
Other versions of this article appeared in the proceedings of ESORICS 2013 and in the International Journal of Information
Security (IJIS). The final publication is available at Springer via http://dx.doi.org/10.1007/s10207-015-0293-x.

ASICS: Authenticated Key Exchange Security
Incorporating Certification Systems

(Full version, June 2 2015)

Colin Boyd1, Cas Cremers2, Michèle Feltz3, Kenneth G. Paterson4,
Bertram Poettering5, and Douglas Stebila6

1 Norwegian University of Science and Technology
2 University of Oxford

3 National Commission for Data Protection, Luxembourg
4 Royal Holloway, University of London

5 Ruhr University Bochum
6 Queensland University of Technology

Abstract. Most security models for authenticated key exchange (AKE) do not explicitly model the
associated certification system, which includes the certification authority (CA) and its behaviour.
However, there are several well-known and realistic attacks on AKE protocols which exploit various
forms of malicious key registration and which therefore lie outside the scope of these models. We
provide the first systematic analysis of AKE security incorporating certification systems (ASICS).
We define a family of security models that, in addition to allowing different sets of standard AKE
adversary queries, also permit the adversary to register arbitrary bitstrings as keys. For this model
family we prove generic results that enable the design and verification of protocols that achieve
security even if some keys have been produced maliciously. Our approach is applicable to a wide
range of models and protocols; as a concrete illustration of its power, we apply it to the CMQV
protocol in the natural strengthening of the eCK model to the ASICS setting.

1 Introduction

After public key encryption and digital signatures, authenticated key establishment (AKE) is perhaps the
most important public key primitive. From a real-world perspective, AKE protocols relying on public
key techniques are widely deployed in systems that are used every day by billions of users, including
systems such as TLS, IPsec, SSH, and various single sign-on systems. From a theoretical perspective,
formal, cryptographically sound modelling for AKE protocols began in the symmetric setting with the
seminal work of Bellare and Rogaway [5], and was later extended to the public key setting [7]. Since then,
there has been a large body of work in this tradition, and many additions and modifications have been
proposed. The most prominent current models in this tradition [4, 14, 32, 43] strengthen or add to the
required security properties, cover different protocol classes, and strengthen adversary powers.

Despite intensive study over two decades, important elements of AKE protocols have not been
sufficiently modelled, preventing our deeper understanding of this important primitive and limiting its
applicability to real-world protocols. Specifically, the public key infrastructure (PKI) needed to support the
authenticity of public keys in AKE, and the interactions between the certification authority (CA), honest
parties, and the adversary, are rarely modelled. Rather, with exceptions as noted below, in typical AKE
models and proofs it is assumed that all public keys are honestly generated and authentically distributed
at the start of the security game, and that there is a single key per party; certificates are excluded from
the model. The adversary can corrupt parties, learning all their secrets, but has limited ability to register
malicious keys. Roughly speaking, this modelling approach corresponds to an ideal CA, who zealously
generates perfect key pairs and securely distributes them to the correct parties.

However, CAs in the real world simply do not operate in such rigorous ways. They have differing
strengths of procedures for checking claimed identities7, so malicious parties might in some cases get
arbitrary public keys certified against identifiers of their choice. The most egregious examples involve CAs
who, either willingly, under coercion, or as a result of security compromises, have issued certificates for
keys and identifiers that they should not have.8 CAs following best-practices may require that a user

7 For example, issuance of Extended Validation (EV) certificates requires stronger identity-checking requirements
than non-EV certificates, see https://www.cabforum.org/certificates.html for more details.

8 In June and July 2011, Dutch CA DigiNotar was hacked [23], with the intruder taking control of all 8 of the CA’s
signing servers; at least 531 rogue certificates were then issued. In August 2011, TURKTRUST CA [21] issued

http://dx.doi.org/10.1007/s10207-015-0293-x
https://www.cabforum.org/certificates.html


2

requesting a certificate submit a certificate signing request (CSR, as per [45]) to the CA. This involves the
user self-signing the data that is to be certified. Various standards [1, 2, 41] include other approaches to
providing proofs of possession. However, even these basic tests of private key ownership are not mentioned
in industry guidelines issued by the CA/Browser Forum [12,13]. Furthermore, these procedures all fall
short of the proofs of knowledge [40] required to match what is assumed in typical AKE models. Thus,
an attacker may be able to register another party’s public key under his own identifier, or register a
malformed key which then interacts with properly generated keys in an unfortunate way.

Critically, there are realistic attacks on AKE protocols which cannot be captured by AKE security
models that omit CA and PKI aspects:

– Kaliski’s unknown key share (UKS) attack [28] on early versions of MQV exploits the ability of the
adversary to dynamically register a public key (which is valid and for which the adversary does know
the secret key).

– The UKS attack on KEA described by Lauter and Mityagin [33, p. 380] exploits the adversary’s ability
to re-register some party’s static public key as his own public key.

– Blake-Wilson and Menezes [9] introduced the duplicate-signature key selection (DSKS) attack on
signature schemes: after observing a user’s signature σ on a message m, the adversary E is able to
compute a signature key pair (skE , vkE) (or sometimes just a verification key vkE) such that σ is
also E’s signature on the message m. Now, for example, if the Station-to-Station (STS) protocol is
implemented using a signature scheme that is vulnerable to DSKS attacks, and the adversary can
register arbitrary public keys with the CA, then the protocol is vulnerable to an online UKS attack [9].

– In Lim and Lee small subgroup attacks [34], the adversary extracts partial (or even complete)
information about a party’s long-term secret key. Some of these attacks require registering invalid
public keys with the CA before engaging in protocol runs with honest participants. Of particular note
are the Lim–Lee-style attacks of Menezes and Ustaoglu [37] on the HMQV protocol [29].

We claim that to date there has been no systematic treatment in the literature of the behaviour of CAs
with respect to public keys and identifiers chosen by the adversary and, relatedly, the treatment of public
keys and ephemeral values by protocol participants (especially with respect to group membership testing).
Our paper sets out to rectify this situation, providing a comprehensive and self-contained treatment of
these features, as well as establishing generic results to make protocols resilient against such attacks.

1.1 Contributions.

Our paper has three main contributions.
First, we present in Section 2 a framework for reasoning about the security of AKE protocols with

respect to various CA key registration procedures. This framework allows us to capture several attacks
based on adversarial key registration, including UKS attacks, small-subgroup attacks, attacks that occur
when the CA does not check if public keys are registered twice, and attacks that occur when multiple
public keys can be registered per identifier.

Second, we provide in Section 3 a generic approach to achieve strong security guarantees against
adversaries that can register arbitrary public keys for certain types of protocols. In particular, we show
how to transform Diffie–Hellman type AKE protocols that are secure in a model where only honest key
registration is allowed into protocols that are secure even when adversaries can register arbitrary valid or
invalid public keys. In such cases, security is still guaranteed for all sessions (that were considered clean
or fresh in the base model) except those in which the peer’s public key is valid but registered by the
adversary.

Third, we demonstrate in Section 4 how our methodology can be used to establish strong security
guarantees, even when the adversary can register arbitrary public keys, for concrete protocols such as
CMQV, NAXOS, and UP, using CMQV as a running example. We provide in Section 5 recommendations
for the design of protocols that are secure in our models.

This article extends our previous conference paper [11].

1.2 Related work.

The original computational model for key exchange of Bellare and Rogaway [5] has a long-lived key
generator, which is used to initialise all parties’ keys at the start of the game. This is a standard part of

special certificates with wildcard signing capabilities, allowing impersonation of any domain in the Internet.
This was discovered, by coincidence, only 18 months later.



3

most computational models today. However, in common with several later models [14,27,31], the adversary
cannot influence long-term keys: only honestly generated keys are considered. Starting with the 1995
model of Bellare and Rogaway [6] it was recognised that the adversary may be able to choose long-term
keys for certain parties, whether public keys or symmetric keys. It is possible to identify three different
methods that have been used to model such an adversary capability.

1. The adversary can replace long-term keys by providing them as an input to a corrupt query. This was
the method used originally by Bellare and Rogaway [6] and was subsequently used in the public key
setting by others [8, 38].

2. The adversary is allowed to generate arbitrary keys for corrupted parties at any time during the
protocol run [29].

3. An additional query is added specifically to set up a user with a new key chosen by the adversary
[16, 25, 46]. This query is typically called establishparty and takes as input the user name and its
long-term public key.

These methods allow the models to capture the Kaliski attack [28], which requires the adversary to register
a new public key after certain protocol messages have been obtained. However, none of these currently
used methods has the generality of our model and, in particular, all of them omit the following realistic
features:

– registration of multiple public keys per user;
– flexible checking by certification authorities via a verification procedure;
– adversarial choice of public keys per session.

Special mention should also be made of the model of Shoup [43]. Unlike most popular AKE models today,
it uses a simulatability definition of security comparing ideal and real world views. Security is defined to
mean that for any real world adversary there is an ideal world adversary (benign by definition) such that
the transcripts of the two are computationally indistinguishable. Real-world adversaries have the ability to
assign users to public key certificates. Shoup’s model has not been widely used and the examples in [43]
are not fully worked through. Furthermore, the model cannot represent an adversary who obtains only
ephemeral secret keys without knowing the long-term key of the same user and therefore cannot capture
security properties common in more modern models.9

Cash et al. [15] and Hofheinz et al. [24] have considered the security of non-interactive key exchange
(NIKE) in settings where the adversary can register arbitrary public keys, analogously to our ASICS
setting for interactive key exchange. It is an interesting open problem to examine how the security models
and constructions for NIKE [15,24] can be built upon to achieve security in the ASICS setting.

Boldyreva et al. [10] model certification and PKI for public key encryption and signatures. They point
to legitimate concerns regarding what certification authorities can be expected to check in practice. It
is interesting to note that while they use key exchange as a prime motivating example for modelling
certification, key exchange is not explored in their models. Nevertheless, this and related follow-up
work [10,22] are in the spirit of our work: like ours, their models allow (amongst other things) corrupt key
registration. However, they do not allow the adversary to reveal long-term or ephemeral keys, which is
fundamental to modern AKE security models.

Critically, all of the approaches mentioned above have only been used to establish results for a handful
of specific protocols. In contrast, we establish generic results that facilitate the design and verification of
AKE protocols, and that can be applied to a large class of protocols.

2 ASICS model family

In this section we define a parameterized AKE security model that allows for explicit modelling of the
certification of public keys. Prominent AKE security frameworks can be instantiated in this family of
models, as well as extensions that allow dynamic adversarial registration of arbitrary bitstrings as public
keys.

Generally speaking, from a user’s point of view, participation in key exchange encompasses three
consecutive phases: First, users set up their individual key pairs; more precisely, each user invokes a
randomized algorithm KeyGen that outputs a fresh secret-key/public-key pair (sk, pk). Second, users
contact a certification authority (CA) to get their keys certified: each user provides the CA with its
identifier P̂ and its public key pk, and obtains a certificate C that binds the identifier to the key. After

9 An early version of [43] from April 1999 in fact did allow revealing session state without simultaneously revealing
long-term secrets. However, this option disappeared in all later versions of the paper.



4

completing these setup steps, in the third phase, users can engage in interactive sessions with other users
to establish shared keys. To do so, they usually require knowledge of their own key pair (sk, pk), their
identifier P̂ , and the corresponding certificate C. In addition to that, protocols may require a priori
knowledge of (a subset of) the peer’s public key pk′, peer’s identifier Q̂, and peer’s certificate C ′. As we
will see, our execution model is general enough to cover all these settings.

To ease notation, we assume that public key pk and identifier P̂ can be readily derived from any
certificate C; we use notation C.pk = pk and C.id = P̂ correspondingly. This assumption holds for all
practical PKIs we are aware of, and in particular for X.509 certificates (as used in SSL/TLS); the latter
carry public key and identifier in a canonically formatted data structure. In potential other cases, where
keys and identifiers cannot be extracted from certificates but instead are auxiliary input to the verification
routine, certificates can still be expected to be valid for only a single key/identifier pair, i.e., the mapping
from C to compatible pk and P̂ is again unambiguous. Proposed notations C.pk and C.id are hence
meaningful also in such cases.

Here, we focus on the interaction between users and the CA that occurs in the certification process.
We enable the modeling of different degrees of rigour in the checks of consistency and ownership of public
keys pk presented to the CA. On the one hand, CAs could be pedantic with such verifications (e.g., require
a proof of knowledge10 of the secret key corresponding to pk); on the other hand, CAs could also just
accept any given bitstring pk as valid and issue a certificate on it. The ability to precisely assess the
security of key establishment in the face of different CA behaviours is a key contribution of our new model
family.

Definition 1. An ASICS protocol Π consists of a set of domain parameters, a key generation algorithm
KeyGen, a public key verification procedure VP, and the protocol description π that describes how key
exchange protocol messages are generated and responded to as well as how the session key is derived.

We denote by VP the specific verification procedure on public keys and identifiers that a considered CA
deploys. As different checks on pk and P̂ might require different levels of interaction between the registering
user and the CA, for example with the use of state by the CA, we model it as a procedure, as opposed to
a function. VP takes as input a public key and an identifier. To enable the specification of realistic VP
behaviour, we additionally allow the definition of VP to access elements of the game state, as we will see
in Example 1. We require that VP is efficient and has binary output. Furthermore, we require that the
CA issues the requested certificate only if VP outputs value 1; all certification requests where VP outputs
value 0 are rejected. Note that, for simplicity, we only consider non-interactive verification procedures (i.e.,
two-message registration protocols) between the user and the CA. A more general treatment covering
interactive verification procedures as well would introduce additional complexities to our framework.

Specific key exchange protocols might be insecure for one (liberal) instantiation of VP, and be secure
for another (stricter) one. Note that CAs that do not perform any check on pk and P̂ are modelled by
a verification procedure VP that always outputs 1. A verification procedure that performs few checks
may output 1 for at least all pk ∈ PK, where PK denotes the set of possible public keys output by
KeyGen. Precisely, if the input of algorithm KeyGen is security parameter 1k and the used randomness is
r ∈R {0, 1}k, then we define

PK =
{
pk
∣∣ ∃r, sk : r ∈ {0, 1}k ∧ KeyGen(1k; r) = (sk, pk)

}
.

A verification procedure with high assurance may require a zero-knowledge argument that the requester
knows the secret key corresponding to the public key, and even that the key was generated verifiably at
random. Note that we allow VP to keep an internal state between invocations; our model hence covers
possible implementations of CAs that reject certification requests with public keys that have already been
registered (e.g., for a different identifier).

2.1 Security model

At a high level, our model stipulates users that generate one or more keys, obtain certificates for these
keys from a CA, and use keys and certificates to run (potentially concurrent) sessions of the key agreement

10 Although interactive or non-interactive zero-knowledge proof systems seem to yield ideal solutions in this context,
standards like X.509, OpenPGP, and PKCS#10 content themselves with the purely heuristic (and inferior)
approach of demanding a so-called proof-of-possession (PoP), mostly implemented via self-signed certificates or
self-signed certificate requests (cf. [1, 41]). The security of such constructions seems to be difficult to formally
assess [40].



5

acert certificate of the actor (the user running this session)
pcert certificate of this session’s peer
role taken role; either I (initiator) or R (responder)
sent concatenation of all messages sent in this session
rcvd concatenation of all messages received in this session
status session status; either active, accepted, or rejected

key key in {0, 1}k established in this session
rand randomness used in this session
data any additional protocol-specific data

Table 1. Elements of session state

QN = {kgen, hregister, create, send} (Normal protocol behaviour)
QS = {corrupt, randomness, session-key} (corruption of Secrets)
QR = {pkregister, npkregister} (adversarial key Registration)

Table 2. Overview of query sets. Additionally, there is a test-session query.

protocol. Similar to other security models [5, 14], the adversary controls all communication in these
sessions, corrupts users at will to obtain their secret keys, and arbitrarily reveals established session keys.
Innovative is the adversary’s additional ability to steer the registration process with the CA: it can obtain
from the CA valid certificates for public keys and identifiers of its choosing (as long as VP evaluates to 1),
and can forward such certificates to users.

To keep our model simple and comprehensible, we abstract away any forgeability issues of certificates
and assume the following ideal functionality: no certificate will be considered valid unless it has been
issued by the CA. We model this by letting the challenger keep a list C of all CA-issued certificates and by
equipping users with a certificate verification oracle OCV that checks membership in that list; concretely,
we assume that OCV (C) = 1⇔ C ∈ C. Of course, in concrete implementations, this oracle is replaced by
an explicit local verification routine; for instance, if certification is implemented via a signature scheme,
this will include its verification procedure (besides further checking of validity, chain-validity, revocation
state, etc.).

Sessions and session state. Users, once they have created their keys and obtained corresponding
certificates, can execute protocol sessions. Within a user, each such session is uniquely identified by a
pair s = (C, i), where C denotes the certificate used by the user (by himself) in that session, and i is a
counter. The user maintains session-specific variables as indicated in Table 1. Some session variables are
fixed upon session creation, whereas others can be assigned or updated during protocol execution. Some,
such as pcert, status, and key, are considered to be outputs of the key establishment and might be used
in higher-level protocols or applications. A session s has accepted if sstatus = accepted.

Adversarial queries. The adversary interacts with users by issuing queries. The adversary can direct
users to establish long-term key pairs and certificates (kgen, hregister), to initiate protocol sessions (create),
and to respond to protocol messages (send). The adversary may be able to learn long-term keys (corrupt),
session-specific randomness (randomness), or session keys (session-key) from users. The adversary can also
maliciously obtain certificates from the CA (pkregister, npkregister).

The queries in set QN = {kgen, hregister, create, send}, defined as follows, model normal operation of
the protocol; they are required in any security model. Initially, the auxiliary variables HK, C, Ch, Cpk, and
Cnpk are set to ∅.

– kgen () By running algorithm KeyGen, a fresh key pair (sk, pk) is generated. Public key pk is returned
to the adversary; secret key sk is stored for processing potential later queries corresponding to pk. The
public key is added to the set of honestly generated keys: HK ← HK ∪ {pk}.

– hregister(pk, P̂ ) The query requires that pk ∈ HK and that VP outputs 1 on input pk11 and P̂ ;
otherwise, it returns ⊥. The public key pk is registered at the CA for the identifier P̂ . The resulting
certificate C is added to the global set of certificates and to the set of honestly generated certificates:
C ← C ∪ {C} and Ch ← Ch ∪ {C}. The query returns C.

11 Reasonable implementations of VP output 1 on all keys pk ∈ HK, because HK ⊆ PK.



6

– create (s = (C, i) , r, [C ′]) The query requires that C ∈ Ch, that a session with counter i for certificate
C does not already exist, and that r ∈ {I,R}; otherwise, it returns ⊥. A new session s is created for
the user with public key C.pk and identifier C.id. Session variables are initialized as

(sacert, spcert, srole, ssent, srcvd, sstatus, skey)← (C,⊥, r, ε, ε, active,⊥) .

If the optional certificate C ′ is provided, we set spcert ← C ′. In addition, a string in {0, 1}k is sampled
uniformly at random and assigned to srand; we assume that all randomness required during the execution
of session s is deterministically derived from srand. The user also runs the initialization procedure for
the key exchange protocol, which may further initialize its own (internal) state variable sdata and
optionally generate a message M . If M was generated, set ssent ← M , and return M . Otherwise,
return ⊥.

– send (s,M) The query requires that session s exists and that sstatus = active; otherwise, it returns ⊥.
The user continues the protocol execution for this session with incoming message M , which may
optionally generate a response message M ′. Next, srcvd is set to (srcvd ‖ M) and, if M ′ is output,
ssent is set to (ssent ‖ M ′). The protocol execution may (re-)assign values to sstatus and skey, and
to the session’s internal state variable sdata. Also, if the value spcert was not provided to the create
query, then protocol execution may assign a value to spcert. (For example, in TLS the client does not
learn the server’s certificate until it receives the ServerCertificate message.) If M ′ was generated,
return M ′; otherwise return ⊥.

Remark 1 (Multiple CAs). Our model stipulates a PKI with a single CA. This could be a limitation
for the analysis of scenarios with multiple CAs. However, as we argue next, implicitly we do capture
at least those multi-CA settings where CAs issue certificates fully independently of each other (as do
the CAs of the PKI currently in place to secure web traffic in the Internet) and we believe that our
approach hence reaches the majority of practically relevant scenarios. Concretely, verification procedures in
independently-working multi-CA settings can be readily emulated in our single-CA framework as follows:
if VP1, . . . ,VPn denote the verification procedures of n independent CAs, then composed verification
procedure VP1...n that outputs 1 if there exists at least one i, 1 ≤ i ≤ n, such that VPi outputs 1,
effectively folds the n procedures into a single one, adequately modeling verification in the multi-CA
setting. Note that we allow an individual CA to maintain state, such as a list of certificates that it has
already issued, but we do not assume any joint state between multiple CAs. We remark that the situation
in a multi-CA setting where CAs interact is much more involved. For instance, lifting the CA behaviours
suggested in Examples 1(b) and (c) to a setting with multiple CAs requires the latter to consistently
operate on specific global data structures; this seems inherently hard to implement (as, amongst others, it
would implicitly solve the consensus problem in distributed systems).

Remark 2 (One key for many identifiers). A frequently observed setting in the web PKI is that users hold
one public key that they bind to a set of identifiers (with the corresponding number of certificates). This
happens, for instance, if globally acting companies register domain names in several different countries,
but process HTTPS requests on a single centralized facility. Observe that our model covers such cases of
multiple registration of a key: hregister may be queried many times for the same pk. Moreover, through
being identified by pairs (C, i) (as opposed to (pk, i)), sessions associated with one pk are aware of the
identifier C.id in use.

The queries in set QS = {corrupt, randomness, session-key} model the corruption of a user’s secrets.
Similar queries are found in other standard AKE models [5, 14].

– corrupt (pk) The query requires pk ∈ HK; otherwise, it returns ⊥. This query returns the secret
key sk corresponding to public key pk.

– randomness (s) The query requires that session s exist; otherwise, it returns ⊥. The query returns
the randomness srand.

– session-key (s) The query requires that session s exist and that sstatus = accepted; otherwise, it
returns ⊥. The query returns the session key skey.

Remark 3 (Semantics of randomness query). The randomness query gives the adversary access to the
randomness srand that is used in a particular session. Formally, one may think of the session as an instance
of a probabilistic Turing machine: the query gives the adversary the values that are read from the random
tape. Practically, this models a randomness generator whose values are revealed after they are produced,
for example, by a side-channel attack. This is similar to the ephemeral key reveal query from [32].



7

The hregister query introduced above only allows registration of keys pk ∈ HK, i.e., keys held by honest
users. In contrast, the adversary can obtain certificates on arbitrary (valid) public keys using the following
pkregister query. Going even further, the npkregister query allows registration of objects that are not
even public keys (always assuming that VP outputs 1 on the candidate object). These queries will allow
modelling Kaliski’s attack on MQV [28] and small subgroup attacks [34], amongst others. We emphasize
that the queries in set QR = {pkregister, npkregister} have no counterparts in standard definitions of key
exchange security.

– pkregister(pk, P̂ ) The query requires that pk ∈ PK and that VP outputs 1 on input pk and P̂ ;
otherwise, it returns ⊥. The public key pk is registered at the CA for identifier P̂ . The resulting
certificate C is added to the global set of certificates and to the set of certificates generated through
pkregister query: C ← C ∪ {C} and Cpk ← Cpk ∪ {C}. The query returns C.

– npkregister(pk, P̂ ) The query requires that pk 6∈ PK and that VP outputs 1 on input pk and P̂ ;
otherwise, it returns ⊥. The public key pk is registered at the CA for the identifier P̂ . The resulting
certificate C is added to the global set of certificates and to the set of certificates generated through
npkregister query: C ← C ∪ {C} and Cnpk ← Cnpk ∪ {C}. The query returns C.

Remark 4 (Efficiency of pkregister and npkregister processing). Observe that pkregister and npkregister
queries require a membership test for set PK. In some settings, such tests might correspond to computa-
tionally hard problems like quadratic residuosity or DDH12. We discuss two problems that might arise
when analyzing key exchange protocols where PK-membership is difficult to assess: (1) If the queries,
by whatever means, correctly decide membership in PK, then the adversary implicitly gets access to
a decision oracle for that set; this has to be taken into account in corresponding security reductions,
e.g., when selecting appropriate hardness assumptions. (2) If an analyzed ASICS protocol Π is used as
a component in a higher-level construction Π ′, then any security argument that reduces the security
of Π ′ to the security of Π will inevitably have to specify how pkregister and npkregister oracles are to be
simulated. As mentioned before, in some settings this seems to be infeasible.

Example 1. Here we formalize some verification procedures that reflect practically relevant checks. Note
that the algorithms can access the current state of game state variables, such as C, Cpk, Cnpk. We use q to
denote the query that invoked VP.

(a) Identity validation. CAs may verify the identity of users, for example by checking their passports
or looking up public information of companies. In practice, this means that the adversary cannot register
a key for an honest party. This enforces a split between honest users that generate their keys randomly by
using hregister, and dishonest users that can generate their keys in various ways, and use pkregister and
npkregister. We model this behaviour by abstracting from the concrete passport checking and instead give
an abstract verification procedure whose behaviour mimics the concrete validation behaviour.

VP(pk, P̂ ) =

1 if (q = hregister ∧ ¬∃C ∈ Cpk ∪ Cnpk : C.id = P̂ ) ,

1 if (q ∈ QR ∧ ¬∃C ∈ Ch : C.id = P̂ ) , and
0 otherwise.

The above verification procedure prevents the adversary from registering a key for identifier P̂ via a
query in QR if there already exists a certificate returned as response to a query hregister with identifier
P̂ . Similarly, VP prevents the adversary from registering a key for identifier P̂ via the query hregister if
there already exists a certificate returned as response to a query in QR with identifier P̂ . This splits the
identifiers into two disjoint sets and reflects strong identity validation where impersonation of honest users
is impossible. Note that the above abstract VP model is implemented by the actual identity validation.

(b) Uniqueness of the public key.

VP(pk, P̂ ) =

{
1 if ¬∃C ∈ C : C.pk = pk , and
0 otherwise.

The verification procedure takes as input pk, P̂ and the global set of certificates C. If there is no certificate
in C which contains public key pk for which a certificate is being requested, then it returns 1. Otherwise it
returns 0.
12 For instance, consider an RSA modulus N and the (cyclic) group QRN of quadratic residues modulo N . As the

CDH problem in QRN is provably as hard as factoring N [35,42], it is conceivable to instantiate a DL-based key
agreement protocol (like UM, HMQV, etc.) with that group. This would result in PK = QRN , and pkregister
and npkregister queries would have to perform membership tests for this set. However, the latter is assumed to
be a hard problem, by the quadratic residuosity assumption [26].



8

(c) No two public keys for one identifier.

VP(pk, P̂ ) =

{
1 if ¬∃C ∈ C : C.id = P̂ , and
0 otherwise.

The verification procedure takes as input pk, P̂ and the global set of certificates C. If there is no certificate
in C which contains identifier P̂ , then it returns 1. Otherwise it returns 0.

(d) No checks at all.
VP(pk, P̂ ) = 1 (for all pk and all P̂ ).

Remark 5 (On certificate signing requests (CSRs)). Some CAs may require users to self-sign the data that
is to be certified and to submit the resulting certificate signing request. To model CSRs and related checks,
one needs to introduce an additional parameter φ in the definitions of the queries hregister, pkregister, and
npkregister. Then the verification procedure of a CA checking CSRs takes as input pk, P̂ and a signature
φ. If φ is a valid signature on message m = P̂ ‖ pk, then it returns 1. Otherwise it returns 0.

2.2 Security experiment

Using the above queries, we define a parameterized family of AKE security models. As is common in
BR-style AKE models, we must restrict query usage so that the adversary cannot trivially win the security
experiment. The conditions under which queries are disallowed are expressed by a freshness condition,
which typically uses a matching condition to formalize intended partner sessions.

Definition 2 (Matching, freshness, ASICS model). Let Π be an ASICS protocol. A matching
condition M for Π is a binary relation on the set of sessions of Π. Let Q be a set of queries such that
QN ⊆ Q ⊆ QN ∪ QS ∪ QR. A freshness condition F for (Π,Q) is a predicate (usually depending on a
matching condition M) that takes a session of Π and a sequence of queries (including arguments and
results) of a security experiment over queries in Q. We call a triplet X = (M,Q,F ) an ASICS model
for Π.

Definition 3 gives two possible matching conditions. Examples of freshness conditions will be given in
Example 2 on the facing page, and in Section 4.1.

The intricacies of matching definitions in AKE protocols are explored in detail by Cremers [18].
Two issues are important here. First, there is a strong connection between the information used in a
matching definition and the information used to compute the session key. Second, some protocols like the
two-message versions of MQV and HMQV allow sessions to compute the same key even if they perform
the same role, whereas other protocols such as NAXOS require the sessions that compute the same key to
perform different roles. In the remainder of the paper we will use one of the definitions below, depending
on the type of protocol.

Definition 3 (M1-matching, M2-matching). Let s and s′ denote two sessions of an ASICS protocol.
We say that session s′ M1-matches (or is M1-matching) session s if sstatus = s′status = accepted and

(sacert.pk, sacert.id, spcert.pk, spcert.id, ssent, srcvd)

= (s′pcert.pk, s
′
pcert.id, s

′
acert.pk, s

′
acert.id, s

′
rcvd, s

′
sent)

Similarly, we say that session s′ M2-matches (or is M2-matching) session s if s′ M1-matches session s
and srole 6= s′role.

Thus, we will use M1 for protocols such as the two-message versions of MQV and HMQV, and we will
use M2 for protocols such as NAXOS.

Remark 6 (Comparison to matching definition if only one key per identifier is allowed). Note that when
users are allowed to have multiple public keys, matching sessions (that is, intended communication partners)
of some AKE protocols will not always compute the same session key if the definition of matching does
not require agreement on the public keys used in the respective sessions.

The goal of the adversary is to distinguish the session key of a fresh session from a completely random
string. This is modelled through an additional query:

– test-session (s) This query requires that session s exists and that sstatus = accepted; otherwise, it
returns ⊥. A bit b is chosen at random. If b = 1, then skey is returned. If b = 0, a random element of
{0, 1}k is returned.



9

Definition 4 (ASICSX experiment). Let Π be an ASICS protocol and X = (M,Q,F ) be an ASICS
model for Π. We define experiment ASICSX between an adversary E and a challenger who implements all
users and the CA as follows:

1. The experiment is initialized with domain parameters for security parameter k.
2. The adversary E can perform any sequence of queries from Q.
3. At some point in the experiment, E issues a test-session query for a session s that has accepted and

satisfies F at the time the query is issued.
4. The adversary may continue with queries from Q, under the condition that the test session must

continue to satisfy F .
5. Finally, E outputs a bit b′ as E’s guess for test-session’s bit b.

Definition 5 (ASICSX advantage). The adversary E wins the ASICSX security experiment if its output
matches the bit b chosen in the test-session query. The ASICSX -advantage of E is defined as AdvASICSX

Π,E (k) =
|2 Pr(b = b′)− 1|.

Definition 6 (ASICS security). Let Π be an ASICS protocol and X = (M,Q,F ) be an ASICS model.
Π is said to be secure in ASICS model X if, for all PPT adversaries E, it holds that

1. if two users successfully accept in M -matching sessions, then they both compute the same session key,
and

2. E has no more than a negligible advantage in winning the ASICSX experiment; that is, there exists a
negligible function negl in the security parameter k such that AdvASICSX

Π,E (k) ≤ negl(k).

Remark 7 (Implicit authentication). Note that the ASICS security definition, like eCK-style security
definitions, only provides implicit peer authentication, meaning that the key could only be known by the
peer, not explicit authentication that the peer actually was active in the session.

Remark 8 (Comparison to other models, including BR, CK and eCK). By choosing the appropriate subset
of queries and definitions of freshness and matching, our parameterised model can be instantiated to
produce many existing AKE models. The vast majority of existing models assume honestly-generated key
pairs that are securely distributed to users. They therefore lack pkregister and npkregister queries. Our
model family includes the eCK model [32] and the eCKw model [19] as special cases. These models capture
the leakage of session specific ephemeral data. It also includes the eCK-PFS model [19] incorporating
perfect forward secrecy. The Bellare-Rogaway model [5] can be captured in our approach by including
timestamps as part of the messages, to accurately model the matching definition from [5]. Unlike the CK
model [14], we do not assume unique session identifiers to be available to the protocol up-front. We do not
consider this a drawback as real-world protocols usually do not have such identifiers either. Instead, our
family includes the basic CKHMQV model [29] in which the HMQV protocol was analysed. For the CK
and CKHMQV models we have chosen to interpret the session-state to be the session randomness, in the
same fashion as the models have been used by their original authors [14,29].

Remark 9 (Freshness will depend on the set of allowed queries and on the matching definition). Note that
the exact definition of freshness F used in a security model X will likely depend essentially on the set of
queries Q available to the adversary in that model, as well as the specific matching definition. For example,
when Q includes pkregister and/or npkregister queries, then we will require an additional restriction on
the registration status of the specific public key of the peer used in the test session.

Example 2. Let us consider the following ASICS model as a concrete example. Let X = (M1, Q, F ) be
the ASICS model given by Q = QN ∪ {session-key} ∪ QR and F defined as follows. Given a session s and
a sequence of queries, F holds if:

– no session-key(s) query has been issued, and
– for all sessions s′ such that s′ M1-matches s, no query session-key(s′) has been issued, and
– no query pkregister(spcert.pk, spcert.id) has been issued.

The model X is an extension of a BR-like model with a CA that allows registration of arbitrary keys. If a
protocol is secure in X, then it is secure even if the adversary can register arbitrary bitstrings as public
keys, as long as the specific peer key used in the test session is not generated by the adversary.

2.3 Capturing attacks

We illustrate how several attacks exploiting the adversary’s ability to register valid or invalid public keys
can be captured in ASICS models.



10

Kaliski’s online UKS attack against MQV [28]. Basing on the observations from Example 2, Kaliski’s attack
against MQV is captured by an ASICS model where the adversary can register a specific (valid) public
key with his own identifier via a pkregister query. As the adversary knows the secret key corresponding to
the registered public key, the attack cannot be prevented by VP requiring a proof-of-possession of the
secret key.

UKS attack against KEA based on public-key re-registration [33, p. 380]. Suppose that public key pk has
been honestly registered at the CA for some user with identifier P̂ via an hregister(pk, P̂ ) query. In the
UKS attack on the KEA protocol, the adversary re-registers the public key pk under his own identifier
L̂ 6= P̂ by issuing the query pkregister(pk, L̂). The attack is prevented if VP checks for uniqueness of the
public key and outputs 0 when the public key was certified before (as observed in [33, p. 381]). Note that
the UKS attack can also be prevented by making the session key derivation depend on users’ identifiers.

UKS attack against KEA+ based on impersonation attack during key registration. Lauter and Mityagin [33]
produced the KEA+ protocol from the KEA protocol and Protocol 4 in [7] by incorporating the identifiers
of the user and its peer in the session key computation to prevent UKS attacks; however, a similar UKS
attack first identified in the current paper still works on the KEA+ protocol. This attack involves (a) a type
of impersonation during key registration [44, p. 3] as it requires the adversary to successfully impersonate
a user to the CA who then issues a certificate containing the user’s identifier, but the adversary’s valid
public key, and (b) impersonation of that user during the key exchange phase. We stress that the attack
does not arise when only one public key per identifier can be registered.

Our UKS attack against KEA+ is captured in the ASICS model Z = (M2, Q, F ) given by Q =
QN ∪ {session-key} ∪ {pkregister} and F defined as follows. We say that a session s satisfies F if it holds
that

– no session-key(s) query has been issued, and
– for all sessions s′ such that s′ M2-matches s, no query session-key(s′) has been issued, and
– no query pkregister(spcert.pk, spcert.id) has been issued.

We next show that KEA+ is insecure in ASICS model Z. The adversary creates an initiator session via the
query create(s = (C, i), I, C ′), where the public keys C.pk = A = ga and C ′.pk = B = gb were honestly
registered via the query hregister. Let C.id = Â. Now the adversary registers a second public key A′ = Ar,
for some r in Zp, with identifier Â, by issuing the query pkregister(A′, Â) returning certificate C ′′. He then
creates a responder session via the query create(s′ = (C ′, j),R, C ′′) and activates session s′ by sending
the message X = gx sent by session s to session s′. The adversary intercepts the response Y = gy sent by
session s′, modifies it by setting Y ′ = Y r, and then sends message Y ′ to session s. Session s accepts the
key skey = H(Y ′a, Bx, Â, B̂) as the session key, while session s′ accepts as its key s′key = H(A′y, Xb, Â, B̂).
The completed session s is chosen as the test session. Now a session-key query to session s′ reveals the
session key of the test session. The sessions s and s′ are not M2-matching (since srcvd 6= s′sent), but compute
the same session key. This leads to our UKS attack. Adding either the long-term public keys of both
actor and peer or the exchanged messages (in addition to the identifiers) in the session key computation
would prevent the attack, since then the session keys computed in both sessions would be different with
overwhelming probability (assuming that H is modelled as a random oracle). Alternatively, the attack can
be prevented by VP requiring identity validation as described in Example 1; this verification procedure
prevents the adversary from registering a key for identifier Â via the query pkregister as there already
exists a certificate returned as response to the query hregister with identifier Â. Note that if KCI attacks
are permitted in the model, the UKS attack cannot be prevented by VP requiring a proof-of-possession of
the secret key corresponding to the public key A′.

Online UKS attack on STS-MAC based on duplicate-signature key selection (DSKS) [9]. Suppose that
the signature scheme employed in the STS-MAC protocol is vulnerable to DSKS attacks. Note that
resistance to DSKS attacks is not covered by standard security notions for signatures such as EUF-CMA
or SEUF-CMA security, which concern only single keys. The UKS attack on STS-MAC [9, p. 160] exploits
the ability of the adversary to register a valid public key pk with known secret key under his own identifier
during the run of the protocol. More precisely, the adversary first intercepts a user’s message containing a
signature σ on message m. He then issues a query pkregister(pk, L̂) such that σ is also a valid signature on
m under pk. The query associates pk with the adversary’s identifier L̂. Since the adversary knows the secret
key corresponding to pk, he obtains a certificate from the CA even if VP requires a proof-of-possession.
Countermeasures to such UKS attacks via modification of the protocol are available [9].

Lim–Lee style attack against HMQV with special domain parameters, without validation of ephemeral
public keys [37]. Suppose that the underlying group G is a subgroup of the group of units U(R) of a ring



11

R containing an element T 6= 0 such that T 2 = 0. Then, the HMQV protocol is vulnerable to the attack
described in [37, p. 137] with respect to an ASICS model in which the adversary is only given access to
standard protocol execution queries in the set QN . However, as mentioned in [37, p. 134], this attack
on HMQV can only be launched in certain exotic groups that have never been considered for practical
use. The attack can be eliminated by restricting the group used for analyzing HMQV in some way or by
adding group membership tests on ephemeral public keys to the protocol.

Lim–Lee style attack against HMQV with DSA domain parameters, without validation of ephemeral
public keys [36]. Let G = 〈g〉 denote a q-order subgroup of Z∗p, where q and p are prime and (p − 1)/q
is smooth (i.e., it contains no large prime factor). The attack on two-pass HMQV [36, p. 5] can be
captured in an ASICS model where the adversary is given access to at least the queries in the set
Q = QN ∪ (QS \ {corrupt}) ∪ (QR \ {pkregister}). In particular, the attack requires that the adversary
can register invalid public keys via the npkregister query and reveal the randomness and the session keys
via the randomness and session-key queries. This attack can be prevented by countermeasures such as
requiring VP to include a group membership test on the public key submitted for certification, or by
including group membership tests on both ephemeral and long-term public keys during protocol execution.
Small-subgroup attacks may also exist in other settings, for instance in groups induced by elliptic curves.

We revisit some of the previously mentioned attacks in Section 4.2 to illustrate that the modular
approach that we develop in Section 3 cannot be applied to the corresponding protocols.

3 Achieving ASICS security

We provide a modular approach to obtain provable ASICS security for certain types of protocols. We first
show in Theorem 1 how a result from Kudla and Paterson [31, Theorem 2] can be adapted to incorporate
adversarial registration of valid public keys. Then, in Theorem 2, we indicate how to transform protocols
to achieve security in the presence of adversaries that can register arbitrary invalid public keys. We start
by defining an adapted version of strong partnering [31].

Definition 7 (Strong partnering). Let Π be an ASICS protocol, and let X = (M,Q,F ) be an ASICS
model. We say that Π has strong partnering in the ASICSX experiment if no PPT adversary, when
attacking Π in the ASICSX experiment, can establish two sessions s and s′ of protocol Π holding the same
session key without being M -matching, with more than negligible probability in the security parameter k.

We next define an adapted version of the session string decisional problem [31] for an ASICS protocol.

Definition 8 (Session string decisional problem). Let Π be an ASICS protocol and let X =
(M,Q,F ) be an ASICS model. The session string decisional problem for Π is the algorithmic prob-
lem of deciding, for an arbitrary session s with sstatus = accepted in an ASICSX experiment and an
arbitrary string m, whether or not m = ss, where ss is the session string of session s.

Given an ASICS model X = (M,Q,F ), we denote by cNR-X (using terminology from [31], where
cNR stands for “computational No-Reveals”, referring to the absence of session-key reveals) the reduced
computational ASICSX experiment which is similar to the ASICSX experiment except that the adversary
(a) is not allowed to issue session-key and test-session queries, (b) must pick a session that has accepted
and satisfies F at the end of its execution, and (c) output the session key for this session. See Kudla and
Paterson [31] for a more detailed description of reduced games.

Definition 9 (cNR-X security). Let Π be an ASICS protocol and X = (M,Q,F ) be an ASICS model.
Π is said to be cNR-X-secure if, for all PPT adversaries E, it holds that

1. if two users successfully accept in M -matching sessions, then they both compute the same session key,
and

2. E has no more than a negligible advantage in winning the cNR-X experiment; that is, there exists a neg-
ligible function negl in the security parameter k such that AdvcNR-X

Π,E (k) ≤ negl(k), where AdvcNR-X
Π,E (k)

is defined as the probability that E outputs (s, skey) for a session s that has accepted and satisfies F .

Our first theorem deals with the security of DH-type ASICS protocols, which are a generalization of
DH-type AKE protocols of Cremers and Feltz [19] to include certificates and to explicitly identify session
strings. This class of protocols includes the most prominent modern two-message AKE protocols.

Definition 10 (DH-type ASICS protocol). A DH-type ASICS protocol is an ASICS protocol of the
following form, specified by functions fI , fR, FI , FR, H:



12

Initiator I Responder R

sacert = C, spcert = C′ s′acert = C′, s′pcert = C

sk = a, C.pk = ga, C′.pk = B sk = b, C′.pk = gb, C.pk = A

x← fI(srand, a, C,C
′)

X ← gx
X

−−−−−−−−→ y ← fR(s′rand, b, C
′, C)

Y

←−−−−−−−− Y ← gy

ss← FI (x, a, Y, C,C′) ss′ ← FR (y, b,X,C′, C)
if ss = ⊥ then if ss′ = ⊥ then

sstatus ← rejected s′status ← rejected

else else
skey ← H(ss) s′key ← H(ss′)
sstatus ← accepted s′status ← accepted

Fig. 1. Messages for generic DH-type ASICS protocol

– Domain parameters (G, g, q), where G = 〈g〉 is a group of prime order q generated by g.
– KeyGen(): Choose a ∈R [0, q − 1]. Set A← ga. Return secret key sk = a and public key pk = A.
– VP(x, P̂ ) = 1 for all x and all P̂ (i.e., the CAs do not perform any checks).
– When the initiator is activated to create a new session s with a create(s = (C, i), r = I, C ′) query,

where the secret key corresponding to C.pk is a, the initiator computes an outgoing ephemeral public
key X ← gfI(srand,a,C,C

′) and returns X as an outgoing message.
– The responder is activated to create a new session s′ with a create(s = (C ′, j), r = R, C) query, where

the secret key corresponding to C ′.pk is b.
– When the responder is activated in a session s′ with a send(s′,M = X), the responder computes

an outgoing ephemeral public key Y ← gfR(s′rand,b,C
′,C) and returns Y as an outgoing message. The

responder computes a session string (an intermediate value to which we give a special name) ss′ ←
FR(fR(s′rand, b, C

′, C), b,X,C ′, C), a session key s′key ← H(ss′), and accepts: s′status ← accepted.
– When the initiator is activated in a session s with a send(s,M = Y ), the initiator computes a

session string ss ← FI (fI(srand, a, C,C
′), a, Y, C,C ′), a session key skey ← H(ss), and accepts:

sstatus ← accepted.

Theorem 1. Let X = (M,Q,F ) be an ASICS model with QN ⊆ Q ⊆ QN ∪QS. Let Y = (M,Q′, F ′) be
the ASICS model where Q′ = Q ∪ {pkregister} and F ′ is defined as follows. A session s is said to satisfy
F ′ if it satisfies F and no pkregister(spcert.pk, spcert.id) query has been issued. Let Π be a DH-type ASICS
protocol. Suppose that

– Π has strong partnering in the ASICSY experiment,
– cNR-X security of the related protocol π (defined in the same way as Π except that the session key

generated in π is the session string of Π (i.e., sπkey = ssΠ)) is probabilistic polynomial-time reducible
to the hardness of the computational problem of some relation φ,

– the session string decisional problem in the ASICSY experiment for Π is polynomial-time reducible to
the decisional problem of φ, and

– there is a polynomial-time algorithm that decides whether an arbitrary bitstring is an element of G,

then the security of Π in ASICS model Y is probabilistic polynomial-time reducible to the hardness of the
gap problem of φ, if H is modelled as a random oracle.

In the cNR-X experiment of Theorem 1 the queries session-key and pkregister are not allowed, whereas
in ASICSY both queries are allowed. Theorem 1 states that for any DH-type protocol Π, under certain
conditions, it holds that security of the related protocol π in a reduced model (in which public keys can
only be honestly registered) implies security of Π in the stronger non-reduced model that additionally
captures adversarial registration of valid public keys.

The following theorem, which is applicable to a wider range of protocols than Theorem 1 (e.g., to
three-message protocols such as UM [38] or HMQV-C [30]), allows us to achieve security against adversaries
that can obtain certificates from the CA for invalid public keys by transforming the protocol to include a
group membership test on the peer’s public key. In contrast to Theorem 1, no additional requirement is
imposed on the freshness condition of model Y .

Theorem 2. Let X = (M,Q,F ) be an ASICS model with QN ⊆ Q ⊆ QN ∪QS ∪ (QR \ {npkregister}).



13

Let Π be an ASICS protocol where the domain parameters (G, g, q), the key generation algorithm
KeyGen and the verification procedure VP are as in Definition 10.

Let f(Π) denote the ASICS protocol derived from Π by adding the following protocol step for each role
of the protocol. Upon creation with (or, via send, receipt of) the certificate C ′ to be used for the peer of
session s, the user running session s checks whether the public key C ′.pk belongs to the group G before
continuing the execution of the protocol. In case the check fails, the protocol execution is aborted and sstatus
is set to rejected.

Suppose that protocol Π is secure in ASICS model X and that there is a polynomial-time algorithm
that decides whether an arbitrary bitstring is an element of G. Then the transformed protocol f(Π) is
secure in ASICS model Y = (M,Q ∪ {npkregister}, F ).

The relative strengths of security between game-based security models was investigated by Choo et
al. [17], and formally defined by Cremers and Feltz [20] as follows. Let secure(X,Π) be a predicate that
is true if and only if the protocol Π is secure in security model X.

Definition 11 ([20]). Let π be a class of AKE protocols. Let X and Y be two security models. We say
that model Y is at least as strong as model X with respect to π, denoted by X ≤πSec Y , if

∀ Π ∈ π. secure(Y,Π)⇒ secure(X,Π). (1)

We say that model Y is stronger than model X with respect to protocol class π, if X ≤πSec Y and not
Y ≤πSec X.

Definition 12. Let π be a class of AKE protocols. We say that two security models X and Y are equally
strong with respect to π, denoted by X =π

Sec Y , if X ≤πSec Y and Y ≤πSec X, where the relation ≤πSec is as
in Definition 11.

Remark 10. Let π be the class of ASICS protocols where the domain parameters (G, g, q), the key
generation algorithm KeyGen are as in Definition 10 and the verification procedure VP(x, P̂ ) outputs
1 if x ∈ G and 0 otherwise. Let X = (M,Q,F ) with QN ⊆ Q ⊆ QN ∪ QS ∪ (QR \ {npkregister}) and
Y = (M,Q∪{npkregister}, F ). It is easy to verify that the ASICS models X and Y are equally strong with
respect to π according to Definition 12. Whenever the adversary issues a query npkregister in an ASICSY
experiment, the symbol ⊥ is returned. Thus, transforming an ASICS protocol from protocol class π as
described in Theorem 2 does not yield a protocol that is secure in a stronger ASICS model. In contrast,
the model Y is stronger than model X with respect to the protocol class considered in Theorem 2.

Combining both theorems, we obtain the following result.

Corollary 1. Let Π be a DH-type ASICS protocol. Let X = (M,Q,F ) and Y = (M,Q′, F ′) be defined
as in Theorem 1, and let the conditions of Theorem 1 hold with respect to protocol Π. Let f(Π) denote
the protocol derived from Π as specified in Theorem 2. Then the transformed protocol f(Π) is secure in
ASICS model Z = (M,Q′′, F ′), where Q′′ = Q′ ∪ {npkregister}, if H is modelled as a random oracle.

Applying Corollary 1 to a concrete DH-type ASICS protocol that satisfies all the preconditions, we
obtain a protocol that is secure in an ASICS model in which (a) sessions (including the test session) may
use a certificate for the peer that resulted from an npkregister query, and (b) the certificate of the test
session’s peer was not the result of a pkregister query.

4 Applications

To illustrate the power of our generic approach, we examine in Section 4.1 how to apply our technique to
Ustaoglu’s CMQV protocol [46]. CMQV is a modern DH-type protocol that is comparable in efficiency to
HMQV, but enjoys a simpler security proof in the eCK model.

Our results allow us to analyse CMQV in a model that does not include session-key, pkregister, and
npkregister queries, which simplifies the overall proof. We verify that CMQV meets the preconditions of
Corollary 1, and conclude that a variant of CMQV with group membership test on the peer’s public key
is ASICS-secure in an eCK-like model. Similarly, our generic approach can be applied to other DH-type
candidates such as NAXOS [32] and UP [47]. We discuss in Section 4.2 where the preconditions of
Corollary 1 are violated for protocols from Section 2.3 such as MQV or HMQV.



14

4.1 CMQV

CMQV [46] was originally proven secure in the eCK model, where there is only one public key per identifier.
In the ASICS setting, there is no such unique mapping between user identifiers and public keys. Hence, to
be able to prove CMQV secure in the ASICS model, we need to include the public keys of the users in the
session string to ensure that they have the same view of these keys when deriving the session key.

CMQV as a DH-type ASICS protocol. Two-pass CMQV can be stated as a DH-type ASICS protocol, by
instantiating Definition 10 with the following functions. Let H1 : {0, 1}k × Z∗q → Z∗q , H2 : {0, 1}∗ → Zq,
and H : {0, 1}∗ → {0, 1}k be hash functions. We define fI , fR, FI , FR as:

fI(r, a, C,C ′) = H1(r, a)

FI(x, a, Y, C,C ′) =

{
⊥ , if Y 6∈ G \ {1}
((Y Be)x+da ‖ gx ‖ Y ‖ C.id ‖ A ‖ C ′.id ‖ B) , if Y ∈ G \ {1}

fR(r′, b, C ′, C) = H1(r′, b)

FR(y, b,X,C ′, C) =

{
⊥ , if X 6∈ G \ {1}
((XAd)y+eb ‖ X ‖ gy ‖ C.id ‖ A ‖ C ′.id ‖ B) , if X ∈ G \ {1},

where d = H2(X ‖ C.id ‖ C ′.id), e = H2(Y ‖ C.id ‖ C ′.id), A = C.pk, B = C ′.pk; ‖ denotes tagged
concatenation to avoid ambiguity with variable-length strings.

We now show, using Corollary 1, that the resulting DH-type CMQV protocol is a secure ASICS
protocol in an ASICS model with leakage queries corresponding to the eCK model.

ASICS model for eCK-like leakage. Define the ASICS model eCK = (M2, Q, F ) for eCK-like leakage [32]
as follows. Let Q = QN ∪QS . Let F be the condition that a session s satisfies F if, for all sessions s′ such
that s′ M2-matches s, none of the following conditions hold:

– a session-key(s) query has been issued;
– if s′ exists:

• a session-key(s′) query has been issued;
• both corrupt(sacert.pk) and randomness(s) queries have been issued;
• both corrupt(s′acert.pk) and randomness(s′) queries have been issued;

– if s′ does not exist:

• both corrupt(sacert.pk) and randomness(s) queries have been issued;
• a corrupt(spcert.pk) query has been issued.

Theorem 3. Let f(CMQV) be the DH-type ASICS protocol derived from the CMQV protocol defined
above, as specified in Theorem 2. If H1,H2 and H are modelled as random oracles, G is a group where
the gap Diffie–Hellman assumption holds and membership in G is decidable in polynomial time, then
f(CMQV) is secure in ASICS model Z = (M2,QN ∪QS ∪QR, F ′), where a session s is said to satisfy F ′

if it satisfies the freshness condition F from the eCK model and no pkregister(spcert.pk, spcert.id) query has
been issued.

Proof (Sketch). We can readily show that CMQV satisfies the preconditions of Corollary 1 under the
above formulation of the eCK model as an ASICS model:

1. Strong partnering. It is straightforward to see that CMQV has strong partnering in the ASICSeCK′

game (where eCK′ is derived from eCK as described in Theorem 1): since the session key in CMQV is
computed via a random oracle, the probability that two sessions derive the same session key without
using the same session string input to the random oracle is negligible.

2. cNR-eCK-security of the session string variant of CMQV. This can be shown by an adaptation of
Ustaoglu’s original proof of CMQV. In large part, the main proof can be followed. However, a few
simplifications can be made because the simulation need not answer session-key queries (so preventing
key replication attacks and simulating sessions where the public key is a challenge value are easier).

3. Hardness of the session string decision problem. It can be easily seen that this is polynomial-time
reducible to the decisional problem for Diffie–Hellman triples (U, V,W ) by noting that the first
component of the CMQV session string σ is equal to g(y+eb)(x+da) = gxygadygbexgabde; the DDH
values (U, V ) can be injected into either (X,Y ), (A, Y ), (B,X), or (A,B), with W inserted into the
corresponding part of σ, yielding a polynomial-time reduction.

Detailed proofs of each of the above claims can be found in Appendix B.



15

4.2 Discussion

In Section 4.1 we provided evidence that our modular approach can indeed be successfully applied to
reason about the security of prominent key exchange protocols. Here we inspect which preconditions of
Corollary 1 are violated for some commonly analyzed protocols.

Let X1 = (M1, Q, F ) be the ASICS model given by Q = QN ∪ {session-key} and F defined as follows.
We say that a session s satisfies F if it holds that neither a session-key(s) query nor a session-key(s′) query
for any session s′ that is M1-matching s have been issued. Let Y1 = (M1, Q′, F ′) be derived from X1 as
specified in Theorem 1. The UKS attacks described in Section 2.3 against the DH-type protocols MQV
and KEA caused two sessions that were not M1-matching to compute the same session key. Thus, the
first precondition of Corollary 1 is violated for these protocols as they do not have strong partnering
in the ASICSY1 experiment. The two-pass HMQV protocol without ephemeral public key validation is
insecure in ASICS model X1 when special domain parameters are used (see Section 2.3) due to the lack of
ephemeral public key validation. Hence, it is easy to see that the related protocol, that we call HMQV’,
is not cNR-X1-secure, which violates the second precondition of Corollary 1. Even though it is unclear
whether there is an attack against two-pass HMQV with DSA domain parameters without ephemeral
public key validation, the third precondition of Theorem 1 is violated for this version of the HMQV
protocol. The lack of ephemeral public key validation hinders us from using a DDH oracle to solve the
session string decisional problem for the protocol since there is no guarantee that all inputs to the DDH
oracle belong to the group G. The latter observations on HMQV lead us to the conclusion that validation
of ephemeral public keys is necessary to be able to apply Corollary 1 to the HMQV protocol, even when
the adversary is not given access to the randomness query.

Let X2 = (M2, Q, F ) be the ASICS model given by Q = QN ∪ {session-key} and F defined as follows.
We say that a session s satisfies F if it holds that neither a session-key(s) query nor a session-key(s′)
query for any session s′ that is M2-matching s have been issued. Let Y2 = (M2, Q′, F ′) be derived from
X2 as specified in Theorem 1. Note that model Y2 corresponds to the model X defined in Section 2.3
capturing the UKS attack against KEA+. The latter UKS attack described against the DH-type protocol
KEA+ caused two sessions that were not M2-matching to compute the same session key. Thus, the first
precondition of Corollary 1 is violated for KEA+ as this protocol does not have strong partnering in the
ASICSY2

experiment.

5 Lessons learned and recommendations

As we started our systematic investigation we assumed that certification authorities would need to perform
some minimal checks on public keys to obtain secure KE protocols. Perhaps surprisingly, nearly all of the
effort can be shifted to the protocols; and modern protocols often perform sufficient checks. In particular,
our results provide formal foundations for some of the protocol-specific observations of Menezes and
Ustaoglu [37]: checking that short-term as well as long-term public keys are in the key space (i.e., in
group G for DH-type protocols) is not superfluous.

Based on these observations, and given M public keys, N users may need to perform on the order of
M ×N such checks in total, even when caching the results. Reasoning purely about the overall amount
of computation time used, one could consider moving the burden to the CAs. If the CAs only create
certificates after a successful check, the CAs would only perform on the order of M checks in total.
Depending on the deployment scenario, this might be a preferable alternative.

Similarly, CAs do not necessarily need to check uniqueness of public keys. As long as the key derivation
involves the identifiers in an appropriate way, UKS attacks such as the one on KEA can be prevented.
Even if the adversary re-registers an honest user’s public key as his own public key, ASICS security for
the honest user is still guaranteed as long as the adversary does not know the corresponding private key.

In general, our results further justify using as much information as possible in the key derivation
function (KDF). This helps with establishing formal security proofs and it is also a prudent engineering
principle. In particular, we recommend that in settings where users may have multiple long-term public
keys, the input to the KDF should not only include the identifiers and the message transcript, but also
the specific public keys used in the session.

We hope our work can serve as a foundation for the development of a range of protocols specifically
designed to incorporate certification systems, offering different tradeoffs between efficiency and trust
assumptions of the involved parties.



16

Acknowledgements

C.B. and D.S. were supported by Australian Research Council (ARC) Discovery Project DP130104304.
C.C. was supported by ETH Research Grant ETH-30 09-3. K.G.P. and B.P. were supported by a EPSRC
Leadership Fellowship EP/H005455/1. This work was partly done while M.F. was at ETH Zurich, supported
by ETH Research Grant ETH-30 09-3.

References

1. Adams, C., Farrell, S., Kause, T., Mononen, T.: Internet X.509 Public Key Infrastructure Certificate Manage-
ment Protocol (CMP). RFC 4210 (Proposed Standard) (Sep 2005), http://www.ietf.org/rfc/rfc4210.txt,
updated by RFC 6712

2. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for key management — Part 1:
General. NIST Special Publication (March 2007), http://csrc.nist.gov/publications/nistpubs/800-57/
sp800-57-Part1-revised2_Mar08-2007.pdf

3. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general forking lemma. In: Juels,
A., Wright, R.N., Vimercati, S. (eds.) ACM CCS 06. pp. 390–399. ACM Press (2006)

4. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure against dictionary attacks. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 139–155. Springer (2000)

5. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO’93.
LNCS, vol. 773, pp. 232–249. Springer (1994)

6. Bellare, M., Rogaway, P.: Provably secure session key distribution: The three party case. In: 27th ACM STOC.
pp. 57–66. ACM Press (1995)

7. Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and their security analysis. In: Darnell,
M. (ed.) 6th IMA International Conference on Cryptography and Coding. LNCS, vol. 1355, pp. 30–45. Springer
(1997)

8. Blake-Wilson, S., Menezes, A.: Entity authentication and authenticated key transport protocols employing
asymmetric techniques. In: Christianson, B., Crispo, B., Lomas, T.M.A., Roe, M. (eds.) Security Protocols, 5th
International Workshop, Paris, France, April 7-9, 1997, Proceedings. LNCS, vol. 1361, pp. 137–158. Springer
(1998)

9. Blake-Wilson, S., Menezes, A.: Unknown key-share attacks on the station-to-station (STS) protocol. In: Imai,
H., Zheng, Y. (eds.) PKC’99. LNCS, vol. 1560, pp. 154–170. Springer (1999)

10. Boldyreva, A., Fischlin, M., Palacio, A., Warinschi, B.: A closer look at PKI: Security and efficiency. In:
Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 458–475. Springer (2007)

11. Boyd, C., Cremers, C., Feltz, M., Paterson, K.G., Poettering, B., Stebila, D.: ASICS: Authenticated key
exchange security incorporating certification systems. In: ESORICS 2013. pp. 381–399. LNCS, Springer (2013)

12. CA/Browser Forum: Baseline requirements for the issuance and management of publicly-trusted certificates,
v1.1.6 (2013), https://cabforum.org/wp-content/uploads/Baseline_Requirements_V1_1_6.pdf

13. CA/Browser Forum: Guidelines for the issuance and management of extended validation certificates, v1.4.3
(2013), https://cabforum.org/wp-content/uploads/Guidelines_v1_4_3.pdf

14. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels. In:
Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer (2001)

15. Cash, D., Kiltz, E., Shoup, V.: The Twin Diffie-Hellman problem and applications. In: Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer (2008)

16. Chatterjee, S., Menezes, A., Ustaoglu, B.: Combined security analysis of the one- and three-pass Unified Model
key agreement protocols. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 49–68.
Springer (2010)

17. Choo, K.K.R., Boyd, C., Hitchcock, Y.: Examining indistinguishability-based proof models for key establishment
protocols. In: Roy, B.K. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 585–604. Springer (2005)

18. Cremers, C.: Examining indistinguishability-based security models for key exchange protocols: the case of CK,
CK-HMQV, and eCK. In: Cheung, B.S.N., Hui, L.C.K., Sandhu, R.S., Wong, D.S. (eds.) ASIACCS 11. pp.
80–91. ACM Press (2011)

19. Cremers, C.J.F., Feltz, M.: Beyond eCK: Perfect forward secrecy under actor compromise and ephemeral-key
reveal. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 734–751. Springer
(2012)

20. Cremers, C.J.F., Feltz, M.: Beyond eCK: Perfect forward secrecy under actor compromise and ephemeral-key
reveal. Des. Codes Cryptography 74(1), 183–218 (2015)

21. Ducklin, P.: The TURKTRUST SSL certificate fiasco — what really happened, and
what happens next? (January 2013), http://nakedsecurity.sophos.com/2013/01/08/

the-turktrust-ssl-certificate-fiasco-what-happened-and-what-happens-next/

22. Farshim, P., Warinschi, B.: Certified encryption revisited. In: Preneel, B. (ed.) AFRICACRYPT 09. LNCS,
vol. 5580, pp. 179–197. Springer (2009)

http://www.ietf.org/rfc/rfc4210.txt
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
https://cabforum.org/wp-content/uploads/Baseline_Requirements_V1_1_6.pdf
https://cabforum.org/wp-content/uploads/Guidelines_v1_4_3.pdf
http://nakedsecurity.sophos.com/2013/01/08/the-turktrust-ssl-certificate-fiasco-what-happened-and-what-happens-next/
http://nakedsecurity.sophos.com/2013/01/08/the-turktrust-ssl-certificate-fiasco-what-happened-and-what-happens-next/


17

23. FOX IT: Black Tulip: Report of the investigation into the DigiNotar Certificate Authority
breach (2012), http://www.rijksoverheid.nl/bestanden/documenten-en-publicaties/rapporten/2012/

08/13/black-tulip-update/black-tulip-update.pdf

24. Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key exchange. In: PKC 2013. pp.
254–271. LNCS, Springer (2013)

25. Goldberg, I., Stebila, D., Ustaoglu, B.: Anonymity and one-way authentication in key exchange protocols. Des.
Codes Cryptography 67(2), 245–269 (2013)

26. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sciences 28(2), 270–299
(1984)

27. Jeong, I.R., Katz, J., Lee, D.H.: One-round protocols for two-party authenticated key exchange. In: Jakobsson,
M., Yung, M., Zhou, J. (eds.) ACNS 04. LNCS, vol. 3089, pp. 220–232. Springer (2004)

28. Kaliski, B.S.: An unknown key-share attack on the MQV key agreement protocol. In: ACM Trans. Inf. Syst.
Secur. (TISSEC). vol. 4, pp. 275–288. ACM New York, NY, USA (August 2001)

29. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. In: Shoup, V. (ed.) CRYPTO 2005.
LNCS, vol. 3621, pp. 546–566. Springer (2005)

30. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. Cryptology ePrint Archive, Report
2005/176 (2005), http://eprint.iacr.org/2005/176

31. Kudla, C., Paterson, K.G.: Modular security proofs for key agreement protocols. In: Roy, B.K. (ed.) ASI-
ACRYPT 2005. LNCS, vol. 3788, pp. 549–565. Springer (2005)

32. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key exchange. In: Susilo, W.,
Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer (2007)

33. Lauter, K., Mityagin, A.: Security analysis of KEA authenticated key exchange protocol. In: Yung, M., Dodis,
Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 378–394. Springer (2006)

34. Lim, C.H., Lee, P.J.: A key recovery attack on discrete log-based schemes using a prime order subgroup. In:
Kaliski Jr., B.S. (ed.) CRYPTO’97. LNCS, vol. 1294, pp. 249–263. Springer (1997)

35. McCurley, K.S.: A key distribution system equivalent to factoring. Journal of Cryptology 1(2), 95–105 (1988)

36. Menezes, A.: Another look at HMQV. Cryptology ePrint Archive, Report 2005/205 (2005), http://eprint.
iacr.org/2005/205

37. Menezes, A., Ustaoglu, B.: On the importance of public-key validation in the MQV and HMQV key agreement
protocols. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 133–147. Springer (2006)

38. Menezes, A., Ustaoglu, B.: Security arguments for the UM key agreement protocol in the NIST SP 800-56A
standard. In: Abe, M., Gligor, V. (eds.) ASIACCS 08. pp. 261–270. ACM Press (2008)

39. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. Journal of Cryptology
13(3), 361–396 (2000)

40. Ristenpart, T., Yilek, S.: The power of proofs-of-possession: Securing multiparty signatures against rogue-key
attacks. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 228–245. Springer (2007)

41. Schaad, J.: Internet X.509 Public Key Infrastructure Certificate Request Message Format (CRMF). RFC 4211
(Proposed Standard) (Sep 2005), http://www.ietf.org/rfc/rfc4211.txt

42. Shmuely, Z.: Composite Diffie-Hellman public-key generating systems are hard to break. Technical Report No.
356, Computer Science Department, Technion-Israel Institute of Technology (1985)

43. Shoup, V.: On formal methods for secure key exchange (version 4) (November 1999), revision of IBM Research
Report RZ 3120 (April 1999) http://www.shoup.net/papers/skey.pdf

44. Turner, P., Polk, W., Barker, E.: ITL Bulletin for July 2012: Preparing for and responding to certification
authority compromise and fraudulent certificate issuance (2012), http://csrc.nist.gov/publications/

nistbul/july-2012_itl-bulletin.pdf

45. Turner, S.: The application/pkcs10 Media Type. RFC 5967 (Informational) (Aug 2010), http://www.ietf.
org/rfc/rfc5967.txt

46. Ustaoglu, B.: Obtaining a secure and efficient key agreement protocol from (H)MQV and NAXOS. Des. Codes
Cryptography 46(3), 329–342 (2008)

47. Ustaoglu, B.: Comparing sessionstatereveal and ephemeralkeyreveal for Diffie-Hellman protocols. In: Pieprzyk,
J., Zhang, F. (eds.) ProvSec 2009. LNCS, vol. 5848, pp. 183–197. Springer (2009)

A Proofs of Theorem 1 and Theorem 2

Proof of Theorem 1. The proof structure is similar to the proof of Theorem 2 in [31]. We denote by Λ
the session key space associated to protocol Π. Since the cNR-X security of protocol π is probabilistic
polynomial-time reducible to the hardness of the computational problem of some relation φ, there exists
an algorithm A that on input of a problem instance of the computational problem of φ and interacting
with an adversary E which has non-negligible probability η of winning the cNR-X game for π in time τ is
able to solve the computational problem of φ with non-negligible probability h(η) and in time v(τ), for
some polynomial functions h and v.

http://www.rijksoverheid.nl/bestanden/documenten-en-publicaties/rapporten/2012/08/13/black-tulip-update/black-tulip-update.pdf
http://www.rijksoverheid.nl/bestanden/documenten-en-publicaties/rapporten/2012/08/13/black-tulip-update/black-tulip-update.pdf
http://eprint.iacr.org/2005/176
http://eprint.iacr.org/2005/205
http://eprint.iacr.org/2005/205
http://www.ietf.org/rfc/rfc4211.txt
http://www.shoup.net/papers/skey.pdf
http://csrc.nist.gov/publications/nistbul/july-2012_itl-bulletin.pdf
http://csrc.nist.gov/publications/nistbul/july-2012_itl-bulletin.pdf
http://www.ietf.org/rfc/rfc5967.txt
http://www.ietf.org/rfc/rfc5967.txt


18

By assumption, the session string decisional problem in the ASICSY experiment for Π is polynomial-
time reducible to the decisional problem of φ. Hence there is an algorithm W which solves the session
string decisional problem for Π in polynomial-time τ ′′ given access to a decisional oracle for φ.

Let D be an adversary winning the ASICSY experiment against protocol Π with non-negligible
probability η′ in time τ ′. Let K denote the event that D does not query H with the session string ss∗

of the test session s∗. Since Π has strong partnering in the ASICSY experiment, it holds that, with
overwhelming probability, if two sessions compute the same session key, then they must be M -matching.
Thus, if event K occurs, then D can only win the experiment with negligible probability u(k) + 1/|Λ|,
where u(k) denotes the probability that D issues a session-key query to a session s that is not M -matching
s∗ and skey = s∗key.

We next define an algorithm B which solves the gap problem of φ with non-negligible probability h′(η′)
and in time v′(τ ′), for some polynomial functions h′ and v′, using adversary D as a subroutine. B will also
run algorithm A on the problem instance of the computational problem of φ, and an algorithm L that
decides, in polynomial-time τ ′′′, whether an arbitrary bitstring pk submitted for certification is an element
of G. We now define B’s responses to D’s queries for the pre-specified peer setting; the post-specified peer
case proceeds similarly. Algorithm B maintains sets of certificates Ch and Cpk as well as lists H-List and
G-List, all of which are initially empty.

1. q ∈ Q ∩ {kgen, randomness, corrupt}: B forwards the query to A and passes A’s response back to D.
2. hregister(pk, P̂ ): B forwards the query to A and passes A’s response back to D. In case A returns a

certificate C, B adds C to the set Ch, i.e., Ch ← Ch ∪ {C}.
3. pkregister(pk, P̂ ): B checks whether pk ∈ G using algorithm L and whether VP outputs 1 on input pk

and P̂ . If all the checks succeed, then B adds a certificate C to the set Cpk, i.e., Cpk ← Cpk ∪ {C}, and
returns C. Else, B returns ⊥.

4. create (s = (C, i) , r, C ′): B checks whether C ∈ Ch, a session s with counter i has not yet been created,
r ∈ {I,R}, and C ′ ∈ Ch ∪ Cpk. If one of the checks fails, then B returns ⊥. Else if C ′ ∈ Cpk, then B
answers D’s query by simulating the protocol execution itself. Else, B forwards the query to A and
passes A’s response (if any) to D.

5. send (s,M): If session s does not exist or if sstatus 6= active, then B returns ⊥. Else if spcert ∈ Cpk,
then B responds to the query by simulating the protocol execution itself. Else B forwards the query
to A and passes A’s response (if any) to D.

6. H query: To answer D’s queries to the random oracle for H, B stores entries of the form (xi, λi) with
λi ∈ Λ in the H-List. When D makes a query x to the random oracle for H, B determines the return
value for D as follows:

– If there exists an entry (xi, λi) in the H-List with xi = x, then return λi.
– Else if there exists an entry (sacert.id, sacert.pk, spcert.id, spcert.pk, srole, ssent, srcvd, λi) in the G-List,

for some session s that has accepted and λi ∈ Λ, such that x is the session string of session s (i.e.,
x = ss) using algorithm W , then store the entry (x, λi) in the H-List and return λi.

– Else, B chooses λ ∈R Λ, stores the entry (x, λ) in the H-List and return λ.

7. session-key(s) : To answer D’s session-key queries, B stores entries of the form (sacert.id, sacert.pk,
spcert.id, spcert.pk, srole, ssent, srcvd, λi) with λi ∈ Λ in the G-List. When D makes a session-key(s)
query to an initiator session s that has accepted, B determines the return value for D as follows:

– If there exists an entry (sacert.id, sacert.pk, spcert.id, spcert.pk, I, ssent, srcvd, λi) in the G-List, for
some λi ∈ Λ, then return λi.

– Else if there exists an entry (spcert.id, spcert.pk, sacert.id, sacert.pk,R, srcvd, ssent, λi) in the G-List,
then B stores the entry (sacert.id, sacert.pk, spcert.id, spcert.pk, I, ssent, srcvd, λi) in the G-List and
returns λi.

– Else if there exists an entry of the form (xi, λi) in the H-List, where xi = ss using algorithm W ,
then B stores the entry (sacert.id, sacert.pk, spcert.id, spcert.pk, I, ssent, srcvd, λi) in the G-List and
returns λi.

– Else, B chooses λ ∈R Λ, stores the entry (sacert.id, sacert.pk, spcert.id, spcert.pk, I, ssent, srcvd, λ) in
the G-List, and returns λ.

A session-key query to a responder session that has accepted is answered similarly.
8. test-session(s∗): B selects µ ∈R Λ and returns µ to D.
9. D outputs a guess: B aborts with failure.

B can detect the complementary event Kc by checking which of the entries (xi, λi) in the H-List
has xi = ss∗ using algorithm W . B then passes xi to A. Since the test session s∗ must be fresh, no
pkregister(s∗pcert.pk, s

∗
pcert.id) occurred in the ASICSY experiment and hence the certificate s∗pcert has been



19

output through an hregister(s∗pcert.pk, s
∗
pcert.id) query. A solves the computational problem of φ with

non-negligible probability h(η), where η = η′(1− u(k)− 1/|Λ|). B is successful by outputting A’s solution
to the instance of the computational problem of φ and solves the gap problem of φ with non-negligible
probability h(η) and in time v(τ), where τ = τ ′ + τ ′′nH(nsession-key + 1) + τ ′′′npkregister with nH , nsession-key
and npkregister denoting the number of H, session-key and pkregister queries issued by D, respectively. ut

Remark 11. We cannot show that Theorem 1 holds for more complex protocols Π such as UM or HMQV-C
in arbitrary ASICS base models as the simulation of non-test sessions s of Π with spcert being the result
of a pkregister query cannot be performed in the appropriate way without the knowledge of long-term
secret keys and without violating the freshness condition.

Proof of Theorem 2. Let Π be an ASICS protocol secure in model X. It is straightforward to verify the
first condition of Definition 6, that is, that M -matching sessions of protocol f(Π) compute the same
session key. This follows from the fact that M -matching sessions of protocol Π compute the same key as
protocol Π is secure in ASICS model X. We next verify that the second condition of Definition 6 holds.

Claim. If there is a PPT adversary E succeeding in the ASICSY experiment against protocol f(Π) with
non-negligible advantage in time τ ′, then we can construct a PPT adversary E′ succeeding in the ASICSX
experiment against protocol Π with non-negligible advantage in time v(τ) (for some polynomial function
v) using adversary E as a subroutine. Let L be an algorithm that decides, in polynomial-time τ ′′, whether
an arbitrary bitstring pk submitted for certification is an element of G.

Proof. Fix a PPT adversary E succeeding in the ASICSY experiment against protocol f(Π) with non-
negligible advantage. We define an algorithm E′ which succeeds in the ASICSX experiment against protocol
Π with non-negligible advantage using E as a subroutine. Algorithm E′ maintains sets of certificates
Ch, Cpk and Cnpk, all of which are initially empty, and answers E’s queries in the pre-specified peer setting
as follows.

1. q ∈ Q ∩ {kgen, randomness, corrupt, session-key}: E′ issues the same query and returns the answer to
E.

2. hregister(pk, P̂ ): When E issues an hregister(pk, P̂ ) query, E′ issues the same query and returns the
answer to E. In case a certificate C is returned, E′ adds C to the set Ch, i.e., Ch ← Ch ∪ {C}.

3. pkregister(pk, P̂ ): When E issues a pkregister(pk, P̂ ) query, E′ issues the same query and returns the
answer to E. In case a certificate C is returned, E′ adds C to the set Cpk, i.e., Cpk ← Cpk ∪ {C}.

4. npkregister(pk, P̂ ): E′ checks whether pk /∈ G (using algorithm L) and VP outputs 1 on input pk and P̂ .
If the checks succeed (i.e., pk /∈ G and VP(pk, P̂ ) = 1), then E′ returns a certificate C to E and adds
C to the set Cnpk, i.e., Cnpk ← Cnpk ∪ {C}. Otherwise, E′ returns ⊥.

5. create (s = (C, i) , r, C ′): E′ checks whether C ∈ Ch, a session s with counter i has not yet been created,
r ∈ {I,R}, and C ′ ∈ Ch ∪Cpk ∪Cnpk. If one of the checks fails, then E′ returns ⊥. Else if C ′ ∈ Ch ∪Cpk,
then E′ issues the same query and returns the answer (if any) to E. Else, E′ rejects the session
creation and sets sstatus to rejected.

6. send (s,M): If session s does not exist or if sstatus 6= active, then E′ returns ⊥. Else E′ issues the
same query and returns the response (if any) to E.

7. test-session(s): When E issues a test-session(s) query to a session s that has accepted, E′ issues the
same test-session query and returns the answer to E.

8. At the end of E’s execution, that is, after it has output its guess b′, E′ outputs b′ as well.

It follows that AdvASICSY

f(Π),E(k) ≤ AdvASICSX

Π,E′ (k), and adversary E′ runs in time v(τ) with τ = τ ′+τ ′′nnpkregister,

for some polynomial function v, where nnpkregister denotes the number of npkregister queries made by E.

Since Π is secure in ASICS model X, AdvASICSY

f(Π),E(k) is bounded above by a negligible function in the

security parameter k. ut

B Analysis of CMQV

Let eCK′ = (M2, Q′, F ′) be the ASICS model where Q′ = Q ∪ {pkregister} and F ′ is defined as F with
the additional requirement that no pkregister(spcert.pk, spcert.id) query has been issued.

Lemma 1. Let eCK and eCK′ be as above. CMQV has strong partnering in the ASICSeCK′ experiment
under the assumption that H is a random oracle.



20

Proof. Suppose otherwise. Namely, suppose there exists two sessions s and s′ of CMQV that hold the same
session key but are not M2-matching. Since the session key in CMQV is derived by applying a random
oracle, except with negligible probability, the input to the random oracle in both sessions must be the same.
Since they are not M2 matching, either sacert.id 6= s′pcert.id, or sacert.pk 6= s′pcert.pk, or spcert.id 6= s′acert.id,
or spcert.pk 6= s′acert.pk, or ssent 6= s′rcvd, or srcvd 6= s′sent, or srole = s′role.

First suppose srole 6= s′role. Then either the public keys, identifiers, or transcripts of the two sessions do
not correspond. But these are all inputs to the random oracle, so except with negligible probability the
outputs of the random oracle will be different, contradicting that the two sessions hold the same session
key.

Now suppose srole = s′role. Except with negligible probability, two distinct honest sessions will have
srand 6= s′rand, and hence ssent 6= s′sent. But since both s and s′ think of themselves as the initiator, they
will each put their own sent ephemeral public key in the second component of the call to H, and these
values are different, so except with negligible probability the outputs of the random oracle will be different,
contradicting that the two sessions hold the same key. ut

Let (G, g, q) be as in Definition 10. Let φ ⊆ (G×G)×G be the Diffie–Hellman relation on G = 〈g〉.
In particular, (ga, gb) is related under φ to gc if and only if ab ≡ c mod q.

Lemma 2. The cNR-eCK security of the variant of CMQV in which the session string is output as the
session key is polynomial-time reducible to the computational problem of the Diffie–Hellman relation φ,
under the assumption that H1 and H2 are random oracles.

The basic idea of the proof is as follows.

– If the adversary happens to figure out a long-term secret key without issuing a corrupt query (event
E), it must ask that value to a random oracle H1, and we can immediately use that value to solve the
CDH problem by having embedded one of the CDH challenge values in that public key.

– If the adversary is passive in the test session (event E ∧M) we can embed the CDH challenge values
U, V as the ephemeral public keys X and Y of the test session. The adversary’s view can be simulated
perfectly unless the adversary asks either (x̃, a) or (ỹ, b) as a query for H1. But the freshness condition
prevents the adversary from finding both elements of either pair. Therefore the adversary cannot
do better than guess the session string unless it can compute σ. Here the CDH of U and V can be
extracted from σ.

– If the adversary is active in the test session (event E ∧M) we can embed the CDH challenge values in
the long-term key of the partner of the test session and the ephemeral public key of the session. As
before the simulation is perfect unless the adversary asks (x̃, a) as a query for H1. Note that, since
the adversary is active, the adversary cannot change or corrupt the secret long-term key of the peer.
This time the value of σ is similar to a signature forgery and we can apply the Forking Lemma [3, 39]
to extract the CDH of U and V .

Proof. Recall that cNR-eCK security means security in an ASICS model that omits the session-key query,
so the allowed queries are QN ∪ {corrupt, randomness}. The freshness condition remains unchanged.

Recall further that the goal of the adversary is to recovery the session string; let S be the event that
an algorithm M computes the session string. The security proof largely follows the original proof of
Ustaoglu that CMQV is eCK-secure, but can be simplified somewhat as the queries in the cNR-eCK game
are restricted compared to full eCK security.

Consider the following two complementary events:

– E. There exists a certificate C ′ (created using hregister) such that M, during its execution, queries
H1(∗, b) (where C ′.pk = gb) before issuing any corrupt(C ′.pk) query (if it issues one at all).

– E. During its execution, for every certificate C ′ (created using hregister) for which M queries H1(∗, b)
(where C ′.pk = gb), it issued a corrupt(C ′.pk) query before the H1(∗, b) query.

Since the events are complementary, if M succeeds in computing the session string, it succeeded either
when E occurred or when E occurred.

We will see how, when each event occurs, the required polynomial-time reduction exists.

E. Suppose event E occurs and M succeeds in computing the session string.
Here, the simulator S guesses one public key pk∗ at random and assigns pk∗ ← V , where (U, V ) is the

Diffie–Hellman challenge. All other public keys are generated according to the protocol specification.
For all sessions and queries where the session actor is not using pk∗, S follows the protocol specification

exactly.
For sessions where the session actor is using pk∗, S responds to queries as follows:



21

– hregister(pk∗, P̂ ): S outputs a certificate as normal.
– corrupt(pk∗): S aborts.
– randomness(s = (C, i)) where C.pk = pk∗: Return srand.

For sessions where the session actor is using pk∗ and is the initiator, S responds to queries as follows:

– create(s = (C, i), I, C ′) where C.pk = pk∗: S selects x ∈R Zq, computes X ← gx, and responds with X.
Note that srand is not used in the calculation.

– send(s = (C, i),M) where sacert.pk = pk∗ and srole = I: S does not need to simulate anything here,
since there is not outgoing message required, and since the only variable updated is the session string
ss but no session-key reveal query is allowed.

For sessions where the session actor is using pk∗ and is the responder, S responds to queries as follows:

– create(s = (C, i),R, C ′) where C.pk = pk∗: no response required.
– send(s = (C, i),M) where sacert.pk = pk∗ and srole = R: S selects y ∈R Zq, computes Y ← gy, and

responds with Y . Note that srand is not used in the calculation.

S responds to H2 queries as normal. S responds to H1(∗, b) queries as normal for all b such that gb 6= pk∗.
When M queries H1(∗, b) where gb = pk∗ = V , S outputs the solution to the Diffie–Hellman challenge
(U, V ) as U b.

Note that S’s simulation is perfect up until an abort event from the corrupt query occurs. Given that
event E occurs, there exists some public key pk = gb for which the query H1(∗, b) occurs before any
corrupt(pk) query occurs. With probability at least 1/nkgen, where nkgen is the number of kgen queries
made by M, S this condition holds for pk∗. When S guesses correctly, M will indeed query H1(∗, b)
before any corrupt(pk∗) query, and thus S will solve the computational Diffie–Hellman problem.

Thus, when event E occurs, there exists a polynomial-time reduction from a cNR-eCK adversary for
the session string variant of CMQV to the computational Diffie–Hellman problem under the assumption
that H1 is a random oracle, with a tightness factor of nkgen.

E. We divide this event into two complementary cases:

– M . The session s for which the adversary output the session string has an M2-matching session s′.
– M . The session s for which the adversary output the session string does not have an M2-matching

session.

When E occurs, either M or M must also occur.

E ∧M . Suppose event E occurs and there is an M2-matching session s′ for the target session s.

Here, the simulator guesses two sessions s and s′; assume without loss of generality that srole = I and
s′role = R. S responds to all kgen, hregister, corrupt, and randomness queries as specified by the protocol.
For all sessions other than s and s′, S responds to create and send as specified by the protocol. For s and
s′, S responds to create and send as follows:

– create(s = (C, i), I, C ′): Return X ← U , where (U, V ) is the Diffie–Hellman challenge. Note that srand
is not used.

– create(s′ = (C ′, i),R, C): No response required.
– send(s′,M): Return Y ← V , where (U, V ) is the Diffie–Hellman challenge. Note that s′rand is not used.

S responds to H2 queries as normal. S responds to H1 queries as normal except for the queries (x̃, a) or
(ỹ, b), where a and b are the secret keys corresponding to the public keys in sessions s and s′; when this
occurs, the simulation aborts.

Note that S’s simulation is perfect unless a H1(x̃, a) or H1(ỹ, b) query occurs. Because of event E, M
issues a corrupt(ga) query before any H1(x̃, a) query, and a corrupt(gb) query before any H1(ỹ, b) query.
Since x̃ and ỹ are used in only one session and H1 is a random function, no information can be learned
about x̃ and ỹ without randomness(s) or randomness(s′) queries. By the freshness condition, it cannot be
that both randomness(s) and corrupt(ga) occurred, or that both randomness(s′) and corrupt(gb) occurred.
Thus, if S correctly guess s and s′, the simulation is perfect and does not abort. This happens with
probability at least 2/n2create.

Assuming the simulation is perfect and does not abort, and that M outputs the session string, S can
use this to solve the Diffie–Hellman problem. In particular, let σ be the shared secret in the session string
output by M. Then S outputs σg−abedU−beV −ad as the solution to the computational Diffie–Hellman
challenge (U, V ).

Thus, when event E ∧M occurs, there exists a polynomial-time reduction from a cNR-eCK adversary
for the session string variant of CMQV to the computational Diffie–Hellman problem under the assumption
that H1 is a random oracle, with a tightness factor of n2create.



22

E ∧M . Suppose event E occurs but there is no M2-matching session for the target session s.
Here, the simulator guesses integers j ∈R {1, . . . , nkgen}, and a session s∗. Assume without loss of

generality that s∗role = I.
For the jth query to kgen, S assigns pk∗ ← V from the Diffie–Hellman challenge (U, V ) to be the

public key; for all other kgen queries it responds as specified by the protocol.
All hregister queries are responded to as normal. All corrupt queries are responded to as normal, except

for corrupt(pk∗), in which case S aborts.
Suppose that M selects s∗ as the target session and furthermore that s∗pcert.pk = V .
For all sessions and queries where the session actor or peer is not using pk∗, S follows the protocol

specification exactly.
For sessions where the session actor is using pk∗, S responds as in event E.
For sessions where the session peer is using pk∗, S responds as specified by the protocol, except for the

target session s∗. In s∗, S responds as follows:

– create(s∗, I, C ′): S returns X ← U , where (U, V ) is the Diffie–Hellman challenge. Note that s∗rand is
not used.

– send(s∗,M): No response required.
– randomness(s∗): Return s∗rand.
– session-key(s∗): S aborts. Assuming that S correctly guesses s∗ as the target session, this abort will

never occur.

S responds to H2 queries as normal. S responds to H1(x̃, b) queries as normal except for the following
two cases:

– If gb = pk∗: S outputs the solution to the Diffie–Hellman challenge (U, V ) as U b.
– If x̃ = s∗rand and ga = s∗acert.pk: S aborts.

Note that S’s simulation is perfect up until an abort event from the corrupt or the H2 query occurs. Given
that s∗ is fresh and no matching session exists, no corrupt(s∗) query is allowed and hence S does not abort
for that reason. Given that event E occurs, if M queries H1(s∗rand, a) such that ga = s∗acert.pk, M must
have issued a corrupt(ga) query first. But it is also the case that s∗ is fresh, so M cannot have also issued
a randomness(s∗) query, and thus cannot know s∗rand unless it guessed it correctly, which can be done only
with negligible probability.

Assume the simulation is perfect and does not abort, and thatM outputs the session string containing
the correct shared secret σ = guygadyguvegadev. S can then compute η = σY −adV −ade = guy+uve. But
the peer’s ephemeral secret key y was chosen by the adversary, so without y S cannot directly compute
guv from η.

Using the Forking Lemma, S runsM on the same input and the same random coins but with modified
answers to H2 queries. Note that M must have queried H2(Y, s∗acert.id, s

∗
pcert.id) to obtain e, because

otherwise M would be unable to compute σ except with negligible probability. For the second run of M,
S responds to H2(Y, s∗acert.id, s

∗
pcert.id) with e′ 6= e selected uniformly at random.

If M succeeds in the second run, it outputs σ = guygad
′yguve

′
gad

′e′v. S can then compute η′ =
σ′Y −ad

′
V −ad

′e′ = guyguve
′
. S can furthermore compute

(η/η′)1/(e−e
′) = (guyguveg−uyg−uve

′
)1/(e−e

′) = guv(e−e
′)/(e−e′) = guv

which is the solution to the computational Diffie–Hellman challenge (U, V ).
Thus, when event E ∧M occurs, there exists a polynomial-time reduction from a cNR-eCK adversary

for the session string variant of CMQV to the computational Diffie–Hellman problem under the assumption
that H1 and H2 are random oracles, with a tightness factor of ncreatenkgennH2c, where c is a constant from
the Forking Lemma. ut

Remark 12. Because in the above lemma we do not have to prove full session key indistinguishability
security of CMQV, instead proving the hardness of session string computation of a variant of CMQV, we
can make a few simplifications from Ustaoglu’s original proof:

– We do not have to worry about key replication attacks (when the adversary causes two non-matching
sessions to have the same session key (that is, session string), and then reveals the session key at one
of the sessions) because there is no session-key query.

– In event E, we do not have to worry about setting the session string correctly for any session involving
the user whose public key has been injected with the CDH challenge, because there is no session-key
query. Thus we do not need a DDH oracle here.



23

– In event E ∧M , we do not have to use the DDH oracle to test which of the many H random oracle
queries is the solution we need: we simply output the CDH value derived directly from the output
of M.

Lemma 3. The session string decision problem for CMQV is polynomial-time reducible to the decisional
problem of the Diffie–Hellman relation φ.

Proof. LetD be a polynomial-time algorithm that can distinguish real CMQV session strings (g(y+eb)(x+da) ‖
X ‖ Y ‖ id ‖ A ‖ id′ ‖ B) from random session strings (gr ‖ gx ‖ gy ‖ id ‖ ga ‖ id′ ‖ gb), for
randomly chosen a, b, x, y, r ∈R Zq, id and id′ are arbitrary binary strings, d = H2(gx ‖ id ‖ id′), and
e = H2(gy ‖ id ‖ id′).

We claim that there exists an algorithm E that can distinguish real Diffie–Hellman triples (gu, gv, guv)
from random triples (gu, gv, gw) for randomly chosen u, v, w ∈R Zq.

First, note that g(y+eb)(x+da) = gxy+ady+bex+abde. Using D construct ED as follows. Let (U, V,W ) be
a Diffie–Hellman challenge. Pick arbitrary id, id′. Do one of the following, each with equal probability:

1. Set A← U and B ← V . Choose x, y ∈R Zq.
Run D on the session string (gxyAdyBexW de ‖ gx ‖ gy ‖ id ‖ A ‖ id′ ‖ B).

2. Set A← U and Y ← V . Choose x, b ∈R Zq.
Run D on the session string (Y xW dgbexAbde ‖ gx ‖ Y ‖ id ‖ A ‖ id′ ‖ gb).

3. Set X ← U and B ← V . Choose a, y ∈R Zq.
Run D on the session string (XygadyW eBade ‖ X ‖ gy ‖ id ‖ ga ‖ id′ ‖ B).

4. Set X ← U and Y ← V . Choose a, b ∈R Zq.
Run D on the session string (WY adXbegabde ‖ X ‖ Y ‖ id ‖ ga ‖ id′ ‖ gb).

E outputs the result of D.
Note that in each of the above cases, if (U, V,W ) is a real Diffie–Hellman triple, then D is run on a real

CMQV session string, whereas if (U, V,W ) is a random triple, then D is run on a random session string.
Thus, if D is a distinguisher for CMQV session strings, then E is a distinguisher for the Diffie–Hellman
relation. ut


	ASICS: Authenticated Key Exchange SecurityIncorporating Certification Systems (Full version, June 2 2015) 

