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Abstract—We study collusion-resistant traitor tracing in the
simple decoder approach, i.e. assignment of scores for each
user separately. We introduce a new score function for non-
binary bias-based traitor tracing. It has three special properties
that have long been sought after: (i) The expected score of an
innocent user is zero in each content position. (ii) The variance
of an innocent user’s score is 1 in each content position. (iii)
The expectation of the coalition’s score does not depend on the
collusion strategy.

We also find a continuous bias distribution that optimizes
the asymptotic (large coalition) performance. In the case of a
binary alphabet our scheme reduces exactly to the symmetrized
Tardos traitor tracing system. Unfortunately, the asymptotic
fingerprinting rate of our new scheme decreases with growing
alphabet size. We regret to inform you that this grail has holes.

I. INTRODUCTION
A. Collusion-resistant tracing

Forensic watermarking is a means for tracing the origin and
(re-)distribution of digital content. Before distribution, the
content is modified by embedding an imperceptible watermark,
which plays the role of a personalized serial number. When
an unauthorized copy of the content is found, the identities of
those users who participated in its creation can be determined
from the watermark. A tracing algorithm outputs a list of
suspicious users.

Collusion attacks are a powerful class of attacks against foren-
sic watermarking. Multiple attackers (referred to as colluders
or a coalition) combine their differently watermarked versions
of the same content. The observed differences point to the
locations of the hidden marks. Knowledge of these locations
helps the colluders to mix and match their versions.
Different types of collusion-resistant codes have been de-
veloped in order to defend against these attacks. The most
popular in the recent literature is the class of bias-based codes.
These were introduced by G.Tardos in 2003. The original
paper [1] was followed by a lot of activity, e.g. improved
analyses [2], [3], [4], [5], [6], [7], code modifications [8],
[9], [10], decoder modifications [11], [12], [13] and various
generalizations [14], [15], [16], [17]. The advantage of bias-
based versus deterministic codes is that they can achieve
the asymptotically optimal relationship ¢ oc ¢ between the
sufficient code length ¢ and the coalition size c.

We distinguish between two kinds of tracing algorithm: (i)
simple decoders, which assign a score to individual users
and (ii) joint decoders [11], [12], [13], which look at sets
of users. Joint decoders sometimes employ a simple decoder
as a bootstrapping step. Tardos’ original scheme [1] and its
symmetrized version [15] work with a simple decoder. The

Amiri-Tardos accusation scheme [11] and the Don Quixote
scheme [13] are examples of joint decoders.

In the study of collusion-resistant watermarking one often uses
a model in which the details of the watermark embedding
process have been abstracted away. The content is considered
to consist of a number of ‘segments’, ‘positions’ or ‘locations’
into each of which a symbol from an alphabet Q can be
embedded. A position in which not all the colluders have
received the same symbol is called a detectable position. 1t is
customary to assume that the so-called Marking Assumption
holds: the colluders are able to modify the watermark only
in detectable positions. Furthermore, one often adopts the
Restricted Digit Model (RDM) as attacker model because of
its simplicity and amenability to analysis. The RDM states
that the attackers may only output a symbol from the set
of symbols they received (and not for instance an erasure,
a different symbol, or a mixture of multiple symbols).

Most of the literature on content tracing works with a binary
alphabet. However, it has been shown that larger alphabets
can offer a higher fingerprinting rate: in the RDM the fin-
gerprinting capacity in the large c¢ limit is given [18] by
Cy,=(q—1)/(2¢*1Inq), where ¢ = |Q| is the alphabet size.

In this paper we focus on score functions for simple-decoder
bias-based tracing in the case of arbitrary-size coalitions and
non-binary alphabets. We work in the Restricted Digit Model.

B. Related work

The symmetrized version of Tardos’ original score func-
tion for ¢ = 2 has asymptotic (large ¢) fingerprinting rate
2/(c*>7%1n2), which is roughly a factor 2.5 below capacity.
Its generalization [15] to ¢ > 3 outperforms [19] the binary
scheme but is far below the g-ary capacity.

Amiri and Tardos [11] devised a capacity-achieving joint
decoder for ¢ = 2. Unfortunately, it is computationally
intensive since it requires looking at all candidate coalitions.
A non-binary version has not yet been described, though
generalization seems straightforward.

The ‘Divide and Conquer’ scheme for g-ary alphabets, intro-
duced by Laarhoven et al. [20], works in the dynamic setting
(e.g. pay-TV broadcast), where the content tracer immediately
sees the result of the attack on a position and uses this
information to decide which symbols to distribute in the next
position. This approach intertwines several ‘ordinary’ Tardos
schemes of lower alphabet size. Its asymptotic fingerprinting
rate is ﬂ% qf—lcq when instantiated with the symmetric Tardos
score. In this paper we will not consider the dynamic setting.



There are several studies of bias-based fingerprinting in attack
models that deviate from the Marking Assumption and the
RDM. Some of these introduce modified simple-decoder score
functions. For instance, one can allow noise addition and
fusion of symbols; modified score functions were proposed
and analyzed in [16], [17].

Kuribayashi [21] introduced a score function modification for
the binary case that aims to exploit imbalances between the
Os and 1s in the attacked content.

The Expectation Maximization (EM) algorithm [12] was in-
troduced as an iterative joint decoder. It estimates a candidate
coalition. Based on this set of users it estimates the employed
collusion strategy. Then the simple-decoder score function
is modified to act specifically against this collusion strategy.
The scores are used to find suspicious users, and the whole
procedure is repeated. For ¢ = 2 a formula was given [12] for
computing a score function optimized against an estimated
strategy.

This was extended to arbitrary alphabet size by Oosterwijk et
al. [22], and furthermore analytic expressions were obtained
for the score functions optimized against the Interleaving,
Majority Voting, Minority Voting, Random Symbol and All-
High strategy. The score function tailored against Interleaving
(‘Interleaving defense’) is special. For this score it was shown
[23] that the saddlepoint of a minimax game between the
coalition and the tracer is given by the same configuration
that was found by Huang and Moulin [24] for the capacity
game: the Interleaving attack combined with the Dirichlet bias
distribution (with concentration parameter %). At the saddle
point the asymptotic fingerprinting rate achieved by the Inter-
leaving defense is exactly C,. In other words: (i) for large c
there is no better simple-decoder scheme than the Interleaving
defense together with the Dirichlet bias distribution; (ii) the
most powerful attack against this scheme is the Interleaving
strategy; (iii) the scheme achieves asymptotic capacity.

C. Contributions

We introduce a special score function for non-binary bias-
based fingerprinting. It has three interesting properties:

1) The expected score of an innocent user is zero.

2) The variance of an innocent user’s score is one.

3) The expectation of the colluders’ summed scores does

not depend on the collusion strategy.

We also find a continuous bias distribution that optimizes the
asymptotic performance of the scheme. In the case of a binary
alphabet our scheme reduces exactly to the symmetrized
Tardos fingerprinting scheme.
The combination of the above three simplifying properties,
exhibited by the binary Tardos scheme, has been long sought
after for ¢ > 2 and is regarded as something of a holy
grail. Unfortunately the asymptotic performance of the grail is
not good. The asymptotic fingerprinting rate is a decreasing
function of g. Thus it performs worse than the g-ary scheme
of Skori¢ et al. [15], which has a rate that is almost constant
at approximately 0.3/c? [19], and far worse than the capacity-
achieving Interleaving defense [23].

In this light our newly found scheme is somewhat of an
anticlimax. After a long quest for a bias-based g-ary scheme
with precisely the same special properties as the symmetrized
binary Tardos scheme, the prize seems to be a mere curiosity.
Perhaps it has a role to play at small coalition sizes.

II. PRELIMINARIES

A. Code construction, collusion attack, and simple decoder

We briefly summarize the basics of bias-based codes (‘Tardos
codes’) in the Restricted Digit Model and the notation used in
this paper.

The number of users is n. The set {1,...,n} is denoted as
[n]. The content has ¢ positions in which a symbol can be
embedded. The symbols belong to an alphabet O, with size
g = |Q] > 2. In each position, the tracer draws a random
g-component bias vector p from a distribution F', with p €
[0,1]€, p ~ F. The components are denoted as p, € [0,1],
i.e. p = (Pa)aco. The bias vector satisfies »  copa = 1.
The tracer uses the bias vector to generate code symbols for
the given position as follows. Let X; denote the symbol given
to user j. The tracer generates symbols randomly according
to Prob[X; = a] = pa.

The coalition is a set of users C C [n]. They observe a subset
of X, which we denote as X¢. They perform their attack
based on X¢. In the Restricted Digit Model, they are allowed
to choose, in each position, one symbol that they observed
in that position. Their output symbol is denoted as y. Their
strategy for choosing y may be nondeterministic. We will use
the notation 6, x, to denote their probability of outputting y
given X¢. We refer to the parameters 0, x,. as the ‘strategy’
or the ‘attack’.

The tracer tries to identify at least one of the colluders, based
on the information available to him: the p, X, and y values in
all the positions. We consider a class of algorithms known
as ‘simple decoder’, in which a score is assigned to each
user j € [n] separately. More specifically, we consider single-
position contributions .S; that are added up. If the sum exceeds
some threshold, user j is ‘accused’. The maximum tolerable
probability that a fixed innocent user gets accused is denoted
as 7.

In the decoder that we consider, the single-position scores are
computed as

Sj :h(vay7p)v (1)

where h is some function and the position index on S}, X, y
and p is omitted. Without loss of generality, we will consider
only score functions A such that the expectation value of an
innocent user’s score is zero. We call such score functions
centered. (One can shift a non-centered h by a constant
to make it centered, without changing the properties of the
scheme at all.)

The generalized (g-ary) Tardos scheme [15] has

if X; =y

if X, £y @



where

B. Asymptotic analysis

We focus on the asymptotic (large ¢, with n/c fixed) analysis
of the bias-based tracing scheme. We will need to compute
expectation values over all probabilistic degrees of freedom:
the biases p, the code word symbols X, and the coalition
outputs y. The notation for the complete expectation will be
[E, whereas expectation with respect to p has notation E, etc.
A noteworthy variable is the tally of symbols received by the
coalition. We define m, = |[{j € C : X; = a}|. In words: m,
counts how many colluders have received symbol «. In each
position the tally adds up to c: we have }_ .o mqo = c. The
vector m = (Mq)aco given p is multinomial-distributed,

Prajp = <)Hp : )

acQ
Here (%) stands for the multinomial coefficient ¢!/ [T, ma!.
We will often use the multi-index notation p™ =[] o po'®
and for a scalar s, p* = [, p5,.
The collective coalition score Sc¢ in a certain position is
defined as

Se=Y_5;="> mah(a,y,p). )

jec acQ

Two important statistical quantities were introduced [7]: the
expectation fi. of the coalition score and the variance 532, of
an innocent’s score. The first one is given by

llc = E[SCi = Z Eimah(a7y7p)i
acQ

acQ

Remark 1: fi, may depend on the (omitted) position index i;
this happens when the attack strategy has explicit position-
dependence, breaking the symmetry that is present in the code
generation and tracing algorithms.

Remark 2: The single-position quantity E,,, is the marginal
of complicated expectations involving p and m vectors in
all other positions as well as the attack strategy that possibly
depends on all positions. We have used that, for any single-
position function f(p, m,y), one can write E[f(p, m,y)] =
EpEor pExc jpmEy x. [f (0, m,y)]. Now the probability of
Xc occurring given p satisfies Px,|p o< Hjec px; =P X
Prn)p- In other words, all the p-dependence in Py, |, is already
contained in P, ,. Hence for given m, the distribution of
X¢ has no extra dependence on p, which allows us to write
Ex.|m and therefore Ex, pmEy x,

Exclpm = = Eyjm,

yielding (6).

The second statistical quantity is, for j ¢ C and a centered
score function,
~2 2

mn

EpE, pEx, 51 (X;, y,p)]

= E ]Ey|p pr z,Y,P )
rcQ

In the first line we have used that the expectation of S; is
zero. In the second line we have used that X;|p and y|p are
independent for an innocent user j, and in the third line that
Px;1p = px,. Note that P, can be extremely complicated,
containing expectations over all bias vectors, coalition symbols
and coalition outputs in other positions.

For any function z(p) we have

Ep[2(p)] = /deél—Zpa ®)

acQ

Here the notation [d?p stands for integration over the hyper-
cube p € [0,1]<, and the Dirac delta function §(1 — > pa)
enforces the constraint »__ p, = 1.

Further on we will encounter Dirichlet integrals, also known
as generalized Beta functions. Let v € (0,00)? be a vector,

then
1S pgpr 0 — ) = 1T
/odpé(1 — pap " = B )_F(Zava)'

Here T is the Gamma function, with the property I'(1 + z) =
al'(z).

Asymptotically the performance of the simple-decoder tracing
scheme as described above depends on a single parameter,
namely the fraction fic/Gin, [7]. Asymptotically, the sufficient
code length ¢ and the fingerprinting rate R are given by

9252 1 2
¢ — ZZinn 2 In — : R = C
M2 . &1 c?-20 12nn In

€))

(10)

Here it is implicit that jic /Gi., is averaged over all positions
if necessary. (Which is only the case for symmetry-breaking
strategies).

III. A NEW SCORE FUNCTION AND BIAS DISTRIBUTION

The main contribution of this paper is the introduction of a
new simple-decoder score function for g-ary fingerprinting,

a 1146y
N - B an
—1/2
1 1
a‘]iFi <EPF2(p) iO;Q Do (q 2) i) (12)

Here §,, is a Kronecker delta; the aq[F] is a (positive) F-
dependent normalization constant that makes sure that 52, =

1 and that the symmetric score function (2) is re-obtained
at g = 2.



The score (11) has the following properties, which hold for
any bias distribution F,

« An innocent user’s score has expectation value zero.

o The variance of an innocent user’s score is one.

o The expectation value of the coalition score does not

depend on the collusion strategy.

Furthermore, we find that the following bias distribution
maximizes the performance indicator fic/Ginn,

1 1
Fip) = — |3 ——(¢—2) 13
(p) Nq\/aegpa (q ) ( )
N, = /dqp5 E Dg) E — —(q—2)2 (14)

BeQ

where Nq is a normalization constant. With this choice of F,
the normalization constant becomes a,[F| = 1/N,.

Egs. (11) and (13) together form a ‘cleaner’ generalization
of the symmetric binary score system to g-ary alpabets than
the earlier scheme [15], in the sense that it preserves more of
the strategy-independence properties. Below we prove all the
above mentioned claims one by one.

ozGQ

A. Properties of the score function

Definition 1 (Strongly centered): A score function h(z,y,p)
is called strongly centered if it satisfies ), .o p=h(z,y,p) =
0.

Theorem 1: The score function (11) is strongly centered.
Proof: The sum ) o p.h(z,y,p) is proportional to

S nlE

T€EQ Pz

1)1+0zy
=2 = ) (1) gg—2=0. (15)

z€Q

In the first equality we used ) p, = 1. In the last step we
used Y (—1)1H0%w =2 —¢. O

Theorem 2: If the score function (11) is used, the variance of
an innocent user’s score is equal to one.
Proof: Eq. (7) evaluates to

0i 1
mn — E E px
a3[F] e 2P )

{(q —2)?

RN

1 1
+— +2(g—2)(—1 1+5w]
2 (¢—2)(=1) o

x

1 1
= EE 7§——q—22. (16)
P y\sz(p) P ( ) ]
In the last line we have used > p, = 1 and >, (—1)}0v=

2—q. The expression between brackets in (16) does not depend
on y; hence the expectation E,,, is trivial and (16) reduces to

a2, with ag as defined by (12). O
Theorem 3: The score function (11) gives
~ 2a4[F]
= 17
He (q—2)! )

independent of the colluder strategy.

Proof: We write

aq|F My
Z mah(a7y7p> = F(p)] [C(q_2)+27 - Z

a€cQ Y aeQ

Mo (18)

and substitute this into (6). The expectation of the first term is
Ty == aq[Fle(q — 2)Ep F(l 5- For the expectation of the third
term in (18) we use the fact that E,,|,mq = cp, and obtain
Ts == —ay[FlqcEp -t o) The second term in (18) is more
difficult. Here we get

m,
A
) c myp™

Here it is implicit that all the m-vectors in the summation
satisfy > mg, = c. The E,, is computed as follows,

1 m
myp™ / p
: =m dp 6(1 — pg)—
P b ™y P00 2
=myB(l,+m—ey) = (c+q—1)B(1,+m)
pm
e i)
Here 1, denotes the g-component vector (1,1,...,1), and e,

is a g-component vector consisting of all zeroes except in
position y, i.e. (€y)a = 0ay. Substitution of (20) into (19)
gives

1

= Fp)

2a4[Fl(c+ q = DEpErmpEym

= 2q4[F)(c+q—1E (1)

1
PF(p)
In the last equality we have used that 1/F(p) does not depend
on m and y. Adding 77 + 1> + T5 we get

He . . i, 1q -
2agF] (g 1)EpF(p) (q 1)/Odp5(1 ;Pﬁ)
= (- 1BQ,) = (qr(q)l) - = @
0

Note that in the expression E,[p™/(p,F)], the factor p,*
does not pose a problem, because m, > 1 in the Restricted
Digit Model. In contrast, E,[p™/(poF)] for a # y does not
always exist: the integral may be divergent when m, = 0.
For this reason, in the proof of Theorem 3 we avoided the
expression E,[p™/(poF')] when the third term of (18) was
averaged.

B. Optimal bias distribution F’

Theorem 4: The performance indicator [ic /Finn is maximized
by the bias distribution (13).

Proof: The oinn is equal to 1. We minimize fj;~ under
the constraint Ep[1] = 1 using the Euler-Lagrange method.
From (17) we see that this is equivalent to minimizing
(aq[F])~2. The corresponding Lagrangian can be formulated

-2



as g 2[F] + A[fy d9p 6(1— 3, pa)F(p) — 1], with a,[F]
being the [E,-integral defined in (12). Here A is a Lagrange
multiplier. Functional differentiation of the Lagrangian with
respect to F(p) gives 0 = A — gz, o0 — (= 2)°].
Solving for F', and respecting the normalization constraint,

yields (13). (I

Theorem 5: For q = 2, the combination of the score function
(11) with the bias distribution (13) reproduces the binary
symmetric scheme of [15] with zero cutoff.

Proof: For ¢ = 2 the bias function (13) is (1//\/2)\/% =
(1/N2)(I], Pa)~/? and the normalization constant reduces
to Ao = . This is precisely the arcsine distribution f(p) =
(1/7)[p(1 — p)]~'/? as introduced by Tardos [1].

For ¢ = 2 Eq. (11) gives h(y,y,p) = v/(1 — py)/py. and for
x#y:h(zy,p) = V0 —p)/pe = —W

This is the old score system (2).

C. Asymptotic performance

Corollary 1: The asymptotic code length { and asymptotic
fingerprinting rate R of the new scheme are

1 1
=4, *ln—, R=—— 2
/ qC In o R chz g (23)
with A, = 3[(¢ — 2)!°N7. (24)

Proof: Follows by substituting Theorems 3 and 4 into (10). O
Numerical values for Nq are tabulated below for ¢ < 13.

q 2 3 4 5 6 7 8
Ny | m] 265 124 | 0401 | 9.88E-2 | 1.96E-2 | 3.26E-3
q 9 10 11 12 13

N, | 465E-4 | 5.82E-5 | 647E-6 | 6.50E-7 | 5.93E-8

The asymptotic code length parameter A, and the asymptotic
fingerprinting rate parameter 1/(A, In q) are plotted in Fig. 1.
The rate parameter decreases as a function of g, whereas the
fingerprinting capacity increases.

IV. SUMMARY AND DISCUSSION

Summarizing, we have introduced a g-ary generalization of
the binary symmetrized Tardos scheme which preserves the
strategy-independent properties of the binary scheme. The bias
distribution is given by (14) and the generalization of the score
function (2) is

(=1)tHoey

+q—2
p) = ——= -
Ve — (-2

This combination of bias distribution and score function yields
62, =1and i, = m, with \V; as defined in (14).

In spite of all the nice properties, it turns out that, as far as
we can see from the numerics, the asymptotic fingerprinting
rate is a decreasing function of the alphabet size ¢; the new
scheme performs worse than other g-ary schemes known in
the literature.

The analysis in this paper is brief and focuses on large-c

asymptotics. In spite of its bad asymptotic performance, our

h(z,y, (25)

2
w2 /2 A,

45

40

35

Fig. 1.  Top: The asymptotic code length parameter Aq as a function
of g. Bottom: The asymptotic fingerprinting rate parameter 1/(Aq1nq) as
a function of q.

newly found scheme may have a role to play at small coalition
sizes.
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