An extended abstract of this paper is published in the proceedings of the 3rd International Workshop
on Security in Cloud Computing—SCC@QAsiaCCS 2015. This is the full version.

Entangled Cloud Storage

Giuseppe Ateniese*!, Ozgiir Dagdelen’?, Ivan Damgard*?, and Daniele Venturi®*

apienza University of Rome, Department of Computer Science
YSapienza University of Rome, Department of Computer Sci
2bridgingl T
3 Aarhus University, Department of Computer Science
4Sapienza University of Rome, Department of Computer Science

March 10, 2016

Abstract

Entangled cloud storage (Aspnes et al., ESORICS 2004) enables a set of clients to “entangle”
their files into a single clew to be stored by a (potentially malicious) cloud provider. The entan-
glement makes it impossible to modify or delete significant part of the clew without affecting all
files encoded in the clew. A clew keeps the files in it private but still lets each client recover his
own data by interacting with the cloud provider; no cooperation from other clients is needed.
At the same time, the cloud provider is discouraged from altering or overwriting any significant
part of the clew as this will imply that none of the clients can recover their files.

We put forward the first simulation-based security definition for entangled cloud storage, in
the framework of universal composability (Canetti, FOCS 2001). We then construct a protocol
satisfying our security definition, relying on an entangled encoding scheme based on privacy-
preserving polynomial interpolation; entangled encodings were originally proposed by Aspnes
et al. as useful tools for the purpose of data entanglement. As a contribution of independent
interest we revisit the security notions for entangled encodings, putting forward stronger defi-
nitions than previous work (that for instance did not consider collusion between clients and the
cloud provider).

Protocols for entangled cloud storage find application in the cloud setting, where clients store
their files on a remote server and need to be ensured that the cloud provider will not modify
or delete their data illegitimately. Current solutions, e.g., based on Provable Data Possession
and Proof of Retrievability, require the server to be challenged regularly to provide evidence
that the clients’ files are stored at a given time. Entangled cloud storage provides an alternative
approach where any single client operates implicitly on behalf of all others, i.e., as long as one
client’s files are intact, the entire remote database continues to be safe and unblemished.

*Acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 644666.

fWork done while at Technische Universitit Darmstadt.

fSupported from the Danish National Research Foundation, the National Science Foundation of China (under the
grant 61061130540), and also from the CFEM research center.

§ Acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 644666.

Contents

1__Introduction| 1 B.3 Proof of TheoremP|. 12
(.1 __Qur Contributions| 3
[2__Other Related Workl 5 4 Entangled Storage of Datal 14
T3 Paper Organization]. 5 [4.1 The Memory Functionality] . .. 15
[4.2 Ideal Implementation of Data En- |
2 Preliminaries 6 | tanglement| 16
21 Nofafionl. 6
P2 The UCE K 6 5 A Protocol for Data Entanglement| 17
I;i :uccmc}f zzrflument sys}‘i'emgl 8| |6 Discussion and Open Problems| 22
2. omewhat 1J0MOMOrplic LNCtyp- < [6.1 Comparison to PDP/POR]. . . . 22
Cfonl « . v v oo -
6.2 Alternative Solutionsl 22
2.0 Collision Res1staf1t Hashing] . . . 9 [6.3 Efficiency Considerations] 23
2.6 Pseudorandom Generators 10 6.4 Open Problems| 23
] |3Efllta§gledt Egcodifég |SChemeS| 118 [A A Protocol for Realizing 77| 26
. ecurity Properties|
[3.2 A Code based on Polynomials|. . 11 |B Secure Polynomial Evaluation| 28

1 Introduction

Background. Due to the constantly increasing need of computing resources, and to the advances
in networking technologies, modern IT organizations nowadays are prompted to outsource their
storage and computing needs. This paradigm shift—often known as “cloud computing” —allows
for applications from a server to be executed and managed through a client’s web browser, with
no installed client version of an application required. Cloud computing includes different types of
services, the most prominent known under the name of Infrastructure as a Service (IaaS), Platform
as a service (PaaS), and Software as a Service (SaaS). In rough terms, a solution at the SaaS
level allows a customer (e.g., the end-user) to make use of a service provider’s computing, storage
or networking infrastructure. A solution at the PaaS level, instead, allows a customer (e.g., a
programmer or a software developer) to exploit pre-configured software environments and tools.
Finally, a solution at the TaaS level allows a customer (e.g., a service provider) to acquire physical
resources such as storage units, network devices and virtual machinesEl

Cloud infrastructures can belong to one of two categories: public and private clouds. In a private
cloud, the infrastructure is managed and owned by the customer and located in the customer’s
region of control. In a public cloud, on the contrary, the infrastructure is owned and managed
by a cloud service provider and is located in the cloud service provider’s region of control. The
latter scenario poses serious security issues, due to the fact that a malicious cloud provider could
misbehave putting the confidentiality of a customer data at edge.

Cloud storage. Cloud computing has generated new intriguing challenges for cryptographers. In
this paper, we deal with the problem of cloud storage, where clients store their files on remote servers

"While the brief description above tries to make a clear distinction between the IaaS, PaaS, and Saa$ layers, such
a distinction is not always easy to draw in practice.

based on public clouds (e.g., via Microsoft’s Azure or Amazon’s S3). Outsourcing data storage
provides customers with several benefits. In particular, by moving their data to the cloud, customers
can avoid the costs of building and maintaining a private storage infrastructure; this results in
improved availability (as data is accessible from anywhere) and reliability (as, e.g., customers don’t
need to take care of backups) at lower costs.

While the benefits of using a public cloud infrastructure are clear, companies and organizations
(especially enterprises and government organizations) are still reluctant to outsource their storage
needs. Files may contain sensitive information and cloud providers can misbehave. While encryp-
tion can help in this case, it is utterly powerless to prevent data corruption, whether intentional or
caused by a malfunction. Indeed, it is reasonable to pose the following questions: How can we be
certain the cloud provider is storing the entire file intact? What if rarely-accessed files are altered?
What if the storage service provider experiences Byzantine failures and tries to hide data errors
from the clients? Can we detect these changes and catch a misbehaving provider?

PDP/POR. It turns out that the questions above have been studied extensively in the last few
years. Proof-of-storage schemes allow clients to verify that their remote files are still pristine even
though they do not possess any local copy of these files. Two basic approaches have emerged:
Provable Data Possession (PDP), introduced by Ateniese et al. [2], and Proof of Retrievability
(POR), independently introduced by Juels and Kaliski [26] (building on a prior work by Naor and
Rothblum [30]). They were later extended in several ways in [33], [5 19, 4} 411, 12} (35, 20]. In a PDP
scheme, file blocks are signed by the clients via authentication tags. During an audit, the remote
server is challenged and proves possession of randomly picked file blocks by returning a short proof
of possession. The key point is that the response from the server is essentially constant, thanks to
the homomorphic property of authentication tags that makes them compressible to fit into a short
string. Any data alteration or deletion will be detected with high probability. In POR, in addition,
error correction codes are included along with remote file blocks. Now, the server provides a proof
that the entire file could potentially be recovered in case of hitches.

Data entanglement. The main shortcoming of proof-of-storage schemes is that a successful
run of an audit provides evidence about the integrity of a remote file only at a given time. As a
consequence, all users must challenge the storage server regularly to make sure their files are still
intact.

An alternative approach has been proposed by Aspnes et al. [1], under the name of data entan-
glementﬂ The main idea is to make altering or deleting files extremely inconvenient for the cloud
provider. To achieve this feature, the authors of [I] considered a setting where many clients encode
all their files into a single digital cleuﬁ ¢, that can be used as a representation of all files and be
stored on remote and untrusted servers. The goal is to ensure that any significant change to ¢ is
likely to disrupt the content of all files.

Unfortunately, the original model of [1] suffers from an important shortcoming: The entan-
glement is created by a trusted authority, and files can only be retrieved through the trusted

2“Entanglement” usually refers to a physical interaction between two particles at the quantum level: Even if
separated, the particles are in a quantum superposition until a measurement is made, in which case both particles
assume definitive and correlated states. Analogously, two entangled files are somehow linked together: A file that is
intact implies the other must also be intact. Any single change to one file, destroys the other.

3The terminology “clew” typically refers to a ball of yarn or string.

authority. Although the assumption of a trusted party significantly simplifies the task of designing
(and analyzing) protocols for data entanglement, it also makes such protocols not suitable for cloud
computing.

1.1 Owur Contributions

The main contribution of this paper is to overcome the above limitation. In particular, we propose
the first simulation-based definition of security for data entanglement as well as protocols satisfying
our definition without the need for a trusted party. More in detail, our results and techniques are
outlined below.

Entangled encodings. FEntangled encoding schemes were introduced by [1] as useful tools for
the purpose of data entanglement. As a first contribution, we revisit the notion of entangled
encodings putting forward stronger definitions w.r.t. previous work (see below for a comparison).
In our language, an entangled encoding consists of an algorithm Encode that takes as input n
strings fi,..., fn (together with a certain amount of randomness r1,...,7,), and outputs a single
codeword ¢ which “entangles” all the input strings. The encoding is efficiently decodable, i.e., there
exists an efficient algorithm Decode that takes as input (¢, r;,4) and outputs the file f; together
with a verification value £. Since only 7; is required to retrieve f; (we don’t need r;, j # i), we refer
to this as “local decodability”. The verification value is a fixed function of the encoded string and
the randomness.

In addition, the encoding satisfies two main security properties. First off, it is private in the
sense that even if an adversary already knows a subset of the input strings and randomness used
to encode them, the resulting encoding reveals no additional information about any of the other
input strings other than what can be derived from the knowledge of this subset. Second, it is all-
or-nothing in the sense that whenever an adversary has “large” uncertainty about ¢ (i.e., a number
of bits linear in the security parameter), he cannot design a function that will answer any decoding
query correctly. See Section [3| for a precise definition.

We remark that our definitions are stronger than the one considered in [I]. First, [I] did not
considered privacy as an explicit property of entangled encodings. Second, and more importantly,
our definition of all-or-nothing integrity is more general in that for instance it allows the adversary
to known a subset of the input strings and randomness; in the cloud storage setting this will allow
to model arbitrary collusion between clients and a malicious cloud provider.

We additionally provide a concrete instantiation of an entangled encoding scheme based on
polynomials over a finite field F[f| (A similar instantiation was also considered in [I].) Here, the
encoding of a string f; is generated by choosing a random pair of elements (s;, z;) € F? and defining
a point (z;,y; = fi + s;). The entanglement of (f1,..., f,) consists of the unique polynomial ¢(-) of
degree n — 1 interpolating all of (z;,y;). In Section [3| we show that, if the field F is large enough,
this encoding satisfies the all-or-nothing integrity property for a proper choice of the parameters.
The latter holds even in case the adversary is computationally unbounded.

Simulation-based security. Next, we propose a simulation-based definition of security for en-
tangled storage in the cloud setting, in the model of universal composability [11] (UC). In the UC

4Throughout the paper, F denotes a generic finite field. When the order of the field is explicit, we use the notation
GF(p"), for a positive integer k > 0, to indicate the field of characteristic p.

paradigm, security of a cryptographic protocol is defined by comparing an execution in the real
world, where the scheme is deployed, with an execution in an ideal world, where all the clients give
their inputs to a trusted party which then computes the output for them.

Roughly, the ideal functionality Zgss that we introduce captures the following security require-
ments (see also the discussion in Section [4]).

e Privacy of entanglement: The entanglement process does not leak information on the file f;
of client P;, neither to other (possibly malicious) clients nor to the (possibly malicious) server;

e Privacy of recovery: At the end of each recovery procedure, the confidentiality of all files is
still preserved;

o All-or-nothing integrity: A malicious server (possibly colluding with some of the clients)
overwriting a significant part of the entanglement is not able to answer recovery queries from
any of the clients.

Intuitively, the last property says that the probability that a cloud provider answers correctly a
recovery query for some file is roughly the same for all files which are part of the entanglement:
such probability is either one (in case the server did not modify the clew), or negligibly close to
zero (in case the entanglement was modified).

We choose to prove security in the UC model as this gives strong composition guarantees.
However, some technical difficulties arise as a result. First, we face the problem that if the server
is corrupt it may choose to overwrite the encoding we give it with something else, and so we may
enter a state where the server’s uncertainty about the encoding is so large that no request can
be answered. Now, in any simulation based definition, the simulator must clearly know whether
we are in a such a state. But since the server is corrupt we do not know how it stores data and
therefore it is not clear how the simulator could efficiently compute the server’s uncertainty about
the encoding. In the UC model it is even impossible because the data could be stored in the state
of the environment which is not accessible to the simulator.

We solve this problem by introducing a “memory module” in the form of an ideal functionality,
and we store the encoded data only inside this functionality. This means that the encoding can only
be accessed via commands we define. In particular, data cannot be taken out of the functionality
and can only be overwritten by issuing an explicit command. This solves the simulator’s problem
we just mentioned. A corrupt server is allowed, however, to specify how it wants to handle retrieval
requests by giving a (possibly adversarial) machine to the functionality, who then will let it execute
the retrieval on behalf of the server.

We emphasise that this memory functionality is not something we hope to implement using
simpler tools, it should be thought of as a model of an adversary that stores the encoded data
only in one particular location and will explicitly overwrite that location if it wants to use it for
something else.

A protocol realizing Zgss. Finally, in Section [bl we design a protocol implementing our ideal
functionality for entangled storage. The scheme relies on the entangled encoding scheme based
on polynomials in a finite field F described above, and on a somewhat homomorphic encryption
scheme with message space equal to F. Each client has a file f; (represented as a field element
in F), samples (s;,2;) < F2, defines (x;,9; = fi + si), and keeps a hash 6; of the original file.
During the “entanglement phase”, the clients run a secure protocol for computing the coefficients

of the polynomial ¢(-) of minimum degree interpolating all of (z;,¥;). This can be done by using
standard techniques relying on linear secret sharing (see [A). The polynomial c(-) is stored in the
ideal functionality for the memory module, which can be accessed by the server.

Whenever a client wants to recover its own file, it forwards to the server a ciphertext e cor-
responding to an encryption of z;. The server returns an encryption of ¢(x;), computed trough
the ciphertext e and using the homomorphic properties of the encryption scheme, together with a
proof that the computation was performed correctly. The client can verify the proof, decrypt the
received ciphertext in order to obtain y; and thus f; = y; — s;, and check that the hash value 6;
matches.

Our final protocol is a bit more involved, as clients are not allowed to store the entire (x;, s;)
(otherwise they could just store the file f; in the first place); however this can be easily solved by
having the client store only the seed o; of a pseudo-random generator G(-), and recover (z;,s;) as
the output of G(0;).

1.2 Other Related Work

Below we review previous work on PDP/POR and data entanglement. We refer the reader to
Section [0] for a more extensive discussion and a comparison between the two approaches.

PDP/POR. As we mentioned in the introduction, PDP/POR have witnessed a surge of interest
among researchers that have adapted and extended the original schemes to work for new scenarios.
In particular, PDP and POR were extended to work on dynamic data where the data owner can
modify the original database stored remotely.

PDP was also adapted to work with multiple cloud providers, or with providers that keep
multiple copies of the same file. In general, a proof of integrity may leak information about the
file. PDP has recently been extended to provide complete privacy-preserving integrity checking,
i.e., a PDP proof does not reveal information about the file content. We refer the reader, e.g.,
to [42] 136, [7] for extensive surveys on the subject.

Entanglement of data. Apart from the already mentioned work by Aspens et al. [1], data entan-
glement also appears in the context of censorship-resistant publishing systems; see, e.g., Dagster [3§]
and Tangler [39].

The notion of all-or-nothing integrity is inspired by the all-or-nothing transform introduced by
Rivest et al. [32], and later generalized in [18]. The standard definition of all-or-nothing transform
requires that it should be hard to reconstruct a message if not all the bits of its encoding are known.

Publication note. A preliminary version of this paper appeared as [3]. This is the full version of
that paper, containing additional material—in particular all details about modelling and securely
realizing data entanglement in the UC framework—and significantly revised proofs.

1.3 Paper Organization

We start by introducing a few basic cryptographic building blocks, and by recalling the terminol-
ogy of simulation-based security in the UC framework, in Section Section [3| contains the new
definitions for entangled encoding schemes, as well as a description and proof of the scheme based
on polynomial interpolation. In Section [4] we describe the ideal functionality for entangled cloud

storage, and the memory module functionality that is needed in order to prove security in the
UC framework. Section [5| contains the description of our protocol for data entanglement and its
security proof.

We refer the reader to Section [0] for a more extensive discussion on the efficiency of our protocol,
for a comparison between the approaches of data entanglement and PDP/PoR, and for a list of
open problems related to our work.

2 Preliminaries

2.1 Notation

Given an integer n, we let [n] = {1,...,n}. If n € R, we write [n] for the smallest integer greater
than n. If = is a string, we denote its length by |z|; if X is a set, |X| is the number of elements in

X. When z is chosen randomly in X, we write x & X. When A is an algorithm, we write y « A(x)
to denote a run of A on input x and output y; if A is randomized, then y is a random variable and
A(z;w) denotes a run of A on input x and random coins w.

Throughout the paper, we denote the security parameter by k. A function negl(k) is negligible
in k& (or just negligible) if it decreases faster than the inverse of every polynomial in k. A machine
is said to be probabilistic polynomial time (PPT) if it is randomized, and its number of steps is
polynomial in the security parameter.

Let X = {Xi}treny and Y = {Yi}ren be two distribution ensembles. We say X and Y are
e-computationally indistinguishable if for every polynomial time distinguisher A there exists a
function e such that |P(A(X)=1) —P(A(Y) =1)| < e(k). If e(k) is negligible, we simply say X
and Y are (computationally) indistinguishable (and we write X ~Y).

The statistical distance of two distributions X,Y is defined as SD(X,Y) = > [P(X =a) —
P (Y = a)|. The min-entropy of a random variable X is H(X) = — logmax, P (X = z).

2.2 The UC Framework

We briefly review the framework of universal composability (UC) [1I]. Let ¢ : ({0,1}*)" —
({0,1}*)™ be a functionality, where ¢;(x1,...,x,) denotes the i-th element of ¢(z1,...,x,) for
i € [n]. The input-output behavior of ¢ is denoted (z1,...,2n) — (Y1,--+,Yn)-

Consider a protocol 7 run by a set of parties Py, ..., P, (where each party P; holds input z;), for
computing ¢(x1,...,2,). In order to define security of m, we introduce an ideal process involving
an incorruptible “trusted party” that is programmed to capture the desired requirements from the
task at hand. Roughly, we say that a protocol for ¢ is secure if it “emulates” the ideal process.
Details follow.

The real execution. We represent a protocol as a system of interactive Turing machines (ITMs),
where each ITM represents the program to be run within a different party. Adversarial entities are
also modeled as I'TMs; we concentrate on a non-uniform complexity model where the adversaries
have an arbitrary additional input, or an “advice”. We consider the computational environment
where a protocol is run as asynchronous, without guaranteed delivery of messages. The commu-
nication is public (i.e., all messages can be seen by the adversary) but ideally authenticated (i.e.,
messages sent by honest parties cannot be modified by the adversary).

The process of executing protocol 7 (run by parties P, ..., P,) with some adversary A and an
environment machine Z with input z is defined as follows. All parties have a security parameter
k € N and are polynomial in k. The execution consists of a sequence of activations, where in each
activation a single participant (either Z, A or P;) is activated. The activated participant reads in-
formation from its input and incoming communication tapes, executes its code, and possibly writes
information on its outgoing communication tapes and output tapes. In addition, the environment
can write information on the input tapes of the parties, and read their output tapes. The adversary
can read messages on the outgoing message tapes of the parties and deliver them by copying them
to the incoming message tapes of the recipient parties. The adversary can also corrupt parties,
with the usual consequences that it learns the internal information known to the corrupt party and
that, from now on, it controls that party.

Let REAL; 4(»),z(k, (z1,...,2,)) denote the random variable corresponding to the output of
environment Z when interacting with adversary A and parties running protocol 7 (holding inputs
Z1,...,Tp), ON input security parameter k, advice z and uniformly chosen random coins for all
entities.

The ideal execution. The ideal process for the computation of ¢ involves a set of dummy parties
Py, ..., P,, an ideal adversary SZM (a.k.a. the simulator), an environment machine Z with input
z, and an ideal functionality Z (also modeled as an ITM). The ideal functionality simply receives
all inputs by Pi,..., P, and returns to the parties their respective outputs ¢;(z1,...,x,). The
ideal adversary STM proceeds as in the real execution, except that it has no access to the contents
of the messages sent between Z and the parties. In particular, STM is responsible for delivering
messages from Z to the parties. It can also corrupt parties, learn the information they know, and
control their future activities.

Let IDEALz s7p1(2),2(K, (1, .., 7)) denote the random variable corresponding to the output
of environment Z when interacting with adversary SZM, dummy parties Py, ..., P, (holding inputs
Z1,...,%n), and ideal functionality Z, on input security parameter k, advice z and uniformly chosen
random coins for all entities.

Securely realizing an ideal functionality. We can now define universally composable (UC)
security, following [11].

Definition 1. Let n € N. Let Z be an ideal functionality for ¢ : ({0,1}*)" — ({0,1}*)" and let
w be an n-party protocol. We say that w securely realizes T if for any adversary A there exists an
ideal adversary SIM such that for any environment Z, any tuple of inputs (x1,...,x,), we have

{IDEALz s7m(2),2(k, (21, . .. ,xn))}keNﬁze{m}* ~ {REAL; 4.) z(k, (z1,. .., W)}keN,ze{O,l}*)

In this paper we only allow static corruptions, that is, adversaries determine the parties to
corrupt at the beginning of the protocol execution. The adversary is called passive if it follows
faithfully the protocol specifications but can save intermediate computations; on the other hand
an active adversary can behave arbitrarily during a protocol execution. Security of a protocol is
sometimes defined with respect to an adversary structure A, i.e., a monotoneﬂ set of subsets of the
players, where the adversary may corrupt the players of one set in A. When this is the case, we
say that m A-securely realizes a given functionality.

5An adversary structure is monotone in the sense of being closed with respect to taking subsets.

The composition theorem. The above notion of security allows a modular design of protocols,
where security of each protocol is preserved regardless of the environment where that protocol is
executed. In order to state the composition theorem, we sketch the so-called Z-hybrid model, where
a real-life protocol is augmented with an ideal functionality. This model is identical to the above
real execution, with the following additions. On top of sending messages to each other, the parties
may send messages to and receive messages from an unbounded number of copies of Z. (Each copy
is identified via a unique session identifier, chosen by the protocol run by the parties.)

The communication between the parties and each one of the copies of Z mimics the ideal process.
That is, once a party sends a message to some copy of Z, that copy is immediately activated and
reads that message of the party’s tape. Furthermore, although the adversary in the hybrid model
is responsible for delivering the messages from the copies of Z to the parties, it does not have access
to the contents of these messages. It is stressed that the environment does not have direct access
to the copies of Z.

Let 7 be a protocol in the Z’-hybrid model and let 7’ be a protocol UC-realizing Z’. Consider the
composed protocol 77, where each call to the ideal functionality Z’ is replaced with an execution
of protocol 7.

Theorem 1 ([I1]). Let Z, I’ be ideal functionalities. Let ® be an n-party protocol that securely
realizes T in the I'-hybrid model and let 7' be an m-party protocol that securely realizes I'. Then
protocol ©™ securely realizes T.

2.3 Succinct argument systems

Let R C {0,1}*x{0, 1}* be a polynomial-time relation with language Lr = {z : Jw s.t. (z,w) € R}.
A succinct argument system (P, V) for L € NP is a pair of probabilistic polynomial-time machines
such that the following properties are satisfied: (i) (succinctness) the total length of all messages
exchanged during an execution of (P, V) is only polylogarithmic in the instance and witness sizes;
(ii) (completeness) for any « € L we have that (P(w), V)(x) outputs 1 with overwhelming probabil-
ity; (iii) (argument of knowledge) for any = ¢ L and any computationally bounded prover P* such
that (P*,V)(x) outputs 1 there exists a polynomial time extractor EXT p+ outputting a witness w
that satisfies (z,w) € R with overwhelming probability. See for instance [40), [§].

Succinct interactive argument systems for NP exists in 4 rounds based on the PCP theo-
rem, under the assumption that collision-resistant function ensembles exists [27), [40]. Succinct
non-interactive argument systems, also called SNARGs, are impossible under any falsifiable cryp-
tographic assumption [24] but are known to exists in the random-oracle model [28] or under non-
falsifiable cryptographic assumptions [8].

2.4 Somewhat Homomorphic Encryption

A homomorphic (public-key) encryption scheme is a collection of the following algorithms HE =
(Gen, Enc, Dec, Eval), defined below.

Key Generation. Upon input a security parameter 1%, algorithm Gen outputs a secret and public
key (sk,pk) and an evaluation key evk.

Encryption. Upon input a public key pk and a message u, algorithm Enc outputs a ciphertext e.

Decryption. Upon input a secret key sk and a ciphertext e, algorithm Dec outputs a message u.

Evaluation. Upon input an evaluation key evk, a function ¢ : {0,1}* — {0,1}* and a set of n
ciphertexts ey, ..., ey, algorithm Eval outputs a ciphertext e..

Definition 2 (CPA security). A homomorphic scheme HE is CPA-secure if for any probabilistic
polynomial time algorithm A it holds that

[Pr(A(pk, evk, Encpr(po)) = 1) — Pr(A(pk, evk, Encpp(p1)) = 1)| < negl(k),
where (pk, evk, sk) < Gen(1¥), and (uo, p1) < A(1¥, pk) is such that |po| = |p1].

Sometimes we also refer to the “real” or “random” variant of CPA-security, where A has to
distinguish the encryption of a known message i from the encryption of a random unrelated message
i/. The two notions are equivalent up-to a constant factor in security.

Definition 3 (C-homomorphism). Let C = {Ci}ren be a class of functions (together with their
respective representations). A scheme HE is C-homomorphic if for any sequence of functions ¢y € Cy,
and respective inputs pi1, . . ., fin, where n =n(k), it holds that

Pr(Decg(Evaleyg(c,e1, ... en)) # c(pin, -y i) = negl(k),
where the probability is taken over the random choice of (pk, evk, sk) < Gen(1%) and e; < Encyp(11;).

Note that the standard properties of additive or multiplicative homomorphism, satisfied for
instance by RSA, Paillier, or ElGamal, are captured when the class C contains only addition or
multiplication, respectively.

An homomorphic encryption scheme is said to be compact if the output length of Evalgy(+)
is bounded by a polynomial in k (regardless of the function ¢ and of the number of inputs). An
encryption scheme is fully-homomorphic when it is both compact and homomorphic with respect
to the class C of all arithmetic circuits over a finite field F (thus both addition and multiplication
over F).

A somewhat homomorphic encryption (SHE) scheme allows to compute functions ¢(-) of “low
degree” and it is used as a subroutine of fully homomorphic encryption [23] (applying a “bootstrap-
ping” or re-linearization technique of [10, 9] to perform an unbounded number of operations). We
use SHE in our schemes since it is significantly faster than FHE.

2.5 Collision Resistant Hashing

We recall what it means for a family of hash functions to be collision resistant. Let £, ¢ : N — N be
such that ¢(k) > ¢'(k), and let I C {0,1}*. A function family {H,},e; is called a collision-resistant
hash family if the following holds.

e There exists a probabilistic polynomial time algorithm |Gen that on input 1¥ outputs ¢ € I,
indexing a function H, mapping from ¢(k) bits to ¢'(k) bits.

e There exists a deterministic polynomial time algorithm that on input z € {0,1}¢ and ¢ € I,
outputs H,(z).

e For all probabilistic polynomial time adversaries B we have that
P (HL(x) — H(2') : (z,2) < B1F,0);0 IGen(lk)> < negl(k),

where the probability is taken over the coin tosses of 1Gen and of B.

2.6 Pseudorandom Generators

We recall the definition of a pseudorandom generator. Let G : {0,1}* — {0,1}(*) be a deterministic
function, where £(k) > k. We say that G is a secure PRG if there exists a polynomial time algorithm
that given o € {0, 1}*¥ outputs G(c), and moreover for all probabilistic polynomial time adversaries
B we have:

i <B(G(U)) —1:0 ¢ {0, 1}’f) — P (B(Uygy) = 1) < negl(k),

where Uy ;) is uniform over {0, 1140,

3 Entangled Encoding Schemes

In this section, we revisit the notion of an entangled encoding scheme and show a construction
based on polynomial interpolation. Intuitively, an entangled encoding scheme encodes an arbitrary
number of input strings f1,..., f, into a single output string using random strings 71, ..., 7, (one
for each input string). We assume that all input strings have the same length KEI The following
definition captures an entangled encoding scheme formally.

Definition 4 (Entangled Encoding Scheme). An entangled encoding scheme is a triplet of algo-
rithms (Setup, Encode, Decode) defined as follows.

Setup. Setup is a probabilistic algorithm which, on input a security parameter k, the number of
strings to encode n, and the length parameter £, outputs public parameters (F,R,C). We call
F the input space, R the randomness space and C the entanglement space.

Encoding. Encode is a deterministic algorithm which, on input strings fi,...,fn € F and
avxiliary inputs ri, ...,y € R, outputs an encoding c € C.

(Local) Decoding. Decode is a deterministic algorithm which, on input an encoding ¢ € C and
input r; € R together with index i, outputs string f; € F and a verification value &. This
value must be a fized function &(f;, ;) of the file and the randomness.

Correctness of decoding requires that for all security parameter k and length ¢, public parameters
(F,R,C) «+ Setup(1*,n,¢), input strings fi,...,f, € F and auxiliary inputs r,...,7, € R, we
have (fi,&(fi,ri)) = Decode(Encode(fi, ..., fn;71,--.,7n),74,1) for all i € [n].

3.1 Security Properties

We let F; and R; for ¢ = 1,...,n be random variables representing the choice of f; and r;, re-
spectively. We make no assumption on the distributions of F; and R;, but note that of course the
distribution of R; will be fixed by the encoding scheme. We let F_; (resp. f_;) denote the set of all
variables (resp. values) except F; (resp. f;). Similar notation is used for R; and r;. An entangled
encoding scheme satisfies two main security properties.

Privacy: Even if an adversary already knows a subset of the input strings and randomness used
to encode them, the resulting encoding reveals no additional information about any of the

5Tn case files have different lengths, they can be simply padded to some pre-fixed value £ (which is a parameter of
the scheme).

10

other input strings other than what can be derived by the knowledge of this subset. More
precisely, let U denote some arbitrary subset of the pairs (F}, R;)j=1..n, and let C' be the
encoding corresponding to all elements, i.e., C' = Encode(F1,...,Fy; Ry, ..., R,). Let V be
the set of F; not included in U, i.e., V = F_y. An entangled encoding scheme is private
if, for all w € U and all ¢ € C, the distribution Dy ;; of the random variable V' when given
U = u is statistically close to the distribution Dy ¢ of the random variable V' when given
(U=u,C = c), ie., SD(Dyy, D'ypc) < negl(k).

All-Or-Nothing Integrity: Roughly speaking, if an adversary has a large amount of uncertainty
about the encoding C' = Encode(F1, ..., Fp; R1,..., R,), he cannot design a function that
will answer decoding queries correctly. More precisely, let U be defined as under privacy, and
define a random variable Cf; that is obtained by applying an arbitrary (possibly probabilistic)
function g(-) to U and C. Now the adversary plays the following game: he is given that

iy = ¢ for any value ¢’ and then specifies a function Decode 44,. We say that the adversary
wins at position 7 if F; is not included in U and Decode g4, (R;,7) = Decode(C, R;,i). The
encoding has (a, 3)-all-or-nothing integrity if Ho (C|C[; = /) > « implies that for each i, the
adversary wins at position ¢ with probability at most 8. In particular, in order to win, the
adversary’s function must output both the correct file and verification value.

Definition 5 ((«, 8)-All-or-Nothing Integrity). We say that an entangled encoding scheme (Setup,
Encode, Decode) has (v, B)-all-or-nothing integrity if for all (possibly unbounded) adversaries A, for
all subsets U C {(F}, Rj)}j=1..n, for all (possibly unbounded) functions g(-) and for alli € [n]\ {7 :
(F}, R;) € U}, we have that

(F,R,C) + Setup(1¥,n, ¢),
P | Decode a4y (R;, i) = Decode(C, R;,i) : C = Encode(Fy,...,Fy; Ry,...,Ry), | <5,
Cl; = ¢g(C,U), Decode g, < A(CY;)

whenever Hoo(C|Cy, = ') > a (where the probability is taken over the choices of the random
variables F;, R; and the coin tosses of A).

Note that [in the definition of all-or-nothing integrity will typically depend on both « and the
security parameter k, and we would like that g is negligible in k, if « is large enough. We cannot
ask for more than this, since if « is small, the adversary can guess the correct encoding and win
with large probability.

3.2 A Code based on Polynomials

We now design an encoding scheme that has the properties we are after. As a first attempt, we
consider the following. We choose a finite field F, say of characteristic 2, large enough that we can
represent values of F; as field elements. We then choose 1, ..., x, uniformly in F and define the
encoding to be ¢, where ¢ is the polynomial of degree at most n — 1 such that c¢(z;) = f; for all
1. Decoding is simply evaluating c. Furthermore, the all-or-nothing property is at least intuitively
satisfied: ¢ has degree at most n and we may think of n as being much smaller than the size of F.
Now, if an adversary has many candidates for what ¢ might be, and wants to win the above game,
he has to design a single function that agrees with many of these candidates in many input points.
This seems difficult since candidates can only agree pairwise in at most n points. We give a more
precise analysis later.

11

Privacy, however, is not quite satisfied: we are given the polynomial ¢ and we want to know
how much this tells us about ¢(z;) where z; is uniformly chosen. Note that it does not matter if
we are given x; for j # 4, since all z; are independent. We answer this question by the following
lemma;:

Lemma 1. Given a non-constant polynomial ¢ of degree at most n, the distribution of ¢(R), where
R is uniform in ¥, has min-entropy at least log |F| — log(n).

Proof. The most likely value of ¢(R) is the value y for which ¢71(y) is of maximal size. This is
equivalent to asking for the number of roots in ¢(X) — y which is at most n, since ¢(X) — y is not
0 and has degree at most n. Hence P(¢(R) = y) < n/|F|, and the lemma follows by definition of
min-entropy. O

It is reasonable to assume that ¢ will not be constant, but even so, we see that the distribution
of ¢(R) is not uniform as we would like, but only close (if n < |F|). In some applications, a
loss of logn bits in entropy may be acceptable, but it is also easy to fix this by simply one-time
pad encrypting the actual data before they are encoded. This leads to the final definition of our
encoding scheme:

Setup: Given as input the length £ of the n data items to be encoded and the security parameter
k, define F = F = GF(2mex(t3ktlogntloglogn)y @ — B2 and C = F”.

Encoding: Given f,..., f, to encode, choose x;, s; € F uniformly (and independently) at random,
and set r; = (z4,;); in case x; = x; for some index ¢ # j output a special symbol L and
abort. Otherwise, define Encode(f1,..., fn;71,...,7,) = ¢ to be the polynomial of degree at
most n — 1 such that ¢(z;) = fi +s; fori=1,...,n.

Decoding: We define Decode(c, r;, i) = Decode(c, (x4, si),1) = (c(x;) — si, c(x4)).

It is trivial to see that Decoding outputs the correct file. The verification value is ¢(z;) = fi + s;
thus it is indeed a function of the file and the randomness, as required by the definition. The
encoding is also easily seen to be private: In fact, by the uniformly random choice of s;, given any
subset U of (Fj, Rj) j=1..n the encoding C' does not reveal any additional information on V' = F_y;.
For all-or-nothing integrity, we have the theorem below. Its conclusion may seem a bit complicated
at first, but in fact, reflects in a natural way that the adversary has two obvious strategies when
playing the game from the definition: he can try to guess the correct encoding, which succeeds
with probability exponentially small in «, or he can try to guess the correct field element that is
computed at the end of the game (by making his function constant). However, the latter strategy
succeeds with probability exponentially small in |F|. The theorem says that, up to constant factor
losses in the exponent, these are the only options open to the adversary.

Theorem 2. The above encoding scheme has (o, maz(2-%+2,27(2=3)/2))_gll-or-nothing integrity.

3.3 Proof of Theorem 2]
Before coming to the theorem, we need the following lemma.

Lemma 2. Let U, C}; be as in the definition of all-or-nothing integrity and suppose the pair
(F;, R;) = (F;, (X, Si)) is not included in U. Then for the encoding scheme defined above, and for
any ¢, we have Hyo (X;| Cj;, = ') > log |F| — logn.

12

Proof. Suppose first that we are given values for all Fj, R; where j # i and also for C' and Fj, i.e.,
we are given the polynomial ¢, all f; and all (z;, s;), except (x;, s;). Let V be a variable representing
all this. Before a value of V' is given, z;, s; are uniformly random and independent of the f;’s and
of the (x;, sj) where j # i. It follows that when we are given a value of V', the only new constraint
this introduces is that ¢(x;) = s; + f; must hold. Now, if ¢ is constant, this gives no information at
all about x;, so assume c is not constant. Then for each value s;, it must be the case that z; is in a
set consisting of at most n elements, since ¢ has degree at most n — 1. Therefore we can specify the
distribution of z; induced by this as follows. The set of all z; is split into at least |F|/n subsets.
Each subset is equally likely (since s; is uniform a priori), and the elements inside each subset are
equally likely (since x; is uniform a priori). Each subset is, therefore, assigned probability at most
n/|F|, and thus, also the largest probability we can assign to an x; value (if the subset has size 1).
Therefore, the conditional min-entropy of X; is at least log |F| — logn.

Now observe that the variable C; can be obtained by processing V' using a (possibly randomized)
function. If we assume that a value of Cj; is given, the conditional min-entropy of X; is at least
as large as when V is given. This actually requires an argument, since it is not the case in general
that the min-entropy does not decrease if we are given less information. In our case, however, if
we are given U = u, the resulting distribution of X; will be a weighted average computed over
the distributions of X; given values of V that map to U = u. But all these distributions have
min-entropy at least log |F| — logn and hence so does any weighted average. O

We assume that the distribution D of the polynomial ¢ in the view of the adversary has min-
entropy at least «, so that the maximal probability occurring in the distribution is at most 27°.
The adversary now submits his function Decode 44, and he wins if (f;, c(x;)) = Decode gqy (i, Si)
for an arbitrary but fixed i € [n]. We want to bound the adversary’s advantage.

In particular, the adversary’s function must output the correct value of ¢(z;), so we may as
well bound the probability € that g(x;) = ¢(x;) for a function g chosen by the adversary, where c is
chosen according to D and x; has large min-entropy as shown in Lemma [2| above.

Let €. be the probability that g(z;) = c(x;) for a fixed ¢, then € =) _q.e. where ¢, is the
probability assigned to ¢ by D. A standard argument shows that P(e, > €/2) > €/2 since otherwise
the average) . ¢gce. would be smaller than e.

Consider now the distribution D’ which is D restricted to the ¢’s for which e, > €/2. The
maximal probability in this new distribution is clearly at most 2-%*1 /e. It follows that D’ assigns
non-zero probability to at least €2*~! polynomials. We now define C’ be a subset of these polyno-
mials. There are two cases: 1) if €2°71 < J/|F|/n, we set C’ to be all the €21 polynomials in
question; 2) otherwise, we set C’ to be an arbitrary subset of {/|F|/n polynomials.

We now define a modified game, which is the same as the original, except that the polynomial ¢
is chosen uniformly from C’. By construction, we know that the adversary can win with probability
€/2 by submitting the function g.

Now define, for ¢;,¢; € C’, the set X;; = {z € F | ¢;(z) = ¢j(z)}. And let X = U; ;X;;. Since
all polynomials in C’ have degree at most n — 1, it follows that |X| < n|C'|?. Note that if z & X,
then c(z) is different for every ¢ € C’' and one needs to guess ¢ to guess ¢(z). We can now directly
bound the probability we are interested in:

P(g(z) = c(x)) = Pg(z) =clr) [z € X) Pz cX)+P(g(r) =c(z) |[x € X) - P(x ¢ X)
IC'?Pnlogn 1

< Pz X)+P(gla) = cla) |0 ¢ X) < L4

13

Functionality Zen,
The functionality Zyen is parameterized by the security parameter k, entanglement size n
and a sharing scheme (Share, Reconstruct). The interaction with an ordered set of (possibly
corrupt) clients Py, ..., P,, a (possibly corrupt) server S, an (incorruptible) observer OBS,
and ideal adversary STM is enabled via the following queries:

e On input (Store,i,s;) from P; (where s; € {0,1}*), record (4, s;). Ignore any subsequent
query (Store,i,*,*) from P;. If there are already n recorded tuples, send Done to all
clients, to S and to SZM. Mark session as Active; define ¢ = Reconstruct(sy, ..., sy),
and K = ().

e On input (Overwrite, {i;};c[) from STM (where ¢ <log|C|), check that the session is
Active (if not ignore the input). Set c[i;] = 0 for all j € [t] and K < K U {i;};eq. If
|| > k, send (Overwrite) to OBS.

e On input (Read, M, i) from S or SZM (where M is a read-only Turing machine and
i € [n]), check that the session is Active and either P; or S are honest (if not ignore the
input). Send M(c) to P;.

Figure 1: The basic memory functionality Zem

where the last inequality follows from Lemma Since we already know that there is a way for

< IC'|?nlogn

the adversary to win with probability /2, we have €/2 wo ﬁ In case 1), this implies

e < 2*(0‘*3)/2, in case 2) we get € < 2=k+3 The theorem follows.

4 Entangled Storage of Data

In this section we present our model for entangled storage in the cloud setting. At a very intuitive
level consider the following natural way to specify an ideal functionality Zgsg capturing the security
properties we want: it will receive data from all players, and will return data to honest players on
request. If the server is corrupt it will ask the adversary (the simulator in the ideal process) if a
request should be answered (since in real life a corrupt server could just refuse to play). However, if
Trss ever gets an “overwrite” command it will refuse to answer any requests. The hope would then
be to implement such a functionality using an entangled encoding scheme, as the AONI property
ensures that whenever there is enough uncertainty (in the information theoretic sense) about the
encoding, a corrupt server cannot design a function that will answer decoding queries correctly.

However, technical difficulties arise due to the fact that the simulator should know when the
uncertainty about the encoding is high enough. This requires the simulator to estimate the adver-
sary’s uncertainty about the encoding, which is not necessarily easy to compute (e.g., the adversary
could store the encoding in some unintelligible format). To deal with this problem, we introduce
another functionality (which we call the memory functionality, see Section modeling how data
is stored in the cloud, and how the server can access the stored data.

A second difficulty is that simply specifying the functionality Zgss as sketched above is not
sufficient to capture the security we want. The problem is that even a “bad” protocol where data

14

Functionality 7} .
The functionality Zmem is parameterized by the security parameter k, entanglement size n
and an entangled encoding scheme (Encode, Decode) with file space F, randomness space R,
and entanglement space C. The interaction with an ordered set of (possibly corrupt) clients
Py, ..., P,, a(possibly corrupt) server S, an (incorruptible) observer OBS, and ideal adversary
SZM is enabled via the following queries:

e On input (Store,i, f;,r;) from P; (where f; € F and r; € R), record (i, f;,r;). Ig-
nore any subsequent query (Store,i,x*,x) from P;. If there are already n recorded

tuples, send Done to all clients, to S and to SZM. Mark session as Active; define
¢+ Encode(f1,..., fa;r1,-..,n), and K = 0.

e On input (Overwrite, {i;};c[) from STM (where ¢ <log|C|), check that the session is
Active (if not ignore the input). Set c[i;] = 0 for all j € [t] and K « KU {i;}cy. If
|| > k, send (Overwrite) to OBS.

e On input (Read, M, i) from S or SIM (where M is a read-only Turing machine and
i € [n]), check that the session is Active and either P; or S are honest (if not ignore the
input). Send M(c) to P;.

Figure 2: The augmented memory functionality 77 ..

from different players are stored separately (no entanglement) can be shown to implement Zggs.
The issue is that if the adversary overwrites data from just one player, say P;, the simulator can
“cheat” and not send an overwrite command to Zggg. Later, if P; requests data, the simulator can
instruct Zgss to not answer the request. Now the request it fails in both the real and in the ideal
process, and everything seems fine to the environment.

We therefore need to add something that will force a simulator to send overwrite as soon as
too much data is overwritten. We do this by introducing an additional incorruptible player called
the observer. In the real process, when the memory functionality has been asked to overwrite too
much data, it will send “overwrite” to the observer, who outputs this (to the environment). We
also augment Zggg such that when it receives an overwrite command, it will send “overwrite” to the
observer. Now note that in the real process, when too much data is overwritten, the environment
will always receive “overwrite” from the observer. Hence whenever the ideal process gets into a
similar state, the simulator must send an overwrite command to Zgsg: this is the only way to make
the observer output “overwrite” and if he does not, the environment can trivially distinguish.

The functionality for data entanglement in the cloud is presented in Section We emphasize
that a real application of our protocol does not need to include an observer (as he takes no active
part in the protocol). He is only there to make our security definition capture exactly what we
want.

4.1 The Memory Functionality

The memory functionality Zyem is given in Figure [1I] and specifies how data is stored in the cloud
and how a (possibly corrupt) server can access this data. As explained above, we cannot give the

15

server direct access to the data since then he might store it elsewhere encoded in some form we
cannot recognize, and then he may have full information on the data even if he overwrites the
original memory.

Roughly Z,,em allows a set of parties to store a piece of information in the cloud. For technical
reasons this information is interpreted in the form of “shares” that are then combined inside the
functionality to define the actual storage ¢ € CE We use the term “share” informally here, and
refer the reader to Appendix [A] for a formal definition.

The simulator can access the data stored inside the memory functionality in two ways: (i) by
computing any function of the data and forwarding the output to some party; (i) by explicitly
forgetting (part of) the data stored inside the functionality. Looking ahead, the first type of
interaction will allow the server to answer recovery queries from the clientsﬁ The second type of
interaction corresponds to the fact that overwriting data is an explicit action by the server. This
way, the adversarial behavior in the retrieval protocol is decided based only on what Z;,em stores,
and data can only be forgotten by explicit commands from the adversary.

As explained at the beginning of this section, we also need to introduce an additional incorrupt-
ible player called the observer. He takes no input and does not take part in the real protocol. But
when Z,em Overwrites the data, it sends “overwrite” to the observer, who then outputs “overwrite”
to the environment.

The augmented memory functionality. We also define an “augmented” memory functionality
T} em> Which will allow for a more modular description of our main construction (see Section .

The functionality Z; .., is conceptually very similar to Zyem, but instead of being parametrized by
a sharing scheme is parametrized by an entangled encoding scheme. The main difference is that
now clients are allowed to send the actual files and the randomness, and the functionality defines
¢ € C to be an encoding of all files using the given randomness.

The augmented memory functionality is presented in Figure [2] In Appendix [A] we show that
I} em can be securely realized (for the entangled encoding based on polynomials, see Section

from the more basic functionality Z,em, and a suitable sharing scheme over a finite field.

4.2 Ideal Implementation of Data Entanglement

For reasons of clarity, we define data entanglement for clients each holding only a single file f; of
length ¢. However, all our definitions and constructions can be easily extended to cover an arbitrary
number of files (of arbitrary length) for each party by either encoding multiple files into a single
one or by allowing to put in as many files as desired. The functionality Zggg is shown in Figure
Below, we give a high level overview of the security properties captured by Zgsg.

The functionality runs with a set of clients P, ..., P, (willing to entangle their files), a server S,
ideal adversary SZM and observer OBS. The entanglement process consists simply in the clients
handling their file f; to the functionality: at the end of this process the server learns nothing, and
each of the clients does not learn anything about the other clients’ files. In other words, each party

"This is because the real protocol allows clients to securely compute “shares” of the entanglement, but they are
not allowed to recover the entanglement itself from the shares as otherwise malicious clients would learn the encoding
(and so would do a colluding malicious server, making the memory functionality useless).

8The function above is specified via a Turing machine; this Turing machine has to be read-only, as otherwise the
server could overwrite data without explicitly calling “overwrite”.

16

Functionality Zgsg
The functionality Zggg is parameterized by the security parameter k, entanglement size n and
file space F. Initialize boolean bad as false. The interaction with an ordered set of (possibly
corrupt) clients Py, ..., P,, a (possibly corrupt) server S, an (incorruptible) observer OBS,
and ideal adversary STM is enabled via the following queries:

e On input (Entangle, i, f;) from P; (where f; € F), record (P;, f;). Ignore any subsequent
query (Entangle,i,*) from P;. If there are already n recorded tuples, send Entangled
to all clients, to S, and to STM. Mark session as Entangled.

e On input (Overwrite) from SZM, set bad to true and forward (Overwrite) to OBS.
e On input (Recover,i) from P;, check if session is Entangled. If not ignore the input.
Otherwise, record (Pending,i) and send (Recover,i) to S and SZM.
On input (Recover, S,i) from S or SZM, check if session is Entangled and record
(Pending, i) exists. If not, ignore the input. Otherwise:
— If § and P; are both corrupt ignore the input.

— If P; is corrupt and S is honest, hand (Cheat,?) to SZM. Upon input (Cheat, i, f/)
from SZM, output f/ to P;.

— If S is corrupt and P, is honest, in case bad is true output L to P;. Otherwise
hand (Cheat, S) to SIM. Upon input (Cheat, S, deliver € {yes, no}) from SZM, if
deliver = yes output f; to P; and if deliver = no output L to F;.

— If S and P; are both honest, output f; to P;.

Delete record (Pending,).

Figure 3: Ideal functionality Zgsg for entangled storage

only learns that the session is “entangled”, but nothing beyond that (in this sense the entanglement
process is private).

At any point in time the adversary can decide to cheat and “forget” or alter part of the clients’
data; this is captured by the (Overwrite) command. Whenever this happens, the functionality
outputs (Overwrite) to the observer that then writes it on its own output tape.

Furthermore, client P; can ask the functionality to recover f;. In case the adversary allows
this, the functionality first checks whether the (Overwrite) command was never issued: If this is
the case, it gives file f/ (where f/ = f; if the server is not corrupt) to P; and outputs nothing to
S (in this sense the recovery process is private); otherwise it outputs L to P; (this captures the
all-or-nothing integrity property).

5 A Protocol for Data Entanglement

Next, we present our main protocol securely realizing the ideal functionality Zgss in the Zyem-
hybrid model. We do this in two steps. In the first step, we show a protocol 7 securely realizing

17

TIgss in the 7 . -hybrid model. Then, in Appendix we build a protocol 7’ securely realizing
L} em 1 the Zipem-hybrid model. It follows by the composition theorem (cf. Theorem [1)) that ™
securely realizes Zggs in the Zyem-hybrid model.

The main protocol. Our protocol for entangled storage relies on the following building blocks:

e The entangled encoding scheme (Setup, Encode, Decode) based on polynomials over a finite
field F = GF(2mae(t3k+logntloglogn)) (see Section . The functionality Z} .., will be param-
eterized by this encoding.

e A somewhat homomorphic encryption HE = (Gen, Enc, Dec, Eval) scheme with message space
F, that is able to perform up to n multiplications and an arbitrarily large number of additions.

e An interactive argument of knowledge (P, V) for the following NP-language:
L = {(evk,e,e*): Ic*(:) s.t. € = Evaley(c*(+),e)}, (1)
where the function ¢(-) is a polynomial of degree n € N with coefficients in F.

We implicitly assume that there exists an efficient mapping to encode binary strings of length ¢ as
elements in F.

We start with an informal description of the protocol. In the first step each client stores in Z}; .,
its own file f; together with the randomness r; = (s;, z;) needed to generate the entanglement. To
recover f;, each client sends an encryption of z; to the server using a somewhat homomorphic
encryption scheme (see Section ; the server can thus compute an encryption of ¢(x;) homo-
morphically and forward it to the client, together with the a proof that the computation was done
correctlyﬂ The client verifies the proof and, after decryption, recovers f; = c(xz;) — s;.

The actual protocol is slightly different than this in that, in order to have each client only keep
a short state, the randomness r; is computed using a PRG such that each client can just store the
seed and recover r; at any time. Moreover each client has to also store a hash value of the file, in
order to verify that the retrieved file is the correct one. (Note that a successful verification of the
proof is not sufficient for this, as it only ensures that the answer from the server was computed
correctly with respect to some polynomial.) A detailed description of protocol 7 follows:

Parameters Generation. Let F be a finite field. Upon input a security parameter & € N, the
number of clients n and the length parameter ¢, output a value ¢ < IGen(1*) indexing a
hash function H, with input space {0,1}¢, and (F = F,R = F2,C = F") < Setup(1¥,n, ().
Furthermore, provide each client P; with secret parameters (o;, sk;). Here, o; is the seed for a
(publicly available) pseudo-random generator G : {0,1}F — {0, 1}2mae(t3k+logn+loglogn) 41
(pk;, sk;, evk;) < Gen(1%) are the public/secret /evaluation keys of a somewhat homomorphic
encryption scheme HE = (Enc, Dec, Eval) with message space F.

Entanglement. Each client P; defines G(0;) := (s;, ;) € F? and sends (Store, i, f;, (s;,7;)) to

T} em- Note that, as a consequence, Z* . - now holds ¢ = Encode(f1,..., fn;71,...,r,) Where
r; = (si,2;). Recall that the entanglement corresponds to the coefficients ¢ = (¢, ...,cn-1)

of the polynomial ¢(X) (of minimum degree) interpolating all points (z;, f; + s;). The clients
store the seed oy, and a hash value 6; = H,(f;).

9Recall that the server does not have direct access to the data, so the above computation is performed by issuing
commands to Z,em-

18

Recovery. To retrieve f;, client P; first computes (s;,x;) = G(o;) and then interacts with the
server S as follows:

1. P; computes e < Encyy. (7;) and sends it to S.
2. S sends (Read, M, i) to Z;!

em» Where the Turing machine M runs e* = Evaly, (c(-), €).
3. Let (P,V) be an interactive argument of knowledge for the language of Eq. (1). The
server S plays the role of the prover and client P; that of the verifier; if (P(c(+)), V) (evk;,

e,€*) = 0 the client outputs J_m
4. P; computes ¢(z;) = Decg, (e*) and outputs f; = c(x;) — s; if and only if H,(f;) = 6;.

In Appendix [B] we discuss several variant of the above protocol 7, leading to different efficiency
trade-offs. We prove the following result.

Theorem 3. Assuming the PRG is secure, the hash function is collision resistant, HE is CPA-
secure, and (P,V) is simulation-extractable, the above protocol w securely realizes Irsg in the L) .-
hybrid model.

Proof. Since the adversary is static, the set of corrupt parties is fixed once and for all at the
beginning of the execution; we denote this set by A. Our goal is to show that for all adversaries
A corrupting parties in a real execution of 7, there exists a simulator SZM interacting with the
ideal functionality Zggg, such that for all environments Z and all inputs fi,..., f, € F,

{IDEALZESS SIM(z ((fla RS fn))}kEN ze{0,1}* =~ {REALW Az ((f17 RS fn)}kEN,zE{O,l}* :
The simulator SZM, with access to A, is described below.

1. Upon input security parameter k, secret values (f;, 0;, sk;) (for all ¢ € [n] such that P; € A),
public values (pk;, evk;);c[,), and auxiliary input z, the simulator invokes A on these inputs.

2. Every input value that SZM receives from Z externally is written into the adversary A’s
input tape (as if coming from A’s environment). Every output value written by SZM on its
output tape is copied to A’s own output tape (to be read by the external Z).

3. Upon receiving (Store, i, f/,r!) from P, € A (where 7/ is a pair (s}, z}) € F?), issue (Entangle,
i, f]). After receiving message Entangled from Zpgg, return Done to P;.

4. Sample (f!, s, al) « F3 and define y; = f/ + &, for all i € [n] such that P; ¢ A. Emu-
late the ideal functionality Z% . by computing the polynomial ¢ € F[X] of minimal degree

interpolating (27, y;)icn); let K = 0.

5. Upon receiving (Overwrite, {i;}cp) from A, set c[i;] = 0 and update K <= K U {i;};c- In
case || > k, send (Overwrite) to Zggs.

6. Whenever the adversary forwards a ciphertext e on behalf of a corrupt player P; € A, send
(Recover, i) to Zgss and receive back (Recover,?). Then, in case S ¢ A, act as follows:

ONote that the above requires one suitable (Read, M, i) command from S to Z;, .., for each message from the prover
to the verifier in (P(c(+)), V)(evki, e, e*); this is because the witness ¢(-) is stored inside Z}, -

19

(a) Send (Recover,S,i) to Zpss and receive back message (Cheat,i). Run 2z = Decg, (e),
define f! = c(x}) — s, and send (Cheat, i, f!) to Zgss.

(b) Simulate the ciphertext e* = Evaley, (c(+), e) and play the role of the prover in (P(c(+)),
V)(evk;, e, e*) (with P; being the verifier).

7. Upon receiving (Recover,i) from Zggs (for i € [n] such that P; ¢ A), in case S € A act as
follows:

(a) Simulate the ciphertext e <— Encyy, (2) for the previously chosen value ;.

(b) Wait for the next (Read, M*, i) command from A (if any) and forward (Recover, S, i) to
Tgss. Upon input (Cheat, S) from Zggg, play the role of the verifier in (P(c(+)), V)(evk;, e,
M*(c)) (with S being the prover).

(c) In case the above check passes and the proof is verified correctly, issue (Cheat, S, yes),
and otherwise issue (Cheat, S, no).

8. Output whatever A does.

We consider a series of intermediate hybrid experiments, to show that the ideal output and the real
output are computationally close. A description of the hybrids follow.

Hybrid HYB!(k, (f1,..., fn)). We replace SIM by STM" which knows the real inputs f; of the
honest clients and uses these values to define the polynomial ¢ in step From the privacy
property of the entangled encoding scheme, we get that IDEALz_ . stA(2),z (K, (f1,- -+, fn))
and HYB!(k, (f1,..., fa)) are statistically close.

Hybrid HYB?(k, (f1,..., fn)). We replace SIM! by STM? which instead of sending an encryp-
tion of zj in step |7a, defines e < Encyy, () for a random 7 « F.

We argue that if one could distinguish between the distribution of HYB!(k, (f1,..., f,)) and
HYB2(k, (f1,..., fa)), then we could define an adversary B breaking semantic security of
HE. Adversary B receives the target public key (pk*, evk™) for HE and behaves exactly as
STM" with the difference that it sets (pk;, evk;) = (pk*, evk*). The challenge is set to the
value 2, chosen by STM in step |4} denote with e the corresponding ciphertext, which is either
an encryption of z or an encryption of a randomly chosen z7. Then B uses e in step [7a to
simulate the ciphertext sent from P; to S.

Now, if the distinguisher guesses to be in HYB(k, (f1,..., fa)), the adversary guesses that e
must be an encryption of z} (i.e., output “real”), and otherwise if the distinguisher guesses to
be in HYB?(k, (f1,..., f1)), the adversary guesses that the challenge ciphertext must encrypt
an independent value (i.e., output “random”). Thus, semantic security of HE implies that
the two hybrids are computationally indistinguishable.

Hybrid HYB?3(k, (f1,..., fn)). We replace STM? by SZM? which on step [5| does not send
(Overwrite) to Zggs, but instead continues to answer recovery queries from P; € A as done
by SZM in step Notice that in HYB?, once the flag bad is set, the ideal functionality
would answer all such queries with 1.

Let BADy 3 be the following event: The event becomes true whenever an honest client F;
accepts the output of a recovery query (produced via Turing machine M) as valid, and

20

|| > k (i.e., the flag bad was already set in the previous hybrid). Clearly, conditioned on
BADy 3 not happening, we have that HYB?(k, (f1,..., f,)) and HYB3(k, (f1,..., fa)) are
identically distributed; next we argue that BAD2 3 happens with probability exponentially
small in k£, which implies that the two hybrids are indistinguishable.

We rely here on the fact that, for F = GF(2mes(t:3k+logntloglogn)) " oyr entangled encoding
scheme of Section [3| has (k, /8 - 2~ k/ 2)-all-or-nothing integrity. In particular, any adversarial
strategy provoking event BAD 3 with probability > V/8 - 27k/2 gtarting from a polynomial
where at least k bits have been overwritten, can be used to break the all-or-nothing integrity
property of the encoding scheme. In the reduction, an adversary attacking the all-or-nothing
integrity property of (Setup, Encode, Decode) would simply behave as SZM?3 and, after P is
done with verifying the proof and recovering its file, run the extractor EX7Tp to obtain a
witness ¢*(-). Then STM? sets Decode g, := (c*(+) — s}, ¢*(+)).

Clearly, in case BAD2 3 happens, we obtain that the reduction above breaks the all-or-nothing
integrity of the encoding scheme provided that the extractor does not fail to extract a valid
witness (which will happen with negligible probability by simulation extractability). Thus,
by Theorem [2| we get that P (BADg3) < /8- Z_k/Q

Hybrid HYB*(k, (f1,..., fa)). We replace SIM3 by STM*, which answers recovery queries dif-
ferently in case S is corrupt. Namely, on step [7] STM?* does not send (Cheat, S, deliver)
to Zgss, but instead computes the answer to a recovery query from honest P; as f/ =

c(x}) — s} where ¢(+) is the emulated polynomial used by SZM. The only difference between

HYB?3(k, (f1,..., fn)) and HYB*(k, (f1, ..., fn)) is that in the former the ideal functionality

would always answer queries where (Cheat, S, yes) was sent with the correct value f;.

Let BAD3 4 be the event that P; accepts the output of a recovery query in HYB*(k, (f1,...,
fn)) and f! # fi; clearly the distribution of HYB?3(k, (f1,..., fn)) and the distribution of
HYB*(k, (f1,. .., fs)) conditioned on BAD3 4 not happening are identical. It is easy to verify
that the probability of BAD3 4 is negligible, otherwise one could break collision resistance of
H, (). The reduction is straightforward and is therefore omitted.

Hybrid HYB®(k, (f1,..., fa)). We replace SIM* with STM?®, that computes again the cipher-
text in step by encrypting the right value z. Semantic security of HE implies that
HYB*(k, (f1,..., fn)) and HYB?(k,(f1,..., f,)) are computationally close. The proof is
analogous to an above argument, and is therefore omitted.

Hybrid HYBS(k, (f1,..., fn)). We replace SIM?® by STMS which chooses the points (z;,;) of
the honest players as in the real protocol, i.e. it defines y; = f; + s; for G(o;) = (84, x;). We
claim that any probabilistic polynomial-time distinguisher between the two hybrids can be
turned into another distinguisher breaking pseudo-randomness of G(-).

The distinguisher is given access to an oracle returning strings v € {0, 1}27"6“”(5’3"“rlog ntloglogn)

with the promise that they are either uniformly distributed or computed through G(-). Hence,
the distinguisher interprets v; as an element in F2, parses v; as v; = (si,x;) and uses these
values together with files f; to define the emulated polynomial ¢ in step @] Now, when the

"Note that in order to apply Theorem [2] we need the property that the view in the reduction is independent of z;
this is clearly the case, as in HYB?(k, (f1,..., fn)) the ciphertext e has been replaced by an encryption of a random
value.

21

v;’s are uniform, the distribution is the same as in HYB®(k, (f1,..., f.)), whereas when
v; = G(o;) the distribution is the same as in hybrid HYBS(k, (fi,..., f.)). Thus, given a
distinguisher between the two hybrids we can break the pseudo-randomness of G(-).

It is easy to see that the output distribution of the last hybrid experiment is identical to the distribu-
tion resulting from a real execution of the protocol. We have thus showed that the random variables
IDEALz, o stm(z) (ks (f1,- -5 fn)) and REALgss 4z (K, (f1,- .-, fn)) are computationally close,
as desired. O

6 Discussion and Open Problems

We conclude with a discussion of some issues inherent to entangled cloud storage, and with a list
of open problems and interesting directions for future research.

6.1 Comparison to PDP/POR

One might ask how data entanglement relates to the approach based on PDP/POR. We make a
few observations in this respect below:

1. As in PDP/POR, the cloud provider is strongly discouraged from misbehaving. In addition,
any single client implicitly operates on behalf of all clients in the sense that the client, while
inspecting the soundness of his own files, implicitly checks for the integrity of the files of all
other users. Thus, the disincentive to misbehave in entangled cloud storage is stronger than
in PDP/POR since a dishonest cloud provider will likely be prosecuted by all users rather
than only by the affected ones.

2. From a practical perspective, users within entangled cloud storage do not have to keep con-
stantly querying the cloud provider with proof-of-storage challenges as in PDP /POR schemes.
No user has to explicitly request a file to check for its integrity. As long as other clients are
able to retrieve their own files, everybody else in the system will be ensured that their files
are intact.

3. Whenever a client fails to recover a file, it could be because the server deleted or modified it
or is simply refusing to hand it over. A dishonest client could in principle frame the cloud
provider by falsely claiming his files are unrecoverable. Fortunately, though, any other client
can establish the truth and expose the villain by successfully retrieving any of his own files.
This property cannot be realized within existing PDP/POR schemes where the cloud provider
is always susceptible to blackmail.

The advantages described above come at a price: Users must coordinate and run an expensive
procedure to build the entanglement. Much more work must be undertaken to improve the efficiency
of our solutions and render them practical.

6.2 Alternative Solutions

We showed how to realize entangled cloud storage using our abstraction of entangled encodings.
Of course, it should be considered whether entangled cloud storage can be realized in other ways.

22

A first natural idea is to upload each file in encrypted form to the server. Whenever a file
is retrieved, a proof of retrievability (POR) for the entire set of (encrypted) files is also executed
between the client and the server. We believe such a solution would satisfy our definition of
entangled cloud storage. However, there are two impeding drawbacks to consider. First, a POR
scheme requires a redundant encoding of the data, hence the server needs more storage than strictly
necessary. Second, the local computation performed by the client in a POR scheme typically
depends on the total size of the remote data (but see also [37] for a more efficient POR-based
approach). In our scenario, this is not acceptable since it makes the work of the client depend
on the total number of clients. In contrast, our entangled encoding has size exactly equal to the
encoded data (when files are large enough) and the work performed by a client is independent of
the number of clients.

A different idea would be to encrypt each file and then upload them to the server in a randomly
permuted order, such that each client knows the position of his own file. A client may use private
information retrieval (PIR) [13] to retrieve files. This way the server remains oblivious of the
relative position of any file, even after several retrievals. At first, this solution may seem good
enough to deter the server from erasing files. But note that the server could correctly estimate
any file positions with non-negligible probability, possibly with the help of malicious clients. Most
importantly, this proposal based on PIR does not actually satisfy the AONI requirement. Indeed,
the server may end up excluding some clients while allowing others to still retrieve their files.
Entangled cloud storage mandates that no client can retrieve data whenever a significant part of
it is erased.

6.3 Efficiency Considerations

We stress that our work does not focus on performance optimization and the proposed scheme
should be interpreted more as a feasibility result and as the first instantiation of an entangled cloud
storage scheme achieving simulation-based security. Moreover, a direct comparison of efficiency
between our entangled cloud storage and known PDP/POR constructions is inappropriate since
the properties those primitives provide are critically different as emphasized above.

Nonetheless, one way to “control” the performance of our construction is by making sure that
the polynomial, which represents the entanglement, has a low degree. One natural way to achieve
this is by limiting the number of users who take part to the entanglement and create several smaller
clews. This would offer a clear trade-off between security and efficiency.

At the extreme, entangled cloud storage can also be used by a single user to entangle his own
files and then outsource the corresponding clew to the cloud. This way, no coordination step is
required, leading to a significantly more efficient scheme. Quite remarkably, this allows the user to
verify that all files are still in place by recovering just one of them. For instance, as long as the
user downloads regularly accessed files (e.g., family pictures), he can be sure any other files are still
intact, even those rarely retrieved (e.g., tax returns).

6.4 Open Problems

An important property for protocols in the setting of cloud storage, is to allow clients to update
the encodings of their files without re-computing the encoding from scratch. In a fully dynamic
setting clients should also be allowed to add/delete files from the cloud storage provider.

23

The main construction presented in this paper works in the static setting, where no files updates

are possible. The quest for schemes working in a fully dynamic setting is an important direction
for future research[1?

Finally, it would be very interesting to find alternative constructions of entangled encoding

schemes (perhaps with computational security), as this would easily imply new protocols for en-
tangled cloud storage as well.

Acknowledgments

We thank the anonymous reviewers of Crypto 2013 and TCC 2014 for the useful feedback provided
on earlier versions of this paper.

References

1]

2]

[9]

James Aspnes, Joan Feigenbaum, Aleksandr Yampolskiy, and Sheng Zhong. Towards a theory
of data entanglement. Theor. Comput. Sci., 389(1-2):26-43, 2007.

Giuseppe Ateniese, Randal C. Burns, Reza Curtmola, Joseph Herring, Lea Kissner, Zachary
N. J. Peterson, and Dawn Xiaodong Song. Provable data possession at untrusted stores. In
ACM CCS, pages 598-609, 2007.

Giuseppe Ateniese, Ozgiir Dagdelen, Ivan Damgéard, and Daniele Venturi. Entangled encodings
and data entanglement. In Proceedings of the Third International Workshop on Security in
Cloud Computing, SCC@QASIACCS, pages 3—12, 2015.

Giuseppe Ateniese, Seny Kamara, and Jonathan Katz. Proofs of storage from homomorphic
identification protocols. In ASIACRYPT, pages 319-333, 2009.

Giuseppe Ateniese, Roberto Di Pietro, Luigi V. Mancini, and Gene Tsudik. Scalable and
efficient provable data possession. In Proceedings of the 4th international conference on Security
and privacy in communication netowrks, SecureComm ’08, pages 9:1-9:10, 2008.

Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant computing in constant
number of rounds of interaction. In PODC, pages 201-209, 1989.

Ayad Barsoum. Provable data possession in single cloud server: A survey, classification and
comparative study. International Journal of Computer Applications, 9(123):1-10, 2015.

Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. In ITCS, pages
326-349, 2012.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) Fully homomorphic
encryption without bootstrapping. TOCT, 6(3):13:1-13:36, 2014.

12Note that it might not be possible to update a given entanglement non-interactively. Still, it might be possible
to do so with less interaction than what is required to re-compute the encoding from scratch.

24

[10]

[11]

[12]

[13]

[14]

[15]

[22]

[23]

[24]

[25]

[26]

Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. In FOCS, pages 97-106, 2011.

Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In FOCS, pages 136-145, 2001.

David Cash, Alptekin Kiipg¢ii, and Daniel Wichs. Dynamic proofs of retrievability via oblivious
RAM. In EUROCRYPT, pages 279-295, 2013.

Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private information re-
trieval. J. ACM, 45(6):965-981, 1998.

Ronald Cramer and Ivan Damgard. Secure distributed linear algebra in a constant number of
rounds. In CRYPTOQO, pages 119-136, 2001.

Ronald Cramer, Fike Kiltz, and Carles Padré. A note on secure computation of the Moore-
Penrose pseudoinverse and its application to secure linear algebra. In CRYPTO, pages 613-630,
2007.

0zgi’1r Dagdelen, Payman Mohassel, and Daniele Venturi. Rate-limited secure function evalu-
ation: Definitions and constructions. In Public Key Cryptography, pages 461-478, 2013.

Ozgiir Dagdelen and Daniele Venturi. A multi-party protocol for privacy-preserving coopera-
tive linear systems of equations. In BalkanCryptSec, pages 161-172, 2014.

Francesco Davi, Stefan Dziembowski, and Daniele Venturi. Leakage-resilient storage. In SCN,
pages 121-137, 2010.

Yevgeniy Dodis, Salil P. Vadhan, and Daniel Wichs. Proofs of retrievability via hardness
amplification. In TCC, pages 109-127, 2009.

C. Christopher Erway, Alptekin Kiip¢ii, Charalampos Papamanthou, and Roberto Tamassia.
Dynamic provable data possession. ACM Trans. Inf. Syst. Secur., 17(4):15, 2015.

Pierre-Alain Fouque and David Pointcheval. Threshold cryptosystems secure against chosen-
ciphertext attacks. In ASIACRYPT, pages 351-368, 2001.

Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified VSS and fact-track multiparty
computations with applications to threshold cryptography. In PODC, pages 101-111, 1998.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169-178,
20009.

Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsi-
fiable assumptions. In STOC, pages 99-108, 2011.

Carmit Hazay and Yehuda Lindell. Efficient oblivious polynomial evaluation with simulation-
based security. TACR Cryptology ePrint Archive, 2009:459, 2009.

Ari Juels and Burton S. Kaliski Jr. PoRs: proofs of retrievability for large files. In ACM CCS,
pages 584-597, 2007.

25

[27] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In
STOC, pages 723-732, 1992.

[28] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253-1298, 2000.

[29] Payman Mohassel and Matthew K. Franklin. Efficient polynomial operations in the shared-
coefficients setting. In Public Key Cryptography, pages 44-57, 2006.

[30] Moni Naor and Guy N. Rothblum. The complexity of online memory checking. In FOCS,
pages 573-584, 2005.

[31] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
EUROCRYPT, pages 223-238, 1999.

[32] Ronald L. Rivest. All-or-nothing encryption and the package transform. In FSE, pages 210—
218, 1997.

[33] Hovav Shacham and Brent Waters. Compact proofs of retrievability. In ASTACRYPT, pages
90-107, 2008.

[34] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612-613, 1979.

[35] Elaine Shi, Emil Stefanov, and Charalampos Papamanthou. Practical dynamic proofs of re-
trievability. In ACM CCS, pages 325-336, 2013.

[36] Sooyeon Shin and Taekyoung Kwon. Remote data checking using provable data possession.
Journal of Internet Services and Information Security, 5(3):37-47, 2015.

[37] Emil Stefanov, Marten van Dijk, Ari Juels, and Alina Oprea. Iris: a scalable cloud file system
with efficient integrity checks. In ACSAC, pages 229-238, 2012.

[38] A. Stubblefield and D.S. Wallach. Dagster: Censorship-resistant publishing without replica-
tion. Technical Report TR01-380, Rice University, 2001.

[39] Marc Waldman and David Mazieres. Tangler: A censorship-resistant publishing system based
on document entanglements. In ACM CCS, pages 126-135, 2001.

[40] Hoeteck Wee. On round-efficient argument systems. In ICALP, pages 140-152, 2005.

[41] Jia Xu and Ee-Chien Chang. Towards efficient proofs of retrievability. In ASIACCS, pages
79-80, 2012.

[42] Kan Yang and Xiaohua Jia. Data storage auditing service in cloud computing: challenges,
methods and opportunities. World Wide Web, 15(4):409-428, 2012.

A A Protocol for Realizing Z*

mem

We describe a protocol ©” that securely realizes Z} .., in the Zyem-hybrid model (see Section [4.1)),
whenever T . is parametrized by our encoding scheme based on polynomials (see Section [3.2)).
Recall that Zem is parametrized by a sharing scheme (Share, Reconstruct). We propose two concrete

instantiations below:

26

- Threshold additively homomorphic encryption (e.g., Paillier’s cryptosystem [31), [21)]). Such
a scheme has the following properties: (i) To share a value a party can encrypt it using
the public key of the cryptosystem and broadcast the ciphertext; (ii) An encrypted value
can be opened using threshold decryption; (iii) Given ciphertexts Enc,; (1), Encyp(p2) and
plaintext p3, parties can compute Encpy(p1 + p2) and Encyp(p3 - 1) non-interactively; (iv)
Given ciphertexts Enc,;(11) and Encpy(p2), parties can compute Encpy,(p1 - p2) in a constant
number of rounds.

- Linear secret sharing (eg., [34, [22]). Such a scheme has the following properties: (i) Parties
can share a value in a constant number of rounds; (ii) Parties can open a value in a constant
number of rounds; (iii) Given shares of values 1, p2 and value ug, parties can compute shares
of w1 + pe and ps - py non-interactively; (iv) Given shares of values p1 and pg, parties can
compute shares of pp - o in a constant number of rounds.

In what follows we say that a value is shared if it is distributed according to one of the above two
methods; similarly a matrix or a polynomial are shared if all the elements of the matrix or the
coefficients of the polynomial are shared.

Let F be a finite field. Consider the following linear system A - c = b, where

2 n—1

1 o 2y ... o) o hn
A= : c=| : b=1:1, (2)
1z, 22 ... 2! Cn—1 Yn

and A is a Vandermonde matrix. Note that if the z;’s are distinct, A is non-singular and can thus
be inverted yielding the vector ¢ = A~! . b containing the coefficients of the polynomial ¢(X) of
minimal degree interpolating all (z;,y;).

Denote with A = (A[1],...,Aln]) the rows of A and with b = (b[1],...,b[n]) the elements of
b. The following protocol 7’ runs with clients P; holding an input (z;, ;) € F2, and is based on [6].

1. Each client P; shares Ali] and b[i].

2. Clients share a random non-zero invertible matrix R (this can be done in constant rounds [6]),
compute the shares of R - A, and reveal the result.

3. Each client computes the shares of (R-A)™! = A~™' . R~! and thus A~} R™!- R = A~!
non-interactively.

4. Each client computes the shares of A~! - b non-interactively.
5. For all j € [0,n — 1], let s; ; be the share of c[j] held by P;. Client P; issues (Store, i, s; ;).

The above protocol requires a constant number of rounds and O(n?) multiplications of shared
values. (Recall that in turn each multiplication of shared values requires interaction.) An im-
provement can be found in [29], with only O(n?) multiplications. See also [14, [15] for alternative
protocols with better efficiency, and [I7] for a more efficient solution based on Oblivious Transfer
but requiring an additional assumption.

The type of security we achieve depends on the particular sharing scheme we employ. In case
of passive adversaries, the protocols above are secure for adversary structure A = Qg (i.e., no two
sets in A cover the entire set of clients). In case of active adversaries, we can tolerate A = Qs by

27

using verifiable secret sharing or zero-knowledge proofs (A = Qg assuming a broadcast channel).
In case protocol 7’ above is instantiated using verifiable secret sharing (with no broadcast channel
available), and setting y; = f; + s; for (s;,z;) = G(0;), we obtain, e.g., the following statement
whose proof follows directly by the results in [6l 14} 29| 15]:

Theorem 4. Protocol ' above Qs-securely realizes T* in the Lmem-hybrid model, with active

mem
corruptions.

B Secure Polynomial Evaluation

In this appendix we discuss a few variants of our main protocol 7 (see Section . Recall that in
protocol 7, whenever a client P; wants to retrieve its own file it runs a sub-protocol 7" for evaluating
the polynomial ¢(-) at point z; € F. Intuitively 7 guarantees that P; learns nothing more than
c(x;), whereas the server does not learn anything on the client’s input. A related problem is the
one of oblivious polynomial evaluation (OPE) [25] (see also [16]), where the server holds the actual
polynomial and we want that additionally the client does not learn anything about c(-), apart
from the value c(x) itself. Note that any protocol for OPE could be used as a sub-protocol for file
recovery in 7, but given the complexity of OPE protocols our solution is more efficient.

An alternative approach is to replace the somewhat homomorphic encryption scheme with an
additively homomorphic encryption scheme, e.g. Paillier [31]. In this case the client would send the
powers {z° ;‘:_11 encrypted, and the server would evaluate ¢(z) homomorphically in encrypted form
(under P;’s public key). This solution requires the transmission of n field elements from the client
to the server and one field element from the server to the client.

Efficiency considerations. We observe that the efficiency of sub-protocol 7, in reality, depends
on the SHE scheme that is employed. For instance, if we consider the schemes in [10, O], we
observe that the ciphertext e* will be larger as we increase the number of multiplications allowed.
Thus, given the current state of efficiency of SHE schemes, this sub-protocol is less efficient than
the solution based on additively homomorphic encryption. (Indeed, with [3I], the server would
return always a single element of Z7,, independently of the number of homomorphic operations
performed.)

The following simple observation about the homomorphic encryption approach allows us to
reduce the communication complexity, while keeping the same computational complexity for P;.
Let n = (n1,...,n¢)2 be the binary representation of the exponent n, for £ = [logyn|, so that
n = Zf:o 2in;. It is easy to verify that it is sufficient for the client to transmit {Enc,(z2")}¢_,
to allow S to compute (homomorphically) {Enc,x(z) *_1 and thus Encpg(c(x)). This reduces the
communication from O(n) to O(logn).

If we allow the client to work a bit more, we can reduce communication further. Below we
present a method to encode a polynomial ¢(X), which allows the client to evaluate Encp(c(z))
by uploading/downloading only [v/n | ciphertexts. When combined with the previous trick, this
drops the communication complexity from O(n) down to O(log/n).

Yet another trade-off is possible if we assume that P; and S share a factorization of the polyno-
mial ¢(X), say ¢(X) = [[;7;(X) for polynomials ~;(-) of degree §; such that >, d; =n — 1@ In

131t is well-known that a random polynomial of degree n over a field of prime order is irreducible with probability
close to 1/n. Clients must agree on the factorization of ¢(-) at the end of the entanglement phase.

28

this case, the client works more since it has to: (i) compute and send the ciphertexts {Enc, (z%)}2_;,
for § = max(6;); (ii) download {Enc,y(v;(x))};; (iii) decrypt and multiply the resulting plaintexts.

Communication-Efficient Encoding of Polynomials. Let ¢(X) = 1 X" 1+ X+
be a polynomial of degree n — 1 with coefficients cg, ..., c,—1 from a field F. For simplicity, assume
there exists an element m € N such that m?> = n — 1 (i.e., m = v/n — 1). Then, the algorithm
described in Figure[d] upon input coefficients co, . . ., ¢,—1, outputs polynomials (o(), ..., {m(+) each
of maximum degree m such that ¢(X) = Cp(X)-X™ ™41 (X)-X™Mm=D 4 46 (X)- X +o(X).

Input: Coeflicients ¢,,_1,..., ¢

1. Compute m = +/n —1
2. For i =0 to m — 1 define

CZ(X) ‘= Cim t+ Cim41 - X+...+ C(i+1)m—1 . Xm_1

3. Define (,(X) := ¢p—1

Output: Polynomials (,(X), ..., (o(X)

Figure 4: Advantageous encoding of polynomial ¢(X). The algorithm can be adapted to handle
values n — 1 which do not have a root in N.

The correctness of the encoding algorithm of Figure {4] can be easily verified. We need to show
1 X" X e =Cn(X) XM+ 4 G(X) - X+ (o(X). We see that ((X) - X =
CimX™ + .+ c(i+1)m_1X(i+l)m_l forall i =1,...,m — 1. That is,

G(X) - X" = (Cim ~+ Cimy1 - X + o4 Clpnymet - X X

= CimXim + Cima1 - xim+l1 o ymet - X(i—i—l)m—l‘

Now, by adding all (sub)terms we have ¢(X) = >"1" ¢;(X)X™, as desired.

29

	Introduction
	Our Contributions
	Other Related Work
	Paper Organization

	Preliminaries
	Notation
	The UC Framework
	Succinct argument systems
	Somewhat Homomorphic Encryption
	Collision Resistant Hashing
	Pseudorandom Generators

	Entangled Encoding Schemes
	Security Properties
	A Code based on Polynomials
	Proof of Theorem 2

	Entangled Storage of Data
	The Memory Functionality
	Ideal Implementation of Data Entanglement

	A Protocol for Data Entanglement
	Discussion and Open Problems
	Comparison to PDP/POR
	Alternative Solutions
	Efficiency Considerations
	Open Problems

	A Protocol for Realizing Imem*
	Secure Polynomial Evaluation

