highly qualified journal [3] is the result of security analyses of two RFID
protocols and hence security analysis of it has worth to work. Similar works such as what
presented in this paper, introduce some conditions and constraints must be considered in
the protocol design until they lead to present a secure matured protocol and hence advances
research in this field. In the rest of this paper, we review PLHAW protocol in Section 2
and present conditions which lead to our de-synchronization attack and traceability attack
against it in Section 3 and Section 4 respectively. Section 5 presents an improved version of
protocol,PLHAW + and its security analysis. Finally, we conclude the paper in Section 6.

2 Review of PLHAW Protocol

PLHAW protocol recently has been proposed by Pang et al. [3], to overcome the security
pitfalls of its predecessors [6, 7]. To explain the protocol we use the notations indicated in
Table 1. In this protocol each tag Ti has a secure identity SIDi and a secrete key Ki and the
secret key is updated at the end of each successful session of the protocol. To overcome the
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Notation Description

IDSi The tag i index-pseudonym value

SIDi The secure identity of tag i

PRNG() 16 bit pseudo random number generator

H(.) Hash function

CRC The cyclic redundancy check operation

Ki The secret key shared between the tag i and the back-end server.

Di The detailed information of the tag i

Xnew The current value of X

Xold The previous value of X

Xleft The left half of X

Xright The right half of X

‖ The concatenation operation

⊕ Exclusive or operation
Table 1. Notation
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Fig. 1. PLHAW Mutual Authentication Protocol.

trivial de-synchronization attack caused by blocking the last message sent over the protocol,
the back-end server BS keeps two records of Ki denoted by Kinew and Kiold respectively.
PLHAW, as depicted in Fig. 1, runs as below:
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1. The reader Ri generates a random number r and sends Query command with r to the
tag Ti.

2. Upon receiving the message, Ti does as follows:
– generates a random numbers r1,
– computes m1 = CRC(Ki‖SIDi‖r1) and m2 = PRNG((Ki ⊕ SIDi)‖r‖r1),
– and sends {r1,m1,m2} to the reader.

3. The reader receives the message sent by the tag and sends the tuple {r, r1,m1,m2} to
the back-end server BS.

4. Upon receiving the message, BS does as follows:
– It searches for a tag T ′i with K ′i and SID′i such that m′1 = m1 and m′2 = m2, where

m′1 = CRC(K ′i‖SID′i‖r1) and m′2 = PRNG((K ′i ⊕ SID′i)‖r‖r1), here K ′i could be
either of K ′inew or K ′iold.

– If it finds such a tag, it generates a random number R, computes n′right = CRCright(K
′
i‖SID′i‖R‖r),

updates the secret key of the tag as K ′iold = K ′i and K ′inew = K ′i ⊕ n′left and sends
the tuple {R,Di, n

′
right} to the reader.

5. The reader sends {R,n′right} to the tag.
6. Upon receiving the message, Ti computes nright = CRCright(Ki‖SIDi‖R‖r) and verifies

whether nright = n′right to authenticate the reader and update its secret key as Kinew =
Ki ⊕ nleft.

The designers of PLHAW claim that their protocol provides optimal security against all
attacks in the context include de-synchronization attack and traceability attack. However,
in this paper, we show that it suffers from efficient de-synchronization attack and traceability
attack which rule out the designers’ claim on the security of the protocol.

3 De-synchronization Attack

If for an authentication protocol’s secret parameters, that are used through the authenti-
cation process, are updated then both parties should keep the same value; otherwise they
won’t authenticate each other in the later sessions and we say they have been desynchro-
nized. In a desynchronization attack, the adversary forces the tag and the back-end server
to update their common values to different values. If the adversary can succeed in forcing
the tag and the back-end server to do so, they will not authenticate each other in further
transactions. Pang et al. [3] claim that their protocol is secure against desynchronization
attack. More precisely, the authors state that to prevent the desynchronization attack they
keep a record of old secret value (It helps to remain in sync when the adversary blocks the
last message sent from the back-end database to the tag). However, we present an efficient
attack where the adversary forces the tag to update its secret value such that it does not
match the values that back-end database keeps in its records. Our attack is based on the
following linear property of CRC function [1, 4]:

CRC(A‖B) = CRC(A << n)⊕ CRC(B) (1)

where A and B represent arbitrary values, n is the bit-length of string B and << denotes
the left shift operation. An active adversary (A) can exploit the above property to de-
synchronize the tag and the back-end server in PLHAW protocol as follows:
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1. At the beginning of a session the reader Ri generates a random number r and sends
Query command with r to the target tag Ti.

2. Upon receiving the message, Ti does as follows:
– generates a random numbers r1,
– computes m1 = CRC(Ki‖SIDi‖r1) and m2 = PRNG((Ki ⊕ SIDi)‖r‖r1),
– and sends {r1,m1,m2} to the reader.

3. The reader receives the message sent by the tag and sends the tuple {r, r1,m1,m2} to
the back-end server BS.

4. Upon receiving the message, BS does as follows:
– It searches for a tag T ′i with K ′i and SID′i such that m′1 = m1 and m′2 = m2, where

m′1 = CRC(K ′i‖SID′i‖r1) and m′2 = PRNG((K ′i ⊕ SID′i)‖r‖r1), where K ′i could be
either of K ′inew or K ′iold.

– Ti is a legitimate tag and its record matches the above criteria. Hence, the server
generates a random number R, computes n′right = CRCright(Ki‖SIDi‖R‖r), updates
the secret key of the tag as K ′iold = K ′i and K ′inew = K ′i ⊕ n′left and sends the tuple
{R,Di, n

′
right} to the reader.

5. The reader sends {R,n′right} to the tag.
6. The adversary intercepts the message sent by the reader and replaces it by {R′, n′′right},

where R′ could be any random number not equal to R and n′′right = n′right⊕CRCright(R <<
n)⊕ CRCright(R

′ << n) and n is the bit length of r.
7. Upon receiving the message, Ti computes nright = CRCright(Ki‖SIDi‖R′‖r) and verifies

whether nright = n′′right to authenticate the reader and update its secret key as Kinew =
Ki ⊕ nleft.

If at the step 7 of the above attack the tag accepts the intercepted message {R′, n′′right} then
it will update its secret key to Kinew = Ki ⊕ (CRCleft(Ki‖SIDi‖R′‖r)) while the back-end
server records for the tag’s secret key are Kiold = Ki and Kinew = Ki⊕(CRCleft(Ki‖SIDi‖R‖r))
respectively. Since R 6= R′ with the probability of 1 − 2−n+1 the tag’s record of the secret
key does not match neither of the back-end server records for this tag’s secret key. On the
other hand, based on equation (1) of the given observation

n′′right (2)

= n′right ⊕ CRCright(R << n)⊕ CRCright(R
′ << n) (3)

= CRCright(Ki‖SIDi‖R‖r)⊕ CRCright(R << n)⊕ CRCright(R
′ << n) (4)

= CRCright((Ki‖SIDi) << 2n)⊕ CRCright(R << n)⊕
CRCright(r)⊕ CRCright(R << n)⊕ CRCright(R

′ << n) (5)

= CRCright((Ki‖SIDi) << 2n)⊕ CRCright(r)⊕ CRCright(R
′ << n) (6)

= CRCright(Ki‖SIDi‖R′‖r) (7)

= nright. (8)

Hence, the tag accepts the intercepted message, authenticates the back-end server and up-
dates its secret key based on R′ 6= R. Therefore, the adversary was successful in her attack.
As easily seen from above, the adversary’s success probability to de-synchronize the tag and
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the back-end server is exactly the probability that R 6= R′ which is 1− 2−n+1 and is almost
‘1’. Although above attack can been accomplished in one run of protocol, we can say that the
attack’s complexity is just one run of the protocol between the tag and a legitimate reader.

4 Traceability Attack

Traceability attack is a attack which in the adversary can recognize the identity of tags or
reader which is faced with her. The main reasoning of Pang et al. on designing PLHAW was
to overcome the trivial traceability of a tag in RAP [6] and LADP [7] as long as the tag has
not updated its secret. To overcome this problem they have suggested to randomize messages
sent from the tag on response to the reader’s query such that when the reader sends r to
the tag it generates another random number r1 and computes m1 = CRC(Ki‖SIDi‖r1) and
m2 = PRNG((Ki ⊕ SIDi)‖r‖r1) and sends them to the reader. They claim that on each
query to the tag, the tag generates a fresh r1 and since it is included in the computation of
m1 and m2 it is not possible for any adversary to link two different sessions of a tag even if
the tag has not updated its secretes. However, based on equation (1) we have :

m1 ⊕ CRC(r1) (9)

= CRC((Ki‖SIDi) << n)⊕ CRC(r1)⊕ CRC(r1) (10)

= CRC((Ki‖SIDi) << n) (11)

Hence, assuming that the tag has not updated its secret key Ki, m1 ⊕ CRC(r1) =
CRC((Ki‖SIDi) << n) which is always fixed and can be used to trace the tag’s holder.
Therefore, PLHAW also puts the privacy of tag’s holder’s on risk and it does not provide
any security against traceability attack compared to its predecessors, i.e., RAP and LADP.

Remark 1. The adversary can desynchronize the tag and the reader following the given
attack in section 3 and then use the above property to trace the tag’s holder for ever.

5 Improved protocol

We now describe the improved version of PLHAW protocol, PLHAW +, which is secure
against the attacks mentioned in the previous sections and other attacks in the context.

In this section, we revise PLHAW with minor changes to make the resulting protocol
immune against the attacks described in the previous sections. The main observation in
attacks presented in the previous sections, is the use of CRC function with ‖ as these
functions’ input inner operation in the protocol. To prevent the given desynchronization and
traceability attacks it may be enough to change the CRC function used to compute m1 and
nright to PRNG function as follows. PRNG function does not have linearity properties so
it can be used as a one-way function:

m1 = PRNG(Ki‖SIDi‖r1)
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Fig. 2. PLHAW + Mutual Authentication Protocol.

nright = PRNGright(Ki‖SIDi‖R‖r)

Similar to PLHAW protocol, PLHAW + supposes that each tag Ti has a secure identity
SIDi and a secrete key Ki and the secret key is updated at the end of each successful session
of the protocol. To overcome the trivial de-synchronization attack caused by blocking the
last message sent over the protocol, the back-end server keeps two records of Ki denoted by
Kinew and Kiold respectively.

The steps of PLHAW + mutual authentication protocol which are depicted in Fig. 2 are
as follows:

1. The reader Ri generates a random number r and sends Query command with r to the
tag Ti.

2. Upon receiving the message, Ti does as follows:
– generates a random numbers r1,
– computes m1 = PRNG(Ki‖SIDi‖r1) and m2 = PRNG((Ki ⊕ SIDi)‖r‖r1),
– and sends {r1,m1,m2} to the reader.

3. The reader receives the message sent by the tag and sends the tuple {r, r1,m1,m2} to
the back-end server BS.

4. Upon receiving the message, BS does as follows:
– It searches for a tag T ′i with K ′i and SID′i such that m′1 = m1 and m′2 = m2, where

m′1 = PRNG(K ′i‖SID′i‖r1) and m′2 = PRNG((K ′i ⊕ SID′i)‖r‖r1), here K ′i could be
either of K ′inew or K ′iold.
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– If it finds such a tag, it generates a random number R, computes n′right = PRNGright(K
′
i‖SID′i‖R‖r),

updates the secret key of the tag as K ′iold = K ′i and K ′inew = K ′i ⊕ n′left and sends
the tuple {R,Di, n

′
right} to the reader.

5. The reader sends {R,n′right} to the tag.

6. Upon receiving the message, Ti computes nright = PRNGright(Ki‖SIDi‖R‖r) and ver-
ifies whether nright = n′right to authenticate the reader and update its secret key as
Kinew = Ki ⊕ nleft.

5.1 PLHAW+ Security Analysis

In this section, we present a detailed security analysis of PLHAW + to show that the protocol
meets resistance against the attacks presented in this paper and the other known active and
passive attacks in the context.

5.2 Resistance against Replay Attack

In PLHAW + protocol, the authentication messages (i.e. m1, m2, and nright are computed
with the random numbers, which provides freshness and so resistance against replay attack.

5.3 Backward\Forward Security

Key update relations in PLHAW + protocol is like that PLHAW protocol, which all the secret
values, Ki and SIDi, are necessary for updating Ki. In PLHAW +, Ki is updated as Ki+1 ←
Ki ⊕ nleft with this difference which nleft is computed as PRNGleft(Ki‖SIDi‖R‖r). So if
the adversary can obtain the secret value Ki, she cannot calculate the new value Ki+1 without
knowing SIDi or the previous Ki−1 Without knowing nleft = PRNGleft(Ki−1‖SIDi−1‖R‖r)
and SIDi−1.

5.4 Resistance against Tag Impersonation Attack

The resistance of PLHAW + protocol against tag impersonation attack arises from this fact
that the tag’s information (i.e. Di) is stored in the back-end server, which is assumed to be
secure, and this assumption that the communication channel between the back-end server
and the reader is secure. So, an adversary is not able to access the information of a tag which
is stored in the back-end server.

In the other hand, the adversary, who wants to impersonate the valid tag, must be to
complete the authentication steps successfully, so she needs to respond to the reader with
valid messages, m1 and m2 which are computed on the basis of the shared secret key Ki

and SIDi. So it is not possible for attacker to compute valid m1 and m2 without knowing
secret values of Ki and SIDi. Therefore PLHAW + protocol resists against tag impersonation
attack.



Title Suppressed Due to Excessive Length 9

5.5 Resistance Against De-synchronization Attack

De-synchronization attack againstPLHAW is based on the linear property of CRC func-
tion (1) which is fixed by using PRNG function in using m1 and nright in PLHAW +. So
although the above linearity does not to apply to improved protocol, PLHAW + which is
based on PRNG function resists against de-synchronization attack.

5.6 Resistance Against Traceability Attack

Traceability attack against PLHAW protocol is accomplished based on this fact that an
adversary can link two different sessions of a tag based on equation (1) assuming that the
tag has not updated its secret key Ki, m1 ⊕ CRC(r1) = CRC((Ki‖SIDi) << n) which is
always fixed and can be used to trace the tag holder. However, in PLHAW + protocol, we
fixed this weakness by using PRNG function instead of CRC to compute m1 and nright.
So the adversary cannot use the relations such that what used against PLHAW to retrieve
some fixed values related to identity of tags to trace given tag.

5.7 Performance Analysis of PLHAW+ Protocol

In Table 2, the performance comparison of PLHAW and PLHAW + protocols is provided.
This table show that the proposed modifications do not increase the number of transferred
bits, the number of ⊕ operation and the number of ‖ operation. So we can say, PLHAW +

protocol does not increase computational cost of the protocol extensively while it provides
much better security. The only increased cost is some more calls of PRNG function instead
of use of CRC function.

# PRNG # CRC # ⊕ # of ‖ #transferred bits

BS of PLHAW 1 2 2n 7 3n

BS of PLHAW + 3 0 2n 7 3n

Tag of PLHAW 1 2 2n 7 3n

Tag of PLHAW + 3 0 2n 7 3n

Table 2. Performance comparison between PLHAW and PLHAW + protocols. n denotes
the bit length of parameters.

6 Conclusions

In this paper, we present significant points to designing secure RFID EPC-C1 G2 com-
plaint protocols. More precisely, this paper shows use of CRC function with input of including
‖ operation lead to insecure protocol. For an example, we show important security faults on
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Pang et al. protocol (i.e. PLHAW ), evidencing the necessity of a rigorous security analysis
when a new protocol is proposed.

The main drawback of PLHAW protocol is all due to the use of the CRC and take
advantage of its linearity in computing m1 and nright values. So we used the linearity property
of CRC function to mount our de-synchronization and traceability attacks against PLHAW.
To fix this problem, one way is use of PRNG function to compute m1 and nright values
which use of PRNG function is according to EPC-C1 G2 standard passive tags’ specification.
These modifications lead to burn a new EPC- C1 G2 complaint RFID mutual authentication
protocol named PLHAW + which is secure against attacks mentioned in this paper and the
other known active and passive attacks.

All in all, this paper shows doing similar works to what presented in this paper is essential
to help to design matured secure protocols in the field of the RFID protocols design.
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