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Abstract. We investigate a new class of authenticate codes (A-codes) that support verification
by a group of message recipients in the network coding setting. That is, a sender generates an
A-code over a message such that any intermediate node or recipient can check the authenticity
of the message, typically to detect pollution attacks. We call such an A-code as multi-receiver
homomorphic A-code (MRHA-code). In this paper, we first formally define an MRHA-code.
We then derive some lower bounds on the security parameters and key sizes associated with our
MRHA-codes. Moreover, we give efficient constructions of MRHA-code schemes that can be used
to mitigate pollution attacks on network codes. Unlike prior works on computationally secure
homomorphic signatures and MACs for network coding, our MRHA-codes achieve unconditional
security.
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1 Introduction

1.1 Network Coding

In recent years, network coding [8] has received considerable attention for its ability to improve
a network’s throughput and robustness. This is achieved by enabling an intermediate node
within a network to encode its incoming messages before forwarding them, as opposed to
more straightforward traditional store-and-forward routing technology. To illustrate this, let
us consider a very simple scenario where a sender (or source) wishes to transmit a file V
to a group of recipients. To do this through the classic linear network coding,1 the sender
first cuts the file into m messages v1, . . . ,vm of length n, where n > m. The messages
are represented as linearly independent vectors with coefficients in a finite field IFq, that is,
vi ∈ IFn

q for 1 ≤ i ≤ m. When a linear network code over IFq is used, every intermediate
node in the network computes an IFq-linear combination of the received messages from its
incoming edges, before forwarding the resulting linear combination to its outgoing edge(s).
For each vector vi, the sender then appends a vector ei, a whole zero vector of length m
with a ‘1’ at the i-th position. (This is required for decoding at the recipients.) The vectors
(vi, ei) ∈ IFn+m

q for 1 ≤ i ≤ m are then sent over the network, and each recipient uses the last
m symbols to recover the associated message vectors from the linear transformation. For a
successful recovery of the original file V , clearly a recipient needs to obtain m non-corrupted
linearly independent vectors encoding V .

1 We consider only linear network coding in this paper.



1.2 Pollution Attacks

One consequence of letting intermediate nodes process messages before forwarding them is
that, the messages are now inevitably susceptible to data modification or corruption. This has
a severe effect, as the corrupted messages can be propagated to other downstream nodes in the
network preventing the recipients from recovering the correct messages, and thus, is known
as a pollution attack. To see this, we slightly abuse the notation by using V to denote an m-
dimensional subspace V = span(v1, · · · ,vm). An adversary can corrupt one or more messages
by creating either a new vector v /∈ V , or an entire m-dimensional subspace V ′ 6= V , or even
modifying v ∈ V such that v′ /∈ V . All the resulting corrupted messages can be combined into
legitimate messages making their way to the destination and finally cause decoding failures
at the recipients. Message authentication is, therefore, of particular interest and importance
in network coding.

However, it is not at all clear how classical authentication schemes can be used to protect
message authenticity in network coding. This is so since messages are mixed in transit, the
received messages are most likely different from those sent, and thus one cannot verify a
message authentication tag (or signature) without accessing the original messages. One way
to get around this is through a homomorphic authentication scheme, as recently proposed
by Boneh et al. [5]. The homomorphic property allows any intermediate node to perform a
linear combination of tags corresponding with some outgoing messages without decoding the
incoming messages. Moreover, verification can be performed directly on mixed messages by
the intermediate node or the recipient. In this paper, we focus on message authentication
in the network coding setting, aiming to detect a pollution attack on encoded messages in
transit through a network.

1.3 Our Work

We consider an information-theoretic secure message authentication scheme. We assume that
each node in the network shares a private key with the source. The shared key can be indepen-
dent from or has some dependency with the others. Our scheme then generates unconditionally
secure authentication codes that allow any intermediate node and the recipient to verify their
received messages.

A Trivial Scheme We note that there exists a simple, but very inefficient, way to achieve
our goal. If we assume that all the private keys for the scheme are independent from each
other, we can trivially use an authentication code (A-code) (as defined in Section 2.2) that
supports single-receiver verification: the source shares an independent key with each verifier
and appends one tag per verifier per message. If there are N verifiers, this trivial scheme
prevents any collusion among N − 1 verifiers from cheating the N -th verifier.2 However this
requires the source to store a large number of keys and the intermediate node to transmit a
large number of tags.

MRHA-Codes Our work starts from A-codes [11] in the information-theoretic setting. Par-
ticularly, we improve the A-codes for network coding by Oggier and Fathi [12] and extend the

2 Note that the colluded N − 1 verifiers cannot do better than an outsider who does not share any private
key with the source.



concept of multi-receiver A-codes (MRA-codes) proposed by Safavi-Naini and Wang [13] with
the homomorphic property, hence the moniker multi-receiver homomorphic A-codes (MRHA-
codes).

In [15], we documented our initial results on homomorphic A-codes in the context of
network coding. There, however, we considered only homomorphic A-codes in a very basic
setting, that is each A-code is designed to be verifiable by only a single target recipient in the
network. As explained (in the trivial scheme above), one may simply extend such a single-
receiver A-code straightforwardly to the multi-receiver setting. However, this would result a
very inefficient scheme.

We now give an overview of our MRHA-codes. Roughly speaking and informally, for N
verifiers (inclusive of all intermediate nodes and recipients), an MRHA-code consists of N +1
homomorphic A-codes (associated with the sender and the N verifiers). Moreover, for each
verifier Ri for 1 ≤ i ≤ N , the A-code associated with Ri can be derived from the A-code
associated with the sender (through some mapping functions). Our scheme then defines: (i) a
tag generation algorithm for the sender and the intermediate node, (ii) a verification algorithm
for the verifier Ri, and (iii) for each Ri, a unique mapping function from the sender’s key space
to the verifier’s key space. The tag generation algorithm is defined such that any intermediate
node is able to generate a tag corresponding to a linear combination of incoming messages
(without decoding the incoming messages). On the other hand, the verification algorithm is
defined such that the tag corresponding to a message v verifies successfully if and only if
v ∈ V , where V is the linear subspace originated at the sender. This requires the verifier’s
private key (shared with the sender) and mapping function. (We formally define an MRHA-
code and our scheme in Section 3.)

With regards to security, we consider the case of one or more untrusted verifiers, i.e. insider
attacks. These adversaries may exploit their own key information to send rogue messages on
behalf of the source. We consider an attack to be succeeded if any (honest) verifier accepts
one of the rogue messages as authentic. Our goal is to design a scheme that is not only
unconditionally secure against such an attack, but also efficient in terms of key sizes and the
number of tags transmitted between two nodes.

In comparison with the above trivial scheme, we permit some dependencies among the N
keys, while ensuring the required security, assuming that any collusion among µ− 1 verifiers,
where µ < N , is possible. This significantly reduces the key size of the source and the number
of tags to be transmitted over the network. (We further elaborate the differences between
prior work and ours in Section 6.) Moreover, we consider the problem of reusing the same key
to authenticate multiple files, such that the total number of keys required over time reduces
significantly.

1.4 Contributions

We first give a formal definition of a multi-receiver homomorphic A-code (MRHA-code). Given
some suitable security parameters, we then derive some useful bounds:

– information-theoretic bounds for a general MRHA-code (see Theorem 1);
– lower bounds on the key sizes at the sender and the receivers in some security parameters

under some constraint (see Theorem 2).

We present the definition and the proofs of the bounds in Section 3. Further, using an ho-
momorphic A-code as a building block, we construct a class of MRHA-codes which are sig-
nificantly more efficient than the non-homomorphic Oggier and Fathi scheme of [12] and the



aforementioned trivial scheme (see Theorem 3). Our A-codes use very simple and efficient
linear mappings for tag generation; and our construction requires µ < N keys at the sender
and µ tags for each message, in comparison with N keys at the sender and N tags per mes-
sage required by the trivial scheme. We particularly show an MRHA-code meeting the lower
key size bounds (see Theorem 4 and Corollary 1). We present the details of these results in
Section 4.

As a further contribution, we give a variant of our MRHA-code scheme that authenti-
cates multiple files using the same key, while preserving unconditional security. Our scheme,
described in Section 5, adopts the multiple authentication technique proposed by Atici and
Stinson [3].

2 Preliminaries

We recall some basic notions of A-codes [11, 17] and homomorphic A-codes [15].

2.1 Notation

For the remainder of the paper, we use similar notations from [13] and [16]. For any random
variable X, Y, Z, we let P (x) denote the probability distribution when X = x; let P (x, y)
denote the probability distribution when X = x and Y = y; and let P (y|x) denote the
conditional probability of Y = y when provided X = x. Further, we let H(X) represent the
entropy of X; let H(Y |X) be the conditional entropy of Y given X; let I(Y ;X) be the mutual
information between Y and X; and let I(Z;Y |X) be the conditional mutual information of Z
and Y given X. Note that we sometimes may use X to also denote a random variable defined
on a set X.

2.2 Authentication codes (A-codes)

A systematic A-code (or A-code without secrecy) [11] consists of a quadruple (S,K,A, f)
where S,K,A denote the source (message) space, key space and tag space, respectively, while
f is a function defined to be: S × K → A.

Briefly, an A-code is used for message authentication as follows: the sender and the receiver
secretly share a common private (or secret) key k ∈ K. To send a message v ∈ S, the sender
first generates a tag t = f(v,k) ∈ A over the message and transmits the message-tag pair
(v, t) to the receiver. The receiver then checks the authenticity of the received message v by
verifying whether or not the message-tag pair (v, t) satisfies t = f(v,k). If the equality holds,
the message-tag pair (v, t) is accepted; otherwise (v, t) is rejected.

In terms of security, we typically consider two types of attacks: (i) impersonation attack,
where an adversary attempts to insert a new message-tag pair without prior observation, and
(ii) substitution attack, where an adversary first observes a valid message-tag pair (v, t) and
then attempts to insert (v′, t′) with v 6= v′.

Wang et al. [17] proposed A-codes that are linear in keys and showed that they are
useful in distributed authentication schemes. The key linearity allows an authentication key
to be shared among a group of verifiers. A-codes that are linear in messages, however, are
usually avoided in classic A-codes. This is because the linearity in messages opens up the
possibility for an adversary to forge a message with a valid tag, by simply computing a
linear combination of observed message-tag pairs. Nevertheless, this limitation turns out to



be useful for message authentication in the context of network coding. We elaborate on this
in the following subsection.

2.3 Homomorphic A-Codes

In [15], we introduced a (q, n,m)-homomorphic A-code, which is an A-code linear in messages,
to authenticate an m-dimensional subspace V ⊆ S where S is an n-dimensional vector space
over IFq.

Definition 1. (Definition 1 of [15]) An A-code (S,K,A, f) is a (q, n,m)-homomorphic A-
code if

i) S and A are finite-dimensional vector spaces over IFq, with dim(S) = n,
ii) for every m-dimensional subspace V ⊆ S, and every v =

∑m
i=1 αivi ∈ V where αi ∈

IFq(1 ≤ i ≤ m), f(v,k) satisfies

f(
m∑

i=1

αivi,k) =
m∑

i=1

αif(vi,k).

The second property is simply a rephrase of the fact that (S,K,A, f) is linear in messages,
where we assume that S = IFn

q , A = IFt
q and K ⊆ IFn×t

q . From Definition 1, it is not difficult to
see that the mapping f in a (q, n,m)-homomorphic A-code (S,K,A, f) must be an IFq-linear
mapping from S to A. In other words, we can always write f(v,k) = vMk with Mk an
n× t matrix determined by k. (In a general A-code, the mapping f is not necessarily a linear
mapping from source space to tag space [12].)

Recall that the homomorphic A-code of [15] is designed for verification by only a target
recipient. Given a homomorphic A-code (S,K,A, f) and assume that the recipient shares a
private key k ∈ K with the source, message authentication is then carried out as shown in
Figure 1.

– Tag Generation: The sender generates a tag ti = f(vi,k) ∈ A for each of vi for i = 1, . . . , m.
– Combination: Assume that each intermediate node receives some message-tag pair (xj , txj ) for

some index j, where each xj is already a linear combination of vi. The intermediate node computes∑
j αjtxj as the tag ty corresponding to an output vector y =

∑
j αjxj , where the sum is over

some subset of the received tags.
– Verification: The recipient takes as input a received message-tag pair (v, t) and the shared key

k, and checks if t = f(v,k). If the equation holds, the recipient accepts (v, t); otherwise it rejects.
Note that indeed, any output v can be written as

∑m
i=1 gvivi. We call (gv1, . . . , gvm) as a global

encoding vector of v.

Fig. 1. Definition of homomorphic A-code scheme.

Here, the impersonation attack described in Section 2.2 can be further refined into a
message and a subspace impersonation attacks. The former is, as before, to attempt to forge
a valid tag for a message v 6= 0 ∈ S; while the latter is to forge a valid tag for a previously
unseen m-dimensional subspace V = span(v1, · · · ,vm). Moreover, we consider a third type
of attack called subspace substitution attack, where, as implied by its name, the adversary
attempts to forge a valid tag for message v when he observes a tag for an m-dimensional
subspace V = span(v1, · · · ,vm) with v /∈ V . We represent the success probabilities of these



three types of attacks by PI , PIsub
, PS , respectively. See [15] for further details on the security

analysis of a homomorphic A-code against these attacks, and the trade-off between efficiency
and security.

3 Multi-receiver Homomorphic A-codes

We now turn to main crux of this paper.

3.1 Definitions

We assume there are N verifiers in total in the network wanting to authenticate their incoming
messages. These, denoted by R1, . . . , RN , include all the intermediate nodes and the recipients
at the destinations. We now formally define an MRHA-code.

Definition 2. Let C = (S,A,K, f) and Ci = (S,Ai,Ki, fi) be (q, m, n)-homomorphic A-codes
for 1 ≤ i ≤ N . We call (C, C1, . . . , CN ) a (q, m, n, N)-MRHA-code if for each 1 ≤ i ≤ N , there
exists an IFq-linear mapping πi : A → Ai and another mapping τi : K → Ki such that for any
(v,k) ∈ S × K, we have:

fi(v, τi(k)) = πi(f(v,k)). (1)

We assume that for each homomorphic A-code Ci, the probability distribution on the source
space of Ci is the same as that in the code C, and the probability distribution on Ki is
derived from that of K and the mapping τi. We can now see that, using the properties of
homomorphism in C, C1, . . . , CN and linearity in πi, an (q, m, n, N)-MRHA-code can indeed
be used by any verifier Ri to verify the authenticity of a message from the sender, provided
that condition (1) holds.

Building on the above definition, we then specify our MRHA-code scheme comprising four
algorithms as shown in Figure 2 (recall that a file is split into m pieces vi ∈ S for 1 ≤ i ≤ m
before it is transmitted over the network).

– Key distribution: A trusted authority (or the source itself) randomly chooses a private key k ∈ K
for the source. For each verifier Ri (for 1 ≤ i ≤ N), the trusted authority sends τi(k) as Ri’s private
key.

– Tag generation: For each message vi ∈ S (1 ≤ i ≤ m), the source computes f(vi,k) as the
corresponding tag ti and sends out the message-tag pair (vi, ti).

– Combination: Assume that each intermediate node receives some message-tag pair (xh, txh) for
some index h, where each xh is already a linear combination of some messages vi. The intermediate
node computes

∑
h αhtxh as the tag ty corresponding to an output vector y =

∑
h αhxh, where

the sum is taken over some subset of the received tags.
– Verification: Assume that a verifier Ri possesses a private key τi(k) and it receives a message v

and the corresponding tag tv. The verifier checks if fi(v, τi(k)) = πi(tv); it accepts (v, tv) if the
equation holds; otherwise it rejects.

Fig. 2. Definition of MRHA-code scheme.

The correctness of the verification algorithm follows immediately from Definition 2. Since
C is homomorphic, the intermediate node can generate tags for their outgoing messages by
simply combing their incoming tags. Further, since C, Ci are homomorphic, πi is IFq-linear and



τi, πi satisfy condition (1), verification by Ri can be performed by checking if fi(v, τi(k)) =
πi(tv) holds.

It is also worth noting that when C1 = C in Definition 2, we obtain a single-verifier
homomorphic A-code scheme, as defined before.

3.2 Security

We now consider the security of our MRHA-codes. We let RL = {Ri1 , . . . , Ril} denote a group
of corrupted or malicious verifiers, where L = {i1, . . . , il} ⊆ {1, . . . , N}. We let also KL to
denote Ki1 × · · · × Kil and τL to denote τi1 × · · · × τil . Given an (q, m, n, N)-MRHA-code
(C, C1, . . . , CN ), we represent a random variable Υ̃ as the collection of all message-tag pairs in
C, that is

Υ̃ = {υ = (v, t) : v ∈ S, t ∈ A}.
Our security goal is to prevent the following three types of attacks from RL on Ri (where
i /∈ L):

– Message impersonation attack: Given the relevant private keys, but without any prior
observation, the goal of adversary RL is to create (on behalf of the source) a message-tag
pair υ ∈ Υ̃ such that is accepted by verifier Ri. The success probability of RL in the
message impersonation attack is expressed as:

PI [i, L] = max
kL∈KL

max
υ∈Υ̃

P (υ is accepted by Ri|kL). (2)

– Subspace impersonation attack: This is similar with a message impersonation attack, ex-
cept that here, the goal of adversary RL is to create (on behalf of the source) an m-
dimensional subspace V = span(v1, · · · ,vm) and its tag (t1, · · · , tm) that are accepted by
verifier Ri. If we denote υj = (vj , tj) ∈ Υ̃ for 1 ≤ j ≤ m, then the success probability of
RL in the subspace impersonation attack is defined to be:

PIsub
[i, L] = max

kL∈KL

max
υj∈Υ̃

P (υj is accepted by Ri|kL). (3)

– Subspace substitution attack: The adversary RL is now allowed to observe some valid
message-tag pairs υj = (vj , tj) ∈ Υ̃ , 1 ≤ j ≤ m associated with an m-dimensional subspace
V = span(v1, · · · ,vm). Clearly, since RL can read the messages it received, we assume
that the messages transiting through the corrupted nodes cannot span a subspace with
dimension larger than m. The goal of RL is to forge (on behalf of the source) a new
massage-tag pair (v′, t′) = υ′ ∈ Υ̃ with v /∈ V , that is accepted by Ri with a success
probability expressed as:

PS [i, L] = max
kL∈KL

max
υ′∈Υ̃ ,Λ

max
υj∈Υ̃

P (υ′ is accepted by Ri|υj ,kL) (4)

where Λ is used to denote a condition such that v′ /∈ span(v1, · · · ,vm).

3.3 Bounds

In order to obtain lower bounds on the efficiency parameters, that is the numbers of keys that
are required at the sender and the receivers with regards to the success probability in attacking
an (q, m, n, N)-MRHA-code (C, C1, . . . , CN ), we first need some information-theoretic bounds
on the security parameters (success probabilities) for our general MRHA-code scheme as
defined in Figure 2.



On PI [i, L], PIsub[i, L], PS[i, L] We need some further notations to show our information-
theoretic bounds on the security parameters for a general MRHA-code scheme.

For any (v, t) = υ ∈ Υ̃ , we say υ is valid for Ri if there exists a key k ∈ K such that

fi(v, τi(k)) = πi(t).

We then represent Υ as the collection of all the message-tag pairs from C and valid for Ri.
Furthermore, we introduce Υm = Υ ×· · ·×Υ to denote the collection of all m-tuple elements,
each of which is from Υ . We say a sequence of the form

υ = (υ1, · · · , υm) ∈ Υm where υj = (vj , tj) for 1 ≤ j ≤ m

is valid for Ri if vj ’s are linearly independent from each other in IFq and there exists a key
k ∈ K such that

fi(vj , τi(k)) = πi(tj) for 1 ≤ j ≤ m.

We next use Υ
m = Υ 1 × · · · × Υm to denote the collection of all such valid sequences υ =

(υ1, · · · , υm). For any sequence (υ1, · · · , υm) = υ ∈ Υ
m, we introduce another element υ′ ∈ Υ ,

where υ′ = (v′, t′) with v′ ∈ S and t′ ∈ A. We say that υ′ is valid for Ri when υ is observed
by RL if the following two conditions hold: (1) v′ /∈ span(v1, · · · ,vm); (2) there exists a key
k ∈ K such that

fi(vj , τi(k)) = πi(tj) and fi(v′, τi(k)) = πi(t′) for 1 ≤ j ≤ m.

Finally, we use Υ ′ to denote the collection of all such υ′’s for Υ
m.

We are now ready to present our theorem as follows (recall that we also use X to denote
a random variable defined on a set X).

Theorem 1. Let PI [i, L], PIsub
[i, L], PS [i, L] be defined as in Section 3.2, we then have:

(i) PI [i, L] ≥ 2−I(Υ ;Ki|KL);
(ii) PIsub

[i, L] ≥ 2−I(Ki;Υ
m|KL);

(iii) PS [i, L] ≥ 2−I(Υ ′;Ki|Υ
m

,KL).

The proof for the above theorem is rather involved. Generally speaking, for each of the three
inequalities, we give the proof in two main steps by extending the basic proof idea from [13]
to deal with more parameters and complex scenarios in our setting. To illustrate this, let us
take inequality (i) as an example:

1. We first prove that PI [i, L] ≥ 2−I(Ki;Υ̃ |KL): This may not be trivial and requires a com-
bination of techniques from unconditional probability theory, log-sum inequality, mutual
information and entropy.

2. We then prove that I(Ki; Υ̃ |KL) = I(Ki;Υ |KL): This can be done from the definitions of
LHS and RHS.

Following the above two steps, we immediately have PI [i, L] ≥ 2−I(Ki;Υ |KL).
We use the similar steps and techniques to prove inequalities (ii) and (iii), but make more

efforts in the second step proofs. The full details of the proof is shown in Appendix A.



On |K| and |Ki|(1 ≤ i ≤ N) Having obtained some bounds on the security parameters,
we now switch our attention to the lower bounds on the efficiency parameters.

To consider attacks from all possible (l + 1)-subsets L ∪ i(i /∈ L) of {1, . . . , N}, we let:

PI = max
L∪i

{PI [i, L]};PIsub
= max

L∪i
{PIsub

[i, L]};PS = max
L∪i

{PS [i, L]}.

Particularly, we consider L = {i1, . . . , iµ−1}, that is, there are at most µ−1(µ < N) corrupted
nodes in the network. An (q, m, n, µ, N)-MRHA-code is an (q, m, n, N)-MRHA-code where no
subset of µ− 1 verifiers can fool another verifier into accepting a forged message. We capture
this more precisely with the following definition.

Definition 3. An [M,M1, . . . ,MN , d1, d2, d3] (q, m, n, µ, N)-MRHA-code is an (q, m, n, N)-
MRHA-code (C, C1, . . . , CN ) where L = {i1, . . . , iµ−1} and |K| = M, |K1| = M1, . . . , |KN | =
MN , PI = d1, PIsub

= d2, PS = d3 .

Suppose γ is a pre-determined value (part of the security parameters), we then have the
following theorem for |K| and |Ki|, 1 ≤ i ≤ N .

Theorem 2. Given an (q, m, n, µ, N)-MRHA-code (C, C1, . . . , CN ) where PIsub
≤ (PI)m and

max(PI , PS) ≤ 1
γ , we have:3

(i) |Ki| ≥ γn for each 1 ≤ i ≤ N ;
(ii) |K| ≥ γµn.

To prove part (i) of the theorem above, we introduce the concept of n − m “indepen-
dent” subspace substitution attacks (as defined in the proof). Intuitively, by relying on the
assumptions that PIsub

≤ (PI)m and max(PI , PS) ≤ 1
γ , and the results from Theorem 1, we

first show an information-theoretic bound on the parameter γ (as shown in (5) in the proof).
However, this information-theoretic bound involves a few other random variables other than
|Ki|. We thus delve further into the information-theoretic bound using entropy equalities and
inequalities in order to obtain a simplified bound which involves only |Ki| with regards to the
parameter γ.

Following the result from part (i), we then consider the case when i can be arbitrarily
chosen from {1, . . . , µ} in order to prove part (ii). As we will see from Corollary 1 in Section
4, our bounds are tight.
Proof.

(i) For each (µ− 1)-subset L from {1, . . . , N} and any i ∈ {1, . . . , N}, i /∈ L, we consider the
attacks from RL on Ri. More precisely, we consider the case where RL performs a subspace
impersonation attack on a given subspace V = span(v1, · · · ,vm) and n−m “independent”
subspace substitution attacks after he has observed a valid tag for V . In the attacks, RL

chooses a forged message-tag pair (vi, ti) = ui ∈ Υ ′
i for the i-th attack, where Υ ′

i = span(ui)
with vi /∈ span(v1, · · · ,vm) by the definition of a subspace substitution attack. We say
the n−m subspace substitution attacks are independent if it holds that

Υ ′
1 6= Υ ′

2 · · · 6= Υ ′
n−m−1 6= Υ ′

n−m.

3 By the constraint PIsub ≤ (PI)
m

, we prohibit an adversary from having a higher success probability in
forging a new m-dimensional subspace than in forging m arbitrary (but may not be independent from each
other) message vectors. In some sense we are limiting the adversary’s behavior in forging an entirely new
file; such behavior is disastrous but hard to be observed in network coding.



Since V is an m-dimensional subspace of the source space S, which in turn is an
n−dimensional vector space (over IFq), it is reasonable to assume that RL conducts the
n−m independent subspace substitution attacks after observing a tag for V .

With the above consideration, assuming that PIsub
≤ (PI)m and max(PI , PS) ≤ 1

γ , and
using the results from Theorem 1, we have:

(
1
γ

)n ≥ (PI)m(PS)n−m ≥ PIsub
(PS)n−m ≥ PIsub

[i, L](PS [i, L])n−m

≥ 2−I(Ki;Υ
m|KL)2−(I(Υ ′1;Ki|Υ

m
,KL)+···+I(Υ ′n−m;Ki|Υ

m
,KL)) (5)

Now it is sufficient to prove the inequality below:

I(Υ ′
1;Ki|Υ

m
,KL) + · · ·+ I(Υ ′

n−m;Ki|Υ
m

,KL) ≤ H(Ki|Υ
m

,KL). (6)

Since if (6) is proved, from (5), we have:

(
1
γ

)n ≥ 2−(I(Ki;Υ
m|KL)+I(Υ ′1;Ki|Υ

m
,KL)+···+I(Υ ′n−m;Ki|Υ

m
,KL))

≥ 2−(I(Ki;Υ
m|KL)+H(Ki|Υ

m
,KL)) = 2−H(Ki|KL)

≥ 2−H(Ki) ≥ 2− log |Ki| =
1
|Ki|

which implies that |Ki| ≥ γn, and hence part (i) of our theorem is proved.

Indeed, we can prove (6) as follows:

H(Ki) = I(Ki;Υ ′
1, · · · , Υ ′

n−m, Υ
m

,KL) + H(Ki|Υ ′
1, · · · , Υ ′

n−m, Υ
m

,KL) ⇒
H(Ki) ≥ I(Ki;Υ ′

1, · · · , Υ ′
n−m, Υ

m
,KL) ⇒

H(Ki) ≥
n−m∑
i=1

I(Ki;Υ ′
i , Υ

m
,KL|Υ ′

i−1, Υ
′
i−2, · · · , Υ ′

1, Υ
m

,KL) ⇒

H(Ki) ≥ I(Ki;Υ ′
1, Υ

m
,KL) + · · ·+ I(Ki;Υ ′

n−m, Υ
m

,KL) ⇒
(n−m− 1)H(Ki) ≤ (n−m)H(Ki)− (I(Ki;Υ ′

1, Υ
m

,KL) + · · ·+ I(Ki;Υ ′
n−m, Υ

m
,KL)) ⇒

(n−m− 1)H(Ki) ≤ (H(Ki)− I(Ki;Υ ′
1, Υ

m
,KL)) + · · ·+ (H(Ki)− I(Ki;Υ ′

n−m, Υ
m

,KL)) ⇒
(n−m− 1)H(Ki) ≤ H(Ki|Υ ′

1, Υ
m

,KL) + · · ·+ H(Ki|Υ ′
n−m, Υ

m
,KL). (7)

The transition in (7) is due to the facts that n > m and H(Ki) ≥ H(Ki|Υ
m

,KL) ≥ 0.
Since (7) implies

(n−m− 1)H(Ki|Υ
m

,KL) ≤ H(Ki|Υ ′
1, Υ

m
,KL) + · · ·+ H(Ki|Υ ′

n−m, Υ
m

,KL)

which in turn implies

H(Ki|Υ
m

,KL)−H(Ki|Υ ′
1, Υ

m
,KL) + · · ·+ H(Ki|Υ

m
,KL)−H(Ki|Υ ′

n−m, Υ
m

,KL)

≤ H(Ki|Υ
m

,KL).



Hence, we have

I(Υ ′
1;Ki|Υ

m
,KL) + · · ·+ I(Υ ′

n−m;Ki|Υ
m

,KL) ≤ H(Ki|Υ
m

,KL)

as required.

(ii) Assume that Li = {1, . . . , i− 1, i + 1, . . . , µ} for 1 ≤ i ≤ µ, we then have:

(
1
γ

)µn ≥
µ∏

i=1

(PI)m(PS)n−m ≥
µ∏

i=1

PIsub
(PS)n−m ≥

µ∏
i=1

PIsub
[i, L](PS [i, L])n−m

≥ 2
∑µ

i=1 −H(Ki|KLi
) ≥ 2−

∑µ
i=1 H(Ki|K1,...,Ki−1) = 2−H(K1,...,Kµ)

≥ 2−H(K) ≥ 2−log|K| =
1
|K|

.

Therefore, |K| ≥ γµn, as required.

4 Constructions

In this section, we give some constructions meeting the bounds discussed in the previous sec-
tion. Constructing an MRHA-code involves choosing N+1 homomorphic A-codes C, C1, . . . , CN

and defining two mappings τi, πi for each 1 ≤ i ≤ N . We make use of previous works on opti-
mal A-codes construction [13, 17] and we work on a polynomial-based secret sharing scheme
[14].

4.1 MRHA-code Schemes

We derive a class of MRHA-codes from a class of homomorphic A-codes C0 (to describe soon).
For each of the MRHA-code, we then construct an MRHA-code scheme. We illustrate this
below.

Assume we are given an (q, m, n)-homomorphic A-code C0 = (S,K,A, f) which satisfies:

(1) A = S (that is, t = n);
(2) f is a natural mapping: f(v,k) = vk for any v ∈ S and k ∈ K;
(3) K ⊆ IFn×n

q is a subspace over IFq;
(4) AB ∈ K holds for any B ∈ K and any non-singular matrix A ∈ IFn×n

q .

From now on, we assume that qn ≥ N .4 We take an A-code C0 as a building block to construct
an (q, m, n, N)-MRHA-code (C, C1, . . . , CN ) as follows:5

4 It is worth noting that q (denoting the communication bandwidth) can be highly demanding when N (the
number of verifiers) is large. A large q enhances the security level but requires huge key storage at the sender
and verifiers. In a scenario where we have constraints on key storage or communication bandwidth while
the required security level is not necessarily very high, we can combine our MRHA-code with a cover free
family (see Section 4 of [13]), achieving a trade-off between efficiency and security.

5 In fact, we require some computation rules for our construction. We fix an IFq-basis of IFqn , say (ν1, . . . , νn).
For any α ∈ IFqn and any (v1, . . . , vn) = v ∈ IFn

q , we compute αv (or vα) by considering v as an element
from IFqn (that is v′ =

∑n
i=1 viνi), and then do multiplication αv′ (or v′α) in IFqn . For any α ∈ IFqn and

any k ∈ IFn×n
q , we compute αk by expressing α as a vector α′ = (α′1, . . . , α

′
n) ∈ IFn

q with
∑n

i=1 α′iνi = α and
then do matrix operation α′k in IFq.



– C = (S,K,A, f), where K = K× · · · ×K is the collection of all µ-tuple elements, of which
each is from K; A = A× · · · ×A is the collection of all µ-tuple elements, of which each is
from A. For any v ∈ S and (k0, . . . ,kµ−1) = k ∈ K, the mapping f is defined as:

f(v,k) = (vk0, . . . ,vkµ−1).

– We randomly choose a nonzero element xj ∈ IFqn for each 1 ≤ j ≤ N such that xh 6= xl if
h 6= l.6 The mapping τj : K → Kj is then defined as:

τj(k) =
µ−1∑
i=0

xi
jki.

Writing t ∈ A as t = (t0, . . . , tµ−1), the mapping πj : A → Aj is constructed via:

πj(t) =
µ−1∑
i=0

xi
jti.

– For each 1 ≤ j ≤ N , we set Cj = (S,Kj ,Aj , fj), where Kj = K and Aj = A. For any
v ∈ S,k ∈ Kj , the mapping fj is defined simply as fj(v,k) = vk.

With these settings, it is easy to check that for each 1 ≤ j ≤ N , πj is IFq-linear and for any
(v,k) ∈ S × K we have

fj(v, τj(k)) = v
µ−1∑
i=0

xi
jki =

µ−1∑
i=0

xi
jvki = πj(f(v,k)),

which implies that the constructed A-code (C, C1, . . . , CN ) is an (q, m, n, N)-MRHA-code.
With the A-code, we have a message authentication scheme as illustrated in Figure 3.

– Key distribution: A trusted authority (or the source itself) randomly chooses a private key
(k0, . . .kµ−1) = k ∈ K for the source. For each verifier Rj (for 1 ≤ j ≤ N), the trusted authority
computes and sends Rj ’s private key as P (j) = τj(k) =

∑µ−1
i=0 xi

jki.
– Tag generation: For each message vi ∈ IFn

q (1 ≤ i ≤ m), the source computes (ti0, . . . , ti,µ−1) =
(vik0, . . . ,vikµ−1) as the corresponding tag ti and sends out the message-tag pair (vi, ti).

– Combination: Assume that each intermediate node receives some message-tag pair (xh, txh) for
some index h, where each xh is already a linear combination of some messages vi. The intermediate
node computes (ty0, . . . , ty,µ−1) as the tag ty corresponding to an output vector y =

∑
h αhxh,

where tyl =
∑

h αhtxhl and the sum is taken over some subset of the received tags.
– Verification: Assume that a verifier Rj possesses a private key P (j) (together with the associated

public component xj) and it receives a message v and the corresponding tag t = (tv0, . . . , tv,µ−1).
The verifier checks if vP (j) =

∑µ−1
i=0 xi

jtvi; it accepts (v, t) if the equation holds; otherwise it
rejects.

Fig. 3. Construction of MRHA-code scheme.

It is a known fact that for any v ∈ IFqn and B ∈ IFn×n
q , we have vB = MvB where the

non-singular matrix Mv ∈ IFn×n
q is the multiplication matrix for v when fixing an IFq-basis

of IFqn . Combing this with our assumption that K is a subspace over IFq and that satisfies

6 That is why we require qn ≥ N .



property (4) of the homomorphic A-code C0, we have P (j) = τj(k) ∈ K for any 1 ≤ j ≤ N
and k ∈ K. This ensures that the mapping fj is well defined for all 1 ≤ j ≤ N . Moreover,
in our construction, the values xj are public for 1 ≤ j ≤ N and do not have impact on the
security of our scheme, as shown in the next subsection.

4.2 Security Analysis

We analyze the security of the class of A-codes (C, C1, . . . , CN ) constructed in Section 4.1
against an arbitrary subset of µ − 1 corrupted nodes. Without loss of generality, we denote
the corrupted nodes as RL = (R1, . . . , Rµ−1) and the honest node as Rµ. When we write
Kµ ⊆ K, we also mean

Kµ = {k ∈ K|
µ−1∑
i=0

xi
jki = P (j), 1 ≤ j ≤ µ− 1}.

We assume that all the messages and private keys are uniformly distributed. Since the sets of
RL and Rµ are arbitrary chosen, according to (2), (3), (4) and the probabilities PI , PIsub

, PS

defined in Section 3.3, we have ( recall that V = span(v1, . . . ,vm) ):

PI = max
06=v∈S,tvi

|{k ∈ Kµ|
∑µ−1

i=0 xi
µtvi = vP (µ)}|

|Kµ|
;

PIsub
= max

V,tvji

|{k ∈ Kµ|
∑µ−1

i=0 xi
µtvji = vjP (µ)}|

|Kµ|
;

PS = max
V,v/∈V,tvji,tvi

|{k ∈ Kµ | vjki = tvji,
∑µ−1

i=0 xi
µtvi = vP (µ)}|

|{k ∈ Kµ | vjki = tvji}|
.

Definition 4. (Definition 2 of [15]) An (q, m, n)-homomorphic A-code (S,A,K, f) is called
an [M,d1, d2, d3] (q, m, n)-homomorphic A-code, if |K| = M,PI = d1, PIsub

= d2 and PS = d3.

From the above construction and Definition 4, which covers both the relevant security and
efficiency parameters, we derive the following theorem.

Theorem 3. If the original A-code C0 = (S,A,K, f) is an [M,d1, d2, d3] (q, m, n)-
homomorphic A-code, then the A-code constructed in Section 4.1 is an [Mµ,M, . . . ,M, d1, d2, d3]
(q, m, n, µ, N)-MRHA-code and requires µ tags appended per message in network coding.

The proof for Theorem 3 is presented in Appendix B.
We remark that Theorem 3 implies that a collusion of µ−1 malicious nodes gives the same

probabilities of successful attacks as an outside attacker, in terms of cheating the µ-th node.
Our HMRA-codes, therefore, achieve the same security as the the trivial scheme described in
Section 1 (when the number of corrupted nodes involved in a collusion is ≤ µ− 1). However,
clearly, our construction is more efficient than the trivial scheme. In the latter, the sender
needs to store N keys and generate/transmit N tags per message. On the other hand, our
scheme requires µ < N keys at the sender and µ tag for each message. Nevertheless, we note
that each verifier is required to store the same number of keys in both schemes.

Particularly, we now borrow a concrete example homomorphic A-code from [15] and use
it as a building block to construct an MRHA-code which meets the key size bound from
Theorem 2.



Example 1. Let A ∈ IFn×n
q be a matrix with rank(A) = d. We use 〈A〉R to denote the row

space of A, namely, the set of all possible IFq-linear combinations of its row vectors. We denote
KA as the set of all matrices BA where BA ∈ IFn×n

q and each row of BA belongs to 〈A〉R.

Theorem 4. Given a matrix A ∈ IFn×n
q , where rank(A) = d and an (q, m, n)-homomorphic

A-code C0 = (S,A,K, f), where K = KA as defined in Example 1, we construct an A-code C =
(C, C1, . . . , CN ) as shown in Section 4.1. The A-code C is an [qµnd, qnd, . . . , qnd, q−d, q−md, q−d]
(q, m, n, µ, N)-MRHA-code for all q, m, n, d, N with m < n, 1 ≤ d ≤ n and qn ≥ N .

Proof. Firstly, one can easily check that C0 in this theorem satisfies all the four properties
as required in 4.1. Since qn ≥ N , one can always construct C from C0 in a way as shown in
Section 4.1. Secondly, Theorem 3 in [15] guarantees that C0 is an [qnd, q−d, q−md, q−d] (q, m, n)-
homomorphic A-code for all q, m, n, d with m < n and 1 ≤ d ≤ n. With these and Theorem
3, it is clear that Theorem 4 follows immediately.

Comparing Theorem 4 with the bounds from Theorem 2, it is easy to deduce the following
corollary.

Corollary 1. Both the security and efficiency parameters in Theorem 4 meet the bounds
specified in Theorem 2.

5 MRHA-codes for Multiple File Transmission

We now discuss how we can use a key to authenticate multiple files.
Let us assume that we have to authenticate a sequence of η files. Clearly, a trivial, straight-

forward way to do that is to use one key per file, implying that we require η independent keys.
However, inspired by the work of Atici and Stinson [3], we show that we can do better than
that. We present a variant of our scheme that requires only one round of key distribution for
all the η files, while achieving unconditional security. Particularly, we use one key comprising
k ∈ K and an (η−1)-tuple (a1, . . . , aη−1) ∈ Aη−1 to authenticate η consecutive files. We show
that for each additional file, the sender needs a key of size log |A| bits and the verifier Ri

needs a key of size log |Ai| bits for all 1 ≤ i ≤ N . By contrast with the aforementioned trivial
approach, which requires a log |K|-bit key at the sender and a log |Ki|-bit key at the verifier
Ri for each additional file, our scheme is more efficient since |A| ≤ |K| and |Ai| ≤ |Ki|. To
illustrate with a more concrete example using the MRHA-code shown in Theorem 4, we have
qµn = |A| ≤ |K| = qµnd and qn = |Ai| ≤ |Ki| = qnd where 1 ≤ d ≤ n.

Recall from Figure 1 that we use (gv1, . . . , gvm) as a global encoding vector for the message
v =

∑m
i=1 gvivi. In the following scheme, each message v is required to carry one additional bit

to keep track of the value
∑m

i=1 gvi. With this, given a (q, m, n, N)-MRHA-code (C, C1, . . . , CN )
complying with Definition 2, we are ready to specify our MRHA-code for the l-th (1 ≤ l ≤ η)
file transmission, as illustrated in Figure 4.

We first show the correctness of the scheme in Figure 4. For v =
∑m

j=1 gvjvj we have:

πi(tv) = πi(
m∑

j=1

gvj(fi(vj ,k) + al−1)) = πi(
m∑

j=1

gvjfi(vj ,k) + (
m∑

j=1

gvj)al−1).

Since our A-code (C, C1, . . . , CN ) is a (q, m, n, N)-MRHA-code, we furthermore have:

πi(
m∑

j=1

gvjfi(vj ,k)+(
m∑

j=1

gvj)al−1) = πi(fi(
m∑

j=1

gvjvj ,k)+(
m∑

j=1

gvj)al−1) = fi(v, τi(k))+gvπi(al−1).



– Key distribution: A trusted authority (or the source itself) randomly chooses a private key k ∈ K
and (a1, . . . , aη−1) ∈ Aη−1 for the source. For each verifier Ri (for 1 ≤ i ≤ N), the trusted authority
sends τi(k), πi(a1), . . . , πi(aη−1) as Ri’s private key.

– Tag generation: If l = 1, then it follows Tag generation in Figure 2. Otherwise, For each message
vi ∈ S (1 ≤ i ≤ m), the source computes f(vi,k) + al−1 as the corresponding tag ti and sends out
the packet (1,vi, ti).

– Combination: If l = 1, then it follows Combination in Figure 2. Otherwise, Assume that each in-
termediate node receives some packet (

∑m
i=1 gxhi,xh, txh) for some index h, where each xh is already

a linear combination of some messages vi. The intermediate node computes gy =
∑

h αh

∑m
i=1 gxhi

and ty =
∑

h αhtxh corresponding to an output vector y =
∑

h αhxh, where the sum is taken over
some subset of the received tags. The intermediate node sends out the packet (gy, y, ty) when there
is any transmitting opportunity regarding y.

– Verification: If l = 1, then it follows Verification in Figure 2. Otherwise, assume that a verifier Ri

possesses a private key τi(k), πi(a1), . . . , πi(aη−1) and it receives a message v and the corresponding
tag tv. The verifier checks if fi(v, τi(k)) + gvπi(al−1) = πi(tv); it accepts (v, tv) if the equation
holds; otherwise it rejects.

Fig. 4. Definition of MRHA-code scheme for multiple file transmission (1 ≤ l ≤ η).

and thus the verification is correct.
We claim that the security for the l-th (2 ≤ l ≤ η) file transmission is the same as the 1st

file transmission. To see this, we have:

max
v∈S,t∈A,al−1∈A

|k ∈ K | f(v,k) + al−1 = t| = max
v∈S,t∈A

|k ∈ K | f(v,k) = t|,

which implies that from the view of the attacker, guessing a key (k, al−1) associated with the
l-th file transmission is equivalent to guessing a key k associated with the 1-st file transmis-
sion. Therefore, the attacker has the same success probability at the l-th file transmission as
with that of the 1-st file transmission. With that, we infer that our scheme for multiple file
transmission based on MRHA-code (C, C1, . . . , CN ) achieves the same security level as with
the A-code (C, C1, . . . , CN ).

6 Comparison with Previous Work

Unconditional Security Prior to our work, Oggier and Fathi [12] also investigated mitiga-
tion of pollution attacks in network coding by means of information-theoretic secure A-codes.
As with the setting we consider, they constructed A-codes that allow intermediate nodes and
recipients of a network to verify the authenticity of messages. However, the key difference is
that they did not consider homomorphic A-codes. As we defined in Section 2.2, the tag genera-
tion algorithm for a homomorphic A-code must be a linear mapping from the source (message)
space to the tag space. Consequently, rather than employing simple linear transformations in
homomorphic A-codes, the scheme of [12] involves a huge number of exponentiation opera-
tions (nm2 of exponentiations in IFq) for tag generation and thus is likely to be too expensive
to implement in practice.

We also note that A-codes proposed by [13] and [17] are not homomorphic and thus cannot
be directly applied to the network coding setting. However, we can twist the A-codes of [13]
using the technique from [12, Section 3.1], for example, such that the codes are usable for
network coding. Nevertheless, as discussed, the A-code of [12] relies on a large number of
costly exponentiation operations.



Computational Security There have been more works on computationally secure homo-
morphic schemes in the cryptographic literature. In the asymmetric key setting, homomorphic
signature schemes have been proposed, see for example [5, 7, 9]. These signature schemes typ-
ically work on linear subspaces. A signature is considered to be valid if and only if it is an
element of a predefined subspace, while it is difficult to forge a signature that is not an element
of the defined subspace. One key advantage of homomorphic signature schemes is that they
have simpler key management. All verifiers in the network are required to possess only the
public key of the source. Nevertheless, for some applications, asymmetric key operations may
be considered computationally expensive. This motivates proposals of alternative solutions in
the symmetric key setting—homomorphic MAC schemes [1, 10, 2]. While these schemes are
more efficient than signature schemes, they require distribution of private keys among all the
verifiers in the network, a considerably bigger effort than distributing just the sender’s public
key.

7 Conclusions and Open Problems

We have given a formal definition of an MRHA-code, derived some bounds on their security
and efficiency, as well as given some efficient constructions. However, numerous challenging
open problems remain.

One natural next step is to investigate MRHA-codes for a dynamic sender case where
the sender is not fixed and can be any member of the network nodes. It is not at all clear
if our current results can be applied directly to cope with a dynamic sender. Moreover, a
more challenging problem is to consider a setting where there exist multiple senders in the
network. Particularly, in the so-called inter-session network coding setting, where messages
from different sources are transmitted to and (possibly) mixed by an intermediate node, our
MRHA-codes would not be able to prevent pollution attacks. We now have to consider not
only malicious intermediate nodes, but also malicious sources.

The intriguing connection between information-theoretic and computation security has
recently been touched upon by Bellare et al. [4]. A notable result shown by them is that
mutual information security typically defined and used by the information and coding the-
ory community is in fact equivalent to distinguishable security in the modern cryptographic
community. It will thus be interesting to investigate what implications the result has in our
MRHA-codes, and more generally, in A-codes.
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A Proof of Theorem 1

(i) PI [i, L] ≥ 2−I(Υ ;Ki|KL)

– On one hand, from the definition of PI [i, L], we have:

PI [i, L] = max
υ∈Υ̃
kL∈KL

{P (υ is accepted by Ri|kL ∈ KL)} ≥
∑

kL∈KL

P (kL)
[
max
υ∈Υ̃

P (υ is accepted by Ri|kL)
]

≥
∑

kL∈KL

P (kL)
[∑

υ∈Υ̃

P (υ|kL)P (υ is accepted by Ri|kL)
]
.

By log-sum inequality, we furthermore have:

log PI [i, L] ≥
∑

kL∈KL

P (kL)
[∑

υ∈Υ̃

P (υ|kL) log P (υ is accepted by Ri|kL)
]

(8)

– On the other hand, we firstly define a characteristic function which will be used later, that
is, a function XI(υ,ki,kL) on Υ̃ ×Ki ×KL by:

XI(υ,ki,kL) =

{
1 if there exists a k ∈ K such that t=f(v,k), τi(k) = ki, τL(k) = kL;
0 otherwise.

Obviously, XI(υ,ki,kL) = 1 implies that fi(v, τi(k)) = fi(v,ki) = πi(f(v,k)) = πi(t)
when provided kL, and thus implies that υ = (v, t) is accepted by Ri when provided kL.
With this, we compute I(Ki; Υ̃ |KL) as:

I(Ki; Υ̃ |KL) = EP (υ,ki,kL)
P (Υ̃ ,Ki|KL)

P (Υ̃ |KL)P (Ki|KL)
=

∑
υ∈Υ̃ ,ki∈Ki
kL∈KL

P (υ,ki,kL) log
P (υ,ki|kL)

P (υ|kL)P (ki|kL)

=
∑

υ∈Υ̃ ,ki∈Ki,kL∈KL

P (υ,ki,kL) log
P (ki|υ,kL)P (υ|kL)
P (υ|kL)P (ki|kL)

=
∑

υ∈Υ̃ ,kL∈KL,P (υ,kL) 6=0

P (υ,kL)
( ∑

ki∈Ki

P (ki|υ,kL) log
P (ki|υ,kL)
P (ki|kL)

)
.



We note here that, for each pair (υ,kL), when P (υ,kL) 6= 0, if XI(υ,ki,kL) = 0, then
P (ki|υ,kL) = 0; in this case, P (ki|υ,kL) log P (ki|υ,kL)

P (ki|kL) = 0 . So, the summation taken over
K above is restricted to all ki for which XI(υ,ki,kL) = 1. Henceforth, we have:

I(Ki; Υ̃ |KL) =
∑

υ∈Υ̃ ,kL∈KL
P (υ,kL) 6=0

P (υ,kL)
( ∑

ki∈Ki

P (ki|υ,kL)XI(υ,ki,kL) log
P (ki|υ,kL)XI(υ,ki,kL)
P (ki|kL)XI(υ,ki,kL)

)
.

By log-sum inequality, we furthermore have:

I(Ki; Υ̃ |KL) ≥
∑

υ∈Υ̃ ,kL∈KL,P (υ,kL) 6=0

P (υ,kL)
( ∑

ki∈Ki

P (ki|υ,kL)XI(υ,ki,kL)
)

× log

∑
ki∈Ki

P (ki|υ,kL)XI(υ,ki,kL)∑
ki∈Ki

P (ki|kL)XI(υ,ki,kL)
. (9)

Again, as we have observed, if P (υ,kL) 6= 0 and XI(υ,ki,kL) = 0, then P (ki|υ,kL) = 0.
This implies ∑

ki∈Ki

P (ki|υ,kL)XI(υ,ki,kL) = 1 (10)

and ∑
ki∈Ki

P (ki|kL)XI(υ,ki,kL) = P (υ is accepted by Ri|kL). (11)

Based on (10) and (11) above, we continue (9) and have:

I(Ki; Υ̃ |KL) ≥ −
∑

υ∈Υ̃ ,kL∈KL

P (υ,kL) log P (υ is accepted by Ri|kL)

= −
∑

kL∈KL

P (kL)
[∑

υ∈Υ̃

P (υ|kL) log P (υ is accepted by Ri|kL)
]
.

(12)

Now, we consider (12) together with (8) and have:

PI [i, L] ≥ 2−I(Ki;Υ̃ |KL).

Furthermore, it is obvious to see that I(Ki; Υ̃ |KL) = I(Ki;Υ |KL). Indeed, if we write
I(Ki; Υ̃ |KL) as I(Ki; Υ̃ |KL) = I(Ki;Υ |KL) + I(Ki; Υ̃ ′|KL) where Υ̃ ′ = Υ̃\Υ , then it holds
trivially that I(Ki; Υ̃ ′|KL) = 0.
Finally, we have PI [i, L] ≥ 2−I(Ki;Υ̃ |KL) = 2−I(Ki;Υ |KL) and thus complete the proof of (i) in
the theorem.

(ii) PIsub
[i, L] ≥ 2−I(Ki;Υ

m|KL)

We denote Υm = Υ × · · · × Υ as the collection of all m-tuple elements, each of which is
from Υ ; formally, Υm = {(υ1, . . . , υm) : υi ∈ Υ, 1 ≤ i ≤ m}. We can prove the inequality (13)



below, in a quite similar way as the proof above for (i) (we don’t repeat the proof details here
due to space constraints.):

PIsub
[i, L] ≥ 2−I(Ki;Υ

m|KL). (13)

Furthermore, we claim that

I(Ki;Υm|KL) = I(Ki;Υ
m|KL). (14)

Indeed, if we write Υm = Υm\Υm, we can prove that all the mutual information between
Ki and Υm when provided KL is included in the mutual information between Ki and Υ

m

when provided KL, which proves our claim (14). We demonstrate the claim by investigating
a random sequence (y1, · · · , ym) = y ∈ Υm and a random key kL ∈ KL. For any v ∈ Υ below,
we denote it as v = (vv, tv) showing vv is the message part while tv is the tag part. There
are two cases:

Case 1: if there is any key k ∈ K such that fi(vyi , τi(k)) = πi(tyi)(1 ≤ i ≤ m) and τL(k) =
kL. (in this case, yi’s are not all linearly independent, which causes y /∈ Υ

m); then in this
case there always exists a sequence (x1, · · · , xm) = x ∈ Υ

m such that fi(vxi , τi(k)) =
πi(txi)(1 ≤ i ≤ m) and τL(k) = kL; therefore the information contained in y which is
useful for RL owning kL to disclose the key k, can be considered as a proper subset of and
thus included in the useful information contained in x; in other words, from additional y,
RL cannot have more information helpful for disclosing k than from only x.
Case 2: we consider a proper subset of y, say, yi1 , · · · , yij , j < m and assume there exists
any key k ∈ K such that fi(vyi , τih(k)) = πi(tyih

)(1 ≤ h ≤ j) and τL(k) = kL; in this case,
we can always find a sequence (x1, · · · , xm) = x ∈ Υ

m such fi(vxi , τi(k)) = πi(txi)(1 ≤
i ≤ m), τL(k) = kL and yih ∈ span(x1, · · · , xm)(1 ≤ h ≤ j); therefore the information
contained in y which can help RL owning kL reveal the key k, can be regarded as a proper
subset of and thus included in the helpful information contained in x; in other words, when
from this additional y, the adversary cannot have more information helpful for disclosing
k than from only x.

Since the above analysis can be generalized into all sequences y ∈ Υm and all keys kL ∈ KL,
we henceforth demonstrate that all the mutual information between Ki and Υm when pro-
vided KL is included in the mutual information between Ki and Υ

m when provided KL.
Combining (13) and (14), we finally have PIsub

[i, L] ≥ 2−I(Ki;Υ
m|KL) and thus complete the

proof of (ii) in the theorem.

(iii) PS [i, L] ≥ 2−I(Υ ′;Ki|Υ
m

,KL)

– On one hand, According to the definition of PS [i, L] from (4), we have:

PS [i, L] = max
kL∈KL

max
υ′∈Υ̃ ,Λ

max
υj∈Υ̃

P (υ′ is accepted by Ri|υj ,kL)

= max
kL∈KL

max
υ′∈Υ ′

max
υ∈Υ

m
P (υ′ is accepted by Ri|υ,kL)

≥
∑

kL∈KL

P (kL)
∑

υ∈Υ
m

P (υ|kL)
∑

υ′∈Υ ′

P (υ′|υ,kL)P (υ′ is accepted by Ri|υ,kL)

≥
∑

kL∈KL,υ∈Υ
m

P (υ,kL)
[ ∑

υ′∈Υ ′

P (υ′|υ,kL)P (υ′ is accepted by Ri|υ,kL)
]
.



By log-sum inequality, we furthermore have:

log PS [i, L] ≥
∑

kL∈KL
υ∈Υ

m

P (υ,kL)
[ ∑

υ′∈Υ ′

P (υ′|υ,kL) log P (υ′ is accepted by Ri|υ,kL)
]
.

(15)

– On the other hand, we firstly define a characteristic function which will be used later, that
is, a function XS(υ′, υ,ki,kL) on Υ ′ × Υ

m ×Ki ×KL by :

XS(υ′, υ,ki,kL) =


1 if there exists a k ∈ K such that t′ = f(v′,k),

ti = f(vi,k)(1 ≤ i ≤ m), τi(k) = ki, τL(k) = kL;
0 otherwise.

Obviously, XS(υ′, υ,ki,kL) = 1 implies that fi(v′, τi(k)) = fi(v′,ki) = πi(f(v′,k)) =
πi(t′) when provided υ and kL, and thus implies that υ′ = (v′, t′) is accepted by Ri when
provided υ and kL.
With this, we compute I(Υ ′;Ki|Υ

m
,KL) as below:

I(Υ ′;Ki|Υ
m

,KL) = EP (υ′,υ,ki,kL)
P (Υ ′,Ki|Υ

m
,KL)

P (Υ ′|Υm
,KL)P (Ki|Υ

m
,KL)

=
∑

υ′∈Υ ′,υ∈Υ
m

,ki∈Ki,kL∈KL

P (υ′, υ,ki,kL) log
P (υ′,ki|υ,kL)

P (υ′|υ,kL)P (ki|υ,kL)

=
∑

υ′∈Υ ′,υ∈Υ
m

,
ki∈Ki,kL∈KL

P (υ′, υ,kL)P (ki|υ′, υ,kL) log
P (υ′|υ,kL)P (ki|υ′, υ,kL)
P (υ′|υ,kL)P (ki|υ,kL)

=
∑

υ′∈Υ ′,υ∈Υ
m

,kL∈KL,P (υ′,υ,kL) 6=0

P (υ′, υ,kL)
∑
ki∈Ki

P (ki|υ′, υ,kL)

× log
P (υ′|υ,kL)P (ki|υ′, υ,kL)
P (υ′|υ,kL)P (ki|υ,kL)

.

We note here that, when P (υ′, υ,kL) 6= 0, if XS(υ′, υ,ki,kL) = 0, then P (ki|υ′, υ,kL) = 0.
So, the summation taken overKi above is restricted to all ki for which XS(υ′, υ,ki,kL) = 1.
Henceforth, we have:

I(Υ ′;Ki|Υ
m

,KL) =
∑

υ′∈Υ ′,υ∈Υ
m

,

kL∈KL,P (υ′,υ,kL) 6=0

P (υ′, υ,kL)
∑
ki∈Ki

P (ki|υ′, υ,kL)XS(υ′, υ,ki,kL)

× log
P (ki|υ′, υ,kL)XS(υ′, υ,ki,kL)
P (ki|υ,kL)XS(υ′, υ,ki,kL)

≥
∑

υ′∈Υ ′,υ∈Υ
m

,

kL∈KL,P (υ′,υ,kL) 6=0

P (υ′, υ,kL)
∑
ki∈Ki

P (ki|υ′, υ,kL)XS(υ′, υ,ki,kL)

× log

∑
ki∈Ki

P (ki|υ′, υ,kL)XS(υ′, υ,ki,kL)∑
ki∈Ki

P (ki|υ,kL)XS(υ′, υ,ki,kL)
(16)



Again, we observe that, if P (υ′, υ,kL) 6= 0 and XS(υ′, υ,ki,kL) = 0, then P (ki|υ′, υ,kL) =
0. This implies ∑

ki∈Ki

P (ki|υ′, υ,kL)XS(υ′, υ,ki,kL) = 1 (17)

and ∑
ki∈Ki

P (ki|υ,kL)XS(υ′, υ,ki,kL) = P (υ′ is accepted by Ri|υ,kL). (18)

Based on (17) and (18) above, we continue (16) and have:

I(Υ ′;Ki|Υ
m

,KL) ≥ −
∑

υ′∈υ′υ∈Υ
m

kL∈KL

P (υ′, υ,kL) log P (υ′ is accepted by Ri|υ,kL)

= −
∑

υ∈Υ
m

kL∈KL

P (υ,kL)
[ ∑

υ′∈Υ ′

P (υ′|υ,kL) log P (υ′ is accepted by Ri|υ,kL)
]
. (19)

Combining (19) and (15), we have PS [i, L] ≥ 2−I(Υ ′;Ki|Υ
m

,KL) and therefore finish the proof
of (iii) in the theorem. �

B Proof of Theorem 3

Firstly, from the construction description, it is easy to see that K = Mµ,Ki = M, 1 ≤ i ≤ N
and there are µ tags required for each message. Therefore it suffices to prove PI = PI , PIsub

=
PIsub

, and PS = PS . We later use Kµ−1 to denote the collection of all (µ− 1)-tuple elements,
each of which is from K.
(i) For PI , we have:

PI = max
06=v∈S,tvi

|{k ∈ Kµ |
∑µ−1

i=0 xi
µtvi = vP (µ)}|

|Kµ|
= max

06=v∈S

|{k ∈ Kµ |
∑µ−1

i=0 xi
µvki = vP (µ)}|

|Kµ|
.

= max
06=v∈S

|{k ∈ Kµ | v
∑µ−1

i=0 xi
µki = vP (µ)}|

|Kµ|
.

We are going to prove the following equation:

max
06=v∈S

|{k ∈ Kµ | v
∑µ−1

i=0 xi
µki = vP (µ)}|

|Kµ|
= max

06=v∈S

|{k ∈ K | vk = 0}|
|K|

. (20)

which implies that PI = PI since we have RHS = PI according to [15]. We prove (20) as
below.

– On one hand, for the denominator part of LHS in (20), we have:

|Kµ| = |{k ∈ K|
µ−1∑
i=0

xi
jki = P (j), 1 ≤ j ≤ µ− 1}|



= | ∪k0∈K {(k1, . . . ,kµ−1) ∈ Kµ−1|
µ−1∑
i=1

xi
jki = P (j)− k0, 1 ≤ j ≤ µ− 1}|. (21)

In terms of (21), we have a claim as below:
Claim 1: For any fixed k0 ∈ K, there is a unique solution to (k1, . . . ,kµ−1) such that

µ−1∑
i=1

xi
jki = P (j)− k0, 1 ≤ j ≤ µ− 1. (22)

To see why, we can rewrite (22) into a system of linear equations shown in (23) as below,
where k1, . . . ,kµ−1 are unknowns (recall that xj is nonzero for all 1 ≤ j ≤ µ− 1):

1 x1 · · · xµ−2
1

1 x2 · · · xµ−2
2

...
... · · ·

...
1 xµ−1 · · · xµ−2

µ−1




k1

k2
...

kµ−1

 =


x−1

1 (P (1)− k0)
x−1

2 (P (2)− k0)
...

x−1
µ−1 (P (µ− 1)− k0)

 (23)

Now, since xi’s are distinct from each other, it is clear that there is a unique solution to
(k1, . . . ,kµ−1) in the system (23). We denote the unique solution as (k′1, . . . ,k′µ−1).
With Claim 1, we continue (21) and finally compute the denominator part of LHS in (20)
as:

|Kµ| = |{k ∈ K|
µ−1∑
i=0

xi
jki = P (j), 1 ≤ j ≤ µ− 1}| = | ∪k0∈K | = |K|. (24)

– On the other hand, for the numerator part of LHS in (20), for ∀ 0 6= v ∈ S we have:

|{k ∈ Kµ|v
µ−1∑
i=0

xi
µki = vP (µ)}|

= |{k ∈ K|
µ−1∑
i=0

xi
jki = P (j), 1 ≤ j ≤ µ− 1,v

µ−1∑
i=0

xi
µki = vP (µ)}|.

As a further step, when we exploit Claim 1 and the aforementioned unique solution
(k′1, . . . ,k′µ−1), we have:

|{k ∈ K|
µ−1∑
i=0

xi
jki = P (j), 1 ≤ j ≤ µ−1,v

µ−1∑
i=0

xi
µki = vP (µ)}|

= |∪k0∈K | vk0 = vP (µ)−v
µ−1∑
i=1

xi
µk′i | ≤ |∪k0∈K | vk0 = 0 | = |{k ∈ K | vk = 0}|.

The inequality above holds thanks to K satisfying properties (3) and (4) as required for
C0 in Section 4.1. Proof details are omitted due to space constraints and can be checked
from the proof of Lemma 1 in [15] ( or Lemma 3.1 in [17]).
Moreover, the “=” in the inequality above can always happen, sine it can happen that



vP (µ)− v
∑µ−1

i=1 xi
µk′i = 0.

Finally, we compute numerator part of LHS in (20) as:

max
06=v∈S

|{k ∈ Kµ | v
µ−1∑
i=0

xi
µki = vP (µ)}| = max

06=v∈S
|{k ∈ K | vk = 0}|. (25)

Combining (24) and (25), we prove (20 )and thus prove that PI = PI .

(ii) For PIsub
= maxV,tvji

|{k∈Kµ |
∑µ−1

i=0 xi
µtvji=vjP (µ)}|

|Kµ| = maxV
|{k∈Kµ | vj

∑µ−1
i=0 xi

µki=vjP (µ)}|
|Kµ| ,

in a quite similar way as proving (20) in (i) above, we can prove the fact below:

max
V

|{k ∈ Kµ | vj
∑µ−1

i=0 xi
µki = P (µ)}|

|Kµ|
= max

V

|{k ∈ K | vjk = 0}|
|K|

,

which implies that PIsub
= PIsub

since we have RHS = PIsub
according to [15]. Details are

omitted due to tight space constraints.

(iii) We prove the theorem for PS with PS = maxV,v/∈V,tvji,tvi

|{k∈Kµ | vjki=tvji,
∑µ−1

i=0 xi
µtvi=vP (µ)}|

|{k∈Kµ | vjki=tvji}|
.

Firstly, for a fixed k0 ∈ K, if we write A = {(k1, . . . ,kµ−1) ∈ Kµ−1|
∑µ−1

i=1 xi
jki = P (j)−k0, 1 ≤

j ≤ µ− 1}, and B = {(k1, . . . ,kµ−1) ∈ Kµ−1|vjki = tvji, 1 ≤ j ≤ µ− 1}, then based on (21),
we can rewrite the denominator part of PS as:

|{k ∈ Kµ | vjki = tvji}| = |∪k0∈K | vjk0 = tvj0 (A ∩B)|. (26)

Now, from Claim 1 above, we have |A| = 1 and more precisely, A = {(k′1, . . . ,k′µ−1)} as
mentioned above. So, if (k′1, . . . ,k′µ−1) /∈ B then we demonstrate that the tagged massages
{vjki = tvji}, which are gathered by the corrupted nodes, are not useful; we ignore this case
for computing PS (due to the definition of PS). Otherwise, (k′1, . . . ,k′µ−1) ∈ B; in this case,
we have A ∩ B = {(k′1, . . . ,k′µ−1)}. With this, we continue (26) to compute denominator
part of PS as:

|{k ∈ Kµ | vjki = tvji}| = |∪k0∈K | vjk0 = tvj0 | = |k ∈ K | vjk = tvj0 |. (27)

Furthermore, with all the above, we can rewrite the numerator part of PS in a following
way:

|{k ∈ Kµ | vjki = tvji,

µ−1∑
i=0

xi
µtvi = vP (µ)}| = |{k ∈ Kµ | vjki = tvji,v

µ−1∑
i=0

xi
µki = vP (µ)}|

= |∪k0∈K | vjk0 = tvj0,vk0 = vP (µ)− v
µ−1∑
i=1

xi
µk′i {(k′1, . . . ,k′µ−1)}|

= | ∪k0∈K | vjk0 = tvj0,vk0 = vP (µ)−v
µ−1∑
i=1

xi
µk′i |



= |k ∈ K | vjk = tvj0,vk = vP (µ)− v
µ−1∑
i=1

xi
µk′i |. (28)

Taking (27) and (28), we have an expression for PS as:

PS = max
V,v/∈V,tvj0

|k ∈ K | vjk = tvj0,vk = vP (µ)− v
∑µ−1

i=1 xi
µk′i |

|k ∈ K | vjk = tvj0 |
.

Recall that K satisfies properties (3) and (4) as required for C0 in Section 4.1. Moreover, it
can happen that tvj0 = 0 and vP (µ)−v

∑µ−1
i=1 xi

µk′i = 0. Combing these facts, and recalling

from [15] that PS = maxV,v/∈V
|k∈K | vjk=0,vk=0 |

|k∈K | vjk=0 | , we have PS = PS . We finally complete the
proof of the theorem. �


