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Abstract. In order to prevent the SPA (Simple Power Analysis) attack against modular
exponentiation algorithms, a multiply-always implementation is generally used. Witteman
et al. introduced in [14] a new cross-correlation power analysis attack against the multiply-
always implementation. We suggest two new algorithms, resistant to this attack and also to
other known attacks.
The first algorithm is an alternative approach to exponentiation algorithms used in cryptog-
raphy, which usually receive as an input some representation (e.g. binary) of the exponent.
In our approach both the exponent and the result are functions (not necessarily easily in-
vertible) of the exponentiation algorithm input. We show that this approach can have a
good performance and that it is also resistant to several known attacks, especially to the
cross-correlation power analysis and also to the attack described in [9]. It is particularly
relevant for cryptographic schemes in which the private exponent can be chosen arbitrarily.
Another exponentiation algorithm that we present here may be preferable for use with RSA
in certain settings. It is resistant to the cross-correlation power analysis attack, C safe error
attack, and other attacks; although it involves squaring operations.

Keywords: Exponentiation algorithms, addition chains, cross-correlation attacks, safe-error
attacks, power analysis attacks

1 Introduction

Fast algorithms to calculate xd, where d is a very big (e.g. 2048 bits long) integer, have wide
application and have been an object of study for a long time. In cryptographic applications
d is usually secret, and the resistance of an algorithm against various attacks becomes
another, not less important than performance, factor in the choice of an algorithm.

Optimal performance of exponentiation algorithms has been intensively studied under
the name of ”addition chains” (see [11] p. 465-485 for an overview). The main problem to
be solved is: given an integer d, find a way to calculate xd that involves minimal possible
number of multiplications. A generalization of this problem is: given a finite set of integers
d1, d2, . . . , dn, find a way to calculate all of xd1 , xd2 , . . . , xdn that involves the minimal
possible number of multiplications. The latter generalized problem has been proven to be
NP-complete [5]. For the first problem, no general polynomial time algorithm that finds
an optimal sequence of multiplications is known.

Things are obviously much easier if the goal is to build an efficient addition chain
without having to worry about what the final result will be. Fortunately, in most crypto-
graphic algorithms there are no special requirements for the private exponent, except for
high enough entropy. On the other hand, the protection from side-channel attacks (like
SPA or DPA) is very important in the cryptographic applications.



The multiple always countermeasure (see [4]) is an important protection from both
SPA and some forms of DPA. Witteman et al. [14] used the observation that different
stages of multiple-always algorithm can be identified by cross-correlation power analysis.
They noted that the power consumptions of operations with one common operand, is more
correlated than the power consumptions of the same operations with different operands.

In this article we analyze two algorithms resistant to this kind of attacks. In the first
algorithm we use the above mentioned approach, where both the exponent and the result
are functions (not necessarily easily invertible) of the exponentiation algorithm input.

The RSA algorithm is a remarkable exception, since the private exponent cannot be
chosen arbitrarily. In particular, if the public exponent is a fixed number, e.g . 216+1 (which
is a common practice), then the private exponent is a function of the prime factors of the
modulus, and therefore cannot be produced as an output of another function that we do
not know how to efficiently invert. For these cases, we suggest a modification of a different
exponentiation algorithm. It is based on the classical right-to-left exponentiation algorithm
and has the same performance (2 multiplications per bit of the exponent) as algorithms
described in [10], but is additionally secure against Bellcore attacks [1]. It should be
noted, however, that if the performance of private key operations is more critical than the
performance of public key operations, then it is still possible to use the first approach that
gives significantly better performance.

The rest of the paper is organized as follows. In Section 2 we introduce addition chains,
and we also present our squaring-free algorithm. In Section 3 we present our new algorithm
intended for RSA. Section 4 contains our conclusions.

2 Efficient Squaring-Free Addition Chain Algorithm

Firstly, we define the addition chains:

Definition 1. A sequence of natural numbers x0, x1, . . . xn is called an addition chain
if ∀i ∈ [0, n] : (xi = 0 ∨ xi = 1 ∨ ∃j, k : (j ≤ k < i ∧ xi = xj + xk)).

This is a slight modification of the definition given in [11]. See there also how the addition
chain theory is used in the fast exponentiation problem.

We suggest an algorithm, which is a kind of the addition chain exponentiation scheme.
It uses only two registers for the storage of intermediate results. Moreover, in order to
defend against cross-correlation attacks (like [14]), we want to avoid squaring operations.
Thus, we call our algorithm SFTS (squaring-free two-slot). In fact, SFTS is also known
as euclidean addition chain algorithm. Let U be an arbitrary set, and ◦ : U2 → U be
an associative binary operation on this set. We use multiplicative notation, and write

an instead of

n times︷ ︸︸ ︷
a ◦ a ◦ . . . ◦ a. All the results are equally applicable to the elliptic curves

cryptography, where additional notation is traditionally used. We also assume that there
exists a neutral element 1 such that ∀a : 1 ◦ a = a ◦ 1 = a. This assumption holds for
operations used in cryptography, such as multiplication in finite fields and addition of
points on an elliptic curve over a finite field. However this assumption is not essential, and
all the algorithms discussed below can be easily modified if it does not hold. The algorithm
can be written in the following form:
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SFTS Exponentiation Algorithm

Inputs:
x ∈ U ;
n ∈ Z, n ≥ 2;
h(j) = 0, 1 for j ∈ Z, 0 ≤ j ≤ n− 2.

1. r0 ← r1 ← x
2. for j = 0 to n− 2 do
3. rh(j) ← r0 ◦ r1
4. end for
5. return r0 ◦ r1

In other words, in a SFTS exponentiation algorithm are only two registers r0 and r1,
both initialized with x, and at each iteration r0 ◦ r1 is calculated and stored to rh(i).

Definition 2. If b = 〈b0, b1, . . . , br−1〉 is a sequence of positive integers, then its derived
index sequence H(b) is the bit sequence H(b) = 1b00b11b2 . . .. Sequence b is called the
generating sequence of SFTS addition chain.

Let A(b) = 〈A0(b), A1(b), . . . , An−1(b)〉 be the sequence of results of the execution loop
in the SFTS algorithm. We will denote the return value An−1(b) also as R(b). It is obvious,
that flipping of all h bits (permutation between r0 and r1) does not affect A(b) and R(b),
so without losing of any generality we can assume that h0 = 1.

The following two propositions give equivalent alternative expressions for A(b) and
R(b).

Proposition 1. If b = 〈b0, b1, . . . , br−1〉 is a generating sequence, and for any i ∈ [0, r−1]
the continued fraction Wi is defined as

Wi = bi +
1

bi−1 +
1

bi−2 + . . .+
1

b0 + 1

(1)

then for any i ∈ [0, r − 1] A∑i
j=0 bj

(b) is the numerator of Wi, represented as an irre-

ducible fraction, and R(b) is the sum of the numerator and denominator of Wr−1 repre-
sented as an irreducible fraction.

Proposition 2. If b = 〈b0, b1, . . . , br−1〉 is a generating sequence, then for any i ∈ [0, r−1]

A∑i
j=0 bj

(b) =
(
1 0
)(bi−1 1

1 0

)(
bi−2 1

1 0

)
. . .

(
b0 1
1 0

)(
1
1

)
(2)

and

R(b) =
(
1 1
)(br−1 1

1 0

)(
br−2 1

1 0

)
. . .

(
b0 1
1 0

)(
1
1

)
(3)
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Given an n-bit number d, it is possible to choose an arbitrary c ∈ [d2 , d] relatively prime

with d, to represent d
c as a continued fraction

d

c
= 1 +

1

br−1 +
1

br−2 + . . .+
1

b0 + 1

(4)

and to use the SFTS Exponentiation Algorithm with x and b as inputs in order to cal-
culate xd. This was suggested in [13] and [3] in the context of elliptic curve cryptogra-
phy. However for an arbitrary choice of c the resulting algorithm may be inefficient. If
c is chosen randomly, it is shown in [12] that the average number of multiplications is
6π−2(lnn)2 +O(log n(log log n)2). For n = 160 the main term is ≈ 7700. Experiments give
an average of about 2500 multiplications total, or ≈ 15.6 (sic!) multiplications per bit. In
order to improve the performance, in [13] it is suggested to search for c around d/φ, where
φ is the golden ratio, so that the generating sequence starts from many 1’s. The following
table ([13]) gives average and worst number of choices of c necessary in order to achieve
different performance values for 160-bit integers.

multiplications per bit 2 1.875 1.75 1.6875 1.625

on average 29 121 2,353 46.454 7,795,840

worst case 521 3,454 44,254 1,554,011 79,402,210

Another method (GRASC) and its modification (GRAC) to shorten the chain have
been suggested in [7] and [8]. These methods achieve better performance than in [13] and
[3], but require significantly more memory (up to 26 registers), and are more complicated
in hardware implementation.

However, if any value of d of predefined bit length is acceptable, then it is possible to
use sequences b that require just two registers, provide significantly better performance
and do not require precalculations. We suggest using generating sequences b in which
all elements are 1’s and 2’s. We have proven that out of all generating sequences b with
a given value of m =

∑r−1
i=0 bi and b0 = 1, the sequence b = 〈1, 2, 1, 2, 1, . . . , 2, 1, 2, 1〉

or b = 〈1, 2, 2, 1, 2, 1, . . . , 2, 1, 2, 1〉 or b = 〈1, 2, 2, 2, 1, 2, 1, . . . , 2, 1, 2, 1〉 depending on m
mod 3, has the minimal possible value R(b). This value asymptotically grows as (

√
3 +

2)
n
3 ≈ 1.5511n, which means worst performance ≈ 1.5790 multiplications per bit. The

average performance for a randomly chosen bit string H(b) is ≈ 1.54 regardless of the bit
length, which is only slightly slower than classic right-to-left and left-to-right algorithms.
Another motivation of this limitation bi ≤ 2 is a security consideration. As we mentioned
above, the power analysis enables to identify two different multiplications with the same
first or second operand [14]. Changing of the operand order can protect against this attack.
Obviously, it is possible only when the same multiplicand is not used more than twice.
See below an improved SFTS exponentiation algorithm.

The question remains whether there is enough entropy in the numbers R(b) where b is
a generating sequence that contains only 1’s and 2’s. Experimental results show that the
number of possible numbers R(b) are asymptotically greater than 0.42R(b).
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It has been already mentioned in [3] that the scheme is resistant to SPA, even in ellip-
tic curve cryptography where multiplication and squaring (called addition and doubling)
typically have different power consumption signature, because no squaring operations, ex-
cept for the very first multiplication of the base by itself, are involved; there are also no
conditional operators. For the same reason - lack of squaring operations - the scheme is
resistant to the cross-correlation attacks.

Regarding safe error attacks, there are two different kinds of them. C safe error attacks
are applicable only when there are fake operations that do not affect the final result ([16]),
and are clearly irrelevant here. However, M safe error attacks ([15]) must be dealt with.

M safe errors attacks can be illustrated on the following modular multiplication algo-
rithm.

Modular Multiplication Algorithm

Inputs:
X = (Xn−1Xn−2 . . . X0)2T , Y,N ∈ IN

1. R← 0
2. for i = n− 1 downto 0 do
3. R← (R · 2T +Xi · Y ) mod N
4. end for
5. return R

Let us suppose that an assignment X ← X · Y mod N is one step of a modular
exponentiation, using the above modular multiplication algorithm. The modification of a
block Xi after it has been used does not affect the result of the modular multiplication
(because block Xi is used only once). Thus this modification does not affect also the result
of the entire modular exponentiation (because the variable X gets overwritten after each
multiplication). Therefore, if the attacker knows how to induce a random fault in the most
significant half of operand X during the second part of the modular multiplication, and
how to check whether the final result of the modular exponentiation is correct, then it is
possible to find out whether the result of calculation X · Y is stored in X (and the fault
has had no effect), or in another location (and the corrupted value in X affects the final
result).

In the implementation of the SFTS Exponentiation Algorithm suggested in [3] the
order of the operands is fixed, e.g. r0 ◦ r1. In this case faults in r0 have a chance to be
safe only at the iterations for which h(i) = 0 (the result is stored to r0). Therefore the M
safe error attack reveals the secret. Fortunately, changing the order of operands defends
against the M safe error attack. Namely, if the first operand (the one scanned in the outer
loop) is always different from the destination, then no safe errors are left. The improved
version of the algorithm is shown below.
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Improved SFTS Exponentiation Algorithm

Inputs:
x ∈ U ;
n ∈ Z, n ≥ 2;
h(j) = 0, 1 for j ∈ Z, 0 ≤ j ≤ n− 2.

1. r0 ← r1 ← x
2. for j = 0 to n− 1 do
3. rh(j) ← r1−h(j) ◦ rh(j)
4. end for
5. return r0 ◦ r1

This version is resistant not only to cross-correlation attacks, but also to M safe error
attacks.

3 Exponentiation Algorithm for RSA

In the case of RSA, the private exponent cannot be chosen arbitrarily (e.g., if the public
exponent must be a small constant), the algorithm described in the previous section that
calculates the private exponent as R(b) for some generating sequence b cannot be used. In
[10] three highly regular algorithms with performance 2 multiplications per bit were sug-
gested; one of them (Add-only scalar multiplication algorithm) does not involve squaring
operations, and is therefore resistant to cross-correlation attack. We suggest a modification
of another algorithm [2] with similar parameters, but with following differences:

– It is resistant not only to SPA, cross-correlation and fault attacks, but also to Bellcore
attacks [1]

– It does involve squaring operations

First of all, we notice that when the cross-correlation attack finds squaring operations,
it may help to find the private exponent in two ways:

– The sequence of squaring and multiplication operations reveals the secret

– The values being squared reveal the secret

For the left-to-right exponentiation algorithm, both the values and the sequence bear
information about the secret. On the other hand, for the right-to-left exponentiation algo-
rithm, the values being squared do not depend on the private exponent, but the order of
operations does. Adding fake multiplication after squaring that has been proposed against
SPA , since then neither values nor order depend on the private exponent. However, fake
multiplications enable C safe error attacks.

We intend to defend the right-to-left exponentiation algorithm with added fake multi-
plications against C safe error attacks, and on the same occasion against another class of
attacks known as Bellcore attacks [1]. Bellcore attacks assume that the attacker can cause
a fault in one (unknown) bit of an intermediate result, and receive the final result of the
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exponentiation. These assumptions about attacker’s capabilities are much stronger than
for safe error attacks in two aspects:

– The attacker must be able to receive the final result (while for safe error attacks it is
enough to know whether the result is correct)

– The fault must be limited to one or few bits (compared to an arbitrary fault in safe
error attacks)

Therefore safe error attacks are more dangerous than Bellcore attacks. However, there is
a defense that is good against both of them. In the suggested algorithm the final part of
right-to-left multiplication is modified in such a way that the final result will be calculated
in two ways (see [2]). We suggest a check of the two versions of the final result. Any single
fault in an intermediate result causes them to be different; if this happens, the algorithm
fails and returns no result, therefore providing resistance against both C safe error attacks
and Bellcore attacks. This algorithm is highly regular in the same sense as all algorithms
suggested in [10].

Improved Right-to-Left Exponentiation Algorithm

Inputs:
x ∈ U
d = (dn−1, . . . , d0)2 ∈ IN

1. r2 ← r0 ← x
2. r1 ← 1
3. for j = 0 to n− 2 do
4. rd(i) ← rd(i) ◦ r2
5. r2 ← r2 ◦ r2
6. end for
7. r0 = r0 ◦ r1
8. r0 = r0 ◦ r1
9. r1 = r1 ◦ r2

10. if r0 6= r1
11. return error
12. end if
13. return r0

4 Conclusion

In this paper we presented two exponentiation algorithms resistant to the cross-correlation
power analysis attack and other attacks. The doubling-free addition scheme has been
previously mentioned in [13] and [3] in the context of elliptic curve cryptography. We
suggest them for use with virtually all exponentiation-based cryptographic schemes, except
for RSA in certain settings, with the following improvements:

– Using generating sequences that significantly improves performance and requires no
precalculations
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– Change of the order of operands that provides a defense against M safe error attacks.

The new exponentiation algorithm for RSA extends the family of highly regular algorithms
from [10], having the same performance and additional protection against Bellcore attacks.
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