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Abstract

We investigate False Positive (FP) accusation probabilities for q-ary Tardos codes in the
Restricted Digit Model. We employ a computation method recently introduced by us, to
which we refer as Convolution and Series Expansion (CSE). We present a comparison of several
collusion attacks on q-ary codes: majority voting, minority voting, Interleaving, µ̃-minimizing
and Random Symbol (the q-ary equivalent of the Coin Flip strategy). The comparison is
made by looking at the FP rate at approximately fixed False Negative rate. In nearly all
cases we find that the strongest attack is either minority voting or µ̃-minimizing, depending
on the exact setting of parameters such as alphabet size, code length, and coalition size.

Furthermore, we present results on the convergence speed of the CSE method, and we
show how FP rate computations for the Random Symbol strategy can be sped up by a pre-
computation step.

1 Introduction

1.1 Collusion attacks against forensic watermarking

Fingerprinting provides a means for tracing the origin and distribution of digital data. Before
distribution, the content is modified by applying an imperceptible fingerprint, which plays the
role of a personalized serial number. The fingerprint is usually embedded through a watermarking
algorithm. Once an unauthorized copy of the content is found, the identity can be determined of
those users who participated in the creation of the unauthorized copy. This can be done using
a tracing algorithm, which outputs a list of allegedly guilty users. This process is also known as
‘forensic watermarking’.
Reliable tracing of content requires security against attacks that aim to remove the embedded
information. Collusion attacks, where a group of pirates collude to compare their copies, are a
particular threat. As any differences between the copies have to arise from the watermarks and
not the content, such a comparison gives information which can be used to remove the watermark.
To counter this threat, coding theory has produced a number of collusion-resistant codes. In
any practical implementation, they must be combined with an embedding scheme. The resulting
system has two layers [6, 12]: The coding layer determines which message to embed and protects
against collusion attacks. The underlying watermarking layer hides symbols in segments of the
content. The symbols are either binary or q-ary. The interface between the layers is usually
specified in terms of the marking assumption plus additional assumptions that are referred to as a
‘model’. The marking assumption states that the colluders are able to perform modifications only
in those content segments where the colluders received differently marked content. These segments
are called detectable positions. The ‘model’ specifies the kind of symbol manipulations that the
attackers are able to perform in detectable positions. The commonly used restricted digit model
only allows them to choose pieces from their copies of the content, i.e. each segment of the unau-
thorized copy carries exactly one symbol that the attackers have available. The unreadable digit
model allows for slightly stronger attacks. The attackers are also able to erase the fingerprint at
detectable positions. Under the arbitrary digit model they can put arbitrary symbols in detectable
positions, while the general digit model additionally allows erasures at detectable positions.
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1.2 Tardos codes

Many collusion resistant codes have been proposed in the literature. Most notable are the Boneh-
Shaw construction [4] and the by now famous Tardos code [16]. The former construction uses a
concatenation of an inner code with a random outer code, while the latter one is a fully randomized
binary code. We briefly summarize some of the most important developments regarding Tardos
codes.
The number of users is n. In Tardos’ original paper [16] a binary code was given achieving length
m = 100c20dln 1

ε1
e, along with a proof that m ∝ c20 is asympotically optimal1 for large coalitions,

for all alphabet sizes. Here c0 denotes the number of colluders that can be resisted, and ε1 is the
maximum allowed probability of accusing a fixed2 innocent user.
The original Tardos code construction contained two unfortunate design choices which caused the
proportionality constant ‘100’ to be so high. First, the false negative probability ε2 (not accusing
any of the guilty users) was coupled to ε1 according to ε2 = ε

c0/4
1 . This gives ε2 � ε1 which

is highly unusual in the context of content distribution; a deterring effect is achieved already at
ε2 ≈ 1

2 , while the false positive probability (≈ nε1) needs to be very small. In the subsequent
literature (e.g. [18, 2]) the ε2 was decoupled from ε1, leading to a substantial improvement of the
code length.
Second, the symbols 0 and 1 were not treated on an equal footing. Only segments where the
attackers produce a 1 were taken into account. This procedure ignores 50% of all the available
information. A fully symbol-symmetric version of the Tardos code was given in [17], leading to a
further improvement of the code length by a factor 4.
A further improvement was achieved in [11]. The Tardos code construction consists of two proba-
bilistic steps. In the first step, a bias parameter is generated for each segment. In Tardos’ original
construction the probability density function (pdf) for the bias is a continuous function, suitable
for arbitrary coalition size. In [11] a class of discrete distributions was given that performs better
against finite coalition sizes than the original pdf.
All the above mentioned work followed the so-called ‘simple decoder’ approach, i.e. an accusation
score is computed for each user independently, and if it exceeds a certain threshold, the user
is considered suspicious. In contrast, one can also use a ‘joint decoder’ which considers sets of
users. Amiri and Tardos [1] have given a capacity-achieving joint decoder construction for the
binary code. (Capacity refers to the information-theoretic treatment [15, 10, 7, 3] of the colluder
attack as a communication channel.) However, the construction is rather impractical, requiring
computations for many candidate coalitions. Even if more practical joint decoders are found, the
simple decoder will serve as a stepping stone in their operation. Thus, interest in the simple
decoder remains high.
In [17] the binary construction was generalized to alphabets of arbitrary size q, in the simple de-
coder approach. It was shown that, in the restricted digit model, the transition to a larger alphabet
size has benefits beyond the mere fact that a q-ary symbol carries log2 q bits of information.

1.3 Exact computation of the false positive error probability

The so-called ‘Gaussian approximation’ or ‘Gaussian assumption’, introduced in [18], has been a
useful tool in the analysis of Tardos codes. The assumption is that the pdf of a user’s accusation
score has a normal distribution. When this is the case, the statistical analysis of the code’s
performance can be drastically simplified; the performance is almost completely determined by a
single parameter, namely the average score µ̃ of the coalition.
The Gaussian assumption is motivated by the Central Limit Theorem (CLT): A user accusation
consists of a sum of per-segment contributions, which are independent and identically distributed

1The proportionality m ∝ c20 was already known in the context of spread-spectrum watermarking. Kilian et

al. [9] showed that, if the watermarks have a component-wise normal distribution, then Ω(
p
m/ln n) differently

marked copies are required to successfully erase any mark with non-negligible probability.
2Not to be confused with the total false positive probability (which we denote as η). The relation is η =

1− (1− ε1)n−c0 ≈ nε1.
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(i.i.d.). When many of these get added together, the result is close to normal-distributed, i.e. the
pdf is very close to a Gaussian in a certain region around the average, and deviates in the tails.
The longer the code becomes (i.e. the larger the coalition size c0), the wider this central region. In
[18] and [17] theoretical results were provided arguing that the central region is sufficiently wide
to allow for application of the Gaussian approximation for realistic parameter choices. However,
these arguments are not very precise.
In [14] and [13] an in-depth analytical and numerical investigation of the Gaussian approximation
was given in the RDM case. The approach is based on the convolution rule for characteristic
functions, and a way to express the false accusation probability as a power series expansion in the
small parameter 1/m. We will refer to this method as ‘the CSE method’ (Convolution and Series
Expansion). The advantage of the CSE method over simulations is that it yields reliable results
also when the required false positive probability is very small. For instance, if the false positive
rate is around 10−10, then a number of simulations of order at least 1010 is required to measure
this rate; in contrast, the computational effort in the CSE method does not depend on the error
rate.
The work of [14, 13] showed, for various parameter settings and attack strategies, how the false
positive probability has a transition from Gaussian behaviour in the central region to worse-than-
Gaussian behaviour outside the center. However, a number of questions were left unanswered. For
instance, the method only performs well if 1/m is small enough. This boundary condition was not
quantified in detail. The shape of the probability tails was also not investigated. Furthermore,
only a small number of strategies was considered, and a small part of parameter space.

1.4 Contributions and outline

In this paper we study the simple decoder setting in the Restricted Digit Model using the CSE
method. We extend the list of strategies that can be handled effectively, quantify the properties
of the CSE method more precisely, and present numerics for a larger part of parameter space than
was done previously.

• The CSE method can compute error probabilities fast only if the attack strategy allows for
a certain pre-computation step. The pre-computation is a weighted sum over the attack
parameters, and the result is referred to as ‘Kb’ in [14, 13]. The Kb was pre-computed for
the following attacks: majority voting, minority voting, interleaving, and the attack that
minimizes the coalition score.

In this paper we show how the Kb is pre-computed for the ‘Random Symbol’ attack, i.e. the
q-ary equivalent of the ‘coin flip’ attack, in which all symbols observed by the coalition have
equal probability regardless of their occurrence frequency.

• We show how mixed strategies can be accommodated in the CSE method. By ‘mixed’ we
mean that the strategy is allowed to differ for different content segments. The convolu-
tion property of characteristic functions applies equally for mixed strategies and ordinary
strategies.

• We show graphs of the probability density function (pdf) of the single-segment score for an
innocent user. Full equations for this pdf were already given in [14], but the graphs better
illustrate the differences between the various strategies.

• We study the shape of the probability distribution of the total innocent score, by plotting
the false positive probability as a function of the threshold. In the tail we find, as expected,
power-law behaviour that precisely matches the single-segment tail probability.

• The expansion in the CSE needs a certain number of terms in order to achieve sufficient
convergence. This is indicated by a power ‘νmax’ where the expansion is cut off. Computation
times heavily depend on this power. For various attack strategies and parameter settings we
tabulate required νmax values.
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• We present a comparison of all the attack strategies for which we can pre-compute the Kb.
Ideally this should be done via ROC curves. However, we cannot compute exact false negative
probabilities.3 Thus, our comparison is based on the false positive probability for a threshold
chosen such that the false negative is ‘under control’ (some unknown number close to 2−c).

We find that in nearly all cases the strongest attack is either minority voting or µ̃-minimizing.

The paper is structured as follows. In Section 2 we briefly review the q-ary Tardos code and the
CSE method. In Section 3 we show the Kb pre-computation for the Random Symbol strategy.
In Section 4 we analyze the FP tail power law for several strategies, showing that it is equal to
the single-segment tail behaviour. In Section 5 we study the convergence properties of the series
expansion in the CSE method. In Section 6 we present the comparison between five strategies
over a large part of parameter space. A summary is given in Section 7.

2 Preliminaries

We briefly describe the q-ary version of the Tardos code as introduced in [17] and the CSE method
for computing innocent accusation probabilities.

2.1 The q-ary Tardos code

The number of symbols in a codeword is m. The number of users is n. The alphabet is Q, with
size q. Xji ∈ Q stands for the i’th symbol in the codeword of user j. The whole matrix of
codewords is denoted as X.
Two-step code generation.
m vectors p(i) ∈ [0, 1]q are independently drawn according to a Dirichlet distribution F , with

F (p) = δ(1−
∑
β∈Q

pβ) · 1
B(κ1q)

∏
α∈Q

p−1+κ
α . (1)

Here 1q stands for the vector (1, · · · , 1) of length q, δ(·) is the Dirac delta function, and B is the
generalized Beta function. κ is a positive constant called the ‘concentration parameter’ of the
Dirichlet distribution. For v1, · · · , vn > 0 the Beta function is defined as4

B(v) =
∫ 1

0

dxn δ(1−
n∑
a=1

xa)
n∏
b=1

x−1+vb
b =

∏n
a=1 Γ(va)

Γ(
∑n
b=1 vb)

. (2)

All elements Xji are drawn independently according to Pr[Xji = α|p(i)] = p
(i)
α .

Attack.
The coalition is a subset of the set of all users. We denote the coalition as C, with size c. The i’th
segment of the attacked content contains a symbol yi ∈ Q. We define vectors σ(i) ∈ Nq as

σ(i)
α = |{j ∈ C : Xji = α}| (3)

satisfying
∑
α∈Q σ

(i)
α = c. In words: σ(i)

α counts how many colluders have received symbol α in
segment i. The attack strategy may be probabilistic. As usual, it is assumed that this strategy is
segment-symmetric (the same in all segments), symbol-symmetric (invariant under permutation
of the alphabet) and attacker-symmetric (invariant under permutation of the attackers). The
strategy is expressed as probabilities θy|σ that apply independently for each segment. Omitting
the column index,

Pr[y|σ] = θy|σ. (4)

Some often studied strategies are listed below.
3This is work in progress.
4This is also known as a Dirichlet integral. The ordinary Beta function (n = 2) is B(x, y) = Γ(x)Γ(y)/Γ(x+ y).
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Strategy Abbrev. Description θy|σ

Minority Voting MinV Select symbol that occurs least often
Majority Voting MajV Select symbol that occurs most often

Interleaving Int Select random attacker’s symbol σy/c
µ̃-minimizing µ̃-min Select σy > 0 that minimizes µ̃ (see below)

Random Symbol RS Choose uniformly from received symbols [σy>0]
|{α∈Q:σα>0}|

The Int attack has been proved [8] to minimize the achievable code rate for c → ∞, i.e. it is the
best attack in the so-called ‘joint decoder’ setting. This does not imply that it is also the strongest
attack when the tracing party is limited to ‘simple’ decoders, i.e. accusations computed per user.
Indeed, it is known that asymptotically µ̃-min is the strongest attack against the symmetrized
Tardos score function [17].
Accusation.
The watermark detector sees the symbols yi. For each user j, the accusation sum Sj is computed,

Sj =
m∑
i=1

S
(i)
j where S

(i)
j = g[Xji==yi](p

(i)
yi ), (5)

where the expression [Xji == yi] evaluates to 1 if Xji = yi and to 0 otherwise, and the functions
g0 and g1 are defined as

g1(p) =
√

1− p
p

; g0(p) = −
√

p

1− p
. (6)

The total accusation of the coalition is S =
∑
j∈C Sj . The choice (6) is the unique choice that, for

innocent users, yields zero average accusation and variance equal to 1 independent of p,

pg1(p) + (1− p)g0(p) = 0 ; p[g1(p)]2 + (1− p)[g0(p)]2 = 1. (7)

This has been shown to have optimal properties for q = 2 [5, 18]. Its unique properties (7) also
hold for q ≥ 3; that is the main motivation for using (6). A user j is ‘accused’ if his accusation
sum Sj exceeds a threshold Z, i.e. Sj > Z. The parameter µ̃ is defined as 1

mE[S], where E stands
for the expectation value over all random variables. The µ̃ depends on q, κ, the collusion strategy,
and weakly on c. In the limit of large c it converges to a finite value, and the code length scales
as m ∝ c2/µ̃2.

2.2 Marginal distributions and strategy parametrization

Because of the independence between segments, the segment index will be dropped from this point
onward. For given p, the vector σ is multinomial-distributed, P(σ|p) =

(
c
σ

)∏
α p

σα
α . Averaged

over p, the σ has distribution P(σ) =
(
c
σ

)B(κ1q+σ)
B(κ1q)

. Two important marginals were given in [14].
First, the marginal probability P1(b) = Pr[σα = b] for one arbitrary component α,

P1(b) =
(
c

b

)
B(κ+ b, κ[q − 1] + c− b)

B(κ, κ[q − 1])
. (8)

Second, given that σα = b, the probability that the remaining q − 1 components of the vector σ
are given by x,

Pq−1(x|b) =
(
c− b
x

)
B(κ1q−1 + x)
B(κ1q−1)

. (9)

It is always implicit that
∑
β∈Q\{α} xβ = c − b. An alternative parametrization was introduced

for the collusion strategy, which exploits the fact that (i) θα|σ is invariant under permutation of
the symbols 6= α; (ii) θα|σ depends on α only through the value of σα.

Ψb(x) = θα|σ given that σα = b and x = the other components of σ. (10)
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Q the alphabet

q alphabet size |Q|
n number of users

C set of colluding users

c number of colluders |C|
c0 coalition size that the code can re-

sist

m code length (number of segments)

Xji symbol in segment i for user j

p(i) bias vector for segment i

F distribution of the bias vector,
p(i) ∼ F

f(pα) marginal distribution of F for one
component of p

κ shape parameter contained in F

σ
(i)
α # occurrences of symbol α in at-

tackers’ segment i

P probability distribution for σ

P1 marginal distribution for one
component of σ

Pq−1 marginal distribution for q − 1
components of σ

yi symbol in segment i of attacked
content

θy|σ prob. that attackers output sym-
bol y, given σ

Sj accusation sum of user j

S coalition accusation sum, S =∑
j∈C Sj

Z accusation threshold

Z̃ Z/
√
m

ε1 max. tolerable prob. of fixed in-
nocent getting accused

ε2 max. tolerable prob. of not
catching any attacker

µ̃ E[S]/m; does not depend on m

ϕ prob. distribution of innocent’s
one-segment score

Ψb(x) θy|σ when σy = b and σ\σy = x

Kb quantity derived from Ψb(x) by
averaging over x

Thus, Ψb(x) is the probability that the pirates choose a symbol that they have seen b times, given
that the other symbols’ occurrences are x. Strategy-dependent parameters Kb were introduced as
follows,

Kb = Ex|bΨb(x) =
∑
x

Pq−1(x|b)Ψb(x). (11)

Due to the marking assumption it holds that K0 = 0 and Kc = 1. Furthermore, the Kb obey the
sum rule q

∑c
b=0KbP1(b) = 1. Efficient pre-computation of the Kb parameters can significantly

speed up the computation of a number of quantities of interest, among which the µ̃ parameter. It
was shown that µ̃ can be expressed as

µ̃ =
∑
σ

P(σ)
∑
α∈Q

θα|σT (σα) = q

c∑
b=0

KbP1(b)T (b), (12)

where

T (b) =
{

1
2 − κ+

b

c
(κq − 1)

}
c
Γ(b+ κ− 1

2 )
Γ(b+ κ)

Γ(c− b+ κ[q − 1]− 1
2 )

Γ(c− b+ κ[q − 1])
. (13)

2.3 The CSE method for computing false accusation probabilities

We briefly review the method introduced in [14]. It is based on the convolution rule for generating
functions (Fourier transforms): Let A1 ∼ f1 and A2 ∼ f2 be continuous random variables, and
let f̃1, f̃2 be the Fourier transforms of the respective pdfs. Let A = A1 + A2, and A ∼ Φ. Then
the easiest way to find Φ is to use the fact that Φ̃(k) = f̃1(k)f̃2(k). If i.i.d. variables Ai ∼ ϕ are
summed, A =

∑m
i=1Ai, then the pdf of A is found using Φ̃(k) = [ϕ̃(k)]m.
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The pdf of an innocent user’s one-segment accusation S(i)
j will be denoted as ϕ. It was found that

ϕ has the following form,

u > 0 : ϕ(u) =
2q

B(κ, κ[q − 1])

c∑
b=1

(
c

b

)
(u2)κ[q−1]+c−b− 1

2

(1 + u2)c+1+κq
Kb

u < 0 : ϕ(u) =
2q

B(κ, κ[q − 1])

c∑
b=1

(
c

b

)
(u2)κ+b− 1

2

(1 + u2)c+1+κq
Kb. (14)

Notice that the formulas contain the strategy-dependent parameters Kb. In Figure 1 we show ϕ
for different strategies. The strategy has a minor influence on the left tail, but strongly affects
the shape of the right tail. A long positive tail is favorable to the attackers, as it leads to (1) an
increased probability of FP errors and (2) slower convergence of the total score pdf to the Gaussian
form. We see that MinV causes the biggest tail, followed by RS and Int. MajV has the shortest
tail. (The µ̃-min attack is equivalent to MajV for the given parameter values.) This behaviour is
easily understood from the powers of u occurring in (14) for u > 0. For u � 1, the summand is
proportional to Kb(1/u)3+2κ+2b. The dominant contribution to the tail occurs at b = 1. MinV
has a very large K1 due to its preference for symbols that occur infrequently. In contrast, MajV
has Kb = 0 for b < c/q.

q = 3, c = 3, κ ≈ 1/3

u

log10 ϕ(u) MajV/µ̃-min

MinV

RS
Int

-4 -2 2 4

-4

-3

-2

-1

Figure 1: The pdf ϕ of the single-segment score, shown for several strategies. The right tail strongly
depends on the strategy, while the left tail is hardly affected.

The Fourier transform ϕ̃ was computed in [14], and an expression for [ϕ̃(k/
√
m)]m was derived

as a power series in k/
√
m. The pdf of Sj for innocent j then follows from the inverse Fourier

transform; finally the FP probability is the area under the tail at Sj > Z.
The result was formulated as follows. Let Rm be a function defined as Rm(Z̃) := Pr[Sj > Z̃

√
m]

(for innocent j). Let Ω be the corresponding function in case the pdf of Sj is Gaussian, Ω(Z̃) =
1
2Erfc(Z̃/

√
2). Then

Rm(Z̃) = Ω(Z̃) +
1
π

∞∑
t=0

ωt(m)Γ(νt)2νt/2Im
[
i−αtH−νt(iZ̃/

√
2)
]
. (15)

Here H is the Hermite function. The powers5 νt satisfy ν0 > 2, νt+1 > νt. In general the νt are
not all integer. The ωt(m) are real-valued coefficients that decrease as m−νt/6 or faster; The αt
are real-valued coefficients.

5The coefficients νt appear as powers of k/
√
m in the series expansion of ϕ̃m.
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Computation of all the αt, ωt, νt up to a certain cutoff t = tmax is straightforward but very
laborious, and leads to huge expressions if done analytically. It is best done semi-numerically
using a software package such as Mathematica.
It holds that limm→∞Rm(Z̃) = Ω(Z̃), i.e. the pdf converges to a Gaussian. For a good numerical
approximation it suffices to take terms up to some cutoff tmax or, equivalently, a power νmax. The
required νmax is a decreasing function of m. This will be discussed in Section 5.
It is worth remarking that the CSE method can be applied even when the colluders have the
option of choosing a strategy for each content segment separately. Let ϕs denote the ϕ-function
for some strategy s, and let ms be the number of segments in which this strategy is applied. The
only thing we have to do is replace

[ϕ̃(k/
√
m)]m →

∏
s∈strategies

[ϕ̃s(k/
√
m)]ms (16)

and then follow all the derivation steps as before. The study of such situations is left for future
work.

3 Pre-computation of Kb for the Random Symbol strategy

Our first contribution is the computation of the parameter Kb (11) for the RS strategy.

Definition 1 (Random Symbol strategy) In the Random Symbol (RS) strategy, the coalition
detects w distinct symbols in a content segment and chooses one of them uniformly with probability
1/w.

In the binary case this is known as the ‘coin flip’ strategy. The analysis of the RS strategy is
different from other strategies because the RS strategy does not depend on the actual σα values
(other than their being zero or nonzero). We obtain a result that looks similar to the formula for
MajV in [14] and the more general ‘class 2’ strategies in [13], even though RS does not fit in the
classification scheme introduced in [13].

Theorem 1 Let q > 2 and b ∈ {1, . . . , c − 1}. Let Nb ∈ N satisfy Nb > (c − b)(q − 2) . Let
τb = ei2π/Nb , and let Gba be defined as

Gba =
c−b∑
z=1

Γ(κ+ z)
τazb z!

. (17)

The Kb parameter for the RS strategy can then be expressed as

KRS
b =

(c− b)!Γ(κ[q − 1])Γ(κ)
qNbΓ(c− b+ κ[q − 1])

Nb−1∑
a=0

τ
a(c−b)
b

(Gba/Γ(κ) + 1)q − 1
Gba

. (18)

Proof: See Appendix A.
For fixed b, naive evaluation of the x-sum in (11) would involve O(cq−2/(q−1)!) terms. Theorem 1
reduces the number of terms to O(qc2): a factor c − b from the z-sum and a factor Nb = O(qc)
from the a-sum. We will use (18) for the numerics in Section 6.
Theorem 1 holds for q > 2. For the binary alphabet the result is much simpler.

Lemma 1 Let q = 2 and b ∈ {1, . . . , c− 1}. Then the Kb parameter for the RS strategy is

KRS
b = 1

2 . (19)

Proof:
With b ∈ {1, . . . , c − 1} it is guaranteed that both symbols in the alphabet are detected by the
attackers. Then, by definition of the RS strategy, one of the two symbols is chosen uniformly at
random. �
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Lemma 2 Let q > 2. Then
KRS

1 < KRS
2 < · · · < KRS

c−1 = 1
2 . (20)

Proof:
When b increases, the average number of symbols α ∈ Q with σα > 0 decreases. At b = c− 1 it is
guaranteed that the number of detected symbols is exactly two. �

4 Power-law behaviour of the FP tail

Our second contribution is an analysis of the FP tails found by the CSE method. It was mentioned
in [14] that the large number of terms in the segment-summation causes the pdf of Sj to converge
to the Gaussian form (Central Limit Theorem) for small |Sj |, while for large |Sj | the original
power-laws from the single-segment pdf ϕ(u) (14) prevail. However, the statement about the
power laws was not explicitly demonstrated.
We present numerics showing that the tail of Rm(Z̃) (15) indeed has power law behaviour that
follows directly from the dominant contribution in ϕ(u) (14). In Section 2.3 we saw that all the
investigated strategies, except MajV and sometimes µ̃-min, have K1 > 0. This leads to a dominant
term ∝ (1/u)5+2κ at u� 1. Hence, far into the right tail we have ϕ(u) ∝ (1/u)5+2κ. Integrating
the tail beyond a threshold z we then get

∫∞
z

du ϕ(u) ∝ (1/z)4+2κ. Thus, if the statement about
the tails is correct, we expect logRm(Z̃) = −(4 + 2κ) log Z̃+constant at Z̃ � 1 for the MinV, RS,
Int strategies (and µ̃-min whenever it is not equivalent to majV). In Fig. 4 we show a log-log plot
of Rm(Z̃) for several strategies, for one combination of q, c, m, κ. (Without providing evidence
we mention that the behaviour is the same for other parameter choices.) We have also plotted the
single-segment FP probability R1(Z̃) =

∫∞
Z̃

du ϕ(u) for Int. We notice the following

• The tails of MinV, RS, Int and µ̃-min indeed follow the expected power law, as can be seen
from the straight lines that are parallel to each other and to the single-segment curve.

• The curves for the different strategies lie in the same order as in Fig. 1.

The fact that the tail of the MinV curve lies higher than the rest was explained in Section 2.3:
the K1 parameter determines how strongly the dominant power −(5 + 2κ) is present in ϕ(u), and
MinV has the highest K1 of all strategies. The order of RS and Int can also be understood from
the value of K1.

Lemma 3 It holds that KRS
1 ≥ KInt

1 .

Proof:
We have ΨInt

1 (x) = 1
c and, ΨRS

1 (x) = 1
s(x)+1 , where s(x) is the number of non-zero elements in x.

We can bound s(x) as s(x) + 1 ≤ min{c, q} since the number of distinct received symbols cannot
exceed the alphabet size or the coalition size. This yields

ΨRS
1 (x) =

1
s(x) + 1

≥ 1
min{c, q}

= max
{

1
c
,

1
q

}
≥ 1
c

= ΨInt
1 (x). (21)

Finally, from the definition of Kb (11) we know that ΨRS
1 (x) ≥ ΨInt

1 (x) implies KRS
1 ≥ KInt

1 . �
The µ̃-min strategy is more difficult to analyze. As shown in [13], it behaves in a rather complicated
way, sometimes being equivalent to MinV, sometimes MajV, or something inbetween, depending
on many parameters, mostly κ and q.
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Figure 2: Log-log plot of Rm(Z̃) for several strategies. The single-segment FP probability R1(Z̃)
for the Int is also plotted.
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Figure 3: Examples of incorrect Rm(Z̃) curves (solid line) when the cutoff νmax is chosen too
small. Oscillations occur in the region where the curve departs from Gaussian behaviour. The
dotted curve is the correct result.

5 Numerical study of the power series cutoff

Our third contribution is an investigation how the cutoff power νmax should be chosen in order to
achieve sufficient accuracy in the numerical computation of Rm(Z̃) while keeping the computation
time of the series expansion (15) under control.
While it is obvious that increasing m should improve the convergence of the expansion (remember
that the ‘small parameter’ in the expansion is k/

√
m), we have not been able to find an expression,

or even a rule of thumb, that a priori predicts good values for νmax. Several parameters have a
large impact on the speed of convergence6, in particular the attack strategy.
When νmax is chosen too small, we observe one of the following problems:

• Rm(Z̃) is not in the range [0, 1] for all Z̃.

6By ‘convergence’ we mean convergence of the series to the correct value Rm(Z̃), not to be confused with the
CLT effect that the pdf tends to the Gaussian form.
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• Rm(Z̃) is not a smooth function of Z̃. The most pronounced effect is around the point where
the curve leaves the Gaussian curve. Examples are shown in Fig. 3.

Table 1 shows νmax values which lead to a correct Rm(Z̃) curve, as a function of c, q, m and the
attack strategy. The numbers listed in the last four columns are νmax values. We investigated
νmax ∈ {10, 20, 30, 40, 50}. The parameter κ is set to approximately 1/q. The µ̃-min strategy is
then equivalent to MajV [13], so they are shown together in one column.
From the table we can see that νmax = 30 is in general a safe choice. There are some rare cases
where problems occur when νmax is too large. This happens just for MajV and MinV at small m.
We suspect that the expansion parameter ∝ m−1/2 is not small enough in these cases, leading to
an ill-defined series expansion in the CSE method (Section 1.3).
For the MajV strategy there are several situations in which the CSE method fails for the entire
attempted νmax range. It happens at large c combined with small q.
Apparently, νmax has to be increased to get convergence. This effect is not easily explained. For
κ ≈ 1/q, the dominant power in the left tail of ϕ(u) (14) is (1/u)5−2/q and in the right tail
(1/u)3+2(c+1)/q. (Remember, KMajV

b = 0 for b < c/q.) For large c/q, we see that the right tail
vanishes much more quickly than the left tail. Perhaps this imbalance necessitates a larger number
of terms in the expansion to get sufficient accuracy.

11



c q m MajV / µ̃-min MinV Int RS
3 3 300 30 ≥20 ≥30 ≥30

3 1000 ≥20 ≥20 ≥20 ≥20
3 2000 ≥20 ≥20 ≥20 ≥20
5 300 ≥20 ≥10 ≥10 ≥10
5 1000 ≥10 ≥10 ≥10 ≥10
5 2000 ≥10 ≥10 ≥10 ≥10

8,15 300,1000,2000 ≥10 ≥10 ≥10 ≥10
5 3 300 - ≥20 ≥30 ≥20

3 1000 ≥40 ≥20 ≥20 ≥20
3 2000 ≥30 ≥10 ≥20 ≥20
5 300,1000,2000 ≥20 ≥10 ≥10 ≥10
8 300 ≥20 ≥10 ≥10 ≥10
8 1000 ≥20 ≥10 ≥10 ≥10
8 2000 ≥10 ≥10 ≥10 ≥10
15 300,1000,2000 ≥10 ≥10 ≥10 ≥10

8 3 300 - ≥10 ≥30 ≥20
3 1000 - ≥10 ≥20 ≥20
3 2000 - ≥10 ≥20 ≥20
5 300 - ≥10 ≥10 ≥10
5 1000 ≥20 ≥10 ≥10 ≥10
5 2000 ≥20 ≥10 ≥10 ≥10
8 300,1000,2000 ≥20 ≥10 ≥10 ≥10
15 300 ≥20 10 - 40 ≥10 ≥10
15 1000 ≥20 ≥10 ≥10 ≥10
15 2000 ≥10 ≥10 ≥10 ≥10

15 3 300 - ≥10 ≥30 ≥20
3 1000 - ≥10 ≥20 ≥20
3 2000 - ≥10 ≥20 ≥10
5 300,1000,2000 - ≥10 ≥10 ≥10
8 300 - 10 - 30 ≥10 ≥10
8 1000 ≥40 ≥10 ≥10 ≥10
8 2000 ≥30 ≥10 ≥10 ≥10
15 300 30 10 ≥10 ≥10
15 1000 ≥20 ≥10 ≥10 ≥10
15 2000 ≥20 ≥10 ≥10 ≥10

Table 1: Cutoff values νmax giving proper convergence of the CSE method to Rm(Z̃), listed for
various combinations of coalition size, alphabet size, code length and attack strategy. κ ≈ 1/q.
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6 Comparison of attack strategies

Our fourth contribution is a comparison of attack strategies. In [14, 13] various FP plots were
shown, but they did not span a large part of the parameter space, since their main purpose was to
illustrate the CSE method and the µ̃-min attack, respectively. In this chapter we aim to present a
comprehensive overview of FP probabilities for all the attack strategies mentioned in Section 2.1,
for a broad parameter range.

6.1 Comparison method: comparing FP at (approximately) equal FN

Ideally we would like to show ROC curves, but unfortunately the CSE method has not yet7 been
applied to the FN probability. Not having access to accurate FN numbers, we have chosen the
following way to compare different attack strategies to each other: we approximately fix the FN
probability and then compare the FP probabilities. Here the word ‘approximately’ needs some
explanation. For each strategy we set the threshold Z to a different value. We set Z = mµ̃/c,
where µ̃ depends on the strategy. We refer to this specific value as Zhalf . Each colluder separately
has a probability of approximately 1

2 that his score stays below Zhalf [18]; hence the FN probability
is approximately ( 1

2 )c. Other than this, very little information is available about the scores of the
colluders. Fortunately, the pdf of the collective score S is known to be narrow. Consequently, a
broad range of FN values is represented in a narrow interval around Zhalf , and thus we do not lose
much generality by setting Z = Zhalf .

q = 5, c = 50, m = 100000, κ = 0.301

Z̃

log10Rm(Z̃)

MajV

MinV
RS

Int
µ̃-min

M
inV

M
ajV

Int

R
S

µ̃-m
in

2 4 6 8 10

-20

-15

-10

-5

Figure 4: FP probability as a function of the accusation threshold, for different strategies. The
auxiliary lines connect each curve to its Z̃half , allowing us to read off FP values for a fair com-
parison of strategies. Note that for the chosen parameter values, the µ̃-min attack the Z̃half lies in
the Gaussian part of the curve, making µ̃-min the strongest attack.

Our comparison method is illustrated in Figs. 4 and 5. At first sight, it looks as if MinV is always
the strongest attack, since it causes the largest FP probability Rm(Z̃). However, we must not
evaluate the curves at the same Z̃, but each at its own Z̃half . The vertical lines connect each curve
to its Z̃half point. The horizontal lines point to the corresponding FP probability. Comparing the
FP values, we see that in Fig. 4 the µ̃-min attack wins8, while in Fig. 5 MinV wins. The c and the
strategy-dependent behaviour of µ̃ play a crucial role here. When the Z̃µ̃−min

half lies in the Gaussian

7This is work in progress.
8In fact, this is the first numerical corroboration of the statement made in [13] that the µ̃-min attack is asymp-

totically optimal.
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Figure 5: Same type of plot as Fig. 4, but with different q, c and m. In this case the µ̃-min attack
has its Z̃half far outside the Gaussian part of the curve.

part of the µ̃-min curve, there can be no stronger attack than µ̃-min. On the other hand, when it
lies in the non-Gaussian part (which is often the case for small c) then the curves that lie higher
than the µ̃-min curve get a chance to yield a higher FP.

6.2 Study of the effect of c, q and m

We present plots for the dependence of the attacks on the three parameters c, q and m separately.
Varying the coalition size c
Fig. 6 shows four plots where Rm(Z̃half) is computed as a function of c while q and m are kept
fixed. Obviously, increasing c makes every attack type more powerful. (FP increases.) The µ̃
strongly depends on the strategy, moderately depends on q, and weakly decreases with c. The
Z̃half =

√
mµ̃/c is a decreasing function of c, which means that the “read-off” point in a figure like

Fig. 4 moves to the left, causing a higher FP probability. In several of the plots we see crossovers
occurring, most notably between µ̃-min and MinV.
Varying the alphabet size q
Fig. 7 analogously shows the dependance on q. All attacks weaken with increasing q. This is
mainly caused by the fact that µ̃ is an increasing function of q [17], forcing the “read-off” point
in Fig. 4 to the right. We see crossovers occurring as a function of q too.
Varying the code length m
Fig. 8 shows the dependance on m. All attacks weaken with increasing m. This is due to two
effects: the Rm curve becomes more Gaussian (Central Limit Theorem), and Z̃half ∝

√
m shifts

to the right. The CLT effect differs per strategy, causing the observed crossovers.
Varying the parameter κ
Fig. 9 shows the dependance on κ. Apart from µ̃-min, all the strategies have a smooth behaviour.
As was explained in [13], the µ̃-min strategy coincides with majV for small κ and with MinV for
large κ. At intermediate κ there are jumps in the µ̃-min curve, indicating a re-definition of the
µ̃-minimizing strategy.
For all the curves, the impact of κ on the FP rate is mostly due to the fact that µ̃ depends on κ;
the Z̃half in turn is linear in µ̃.
From Fig. 9 we see that κ ≈ 0.3 minimizes the coalition’s effectiveness at q = 3 (given, of course,
that they are restricted to the arsenal of strategies presented here). In general, the optimal κ
choice lies close to 1/q.
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Fig. 6 FP probability Rm(Z̃half) as a function of c for all the attack strategies. Four combinations of q and m
are shown.
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Fig. 6 FP probability Rm(Z̃half) as a function of c for all the attack strategies. Four combinations of q and m
are shown.

14

6.2 Study of the effect of c, q and m

We present plots for the dependence of the attacks on the three parameters c, q and m separately.

Varying the coalition size c

Fig. 6 shows four plots where Rm(Z̃half) is computed as a function of c while q and m are kept fixed.

Obviously, increasing c makes every attack type more powerful. (FP increases.) The µ̃ strongly depends on

the strategy, moderately depends on q, and weakly decreases with c. The Z̃half =
√

mµ̃/c is a decreasing

function of c, which means that the “read-off” point in a figure like Fig. 4 moves to the left, causing a

higher FP probability. In several of the plots we see crossovers occurring, most notably between µ̃-min

and MinV.

@ The plots are too wide @

Int

log FP

c

!!RS

q=5, m=2000, κ=0.301

µ̃-min

MajV

!!
MinV

MajV

Int

log FP

!
!!

MinV

c

q=5, m=10000, κ=0.301

µ̃-min

!
!!

RS

q=10, m=2000, κ=0.301

log FP

c

MajV

!!
MinV

!
!!

Int

µ̃-min

RS

MajV

µ̃-min

q=10, m=10000, κ=0.301

Int

MinV

log FP

c

!
!

RS

!

!

!

!
!

!

!

!

!
!

!

!

!

!
!

!

!

!

!
!

!

!

!
!

!
10 20 30 40 50

!8

!6

!4

!2

0

(a)

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

10 20 30 40 50

!14

!12

!10

!8

!6

!4

!2

(b)

!

!

!

!

!

!

!

!

!
!

!

!

!

!
!

!

!

!

!

!

!

!

!

!
!

10 20 30 40 50

!14

!12

!10

!8

!6

!4

!2

(c)
!!

!

!!

!

!!

!!

!

!!

!

!!

!!

!

!!

!

!!

!!

!

!!

!

!!

!!

!

!!

10 20 30 40 50

!14

!12

!10

!8

!6

!4

!2

(d)

Fig. 6 FP probability Rm(Z̃half) as a function of c for all the attack strategies. Four combinations of q and m
are shown.
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Fig. 6 FP probability Rm(Z̃half) as a function of c for all the attack strategies. Four combinations of q and m
are shown.

Figure 6: FP probability Rm(Z̃half) as a function of c for all the attack strategies. Four combina-
tions of q and m are shown.
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Varying the alphabet size q

Fig. 7 analogously shows the dependance on q. All attacks weaken with increasing q. This is mainly caused

by the fact that µ̃ is an increasing function of q [17], forcing the “read-off” point in Fig. 4 to the right.

We see crossovers occurring as a function of q too.
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Fig. 7 FP probability Rm(Z̃half) as a function of q for all the attack strategies. Four combinations of c and m
are shown.

Varying the code length m

Fig. 8 shows the dependance on m. All attacks weaken with increasing m. This is due to two effects: the

Rm curve becomes more Gaussian (Central Limit Theorem), and Z̃half ∝
√

m shifts to the right. The

CLT effect differs per strategy, causing the observed crossovers.

Varying the parameter κ
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was explained in [13], the µ̃-min strategy coincides with majV for small κ and with minV for large κ. At

intermediate κ there are jumps in the µ̃-min curve, indicating a re-definition of the µ̃-minimizing strategy.

For all the curves, the impact of κ on the FP rate is mostly due to the fact that µ̃ depends on κ; the Z̃half

in turn is linear in µ̃.

From Fig. 9 we see that κ ≈ 0.3 minimizes the coalition’s effectiveness at q = 3 (given, of course, that

they are restricted to the arsenal of strategies presented here). In general, the optimal κ choice lies close
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Figure 7: FP probability Rm(Z̃half) as a function of q for all the attack strategies. Four combina-
tions of c and m are shown.
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Fig. 9 FP probability Rm(Z̃half) as a function of κ.

Figure 8: FP probability Rm(Z̃half) as a function of m for all the attack strategies. Four combi-
nations of c and q are shown.
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Figure 9: FP probability Rm(Z̃half) as a function of κ.

7 Summary and future work

We have improved our understanding of the CSE method in various respects.
(i) We have empirically charted the power series cutoff values νmax that yield sufficiently accurate
Rm(Z̃) results. For small m, the CSE method sometimes fails, especially in the case of the MajV
strategy. (However, of all strategies MajV is closest to Gaussian, and we have seen that it is rarely
a strong attack.) Unfortunately, we do not yet have a theoretical way to estimate νmax. Perhaps
this could be done if we had a better understanding of the ω parameters in (15).
(ii) We have demonstrated that the tail of the Rm(Z̃) curve follows the same power law as the
single-segment pdf ϕ(u). This is of course exactly what one expects, but it had not been explicitly
verified before, and there have been doubts in the past about this issue.
(iii) We have plotted the ϕ(u) curve for different strategies. While hardly a contribution, it does
graphically indicate the relative strength of the attack strategies within one segment; and we have
seen that these properties carry over to the FP probability Rm(Z̃) for the summed score.
Furthermore, we have broadened the ‘scope’ of the CSE method by increasing the list of strategies
for which it is known how to do the Kb pre-computation. Theorem 1 shows how the Kb for RS
can be computed with only O(qc2) summation terms. RS does not fit in any of the classes defined
in [13]. It has been necessary to introduce a new class that focuses on the number of zeros present
in σ instead of the occurrences of the symbols.
Finally, we have compared the different attack strategies by looking at the Rm(Z̃half) values, i.e.
FP at an FN rate that is ‘under control’, by which we mean PFN ≈ 2−c. Lacking the means to
make ROC curves, this is currently the best we can do to come to a fair comparison. We are helped
by the fact that a small change in Z̃ has a much stronger effect on FN than on FP. Application
of the CSE method to FN is left for future work.
Our graphs show that the ‘winner’ in the strongest attack competition is nearly always MinV or
µ̃-min. This is heuristically understood from the fact that MinV has the longest ϕ+(u) tail and
that µ̃-min yields the smallest Zhalf . The exact parameter settings determine which of these effects
wins.
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Appendix

A Proof of Theorem 1

We first need the following Lemma:

Lemma 4
q−1∑
w=1

(
q − 1
w

)
1

w + 1
αwβq−1−w =

(α+ β)q − βq

αq
− βq−1. (22)

Proof of Lemma 4
We define

A(α) :=
q−1∑
w=0

(
q − 1
w

)
αwβq−1−w = (α+ β)q−1. (23)

Integrating A we have:∫ α

0

A(α′)dα′ =
q−1∑
w=0

(
q − 1
w

)
1

w + 1
αw+1βq−1−w =

(α+ β)q − βq

q
. (24)

Dividing both expressions by α and then subtracting the w = 0 term βq−1, the result (22) follows.
�
Starting from the general definition of Kb (11) we have

KRS
b = Ex|bΨRS

b (x) =
∑
x

(
c− b
x

)
B(κ1q−1 + x)
B(κ1q−1)

ΨRS
b (x). (25)

Given that the strategy can be defined as

ΨRS
b (x) =

1
w + 1

, w = |{i : xi > 0}| (26)

we need to rewrite the x-sum in (25) to take the w non-zero elements in x into account. We write
x as a vector containing q − 1− w zeroes and w nonzero integers z1, · · · , zw.

∑
x

{· · · } →
q−1∑
w=1

(
q − 1
w

) ∑
z∈{1,...,c−b}w

δ0,c−b−
Pw
i=1 zi

{
· · ·
}

(27)

=
q−1∑
w=1

(
q − 1
w

) ∑
z1∈{1,...,c−b}

· · ·
∑

zw∈{1,...,c−b}

δ0,c−b−
Pw
i=1 zi

{
· · ·
}

(28)

where δ is the Kronecker delta. Next we use a sum representation of the Kronecker δ as follows:

δ0,s =
1
Nb

Nb−1∑
a=0

(
ei2π/Nb

)as
(29)

with s = c− b−
∑w
i=1 zi. This is a correct representation only if Nb is larger than the maximum

|s| that can occur. The most positive value of s is attained at z = 0, namely s = c− b. The most
negative value is attained when w = q − 1 and zk = c − b for all k, namely s = −(c − b)(q − 2).
Hence Nb has to be larger than (c− b)(q − 2). Our expression for Kb now contains sums over zk
and a. We shift the a-sum completely to the left. Next we write

B(κ1q−1 + x) =
[Γ(κ)]q−1−w∏w

i=1 Γ(κ+ zi)
Γ(c− b+ κ[q − 1])

(30)(
c− b
x

)
=

(c− b)!∏w
k=1 zk!

. (31)
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All the expressions depending on the zk variables are fully factorized; the part of the summand
that contains the zk is given by

w∏
k=1

[
c−b∑
zk=1

Γ(κ+ zk)
zk!τazkb

]
= (Gba)w. (32)

After some elementary rewriting we have

KRS
b =

(c− b)!Γ(κ(q − 1))
NbΓ(c− b+ κ(q − 1))

Nb−1∑
a=0

τ
a(c−b)
b

q−1∑
w=1

(
q−1
w

)
w + 1

[
Gba
Γ(κ)

]w
. (33)

We can go further applying Lemma 4 on the w-sum with α = Gba
Γ(κ) and β = 1, obtaining

q−1∑
w=1

(
q−1
w

)
w + 1

[
Gba
Γ(κ)

]w
=

(Gba/Γ(κ) + 1)q − 1
qGba/Γ(κ)

− 1. (34)

Substituting (34) into (33) we obtain

KRS
b =

(c− b)!Γ(κ(q − 1))
NbΓ(c− b+ κ(q − 1))

[
Nb−1∑
a=0

τ
a(c−b)
b

(Gba/Γ(κ) + 1)q − 1
qGba/Γ(κ)

−
Nb−1∑
a=0

τ
a(c−b)
b

]
(35)

The second summation yields δ0,c−b which is zero because we are looking at b < c. The result (18)
follows. �
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