
Dynamic Searchable Symmetric Encryption

Seny Kamara ∗ Charalampos Papamanthou † Tom Roeder ‡

Abstract

Searchable symmetric encryption (SSE) allows a client to encrypt its data in such a way that
this data can still be searched. The most immediate application of SSE is to cloud storage, where
it enables a client to securely outsource its data to an untrusted cloud provider without sacrificing
the ability to search over it.

SSE has been the focus of active research and a multitude of schemes that achieve various levels
of security and efficiency have been proposed. Any practical SSE scheme, however, should (at a
minimum) satisfy the following properties: sublinear search time, security against adaptive chosen-
keyword attacks, compact indexes and the ability to add and delete files efficiently. Unfortunately,
none of the previously-known SSE constructions achieve all these properties at the same time. This
severely limits the practical value of SSE and decreases its chance of deployment in real-world cloud
storage systems.

To address this, we propose the first SSE scheme to satisfy all the properties outlined above. Our
construction extends the inverted index approach (Curtmola et al., CCS 2006) in several non-trivial
ways and introduces new techniques for the design of SSE. In addition, we implement our scheme
and conduct a performance evaluation, showing that our approach is highly efficient and ready for
deployment.

1 Introduction

Searchable symmetric encryption (SSE) allows a client to encrypt data in such a way that it can later
generate search tokens to send as queries to a storage server. Given a token, the server can search
over the encrypted data and return the appropriate encrypted files. Informally, a SSE scheme is secure
if: (1) the ciphertext alone reveals no information about the data; (2) the ciphertext together with a
search token reveals at most the result of the search; (3) search tokens can only be generated using the
secret key.

The most immediate application of SSE is to the design of searchable cryptographic cloud storage
systems (see [19] for a discussion) which can provide end-to-end security for cloud storage systems
without sacrificing utility. Other applications include the design of graph encryption schemes and
controlled disclosure mechanisms [6].

In an index-based SSE scheme [15, 5, 8, 23, 6] the encryption algorithm takes as input an index
δ and a sequence of n files f = (f1, . . . , fn) and outputs an encrypted index γ and a sequence of n
ciphertexts c = (c1, . . . , cn). All known constructions [15, 5, 8, 23, 6] can encrypt the files f using any
symmetric encryption scheme, i.e., the file encryption does not depend on any unusual properties of
the encryption scheme.

To search for a keyword w, the client generates a search token τw and given τw, γ and c, the
server can find the identifiers Iw of the files that contain w. From these identifiers it can recover

∗Microsoft Research. senyk@microsoft.com
†UC Berkeley. cpap@cs.berkeley.edu. Work done at Microsoft Research.
‡Microsoft Research. throeder@microsoft.com

1

Scheme Dynamism Security Search time Index size

SWP00 [22] static CPA O(|f |) N/A

Z-IDX [15] dynamic CKA1 O(#f) O(#f)

CM05 [5] static CKA1 O(#f) O(#f ·#W)

SSE-1 [8] static CKA1 O(#fw) O(
∑

w #fw + #W)

SSE-2 [8] static CKA2 O(#f) O(#f ·#W)

vLSDHJ10 [23] dynamic CKA2 O(log #W) O(#W ·mf)

CK10 [6] static CKA2 O(#fw) O(#W ·mf)

KO12 [21] static UC O(#f) O(#W ·#f)

this paper dynamic CKA2 O(#fw) O(
∑

w #fw + #W)

Table 1: Comparison of several SSE schemes. Search time is per keyword w and update time is per
file f . f is the file collection, |f | is its bit length, #f is the number of files in f , #fw is the number of
files that contain the keyword w, #W is the size of the keyword space and mf is the maximum (over
keywords) number of files in which a keyword appears.

the appropriate ciphertexts cw.1 Notice that the provider learns some limited information about the
client’s query. In particular, it knows that whatever keyword is being searched for is contained in the
files encrypted as cw. There are ways to hide even this information, most notably using the work of
Goldreich and Ostrovsky [16] on oblivious RAMs, but such an approach leads to inefficient schemes.

Previous work. The problem of searching on symmetrically encrypted data can be solved in its full
generality using the work of Goldreich and Ostrovsky [16] on oblivious RAMs. Unfortunately, this
approach requires interaction and has a high overhead. Searchable encryption was first considered
explicitly by Song, Wagner and Perrig in [22], where they give a non-interactive solution that achieves
search time that is linear in the length of the file collection.

Formal security notions for SSE have evolved over time. The first notion, security against chosen-
keyword attacks (CKA1) [15, 5, 8], guarantees that: (1) the encrypted index γ and the ciphertexts
c do not reveal any information about f other than the number of files n and their length; and (2)
the encrypted index γ and a token τw reveal at most the outcome of the search Iw. It was observed
in [8], however, that CKA1-security only provides security if the search queries are independent of
(γ, c) and of previous search results. To address this, the stronger notion of adaptive security against
chosen-keyword attacks (CKA2) was proposed [8]. Recently, Kurosawa and Ohtaki put forth the even
stronger notion of universally composable (UC) SSE [21] that, roughly speaking, guarantees security
even when the scheme is used in arbitrary environments (e.g., when composed with itself and/or other
cryptographic protocols and primitives).

While there are several CKA2-secure SSE schemes [8, 23, 6, 21], they all have limitations from a
practical point of view. In particular, the constructions of [8] and [21] require O(#f) time to search,
where #f denotes the number of files in the collection. While the construction from [6] is asymptotically
optimal and efficient in practice, the encrypted index can be very large. In addition, none of these three
schemes are explicitly dynamic; that is, one cannot add or remove files without either re-indexing the
entire data collection or making use of generic and relatively expensive dynamization techniques like
the one used in [8]. As far as we know, the only SSE construction that is CKA2-secure and (explicitly)
dynamic was proposed by van Liesdonk, Sedghi, Doumen, Hartel and Jonker [23]. In their scheme,
search is logarithmic in the number of keywords which, for practical purposes, is likely to be efficient

1This is the structure-only formulation of SSE. We refer the reader to [6] for a discussion of other SSE formulations in
the more general setting of structured encryption.

2

enough. The main limitations of the scheme, however, are that the size of the encrypted index is
relatively large (roughly the same as the scheme from [6]).

Another line of work uses deterministic encryption [2, 1] to enable search on encrypted data with
existing database and search techniques. This approach differs from SSE as it only provides security
for data and queries that have high entropy. Starting with the work of Boneh, Di Crescenzo, Ostrovsky
and Persiano [4], searchable encryption has also been considered in the public-key setting.

Table 1 summarizes the differences between our scheme and others that have appeared in the
literature.

Our contributions. In this work, we focus on the problem of constructing practical SSE schemes
for the purpose of designing practical searchable cryptographic cloud storage systems [19]. We make
the following contributions:

1. We present a formal security definition for dynamic SSE. In particular, our definition captures
a strong notion of security for SSE, which is adaptive security against chosen-keyword attacks
(CKA2) [8].

2. We construct the first SSE scheme that is dynamic, CKA2-secure and achieves optimal search
time. We note that, unlike previously known schemes [22, 15, 5, 8, 6], our construction is secure
in the random oracle model.

3. We describe the first implementation and evaluation of an SSE scheme based on the inverted
index approach of [8]. Our implementation shows that this type of SSE scheme can be extremely
efficient.

4. We conduct a performance evaluation of our scheme that shows the incremental cost of adding
confidentiality to a (searchable) cloud storage system.

2 Preliminaries and Notation

The set of all binary strings of length n is denoted as {0, 1}n, and the set of all finite binary strings
as {0, 1}∗. The notation [n] represents the set of integers {1, . . . , n}. We write x ← χ to represent an

element x being sampled from a distribution χ, and x
$← X to represent an element x being sampled

uniformly at random from a set X. The output x of a probabilistic algorithm A is denoted by x← A
and that of a deterministic algorithm B by x := B. Given a sequence of elements v we refer to its ith

element either as vi or v[i] and to its total number of elements as #v. If S is a set then #S refers to
its cardinality. W denotes the universe of words. If f = (w1, . . . , wm) ∈Wm is a file, then #f denotes
its total number of words and |f | is its bit length. Also, f̄ is the file that results from removing all
duplicates from f (i.e., f̄ contains only the unique words in f sequenced according to the order in which
they first appear in f). If s is a string then |s| refers to its bit length. We denote the concatenation of
n strings s1, . . . , sn by 〈s1, . . . , sn〉.

We use various data structures including linked lists, arrays and dictionaries. If L is a list then
#L denotes its total number of nodes. If A is an array then #A is its total number of cells, A[i] is the
value stored at location i ∈ [#A] and A[i] := v denotes the operation that stores v at location i in
A. A dictionary (also known as a key-value store or associative array) is a data structure that stores
key-value pairs (s, v). If the pair (s, v) is in T, then T[s] is the value v associated with s. T[s] := v
denotes the operation that stores the value v under search key s in T and #T is the number of pairs in
T. We sometimes write s ∈ T to mean that there exists some pair in T with search key s.

3

Throughout, k ∈ N will denote the security parameter and we will assume all algorithms take k
implicitly as input. A function ν : N→ N is negligible in k if for every positive polynomial p(·) and all
sufficiently large k, ν(k) < 1/p(k). We write f(k) = poly(k) to mean that there exists a polynomial p(·)
such that f(k) ≤ p(k) for all sufficiently large k ∈ N; and we similarly write f(k) = negl(k) to mean that
there exists a negligible function ν(·) such that f(k) ≤ ν(k) for all sufficiently large k. Two distribution
ensembles χ and χ′ are computationally indistinguishable if for all probabilistic polynomial-time (PPT)
distinguishers D, |Pr [D(χ) = 1]− Pr [D(χ′) = 1]| ≤ negl(k).

Basic cryptographic primitives. A private-key encryption scheme is a set of three polynomial-
time algorithms SKE = (Gen,Enc,Dec) such that Gen is a probabilistic algorithm that takes a security
parameter k and returns a secret key K; Enc is a probabilistic algorithm takes a key K and a message
m and returns a ciphertext c; Dec is a deterministic algorithm that takes a key K and a ciphertext
c and returns m if K was the key under which c was produced. Informally, a private-key encryption
scheme is CPA-secure if the ciphertexts it outputs do not reveal any partial information about the
plaintext even to an adversary that can adaptively query an encryption oracle.

In addition to encryption schemes, we also make use of pseudo-random functions (PRF) and per-
mutations (PRP), which are polynomial-time computable functions that cannot be distinguished from
random functions by any probabilistic polynomial-time adversary. We refer the reader to [20] for formal
definitions of CPA-security, PRFs and PRPs.

3 Definitions

Recall from §1 that searchable encryption allows a client to encrypt data in such a way that it can
later generate search tokens to send as queries to a storage server. Given a search token, the server
can search over the encrypted data and return the appropriate encrypted files.

The data can be viewed as a sequence of n files f = (f1, . . . , fn), where file fi is a sequence of words
(w1, . . . , wm) from a universe W . We assume that each file has a unique identifier id(fi). The data is
dynamic, so at any time a file may be added or removed. We note that the files do not have to be text
files but can be any type of data as long as there exists an efficient algorithm that maps each document
to a file of keywords from W . Given a keyword w we denote by fw the set of files in f that contain
w. If c = (c1, . . . , cn) is a set of encryptions of the files in f , then cw refers to the ciphertexts that are
encryptions of the files in fw.

A limitation of all known SSE constructions (including ours) is that the tokens they generate are
deterministic, in the sense that the same token will always be generated for the same keyword. This
means that searches leak statistical information about the user’s search pattern. Currently, it is not
known how to design efficient SSE schemes with probabilistic trapdoors.

Recall that we consider dynamic SSE so the scheme must allow for the addition and removal of
files. Both of these operations are handled using tokens. To add a file f , the client generates an add
token τa and given τa and γ, the provider can update the encrypted index γ. Similarly, to delete a file
f , the client generates a delete token τd, which the provider uses to update γ.

Definition 3.1 (Dynamic SSE). A dynamic index-based SSE scheme is a tuple of nine polynomial-time
algorithms SSE = (Gen,Enc,SrchToken,AddToken,DelToken, Search,Add,Del,Dec) such that:

K ← Gen(1k): is a probabilistic algorithm that takes as input a security parameter k and outputs
a secret key K.

(γ, c)← Enc(K, f): is a probabilistic algorithm that takes as input a secret key K and a sequence
of files f . It outputs an encrypted index γ, and a sequence of ciphertexts c.

4

τs ← SrchToken(K,w): is a (possibly probabilistic) algorithm that takes as input a secret key K
and a keyword w. It outputs a search token τs.

(τa, cf)← AddToken(K, f): is a (possibly probabilistic) algorithm that takes as input a secret key
K and a file f . It outputs an add token τa and a ciphertext cf .

τd ← DelToken(K, f): is a (possibly probabilistic) algorithm that takes as input a secret key K
and a file f . It outputs a delete token τd.

Iw := Search(γ, c, τs): is a deterministic algorithm that takes as input an encrypted index γ, a
sequence of ciphertexts c and a search token τs. It outputs a sequence of identifiers Iw ⊆ c.

(γ′, c′) := Add(γ, c, τa, c): is a deterministic algorithm that takes as input an encrypted index γ,
a sequence of ciphertexts c, an add token τa and a ciphertext c. It outputs a new encrypted index
γ′ and sequence of ciphertexts c′.

(γ′, c′) := Del(γ, c, τd): is a deterministic algorithm that takes as input an encrypted index γ, a
sequence of ciphertexts c, and a delete token τd. It outputs a new encrypted index γ′ and new
sequence of ciphertexts c′.

f := Dec(K, c): is a deterministic algorithm that takes as input a secret key K and a ciphertext
c and outputs a file f .

A dynamic SSE scheme is correct if for all k ∈ N, for all keys K generated by Gen(1k), for all f ,
for all (γ, c) output by Enc(K, f), and for all sequences of add, delete or search operations on γ, search
always returns the correct set of indices.

Intuitively, the security guarantee we require from a dynamic SSE scheme is that (1) given an
encrypted index γ and a sequence of ciphertexts c, no adversary can learn any partial information
about the files f ; and that (2) given, in addition, a sequence of tokens τ = (τ1, . . . , τn) for an adaptively
generated sequence of queries q = (q1, . . . , qn) (which can be for the search, add or delete operations),
no adversary can learn any partial information about either f or q.

This exact intuition can be difficult to achieve and most known efficient and non-interactive SSE
schemes [15, 5, 8] reveal the access and search patterns.2 We therefore need to weaken the definition
appropriately by allowing some limited information about the messages and the queries to be revealed
to the adversary. To capture this, we follow the approach of [8] and [6] and parameterize our definition
with a set of leakage functions that capture precisely what is being leaked by the ciphertext and the
tokens.

As observed in [8], another issue with respect to SSE security is whether the scheme is secure
against adaptive chosen-keyword attacks (CKA2) or only against non-adaptive chosen keyword attacks
(CKA1). The former guarantees security even when the client’s queries are based on the encrypted
index and the results of previous queries. The latter only only guarantees security if the client’s queries
are independent of the index and of previous results.

In the following definition, we extend the notion of CKA2-security from [8] to the dynamic setting.

Definition 3.2 (Dynamic CKA2-security). Let SSE = (Gen,Enc, SrchToken,AddToken,DelToken,Search,
Add,Del,Dec) be a dynamic index-based SSE scheme and consider the following probabilistic experi-
ments, where A is a stateful adversary, S is a stateful simulator and L1, L2, L3 and L4 are stateful
leakage algorithms:

2Two exceptions are the work of Goldreich and Ostrovsky [16] which does not leak any information at all, and the
SSE construction described in [6] which leaks only the access and the intersection patterns.

5

w1 f1 f2 f3

w2 f2

w3 f2 f3

Index

FK1(w1) −→ (4 || 1)⊕GK2(w1)

FK1(w2) −→ (0 || 2)⊕GK2(w2)

FK1(w3) −→ (5 || 0)⊕GK2(w3)

free −→ 6

Search Table Ts

FK1(f1) −→ 1⊕GK2(f1)

FK1(f2) −→ 5⊕GK2(f2)

FK1(f3) −→ 4⊕GK2(f3)

Deletion Table Td

0 1 2 3 4 5 6 7

w2 w3 free w1 w1 w3 free w1

f2 f3 Ad[7] f3 f1 f2 Ad[3] f2
Search Array As

f2 f1 f2
0

f3 f2 f3
0

w3 w1 w2 w3 w1 w1

Deletion Array Ad

Figure 1: A small example of a dynamic encrypted index.

RealA(k): the challenger runs Gen(1k) to generate a key K. A outputs f and receives (γ, c) such that
(γ, c) ← EncK(f) from the challenger. The adversary makes a polynomial number of adaptive
queries {w, f1, f2} and, for each query q, receives from the challenger either a search token τs
such that τs ← SrchTokenK(w), an add token and ciphertext pair (τa, cf1) such that (τa, cf1) ←
AddTokenK(f1) or a delete token τd such that τd ← DelTokenK(f2). Finally, A returns a bit b
that is output by the experiment.

IdealA,S(k): A outputs f . Given L1(f), S generates and sends a pair (γ, c) to A. The adversary
makes a polynomial number of adaptive queries q ∈ {w, f1, f2} and, for each query q, the simulator
is given either L2(f , w), L3(f , f1) or L4(f , f2). The simulator returns an appropriate token τ and,
in the case of an add operation, a ciphertext c. Finally, A returns a bit b that is output by the
experiment.

We say that SSE is (L1,L2,L3,L4)-secure against adaptive dynamic chosen-keyword attacks if for all
ppt adversaries A, there exists a ppt simulator S such that

|Pr [RealA(k) = 1]− Pr [IdealA,S(k) = 1]| ≤ negl(k).

Note that in addition to our inclusion of dynamic operations the differences between our definitions
and the definitions of [8] are stylistic: we employ leakage functions in the style of [6] rather than the
history in the style of [8].

4 Our Construction

Our scheme is an extension of the SSE-1 construction from [8, 9] which is based on the inverted index
data structure. Though SSE-1 is practical (it is asymptotically optimal with small constants), it does

6

Let SKE = (Gen,Enc,Dec) be a private-key encryption scheme and F : {0, 1}k × {0, 1}∗ → {0, 1}k, G :
{0, 1}k × {0, 1}∗ → {0, 1}∗, and P : {0, 1}k × {0, 1}∗ → {0, 1}k be pseudo-random functions. Let H1 :
{0, 1}∗ → {0, 1}∗ and H2 : {0, 1}∗ → {0, 1}∗ be random oracles. Let z ∈ N be the initial size of the free list.
Construct a dynamic SSE scheme SSE = (Gen,Enc,SrchToken,AddToken,DelToken,Search,Add,Del,Dec)
as follows:

• Gen(1k): sample three k-bit stringsK1,K2,K3 uniformly at random and generateK4 ← SSE.Gen(1k).
Output K = (K1,K2,K3,K4).

• Enc(K, f):

1. let As and Ad be arrays of size |c|/8 + z and let Ts and Td be dictionary of size #W and #f ,
respectively. We assume 0 is a (log #As)-length string of 0’s and that free is a word not in W .

2. for each word w ∈W ,a

(a) create a list Lw of #fw nodes (N1, . . . , N#fw) stored at random locations in the search array
As and defined as:

Ni := (〈idi, addrs(Ni+1)〉 ⊕H1(Kw, ri), ri)

where idi is the ID of the ith file in fw, ri is a k-bit string generated uniformly at random,
Kw := PK3

(w) and addrs(N#fw+1) = 0

(b) store a pointer to the first node of Lw in the search table by setting

Ts[FK1
(w)] := 〈addrs(N1), addrd(N?1)〉 ⊕GK2

(w),

where N? is the dual of N, i.e., the node in Ad whose fourth entry points to N1 in As.

3. for each file f in f ,

(a) create a list Lf of #f̄ dual nodes (D1, . . . , D#f̄) stored at random locations in the deletion
array Ad and defined as follows: each entry Di is associated with a word w, and hence a
node N in Lw. Let N+1 be the node following N in Lw, and N−1 the node previous to N in
Lw. Then, define Di as follows:

Di :=
(〈
addrd(Di+1), addrd(N?−1), addrd(N?+1), addrs(N), addrs(N−1), addrs(N+1), FK1

(w)
〉
⊕H2(Kf , r

′
i), r

′
i

)
where r′i is a k-bit string generated uniformly at random, Kf := PK3(f), and
addrd(D#f̄+1) = 0.

(b) store a pointer to the first node of Lf in the deletion table by setting:

Td[FK1(f)] := addrd(D1)⊕GK2(f)

4. create an unencrypted free list Lfree by choosing z unused cells at random in As and in Ad. Let
(F1, . . . , Fz) and (F′1, . . . , F

′
z) be the free nodes in As and Ad, respectively. Set

Ts[free] := 〈addrs(Fz),0log #A〉

and for z ≥ i ≥ 1, set

As[addrs(Fi)] := 0log #f , addrs(Fi−1), addrd(F′i)

where addrs(F0) = 0log #A.

5. fill the remaining entries of As and Ad with random strings

6. for 1 ≤ i ≤ #f , let ci ← SKE.EncK4
(fi)

7. output (γ, c), where γ := (As, Ts, Ad, Td) and c = (c1, . . . , c#f).

aSteps 2 and 3 here must be performed in an interleaved fashion to set up As and Ad at the same time.

Figure 2: A Fully Dynamic SSE scheme (Part 1).

7

• SrchToken(K,w): compute and output τs :=
(
FK1(w), GK2(w), PK3(w)

)
• Search(γ, c, τs):

1. parse τs as (τ1, τ2, τ3) and return an empty list if τ1 is not present in Ts.

2. recover a pointer to the first node of the list by computing (α1, α
′
1) := Ts[τ1]⊕ τ2

3. look up N1 := A[α1] and decrypt with τ3, i.e., parse N1 as (ν1, r1) and compute (id1, addrs(N2)) :=
ν1 ⊕H1(τ3, r1)

4. for i ≥ 2, decrypt node Ni as above until αi+1 = 0

5. let I = {id1, . . . , idm} be the file identifiers revealed in the previous steps and output {ci}i∈I ,
i.e., the encryptions of the files whose identifiers were revealed.

• AddToken(K, f): let (w1, . . . , w#f̄) be the unique words in f in their order of appearance in f .
Compute

τa := (FK1
(f), GK2

(f), λ1, . . . , λ#f̄),

where for all 1 ≤ i ≤ #f̄ :

λi :=
(
FK1(wi), GK2(wi), 〈id(f),0〉⊕H1(PK3(wi), ri), ri, 〈0,0,0,0,0,0, FK1(wi)〉⊕H2(PK3(f), r′i), r

′
i

)
,

and ri and r′i are random k-bit strings. Let cf ← SKE.EncK4(f) and output (τa, cf).

• Add(γ, c, τa):

1. parse τa as (τ1, τ2, λ1, . . . , λ#f̄ , c) and return ⊥ if τ1 is not in Td.

2. for 1 ≤ i ≤ #f̄ ,

(a) find the last free location ϕ in the search array and its corresponding entry ϕ? in the
deletion array by computing (ϕ,0) := Ts[free], and (ϕ−1, ϕ

?) := As[ϕ].

(b) update the search table to point to the second to last free entry by setting Ts[free] :=
(ϕ−1,0)

(c) recover a pointer to the first node N1 of the list by computing (α1, α
?
1) := Ts[λi[1]]⊕ λi[2]

(d) store the new node at location ϕ and modify its forward pointer to N1 by setting As[ϕ] :=(
λi[3]⊕ 〈0, α1〉, λi[4]

)
(e) update the search table by setting Ts[λi[1]] := (ϕ,ϕ?)⊕ λi[2]

(f) update the dual of N1 by setting Ad[α?
1] :=

(
D1 ⊕ 〈0, ϕ?,0,0, ϕ,0,0〉, r

)
, where (D1, r) :=

Ad[α?
1]

(g) update the dual of As[ϕ] by setting Ad[ϕ?] :=
(
λi[5]⊕ 〈ϕ?

−1,0, α
?
1, ϕ,0, α1, λi[1]〉, λi[6]

)
,

(h) if i = 1, update the deletion table by setting Td[τ1] := 〈ϕ?,0〉 ⊕ τ2.

3. update the ciphertexts by adding c to c

Figure 3: A Fully Dynamic SSE scheme (Part 2).

8

• DelToken(K, f): output: τd := (FK1
(f), GK2

(f), PK3
(f), id(f)).

• Del(γ, c, τd):

1. parse τd as (τ1, τ2, τ3, id) and return ⊥ if τ1 is not in Td

2. find the first node of Lf by computing α′1 := Td[τ1]⊕ τ2
3. for 1 ≤ i ≤ #f̄ ,

(a) decrypt Di by computing (α1, . . . , α6, µ) := Di ⊕H2(τ3, r), where (Di, r) := Ad[α′i]

(b) delete Di by setting Ad[α′i] to a random (6 log #A + k)-bit string

(c) find address of last free node by computing (ϕ,0log #A) := Ts[free]

(d) make the free entry in the search table point to Di’s dual by setting Ts[free] := 〈α4,0
log #A〉

(e) free location of Di’s dual by setting As[α4] := (ϕ, α′i)

(f) let N−1 be the node that precedes Di’s dual. Update N−1’s “next pointer” by setting:
As[α5] := (β1, β2 ⊕ α4 ⊕ α6, r−1), where (β1, β2, r−1) := As[α5]. Also, update the pointers
of N−1’s dual by setting

Ad[α2] := (β1, β2, β3 ⊕ α′i ⊕ α3, β4, β5, β6 ⊕ α4 ⊕ α6, µ∗, r∗−1),

where (β1, . . . , β6, µ
∗, r∗−1) := Ad[α2]

(g) let N+1 be the node that follows Di’s dual. Update N+1’s dual pointers by setting:

Ad[α3] := (β1, β2 ⊕ α′i ⊕ α2, β3, β4, β5 ⊕ α4 ⊕ α5, β6, µ
∗, r∗+1),

where (β1, . . . , β6, µ
∗, r∗+1) := Ad[α3]

(h) set α′i+1 := α1

4. remove the ciphertext that corresponds to id from c

5. remove τ1 from Td

• Dec(K, c): output m := SKE.DecK4(c).

Figure 4: A Fully Dynamic SSE scheme (Part 3).

have limitations that make it unsuitable for direct use in cryptographic cloud storage systems: (1) it is
only secure against non-adaptive chosen-keyword attacks (CKA1) which, intuitively, means that it can
only provide security for clients that perform searches in a batch; and (2) it is not explicitly dynamic,
i.e., it can only support dynamic operations using general and inefficient techniques.

Before discussing how we address these issues, we first recall a variant of the SSE-1 construction at
a high level. The construction is essentially the same as SSE-1 except that the lookup table managed
by indirect addressing is replaced with a dictionary.3 The scheme makes use of a private-key encryption
scheme SKE = (Gen,Enc,Dec), two pseudo-random functions F and G, an array As we refer to as the
search array and a dictionary Ts we refer to as the search table. Here we assume SKE is anonymous
in the sense that, given two ciphertexts, one cannot determine whether they were encrypted under the
same key.4

The SSE-1 construction. To encrypt a collection of files f , the scheme constructs for each keyword
w ∈ W a list Lw. Each list Lw is composed of #fw nodes (N1, . . . , N#fw) that are stored at random
locations in the search array As. The node Ni is defined as Ni = 〈id, addrs(Ni+1)〉, where id is the unique

3This was first used in [6] to avoid the use of FKS dictionaries [14].
4This allows us to encrypt each node of a list using a single key as opposed to using unique keys as done in [8].

9

file identifier of a file that contains w and addrs(N) denotes the location of node N in As. To prevent the
size of As from revealing statistical information about f , it is recommended that As be of size at least
|c|/8 and the unused cells be padded with random strings of appropriate length.

For each keyword w, a pointer to the head of Lw is then inserted into the search table Ts under
search key FK1(w), where K1 is the key to the PRF F . Each list is then encrypted using SKE under a
key generated as GK2(w), where K2 is the key to the PRF G.

To search for a keyword w, it suffices for the client to send the values FK1(w) and GK2(w). The
server can then use FK1(w) with Ts to recover the pointer to the head of Lw, and use GK2(w) to
decrypt the list and recover the identifiers of the files that contain w. As long as T supports O(1)
lookups (which can be achieved using a hash table), the total search time for the server is linear in
#fw, which is optimal.

Making SSE-1 dynamic. As mentioned above, the limitations of SSE-1 are twofold: (1) it is only
CKA1-secure and (2) it is not explicitly dynamic. As observed in [6], the first limitation can be
addressed relatively easily by requiring that SKE be non-committing (in fact the CKA2-secure SSE
construction proposed in that work uses a simple PRF-based non-committing encryption scheme).

The second limitation, however, is less straightforward to overcome. The difficulty is that the
addition, deletion or modification of a file requires the server to add, delete or modify nodes in the
encrypted lists stored in As. This is difficult for the server to do since: (1) upon deletion of a file f ,
it does not know where (in A) the nodes corresponding to f are stored; (2) upon insertion or deletion
of a node from a list, it cannot modify the pointer of the previous node since it is encrypted; and (3)
upon addition of a node, it does not know which locations in As are free.

At a high level, we address these limitations as follows:

1. (file deletion) we add an extra (encrypted) data structure Ad called the deletion array that the
server can query (with a token provided by the client) to recover pointers to the nodes that
correspond to the file being deleted. More precisely, the deletion array stores for each file f a
list Lf of nodes that point to the nodes in As that should be deleted if file f is ever removed. So
every node in the search array has a corresponding node in the deletion array and every node in
the deletion array points to a node in the search array. Throughout, we will refer to such nodes
as duals and write N? to refer to the dual of a node N.

2. (pointer modification) we encrypt the pointers stored in a node with a homomorphic encryption
scheme. This is similar to the approach used by van Liesdonk et al in [23] to modify the encrypted
search structure they construct. By providing the server with an encryption of an appropriate
value, it can then modify the pointer without ever having to decrypt the node. We use the
“standard” private-key encryption scheme which consists of XORing the message with the output
of a PRF. This simple construction also has the advantage of being non-committing (in the
private-key setting) which we make use of to achieve CKA2-security.

3. (memory management) to keep track of which locations in As are free we add and manage extra
space comprising a free list that the server uses to add new nodes.

Our construction is described in detail in Figures 2, 3 and 4. Figure 1, which we discuss in the next
Section, illustrates the dynamic SSE data structures over a toy index containing 3 files and 3 unique
words.

On our use of random oracles. As observed in [8], one of the main difficulties in designing CKA2-
secure SSE schemes is that the keywords can be chosen as a function of the encrypted index and of

10

previous search results. This makes proving security difficult because the simulator has to be able to
simulate an encrypted index before it receives any search results. [8] showed how to overcome this
obstacle and later [6] gave a more efficient approach based on a simple private-key non-committing
encryption scheme. At a high level, both works construct schemes that allow for equivocation, that is,
the simulator can generate a “fake” encrypted index and later, when given a search result, can generate
an appropriate token (i.e., a token that when used with the fake index will yield the correct search
outcome). Unfortunately, the techniques from [8] and [6] do not work in our setting. The main problem
is that in the dynamic setting there are situations where the previously described level of equivocation
is not enough.

In particular, consider an adversary that first searches for a keyword w, then adds a file that contains
w and, finally, searches for w again. To see why the previous level of equivocation does not suffice,
notice that after the first search the simulator is committed to a token for w. Now, after the adversary
adds a file with w, the simulator needs to simulate an add token for that file. The simulator, however,
does not know what the file is or even that it contains w so it cannot produce a token that functions
properly, i.e., the add token it simulates cannot make any meaningful change to the encrypted index.
The problem is that after the adversary performs the second search for w, he expects this new search
to reveal at least one new result compared to the previous one. In particular, the search should now
also reveal the new file’s identifier. But if the add token cannot properly modify the encrypted index
in the second stage and if the simulator cannot send a new token during the third stage (since it is
committed) then how can the simulator guarantee that the adversary will get an updated search result?

We overcome this by constructing a scheme that allows the simulator to modify the outcome of the
search during the adversary’s execution of the search algorithm. Note that this is a departure from the
approaches of [8] and [6] which manipulate the outcome of the adversary’s search by creating specially
designed tokens. We do this by making use of the random oracle model. At a very high level, we design
our encrypted index in a way that requires the adversary to query a random oracle during various steps
of the search algorithm. The simulator is then able to program the responses of the random oracle in
a way that suits it and can make sure that the execution of the search yields the outcome it wants.

4.1 An Illustrative Example

In Figure 1, we show the data structures of our fully-dynamic SSE scheme for a specific index. The
index is built on three documents, namely f1, f2, f3 over three keywords, namely w1, w2, w3. All the
documents contain keyword w1, keyword w2 is only contained in document f2 and w3 is contained in
documents f2 and f3. The respective search table Ts, the deletion table Td, the search array As and the
deletion array Ad are also shown in Figure 1. Note that in a real DSSE index, there would be padding
to hide the number of file-word pairs; we omit padding for simplicity in this example.

Searching. Searching is the simplest operation in our scheme. Suppose the client wishes to search
for all the documents that contain keyword w1. He prepares the search token, which among others
contains FK1(w1) and GK2(w1). The first value FK1(w1) will enable the server to locate the entry
corresponding to keyword w1 in the search table Ts. In our example, this value is x = (4||1)⊕GK2(w1).
The server now uses the second value GK2(w1) to compute x ⊕ GK2(w1). This will allow the server
to locate the right entry (4 in our example) in the search array and begin “unmasking” the locations
storing pointers to the documents containing w1. This unmasking is performed by means of the third
value contained in the search token.

Adding a document. Suppose now the client wishes to add a document f4 containing keywords
w1 and w2. Note that the search table does not change at all since f4 is going to be the last entry in

11

the list of keywords w1 and w2 and the search table only stores the first entries. However all the other
data structures must be updated in the following way. First the server uses free to quickly retrieve the
indices of the “free” positions in the search array As, where the new entries are going to be stored. In
our example these positions are 2 and 6. The server stores in these entries the new information (w1, f4)
and (w2, f4). Now the server needs to connect this new entries to the respective keywords lists: using
the add token, it retrieves the indices i = 0 and j = 3 in the search array As of the elements x and y
such that x and y correspond to the last entries of the keyword lists w1 and w2. In this way the server
homomorphically sets As[0]’s and As[3]’s “next” pointers to point to the newly added nodes, already
stored in the search array at positions 2 and 6.

Note that getting access to the free entries in the search array also provides access to the respective
free positions of the deletion array Ad. In our example, the indices of the free positions in the deletion
array are 3 and 7. The server will store the new entries (f4, w1) and (f4, w2) at these positions in the
deletion array and will also connect them with pointers. Finally, the server will update the deletion
table by setting the entry FK1(f4) to point to position 3 in the deletion array, so that file f4 could be
easily retrieved for deletion later.

Deleting a document. Suppose now the client wants to delete a document already stored in our
index, say document f3, containing keywords w1 and w3. The deletion is a “dual operation” to addition.
First the server uses the value FK1(f3) of the deletion token to locate the right value 4⊕GK2(f3) in the
deletion table. This will allow the server to get access to the portion of the remaining data structures
that need to be updated in a similar fashion with the addition algorithm. Namely it will “free” the
positions 4 and 6 in the deletion array and positions 1 and 3 in the search array. While “freeing” the
positions in the search array, it will also homomorphically update the pointers of previous entries in the
keyword list w1 and w3 to point to the new entries (in our example, to the end of the lists—generally
in the next pointers of the deleted items). Note that no such an update of pointers is required for the
deletion array.

5 Security

As discussed in §3, all practical SSE schemes leak some information. Unfortunately, the extent to which
the practical security of SSE is affected by this leakage is not well understood and depends greatly
on the setting in which SSE is used. We are aware of only one concrete attack [18] that exploits this
leakage and it depends strongly on knowledge of previous queries and statistics about the file collection.
We note, however, that our scheme leaks more than most previously-known constructions since it is
dynamic and there are correlations between the information leaked by its various operations. In the
following, we provide a framework for describing and comparing the leakage of SSE schemes. Based on
this framework, we compare the leakage of our scheme with the leakage of SSE-1, which is static; and
the leakage of the scheme proposed in [23], which is dynamic.

A framework for characterizing leakage. Our approach is to describe leakage in terms of a
database containing two tables over word and file identifiers: SSE operations write anonymized rows
to tables in the database, and an adversary tries to de-anonymize the resulting data. Columns in the
tables contain identifiers for files and words: each file is represented by exactly one identifier, and each
word is represented by exactly one identifier, but these identifiers are chosen at random with respect
to files and words. For ease of exposition, we will assume that there is a function id that produce
identifiers for files and words.

Our scheme writes file-word information into two tables:

12

1. the File-Word table (FW), in which each row associates a word identifier with a file identifier.

2. the Adjacency (Adj) table, in which each row associates a word identifier and a file identifier with
a direction “next” or “prev” and one of the following values: (1) another file identifier, or (2) a
value ⊥.

Each row also contains a timestamp of the time it was written; for simplicity in notation, we do
not write the timestamps in the following description. Intuitively, the FW table records associations
between file and word identifiers; the Adj table records adjacency information about files in the lists
for given words.

Note that our concrete construction has two different identifiers for a given file: the ciphertext for
a file is stored under a file pointer that is revealed during the search operation, but the file information
in the index is stored in Td under the output of a pseudo-random function on the file. However, the
scheme’s operations immediately reveal to an adversary the correlation between these values, so in our
leakage description, we do not distinguish between these two types of file identifiers. Operations in our
construction write the following values:

Search takes as input the identifier for a word w and returns a set of file identifiers to the client.
So, for each file f returned by search, our scheme writes the row (id(w), id(f)) to the FW table. Note
that the server then writes one row for each file-word pair.

Add takes as input an add token that contains the identifier for a file f and adds word information
for a set of words associated with this file. Like Search, Add writes tuples (id(w), id(f)) for each word
w associated with the file in the Add Token.

Additionally, however, the Add operation reveals to the server whether or not f is the only file that
contains w. If the server has previously executed an operation that revealed the file f ′ associated with
the head of the list for w, then Add writes the tuple (id(w), id(f), “next”, id(f ′)) to the Adj table. In
either case, Add writes the tuple (id(w), id(f), “prev”, ⊥) to the Adj table to indicate that f is the
head node for the list for w. And if the word is not yet in the index, then Add writes (id(w), id(f),
“next”, ⊥) to the Adj table.

Delete takes as input a delete token that contains an identifier for a file f ; this token does not
contain any word-specific information. However, in the process of executing the Delete operation, the
server uncovers in the index a word-identifier (the search key for Ts) for each word associated with the
file. So, like Search and Add, Delete writes tuples (id(w), id(f)) for each word w associated with f .

As each word w is deleted for f , it reveals the location of its neighbors in the search array. And
for the purposes of our proof, we say that the leakage in this case consists of the file identifiers for
the previous and next nodes in the list for w. Let the files associated with these nodes be f ′ and f ′′,
respectively. The server then writes (id(w), id(f), “prev”, id(f ′)) and (id(w), id(f), “next”, id(f ′′)) to
the Adj table (in each case, it writes ⊥ if there is no previous or next neighbor).

We can use this framework to compare the leakage of our scheme to the leakage of previous schemes.
SSE-1 does not provide Add or Delete operations, but it writes the same values as our scheme writes to
the FW table in Search. The other table (and the additional writes to FW in Add and Delete) makes
up the extra leakage from our scheme.

The scheme of Sedghi et al. [23] is dynamic but leaks less information than our construction. Search
in their scheme reveals the word that is searched but does not reveal the identifiers of the files returned,
since that information is masked in an array of bits, with one bit per file. This can be represented
by writing a word identifier to the FW table with the value ⊥ for the file identifier. Their scheme
performs the same writes to the FW table for Add and Delete, since each Add or Delete operation
reveals an identifier for the file and reveals the word identifiers by the locations that it modifies in
their index. However, their scheme never writes adjacency information to the Adj table: it hides all

13

adjacency information at the cost of requiring per-word storage and communication complexity that is
linear in the maximum number of files that can be stored in their index.

Theorem and proof. Before stating our security Theorem, we provide a more formal and concise
description of our scheme’s leakage:

• the L1 leakage is defined as

L1(f) =
(
#As,

[
id(w)

]
w∈W ,

[
id(f)

]
f∈f ,

[
|f |
]
f∈f
)
,

where id is the identifier function described above.

• the L2 leakage is defined as:
L2(f , w) =

(
accpt(w), id(w)

)
,

where accpt(w) is the access pattern which itself is defined as the sequence (id1, . . . , id#fw).

• the L3 leakage is defined as:

L3(f , f) =
(
id(f),

[
id(w), apprs(w)

]
w∈f̄ , |f |

)
,

where apprs(wi) is a bit set to 1 if w is appears in at least one file in f and to 0 otherwise.

• the L4 leakage is defined as:

L4(f , f) =
(
id(f),

[
id(w), prev(f, w), next(f, w)

]
w∈f̄

)
,

where prev(f, w) and next(f, w) are the identities of the first files before and after f (in the natural
ordering of files) that contain w. If there are no files before and after f that contain the word then
prev(f, w) and next(f, w) return ⊥, respectively. Here we assume the identifier/pointer triples are
ordered according to the order in which the words appear in f .

In the following Theorem we show that our construction is CKA2-secure in the random oracle model
with respect to the leakage described above.

Theorem 5.1. If SKE is CPA-secure and if F , G and P are pseudo-random, then SSE as described
above is (L1,L2,L3,L4)-secure against adaptive chosen-keyword attacks in the random oracle model.

At a very high level, the proof of security for our construction works as follows. The simulator S
generates a simulated encrypted index γ̃ and a simulated sequence of ciphertexts c̃ using the information
it receives from L1, which includes the number of elements in the search array, the number of files, the
number of keywords and the length of each file. The simulated index γ̃ can be constructed similarly
to a real encrypted index, except that encryptions are replaced by encryptions of the zero string (of
appropriate length) and the output of the PRFs are replaced by random values. The CPA-security of
the encryption schemes and the pseudo-randomness of the PRFs will guarantee that the resulting γ̃ is
indistinguishable from a real encrypted index. The simulated file encryptions c̃ are simulated in the
same manner (i.e., replacing the ciphertexts by encryptions of the all zero string) and the CPA-security
of the encryption scheme guarantees indistinguishability.

Simulating search, add and delete tokens is more complex and requires the simulator to keep track of
various dependencies between the information revealed by these operations. This is because the tokens
the simulator creates must all be consistent with each other, otherwise the simulation may be detected
by the adversary. For this, our proof utilizes a non-trivial set of techniques so that the simulator can
keep track of dependencies.

14

Proof. We describe a polynomial-time simulator S such that for all probabilistic polynomial-time adver-
saries A, the outputs of RealA(k) and IdealS(k) are computationally indistinguishable. Consider the
simulator S that adaptively simulates an encrypted index γ̃ = (Ãs, T̃s, Ãd, T̃d), a sequence of simulated
ciphertexts c̃ and n ∈ N simulated tokens (τ̃1, . . . , τ̃n) as follows:

• (Setting up internal data structures) given

L1(δ, f) =

(
#As,

[
id(w)

]
w∈W ,

[
id(f)

]
f∈f ,

[
|f |
]
f∈f

)
,

it generates K5 ← SKE.Gen(1k). Let iAs, Ã
′
s, iAd and Ã

′
d be empty arrays each of size |c|/8 + z

and let iTs and T̃
′
s be dictionaries of size #W + 1, and iTd and T̃

′
d be dictionaries of size and #f .

Set iTs[free] := ⊥, iTs[id(wi)] := ⊥ for all i ∈ [#W]. For all j ∈ [#f], set iTd[id(fj)] := ⊥. Let
RO1 and RO2 be empty dictionaries. Let γs be a bijection mapping search keys in iTs to search
keys in T̃

′
s and let γd be a bijection mapping search keys in iTd to search keys in T̃

′
d.

For all i ∈ [#W], the simulator choose a k-bit key Kid(wi) uniformly at random that will be
associated with identifier id(wi). Similarly, for all i ∈ [#f], it chooses a k-bit key Kid(fi) uniformly
at random that will be associated with id(fi).

• (Simulating As) it generates an array Ãs of size |c|/8 + z and fills |c|/8 of these cells (chosen at
random) with random strings of the form 〈Ñ, r̃〉 such that |Ñ| = log #As + log n and |r̃| = k. It

generates a copy Ã
′
s of Ãs. It then marks all the empty cells in As as free in iAs. In other words,

if the `th cell in As is empty, then the `th cell in iAs is marked as free.

• (Simulating Ts) it generates a dictionary T̃s of size #W + 1 and for all i ∈ [#W + 1], stores a
random (2 log #As)-bit string ṽ in T̃s under a random k-bit search key σ̃. In addition, it generates

a copy T̃
′
s of T̃s.

• (Simulating Ad) it generates an array Ãd of size |c|/8 + z and fills |c|/8 of these cells (chosen at
random) with random strings of the form 〈D̃, r̃〉 such that |D̃| = 6 log #Ad + k and |r̃| = k. In

addition, it generates a copy Ã
′
d of Ãd. As above, it then marks all the empty cells in Ad as free in

iAd. It then generates a map

δ : {1, . . . , |c|/8 + z} ∪ ⊥ → {1, . . . , |c|/8 + z} ∪ ⊥

which is a bijection mapping locations in iAs to locations in iAd such that δ(⊥) = ⊥ and such
that free cells in iAs are mapped to free cells in iAd.

• (Simulating Td) it generates a dictionary T̃d of size #f and, for all i ∈ [n], stores a random
(log #Ad)-bit string ṽ in T̃d under a random k-bit search key σ̃. In addition, it generates a copy

T̃
′
d of T̃d.

• (Simulating ciphertexts) for all i ∈ [#f], let

c̃i ← SKE.EncK5(0|fi|).

• (Simulating search tokens) given

L2(δ, f , w) =

(
accpt(w), id(w)

)
,

15

where accpt(w) = (id1, . . . , id#fw), the simulator works as follows.

There are two cases to consider: either (1) the word has never appeared before, in which case
id(w) has never appeared in any previous leakage; or (2) the word has either been searched for or
is contained in a file that has been added or deleted in the past, in which case id(w) has appeared
in previous leakage. The simulator first checks if id(w) has appeared in previous leakage.

Case 1. If id(w) has not appeared, it will update its iTs and iAs structures to point to and
hold, respectively, a new list for id(w). To do this, it chooses #accpt(w) unused and non-free
cells in iAs at random and marks them with id(w). It then creates a list by storing in each of
these cells a file identifier idi from accpt(w) and a pointer to the cell that holds idi+1. If i = #fw,
it stores the pointer ⊥. Let α1 be the address of the head of this list, i.e., of the cell that holds
id1. It then makes iTs point to this list by setting iTs[id(w)] := 〈α1, δ(α1)〉.
If #accpt(w) = 0, then no list is created and α1 is just set to ⊥.

Case 2. If, on the other hand, id(w) has appeared, then iTs[id(w)] is either 〈⊥,⊥〉 or 〈α1, δ(α1)〉,
where α1 is a location in iAs that holds the head of a list of nodes marked with id(w). The first
case could occur, e.g., if the word has been searched for in the past but is not in any file.

If iTs[id(w)] = 〈α1, δ(α1)〉 6= 〈⊥,⊥〉, the simulator searches iAs for the cells marked with id(w). As
stated above, these cells form a list. The simulator then augments this list to length #accpt(w)
by choosing unused and non-free cells in iAs at random and, as above, storing the appropriate
file identifiers and pointers. While augmenting the list, respect the existing head and tail (if any)
and mark each of the new cells with id(w).

If, on the other hand, iTs[id(w)] = 〈⊥,⊥〉, it just sets α1 = ⊥.

It then returns the token

τs =

(
γs(id(w)), T̃

′
s[γs(id(w))]⊕ 〈α1, δ(α1)〉,Kid(w)

)
.

• (Simulating add tokens) given

L3(δ, f , f) =

(
id(f),

[
id(wi), apprs(wi)

]
i∈#f̄

, |f |
)
,

the simulator works as follows.

If id(f) ∈ iTd, the file has already been added in the past (and not deleted since) so it just returns
the token τa that was previously returned.

From now on we assume the file is new. First, it chooses a random k-bit string Kid(f) which it
will associate with id(f) (this will be used for answering random oracle queries).

Before returning a token, the simulator must check if its internal data structures are properly
setup. For this, it considers the following three cases for all i ∈ [#f̄]:

1. if iTs[id(wi)] 6= 〈⊥,⊥〉, its internal data structures are correctly set up and iTs[id(wi)] points
to a list in iAs.

2. if iTs[id(wi)] = 〈⊥,⊥〉 and apprs(wi) = 0, its internal data structures are correctly set up
since the word does not appear in the file collection and iTs[id(wi)] correctly points to ⊥.

16

3. if iTs[id(wi)] = 〈⊥,⊥〉 and apprs(wi) = 1, its internal data structures are not properly set
up since the word does appear in the file collection and iTs[id(wi)] points to ⊥. To address
this, the simulator sets

iTs[id(wi)] = 〈α1, δ(α1)〉,

where α1 is a randomly chosen unused and non-free cell location in iAs. It then stores id(f)
in the cell at location α1 and marks it with id(wi).

It then returns the token

τa =

(
γd
(
id(f)

)
, v, λ1, . . . , λ#f

)
,

where v := G[id(f)] if id(f) ∈ G and v is a (log #Ad)-bit random string if id(f) 6∈ G (in which case
v is stored in G under search key id(f)); and where for all i ∈ [#f],

λi =

(
γs(id(wi)), T̃

′
s[γs(id(wi))]⊕ iTs[id(wi)], ui, ri, u

′
i, r
′
i

)
,

where ui and u′i are, respectively, (log #f + log #As)-bit and (6 log #Ad + k)-bit strings chosen
uniformly at random and where ri and r′i are random k-bit strings.

After returning the token, the simulator updates its internal structures as follows. For all i ∈ [#f̄],

1. let α1 be the first element of iTs[id(wi)], i.e., iTs[id(wi)] = 〈α1, δ(α1)〉. Let ϕ and ϕ− be the
locations of the last and second-to-last nodes in the free list of iAs,

2. it sets Ã
′
s[ϕ] := (ui ⊕ 〈0, α1〉, ri) and

Ã
′
d[δ(ϕ)] := (u′i ⊕ 〈δ(ϕ−1),0, δ(α1), ϕ,0, α1, γs(id(wi))〉, r′i),

3. it makes the node at location ϕ in iAs point to α1 (note that if α1 = ⊥, then the node at ϕ
points to ⊥ which means it becomes the head and tail of the list),

4. it make iTs point to ϕ by setting iTs[id(wi)] := 〈ϕ, δ(ϕ)〉,
5. it marks the node at ϕ in iAs with id(wi).

Finally, it creates a dual list for id(f) in iAd by: (1) finding the duals of the cells used above
(this can be done using δ); and (2) storing a dual node with the appropriate information in these
cells. Here, the nodes in the list are ordered according to the order of the word identifiers in the
leakage. Let h be the head of this list. It sets T̃

′
d[id(f)] := G[id(f)]⊕ h.

• (Simulating delete tokens) given

L4(δ, f , f) =

(
id(f),

[
id(wi), prev(f, wi), next(f, wi)

]
i∈[#f̄]

)
the simulator works as follows.

For all i ∈ [#f̄],

1. the simulator searches in iAs for a cell marked with id(wi) that has a dual in iAd marked
with id(f),

2. if no such cell exists, it chooses an unused and non-free cell in iAs at random, marks it with
id(wi) and mark its dual in iAd with id(f).

17

It now creates a dual list for id(f) by merging the duals of the nodes found (or created) in steps
1 and 2 above into a list (in iAd). Here, the order of the nodes follow the order of the word
identifiers provided in the leakage. In other words, the first node of the list is the dual of the
node (in iAs) marked with id(w1). The second node of the list is the dual of node (in iAs) marked
with id(w2), and so on. It then sets iTd[id(f)] to be the head of the dual list just created.

After updating iAd, it now updates iAs by merging the newly created nodes into the appropriate
lists. More precisely, for all i ∈ [#f̄], it merges all the nodes in iAs marked with id(wi) (note that
some of these nodes could have been added to iAs due to previous queries) into a list, making
sure to respect the adjacency information provided by the next(f, wi) and prev(f, wi) leakage.

It now returns the token

τd =

(
γd(id(f)), T̃

′
d[γd(id(f))]⊕ iTd[id(f)],Kid(f), id(f)

)
.

and sets
G[id(f)] := Td[γd(id(f))]⊕ iTd[id(f)]

so as to remain consistent with future add token simulations.

After returning the token, the simulator updates its data structures by freeing the cells corre-
sponding to the deleted file. More specifically, for all i ∈ [#f̄], it frees the cell in iAs marked
with id(wi) that has a dual marked with id(f). It also frees its dual. When freeing a cell, it
always update its neighbors to point to each other. If the freed node was the head of a list, then
it updates the relevant pointer in iTs to point to that node’s neighbor.

It then removes the search key id(f) from iTd along with its value and merges the newly freed
nodes in iAs and iAd into the free list (here the nodes in iAs are added to the free list in the
order that their corresponding word identifiers appeared in the leakage).

• (Answering H1 queries) given query (K, r), the simulator checks if K has been associated with
some word identifier id(w), i.e., if K = Kid(w) for some id(w). If not, it returns a random
(log #f + log #A)-bit string v and sets RO1[〈K, r〉] := v so as to stay consistent on future queries.

If so, it finds all entries in iAs marked with id(w) and checks to see if any of their corresponding

cells in Ã
′
s store the randomness r. If not, it returns and stores in RO1 a random value v as above.

If such a cell does exist, the simulator returns

v ⊕ iAs[`].

where ` is the location in Ã
′
s of that cell and v is such that (v, r) := Ã

′
s[`].

• (Answering H2 queries) given query (K, r), it checks if K has been associated with some file
identifier id(f). If so, it finds all entries in iAd marked with id(f) and checks to see if any of their

corresponding cells in Ã
′
d store r. If either step fails, it returns a random (6 log #Ad + k)-bit value

v and sets RO2[〈K, r〉] := v in order to stay consistent.

If, on the other hand, such a file identifier id(f) and cell in Ã
′
d are found, then it returns

v ⊕ iAd[`].

where v is such that (v, r) := Ã
′
d[`] and ` is the location in Ã

′
d of the cell with randomness r.

18

Ãs and Ãd are distributed identically to As and Ad. The indistinguishability of T̃s and T̃d from Ts and
Td, respectively, follows from the pseudo-randomness of G. The indistinguishability of τ̃s follows from
the pseudo-randomness of F , G and P and that of τ̃a and τ̃d from the pseudo-randomness of F , G and
P and the CPA-security of SKE. Finally, the indistinguishability of c̃ follows from the CPA-security of
SKE.

6 Performance

6.1 Implementation

To demonstrate the feasibility of our algorithms, we implemented SSE in C++ over the Microsoft
Cryptography API: Next Generation (CNG) [7]. Our implementation uses the algorithms described in
§4. The cryptographic primitives for our protocol use CNG. Encryption is the CNG implementation
of 128-bit AES-CBC [13], and the hash function is the CNG implementation of SHA-256 [12]. SSE
employs two random oracles, which are implemented using HMAC-SHA256 from CNG (this employs
the HMAC construction first described by Bellare, Canetti, and Krawczyk [3]). The first parameter
passed to the random oracle is used as a key to the HMAC, and the second parameter is used as input
to the HMAC.5

A system that implements SSE performs two classes of time-intensive operations: cryptographic
computations and systems actions (e.g., network transmission and filesystem access). To separate the
costs of cryptography from the systems costs (which will vary between underlying systems), we built
a test framework that performs cryptographic computations on a set of files but does not transfer
these files across a network or incur the costs of storing and retrieving index information from disk; all
operations are performed in memory. We also ignore the cost of producing a plain-text index for the
files, since the choice and implementation of an indexing algorithm is orthogonal to SSE.

6.2 Experiments

Cryptographic operations in SSE require widely varying amounts of time to execute. So, to evaluate
SSE, we performed micro-benchmarks and full performance tests on the system and broke each test
out into its component algorithms. The micro-benchmarks are used to explain the performance of the
full system.

These experiments were performed on an Intel Xeon CPU 2.26 GHz (L5520) running Windows
Server 2008 R2. All experiments ran single-threaded on the processors. Each data point presented in
the experiments is the mean of 10 executions, and error bars provide the sample standard deviation.

The unit of measurement in all of the microbenchmarks is the file/word pair : for a given file f the
set of file/word pairs is comprised of all unique pairs (f , w) such that w is a word associated with f in
the index. The set of all such tuples across all files in a file collection is exactly the set of entries in a
keyword index for this collection.

We chose three sets of real-world data for our experiments. The first set was selected from the
Enron emails [11]; we extracted a subset of emails and used decreasing subsets of this original subset as
file collections with different numbers of file/word pairs. The second set consisted of Microsoft Office
documents (using the Word, PowerPoint, and Excel file types) used by a business group in Microsoft
for its internal planning and development. In a similar fashion to the emails, we chose decreasing
subsets of this collection as smaller file collections. The third data set consists of media files, which

5Recent work by Dodis, Ristenpart, Steinberger, and Tessaro [10] shows that HMAC is indifferentiable from a random
oracle when the key used has length shorter than d− 1, where d is the block length of the underlying hash function. Our
keys are 32-bytes in length and satisfy the theorem.

19

100000 500000 1000000 1500000

35

100

File/Word Pairs

T
im

e
P
er

P
a
ir

(µ
s)

Zipf

Docs

Emails

Figure 5: SSE.Enc.

4 11 16 8 100 250 500 8 100 250 500

14

33

52 SSE.Enc

SKE.Enc

Emails Documents Media

File Collections (with size in MB)

T
im

e
(s
)

Figure 6: SSE.Enc and SKE.Enc.

have almost no indexable words but have large file size. This collection is composed of MP3, video,
WMA, and JPG files that make data sets of the same sizes as the ones in the document collection. To
index the emails, documents and media, we used an indexer that employs IFilter plugins in Windows
to extract unique words from each file. The indexer also extracts properties of the files from the NTFS
filesystem, such as the author of a Microsoft Word document, or the artist or genre of an MP3 file.

6.2.1 Micro-benchmarks

To determine the performance of SSE, we generated synthetic indexes and executed search and update
operations on them. For searches, we chose the word that was present in the most files. And we deleted
and added back in a file with the largest number of unique words in the index. We only compared
against the email and document data sets for our micro-benchmarks, since the media data set index
size was too small for useful comparisons.

We generated our synthetic indexes from a pair of Zipf distributions [24] with parameter α = 1.1;
one distribution contained randomly-generated files, and the other contained words (the words in our
case were simply numbers represented as strings: “0”, “1”, “2”, etc.). The synthetic file collection was
generated as follows. First, the test code drew a file f from the Zipf file distribution (our sampling
employed the algorithm ZRI from Hörman and Derflinger [17]). Second, the test code drew words from
the word distribution until it found a word that was not in the index for f . It then added this word
to the index information for f and drew another file to repeat the process until a given number of
file/word pairs was generated. This process corresponds to writing a set of files with Zipf-distributed
sizes and containing Zipf-distributed words such that the file collection as a whole contains a given
number of file/word pairs.

Figure 5 shows the costs of index generation incurred by SSE, expressed as the cost per file/word
pair; these are the timings for the operations that are performed after a collection of files is indexed
(for the total time required to index these collections, see the results of Figure 6). The numbers of pairs
range from about 14,000 to about 1,500,000 in number. The synthetic data is labeled with “Zipf”,
the Enron data is labeled with “Email”, and the document data is labeled with “Docs”. The cost per
file/word pair is an amortized value: it was determined by taking the complete execution time of each
experiment and dividing by the number of file/word pairs.

The cost per file/word pair in Figure 5 is small: it decreases to about 35 µs per pair. Lower numbers
of pairs lead to higher per-pair costs, since there is a constant overhead for adding new words and new
files to the index, and the cost is not amortized over as many pairs in this case.

The email and document data validate our synthetic model and correspond closely to this model
(within 10%) for data points with approximately the same number of file/word pairs. This suggests
that, at least for large numbers of pairs, the Zipf model leads to the same SSE performance as the
English text as contained in the emails and documents. The synthetic data tests the sensitivity of the

20

operation time stddev

SSE.Search 7.3 0.6
SSE.AddToken 37 2
SSE.DelToken 3.0 0.2

SSE.Add 1.6 0.4
SSE.Del 24 1

Table 2: Execution time (in µs) per unit (word or file) for SSE operations.

SSE algorithms to details of the file/word distribution; experiments over the file collections are limited
to always operating over the same assignment of unique words to files, but different experiments over
the synthetic data contain different sets of file/word pairs, albeit drawn from the same distribution.
Since our synthetic results match closely our results from real-world data sets, this sensitivity is low,
as would be expected.

Micro-benchmark execution time for SSE algorithms does not depend on the number of file/word
pairs in the index. And the cost per unique word is essentially independent (modulo a very small
constant cost) of the total number of unique words (or files) in each operation. So, we present only the
per-word (or per-file) time for these operations. Table 2 shows the costs for each operation. For ease
of exposition, we show numbers only for the executions of the SSE algorithm on the document data
set; the numbers for the email data set and the synthetic data are similar. Search token generation
takes a constant amount of time (a mean of 35 µs), irrespective of the number of files that will be
returned from the search. The results show that search and file addition and deletion on the client side
are efficient and practical, even for common words, or files containing many unique words.

6.2.2 Full performance

To evaluate the performance of SSE as a whole, we ran the SSE algorithms specified in §4 on the email,
document and media data sets. Note that all algorithms displayed on the graphs have non-zero cost,
but in some cases, the cost is so small compared to the cost of other parts of the operation that this
cost cannot be seen on the graph.

Figure 6 shows the results of the encryption operation, which takes the most time of any of the
algorithms. Note that the entire encryption protocol is performed in addition to indexing that must
be executed by the client before the data can be stored.

Figure 6 shows the difference between the email data and the document data. The Enron emails
are a collection of plain text files, including email headers, so almost every byte of every file is part of
a word that will be indexed. So, each small file contains many words, and the ratio of file/word pairs
to the size of the data set is high. By contrast, Microsoft Office documents may contain significant
formatting and visual components (like images) which are not indexed. So, the ratio of file/word pairs
to file size is much lower. Both data sets represent a common case for office use: our results show that
SSE index generation requires significantly more time for large text collections than for the common
office document formats. Finally, the ratio of indexable words to file size is almost zero for the media
files.

The micro-benchmark results of Figure 5 show that SSE index generation performance is linear in
the number of file/word pairs for large data sets. So, for an email data set of size 16 GB (consisting
entirely of text-based emails: i.e., emails containing no attachments), the initial indexing costs would
be approximately 15 hours (which could be performed over the course of a day during the idle time of
the computer). After this initial indexing, adding and removing emails would be fast.

To evaluate the costs of the remaining SSE algorithms, we performed experiments that gave upper

21

4 11 16 8 100 250 500 8 100 250 500

17

34

53

Emails Documents Media

File Collections (with size in MB)

T
im

e
(m

s)
Figure 7: Execution time for SSE.Search.

4 11 16 8 100 250 500 8 100 250 500
0

250

500
Enc SSE.AddToken

SSE.Add

Emails Documents Media

File Collections (with size in MB)

T
im

e
(m

s)

Figure 8: Execution time for adding a file.

4 11 16 8 100 250 500 8 100 250 500
0

75

100

130 SSE.DelToken

SSE.Del

Emails Documents Media

File Collections (with size in MB)
T
im

e
(m

s)

Figure 9: Execution time for deleting a file.

bounds on the cost of any operation. An upper bound for SSE.Search is a search for the word contained
in the most files. Our update operations use the file with the most bytes on disk.

Since search was performed for the word that was indexed for the most files, the total time needed
for the search depended on the prevalence of words in files: media files had few words, even in 500 MB
of content, whereas some words occur in every email. Figure 7 gives the time needed for the server to
perform a search, given a search token (we neglect the cost of generating a search token, since it is a
small constant in microseconds). The SSE search costs were small, even for the email index. However,
even the longest searches took only about 50 ms to complete. And for large media collections, the
search time was negligibly small.6

Figure 8 shows the execution time for adding a file. The cost of the operation is divided into
several components: “Enc” refers to the time needed to encrypt the new file, “SSE.AddToken” refers
to client generation of the add token for the words being indexed in the file, and “SSE.Add” refers
to the server using the add token to update the index. The costs of adding a file fall mostly on the
client: the dominant costs are SSE add token generation and file encryption, both performed on the
client. In a use case where add operations dominate (such as indexing encrypted emails), this allows
the server to support many clients easily, since the client that performs the add also performs most of
the computation.

A similar situation occurs in Figure 9 for deleting a file. The label “SSE.DelToken” refers to client
generation of the delete token, and “SSE.Del” refers to the server using the delete token to update the
index. As for add, the delete operation is efficient and practical; each operation on the largest files

6Note that in our workloads, the time to decrypt all files returned from search dominates the search costs by orders of
magnitude. Higher-level protocols could mitigate this cost by using the SSE primitive in a different manner: instead of
storing the files directly, it could store short, fixed-length descriptions of the files. The client could decrypt these results
quickly then use their information to decide which files to download and decrypt. This would also allow clients to delete
a file without downloading the file from the server.

22

took approximately one tenth of a second.

7 Conclusion

Searchable encryption is an important cryptographic primitive that is well motivated by the popularity
of cloud storage services like Dropbox, Microsoft SkyDrive and Apple iCloud and public cloud storage
infrastructures like Amazon S3 and Microsoft Azure Storage. Any practical SSE scheme, however,
should satisfy certain properties such as sublinear (and preferably optimal) search, adaptive security,
compactness and the ability to support addition and deletion of files.

In this work, we gave the first SSE construction to achieve all these properties. In addition, we
implemented our scheme and evaluated its performance. Our experiments show that our construction
is highly efficient and ready for deployment.

Acknowledgements

The authors are grateful to Jason Mackay for writing the indexer that was used in the experiments.
The second author was partially supported by the Kanellakis fellowship at Brown University and by
Intel’s STC for Secure Computing.

References

[1] G. Amanatidis, A. Boldyreva, and A. O’Neill. Provably-secure schemes for basic query support in
outsourced databases. In Proc. Working Conference on Data and Applications Security (DBSEC),
pages 14–30, 2007.

[2] M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable encryption.
Proc. Int. Cryptology Conference (CRYPTO), pages 535–552, 2007.

[3] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authentication. Proc.
Int. Cryptology Conference (CRYPTO), pages 1–15, 1996.

[4] D. Boneh, G. Di Crescenzo, R. Ostrovsky, G. Persiano. Public key encryption with keyword
search. Proc. Int. Conference on the Theory and Applications of Cryptographic Techniques (EU-
ROCRYPT), pages 506–522, 2004.

[5] Y. Chang and M. Mitzenmacher. Privacy preserving keyword searches on remote encrypted data.
Proc. Applied Cryptography and Network Security (ACNS), pages 442–455, 2005.

[6] M. Chase and S. Kamara. Structured encryption and controlled disclosure. In Proc. Int. Conference
on the Theory and Application of Cryptology and Information Security (ASIACRYPT), pages
577–594, 2010.

[7] Cryptography API: Next generation (Windows). http://msdn.microsoft.com/library/aa376210.
aspx.

[8] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryption: Improved
definitions and efficient constructions. In Proc. ACM Conference on Computer and Communica-
tions Security (CCS), pages 79–88, 2006.

23

http://msdn.microsoft.com/library/aa376210.aspx
http://msdn.microsoft.com/library/aa376210.aspx

[9] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryption: Improved
definitions and efficient constructions. Journal of Computer Security, 19(5):895–934, 2011.

[10] Y. Dodis, T. Ristenpart, J. Steinberger, and S. Tessaro. To hash or not to hash again?
(In)differentiability results for H2 and HMAC. Proc. Int. Cryptology Conference (CRYPTO),
2012.

[11] Enron email dataset. http://www.cs.cmu.edu/∼enron/, 2009.

[12] FIPS 180-3. Secure Hash Standard (SHS). Federal Information Processing Standard (FIPS),
Publication 180-3, National Institute of Standards and Technology, Washington, DC, October
2008.

[13] FIPS 197. Advanced Encryption Standard (AES). Federal Information Processing Standard
(FIPS), Publication 197, National Institute of Standards and Technology, Washington, DC,
November 2001.

[14] M. Fredman, J. Komlos, and E. Szemeredi. Storing a sparse table with O(1) worst case access
time. Journal of the ACM, 31(3):538–544, 1984.

[15] E.-J. Goh. Secure indexes. Technical Report 2003/216, IACR ePrint Cryptography Archive, 2003.
http://eprint.iacr.org/2003/216.

[16] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious RAMs. Journal
of the ACM, 43(3):431–473, 1996.

[17] W. Hörmann and G. Derflinger. Rejection-inversion to generate variates from monotone discrete
distributions. ACM Transactions on Modeling and Computer Simulation, 6(3):169–184, 1996.

[18] M. Islam, M. Kuzu and M. Kantarcioglu. Access Pattern Disclosure on Searchable Encryption:
Ramification, Attack and Mitigation. Network and Distributed System Security Symposium (NDSS
’12), 2012.

[19] S. Kamara and K. Lauter. Cryptographic cloud storage. In Proc. Workshop Real-Life Crypto-
graphic Protocols and Standardization (RLCPS), pages 136–149, 2010.

[20] J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman & Hall/CRC, Boca
Raton, FL, 2008.

[21] K. Kurosawa and Y. Ohtaki. UC-secure searchable symmetric encryption. In Proc. Financial
Cryptography and Data Security (FC), 2012.

[22] D. Song, D. Wagner, and A. Perrig. Practical techniques for searching on encrypted data. In Proc.
Symposium on Research in Security and Privacy (SSP), pages 44–55, 2000.

[23] P. van Liesdonk, S. Sedghi, J. Doumen, P. H. Hartel, and W. Jonker. Computationally efficient
searchable symmetric encryption. In Proc. Workshop on Secure Data Management (SDM), pages
87–100, 2010.

[24] G. K. Zipf. Psycho-Biology of Languages. Houghton-Mifflin, Boston, 1935.

24

http://www.cs.cmu.edu/~enron/
http://eprint.iacr.org/2003/216

	Introduction
	Preliminaries and Notation
	Definitions
	Our Construction
	An Illustrative Example

	Security
	Performance
	Implementation
	Experiments
	Micro-benchmarks
	Full performance

	Conclusion

