
Forward-Secure Hierarchical Predicate Encryption?

Juan Manuel González Nieto1 and Mark Manulis2 and Dongdong Sun1

1Queensland University of Technology, Brisbane QLD 4001, Australia
j.gonzaleznieto@qut.edu.au, dd.sun@student.qut.edu.au

2University of Surrey, Guildford, United Kingdom
mark@manulis.eu

Abstract. Secrecy of decryption keys is an important pre-requisite for security of any encryption scheme and com-
promised private keys must be immediately replaced. Forward Security (FS), introduced to Public Key Encryption
(PKE) by Canetti, Halevi, and Katz (Eurocrypt 2003), reduces damage from compromised keys by guaranteeing
confidentiality of messages that were encrypted prior to the compromise event. The FS property was also shown to
be achievable in (Hierarchical) Identity-Based Encryption (HIBE) by Yao, Fazio, Dodis, and Lysyanskaya (ACM
CCS 2004). Yet, for emerging encryption techniques, offering flexible access control to encrypted data, by means
of functional relationships between ciphertexts and decryption keys, FS protection was not known to exist.
In this paper we introduce FS to the powerful setting of Hierarchical Predicate Encryption (HPE), proposed by
Okamoto and Takashima (Asiacrypt 2009). Anticipated applications of FS-HPE schemes can be found in searchable
encryption and in fully private communication. Considering the dependencies amongst the concepts, our FS-HPE
scheme implies forward-secure flavors of Predicate Encryption and (Hierarchical) Attribute-Based Encryption.
Our FS-HPE scheme guarantees forward security for plaintexts and for attributes that are hidden in HPE ciphertexts.
It further allows delegation of decrypting abilities at any point in time, independent of FS time evolution. It realizes
zero-inner-product predicates and is proven adaptively secure under standard assumptions. As the “cross-product”
approach taken in FS-HIBE is not directly applicable to the HPE setting, our construction resorts to techniques
that are specific to existing HPE schemes and extends them with what can be seen as a reminiscent of binary tree
encryption from FS-PKE.

1 Introduction

PREDICATE ENCRYPTION. We focus on the notion of Predicate Encryption (PE), formalized by Katz, Sahai, and
Waters [24], building on Hidden Vector Encryption (HVE) [9], and further studied in [25, 27, 28, 30, 31, 36, 37]. In
PE schemes users’ decryption keys are associated with predicates f and ciphertexts encode attributes a that are
specified during the encryption procedure. A user can successfully decrypt if and only if f(a) = 1. Otherwise, the
decryption process preserves plaintext hiding and thus leaks no information about the encrypted message. Unlike
Attribute-Based Encryption (ABE) [4,14,18,32] that imposes the same requirement, PE schemes have a distinguished
privacy goal of attribute hiding to prevent ciphertext leaking attributes. Existing PE schemes typically realize concrete
predicates f . For example, predicates based on the inner product of vectors (over a field or ring) — Inner-Product
Encryption (IPE) [24] — are particularly powerful since they can be used to evaluate a large class of predicates,
including conjunctions or disjunctions of equality tests, comparisons, and subset tests, or more generally, arbitrary
CNF or DNF formulae. In IPE schemes, attributes are represented by a vector −→y while the choice of another vector
−→x defines the predicate f−→x such that f−→x (

−→y) = 1 iff the inner-vector product −→x · −→y = 0. While the original scheme
from [24] was proven to be selectively secure under non-standard assumptions, recent result of Lewko et al. [25]
provided more sophisticated PE constructions achieving (stronger) adaptive security under non-standard assumptions.
Furthermore, Okamoto and Takashima [28] investigated Functional Encryption that is adaptive security under standard
assumptions. In [25, 27] the authors also explored constructions of Hierarchical PE (HPE) schemes providing their
users with the ability to delegate their decryption keys down the hierarchy by restricting predicates associated to the
delegated keys and by this restricting the abilities of lower-level users to decrypt. It should be noted that existing PE
(and ABE) schemes emerged from Identity-Based Encryption (IBE) [8, 35] and the majority of these schemes are
pairing-based.
? This is full version of the paper that appears in Proceedings of the 5th International Conference on Pairing-Based Cryptography

(Pairing 2012) published as post-proceedings by Springer.

FORWARD SECURITY. Forward Security (FS) offers meaningful protection in cryptographic applications with long-
term (aka. static) private keys in the unfortunate case when these keys become compromised. Being a standard require-
ment in authenticated key exchange protocols, where it also takes its origin [15,19], forward security has further been
explored in digital signatures [3, 21] and in public key encryption (PKE) [11]; see [21] for a nice survey and strong
motivation of forward security. The concept of time evolution is central to forward security since from the moment the
private key is exposed the intended security goals can no longer be guaranteed and the key must be changed. FS aims
to tame potential damage by offering protection with respect to earlier time periods. For example, in forward secure
digital signatures signing keys that are exposed in one time period cannot be used to forge signatures related to prior
time periods. Similarly, in the case of forward secure encryption decryption keys used in one time period cannot be
used to decrypt ciphertexts generated in the past.

The first forward-secure PKE scheme, due to Canetti, Halevi, and Katz [11], was built from the technical tool,
called binary tree encryption [23], which in turn is implied by Hierarchical IBE (HIBE) [17, 20] by considering
identities as nodes of the tree and restricting the intermediate nodes to have exactly two descendants: a parent node
with identity string id ∈ {0, 1}` is split into two child nodes with identities id0, id1 ∈ {0, 1}`+1. For each node
id there exists a secret key SKid, which can be used to derive secret keys SKid0 and SKid1 in a one-way fashion.
The intuition behind FS-PKE is to split the entire lifetime of the scheme into N time periods and construct a binary
tree with depth logN , where each node corresponds to a unique time period. In order to encrypt a message for some
time period i ∈ [1, N] one uses the master public key of HIBE and the identity string idi of the node i. At any period
i ∈ [1, N] the private decryption key of the user contains the secret key SKidi as well as secret keys for all right
siblings of the nodes on the path from the root to node i. The latter keys can be used to derive secret keys SKidj for
all subsequent periods j ∈ [i,N]. The actual FS property is obtained by erasing SKidi (and all secret keys that can be
used to derive it) from the private key upon transition to period i+ 1.

These ideas were extended by Yao et al. [39] to obtain FS in the identity-based setting. More precisely, they came
up with a forward-secure HIBE (FS-HIBE) constructed via a “cross-product” combination of two HIBE schemes, in
the random oracle model. Boneh, Boyen, and Goh [5] offered more efficient FS-HIBE constructions, with selective
security in the standard model and with adaptive security in the random oracle model. The first adaptively secure
FS-HIBE scheme in the standard model is due to Lewko and Waters [26]. As mentioned by Boyen and Waters [10]
and also explored in [13, 16, 33, 34, 37] FS is also achievable for anonymous HIBE systems, whose ciphertexts hide
the (hierarchy of) identities for which messages were encrypted. Since HIBE generalizes IBE (anonymous) FS-HIBE
covers (anonymous) FS-IBE.

FORWARD SECURITY IN ABE/PE. A message encrypted with an ABE/PE scheme can potentially be decrypted by
many users. Exposure of some user’s private key in these schemes is likely to cause more damage in comparison to
PKE or IBE schemes since the adversary could obtain messages that were encrypted for more than one user. Adding
forward security to ABE/PE schemes is thus desirable to alleviate this problem. A naı̈ve approach, i.e., to change all
keys (incl. public ones) for each new time period, has already been ruled out as being impractical in PKE and IBE
schemes, and it seems even more complicated in the ABE/PE setting. In this work we formalize and construct the
first forward-secure hierarchical predicate encryption (FS-HPE). Since HPE includes PE/ABE [25, 27], our FS-HPE
scheme also implies constructions of first forward secure ABE/PE schemes.

Although forward-secure HIBE constructions exist, formalizing and designing FS-HPE is challenging due to a
number of advanced properties that must be considered. In HPE schemes predicates (and by this indirectly private
keys) are organized in a hierarchy — any ciphertext that can be decrypted by a low-level predicate must also be
decryptable by a high-level predicate but the converse may not be true. In contrast to HIBE, where delegation is
performed by extending the parent identity with a substring, predicates in HPE have more complex structures and their
delegation requires different techniques. Moreover, predicates should be delegatable at any period in time, irrespective
of time evolution for FS. Another aspect is that encryption of messages in forward-secure HPE must be possible only
using the master public key, the set of attributes, and the current time period, without having á priori knowledge of
predicates at any level of the hierarchy, whereas in FS-HIBE schemes encryption is performed with respect to a given
identity at one of the hierarchy levels. As we will discuss in Section 1.2, obtaining forward security in HPE schemes
by applying techniques from existing FS-PKE [11] and FS-HIBE [39] results in a number of obstacles. For example,
a “cross-product” combination of two HPE schemes [25, 27], akin to the case of two HIBE schemes for FS-HIBE
in [39], seems not feasible due to the unique delegation and randomization mechanisms used in those HPE schemes.

2

Finally, an FS-HPE scheme should still provide attribute-hiding, which could be threatened if (public) time periods for
FS are mixed up with attributes during the encryption.

APPLICATIONS. Anonymous (H)IBE found applications in searchable encryption: anonymous IBE is known to imply
public key encryption with keyword search (PEKS) [1, 7]; anonymous HIBE, as discussed in [1], provides further
properties such as temporary PEKS where searching functionality can be restricted to time intervals, and enables
new constructions such as identity-based encryption with keyword search (IBEKS). Okamoto and Takashima [27]
anticipated HPE applications in the area of attribute-based searchable encryption, in particular they mentioned that
a two-level HPE can be used to enable attribute-based searchable encryption with predicates (as a generalization of
keyword search). We observe that while existing anonymous FS-(H)IBE constructions readily offer forward security
to PEKS and IBEKS, obtaining this property for attribute-based searchable encryption would still require a forward
secure version of HPE.

According to [10], another application of anonymous (H)IBE is to enable anonymous and untraceable identity-
based encrypted communication [10], in a similar fashion to key-private public-key encrypted communication men-
tioned in [2]. We notice that FS property here is crucial, should those privacy goals be preserved for past commu-
nications after the exposure of receivers’ private keys (which comes close to forward secrecy in key establishment
protocols). With (H)PE these privacy properties can be adopted to attribute-based encrypted communication and — if
(H)PE schemes are forward secure — remain protected in time periods preceding the exposure of private keys.

1.1 Our Contributions

FS-HPE: MODEL AND SCHEME. We formalize and design the first forward-secure hierarchical predicate encryption
(FS-HPE) scheme, for zero-inner-product predicates [24]. Our scheme is secure (adaptively attribute-hiding) in the
standard model under the well-known Decision Linear (DLIN) assumption [6] in bilinear groups of prime order. We
first present a new syntax and security definitions that are specific to FS-HPE, in particular definition of attribute hiding
had to be extended in order to account for FS, in a more complex way than in FS-HIBE definitions from [26, 39],
as explained in Section 3.3. Our FS-HPE scheme offers some desirable properties: time-independent delegation of
predicates (to support dynamic behavior for delegation of decrypting rights to new users), local update for users’
private keys (i.e., no master authority needs to be contacted), forward security, and the scheme’s encryption process
doesn’t require knowledge of predicates at any level including when those predicates join the hierarchy. Considering
the relationships amongst the encryption flavors, we can restrict our scheme to level-1 hierarchy and obtain first
adaptively-secure FS-PE/ABE construction, or we can set the inner-product predicate to perform the equality test, in
which case we would obtain the first adaptively-secure anonymous FS-HIBE scheme under the basic DLIN assumption
(as an alternative to [13] that works in bilinear groups of composite order and requires new hardness assumptions).

TECHNIQUES. Our FS-HPE scheme is built based on the dual system encryption approach introduced by Waters [38]
and uses the concept of dual pairing vector spaces (DPVS) of Okamoto and Takashima [27]. Techniques underlying
forward security of the scheme can be seen as reminiscent of binary tree encryption [11] that was invented for FS-PKE
and doesn’t apply immediately to the more complex HPE setting. We had to resort to those techniques and modify
them for integration with HPE since obtaining FS-HPE in a more direct way, e.g. by adopting the “cross-product”
idea from [39], seems not feasible with existing HPE constructions [25, 27]. On a high level, we modify the existing
HPE scheme from [25] and combine two of its instances in a non-trivial way to achieve a FS-HPE scheme. One of
the HPE schemes handles predicate/attibute hierarchy while another one is used for maintaining time periods using
the concept behind binary tree encryption [11]. The modification of the scheme in [25] is necessary to prove security
the stringent security definitions involving FS. The combination of two schemes is non-trivial due to the delegation
and randomization components inherited from HPE. Our scheme perfectly synchronizes all private key components
(decryption, delegation and randomization) from both HPE instances. These components are updated at each new time
period and they are also used for time-independent delegation of predicates. We apply game-hopping proofs, following
the general proof strategy from [28], i.e. we first define several hard problems and prove that security of our scheme
relies on them, then we prove that those hard problems can individually be used to solve the DLIN problem.

3

1.2 Initial Attempts, or Why FS-HPE is Challenging?

We first discuss several initial attempts to construct FS-HPE and illustrate why combining HPE [25, 27] with FS
techniques from [11] is far from being trivial. Informally, in HPE [25, 27] for inner-product relation, hierarchical
attributes are represented by (−→y 1, . . . ,

−→y h) and hierarchical predicate vectors are defined as (−→x 1, . . . ,
−→x l) such that

f(−→x 1,...,
−→x l)(
−→y 1, . . . ,

−→y h) = 1 iff l ≤ h and −→x i · −→y i = 0 for 1 ≤ i ≤ l.

FIRST ATTEMPT. Consider the following na’́ive combination of an FS-PKE scheme and an HPE scheme. A private
key SKt,(−→x 1,...,

−→x l) of each node in the hierarchy contains two independent secret components: a time-dependent
key skt for the current time t and a predicate-dependent key sk−→x 1,...,

−→x l associated with some hierarchical predicate
(−→x 1, . . . ,

−→x l). Upon delegation, the time-dependent key skt is handed over to the user down the hierarchy, in addition
to the delegated predicate-dependent keys such that each user can refresh its skt autonomously for the next period
t+1. An HPE ciphertext for time t is created such that it can only be decrypted by an user whose private key contains
valid skt and a suitable predicate-dependent component. For example, one could first produce an HPE ciphertext c′

and then encrypt c′ for time t using FS-PKE, to obtain the resulting ciphertext c.
This approach, however, is not forward secure. Assume c FS-encrypts c′ for time t where c′ is decryptable with

sk(−→x 1,...,
−→x l). Since time-dependent keys skt are shared, at time t the adversary could corrupt some SKt,(−→x ∗1 ,...,

−→x ∗l)
whose predicate-dependent component sk(−→x ∗1 ,...,−→x ∗l) is not suitable to decrypt c′ — this doesn’t contradict the intuitive
goals behind a forward-secure HPE. Then, at time t+ 1 the adversary corrupts SKt+1,(−→x 1,...,

−→x l). Given skt from the
first corruption and sk(−→x 1,...,

−→x l) from the second corruption the adversary can immediately decrypt the message from
c and c′.

SECOND ATTEMPT. Consider the following intuitive modification of the HPE scheme, e.g. [25]. The user with pred-
icate vectors (−→x 1, . . . ,

−→x l) maintains two subtrees with the same root labeled as (−→x 1, . . . ,
−→x l): the time subtree

that evolves over time for forward security (using the concept from [11]), and the predicate subtree to which, in
case of delegation, further children can be added to expand the hierarchy. The time subtree can be viewed as a spe-
cial predicate subtree where each time node IDt is denoted by a two dimensional predicate vector [24], for exam-
ple −→x IDt = (−IDt, 1). To encrypt a message at time t, the sender uses attribute vectors (−→y 1, . . . ,

−→y h,−→y IDt),
where IDt denotes the node for time t and −→y IDt = (1, IDt). This message can be decrypted, provided that the
receiver knows the secret key for time t and the ciphertext’s attributes (−→y 1, . . . ,

−→y h) satisfy his private key predicates
(−→x 1, . . . ,

−→x l).
The limitation of this approach is that key delegation is not independent of the time period. To guarantee forward

security the user must erase the secret key corresponding to the root (−→x 1, . . . ,
−→x l), as its exposure would compro-

mise the secrecy of derived keys for earlier time periods. However, if this secret key is erased then the predicate
(−→x 1, . . . ,

−→x l) can no longer be expanded, i.e. the scheme will not be able to support hierarchical key delegation at the
level of that predicate. This attempts indicates that all secret keys must evolve together.

THIRD ATTEMPT. Consider a more direct FS-HPE construction where all private keys evolve over the time. Assume
that attribute vectors (resp. predicate vectors) consist of alternating attributes (resp. predicates) and time identifiers,
which is referred to as an attribute-time-tuple (resp. predicate-time-tuple). The private key at each node serves three
purposes: decryption, hierarchical delegation, and derivation of private keys for the next time period. Predicate vectors
associated with the private key of a newly added node are defined by predicate-time-tuple of its parent extended with
the node-specific predicate vector. This private key can in turn be used to derive further keys for its descendants. For
example, if −→x 2 extends the root −→x 1 at time t1 and −→x 3 extends −→x 2 at time t2, the hierarchical predicate for the third
node at time t2 is given by (−→x 1,

−→x IDt1 ,
−→x 2,
−→x IDt2 ,

−→x 3), where −→x IDt1 = (−IDt1 , 1) and −→x IDt2 = (−IDt2 , 1)
(as in the previous attempt).

In order to decrypt a message using this hierarchical predicate the ciphertext must contain attributes for the time
periods t1 and t2. That is, the sender must know all time periods at which different nodes on the path joined the
hierarchy. Clearly, this is a limitation in terms of both scalability and privacy. That is, different private keys within the
predicate hierarchy should ideally evolve in time that remains transparent to the encryption algorithm.
Our exposition above shows that designing FS-HPE is not straightforward eventhough the forward security concept
has been known in other encryption flavors. In our scheme, presented in Section 4, that is based on a variant of the HPE

4

scheme from [25] and a reminiscent of the binary tree encryption from [11], included additional tricks to overcome
problems demonstrated above.

2 Dual Pairing Vector Spaces and Assumptions

GROUPS. Let Gbpg be an algorithm that on input a security parameter 1λ outputs a description of the symmetric
bilinear group setting (q,G,GT , G, e) where q is a prime, G and GT are two cyclic groups of order q, G is the
generator of G, e is a non-degenerate bilinear map e : G × G → GT , i.e., e(sG, tG) = e(G,G)st and e(G,G) 6= 1.
We also define cyclic additive group G and multiplicative group GT of order q.

VECTOR SPACES. Let V =

N︷ ︸︸ ︷
G× · · · ×G be a vector space and each element in V be expressed by N-dimensional

vector. x = (x1G, . . . , xNG) (xi ∈ Fq for i = 1, . . . , N). The canonical base A of V is A = (a1, . . . ,aN), where
a1 = (G, 0, . . . , 0), a2 = (0, G, 0, . . . , 0), . . . ,aN = (0, . . . , 0, G). Given two vectors x = (x1G, . . . , xNG) =
x1a1 + · · ·+xNaN ∈ V and y = (y1G, . . . , yNG) = y1a1 + · · ·+ yNaN ∈ V, where −→x = (x1, . . . , xN) and −→y =

(y1, . . . , yN), the pairing operation is defined as e(x,y) =
∏N
i=1 e(xiG, yiG) = e(G,G)

∑N
i=1 xiyi = g

−→x−→y
T ∈ GT .

Definition 1 (Dual Pairing Vector Space (DPVS) [27]). Let (q,G,GT , G, e) be a symmetric bilinear pairing group.
A Dual Pairing Vector Space (q,V,GT ,A, e), generated by an algorithm denoted Gdpvs, is a tuple containing a prime
q, an N -dimensional vector space V over Fq , a cyclic group GT of order q, a canonical base A = (a1, . . . ,aN) of V,
and a pairing e : G×G→ GT that satisfy the following conditions:

1. NON-DEGENERATE BILINEAR PAIRING: There exists a polynomial-time computable non-degenerate bilinear
pairing e(x,y) =

∏N
i=1 e(Gi, Hi) where x = (G1, . . . , GN) ∈ V and y = (H1, . . . ,HN) ∈ V. This is

non-degenerate bilinear pairing i.e., e(sx, ty) = e(x,y)st and if e(x,y) = 1 for all y ∈ V, then x = 0.
2. DUAL ORTHONORMAL BASES: A and e satisfy that e(ai,aj) = g

δi,j
T for all i and j, where δi,j = 1 if i = j, and

0 otherwise, and gT 6= 1 ∈ GT .
3. DISTORTION MAPS: Linear transformations φi,j on V s.t. φi,j(aj) = ai and φi,j(ak) = 0 if k 6= j are

polynomial-time computable. We call φi,j “distortion maps”.

ORTHONORMAL BASES. Let B = (b1, . . . , bN) be a basis of vector space V which is obtained from its canonical basis
A using a uniformly chosen linear transformation Λ = (λi,j)

U← GL(N,Fq). Note that GL(N,Fq) creates a matrix
of size N × N in which each element is uniformly selected from Fq such that bi =

∑N
j=1 λi,jaj , for i = 1, . . . , N .

Similarly, let B∗ = (b∗1, . . . , b
∗
N) be another basis of V which is also obtained from A using µi,j = (ΛT)

−1 as
b∗i =

∑N
j=1 µi,jaj , for i = 1, . . . , N . It can be shown that e(bi, b∗j) = g

δi,j
T , where δi,j = 1 if i = j, and δi,j = 0

if i 6= j. That is B and B∗ are dual orthonormal bases of V. In our scheme we will use the following probabilistic
algorithm Gob to generate group and DPSV parameters and the two dual orthonormal bases:

Gob(1λ , −→n = (d;n1, . . . , nd)) : paramG = (q,G,GT , G, e)
R← Gbpg(1λ),

ψ
U← F×q , N0 = 5, Nt = 3nt + 1 for t = 1, . . . , d;

For t = 0, . . . , d :

paramVt = (q,Vt,GT ,At, e)
R← Gdpvs(1λ, Nt, paramG),

Λ(t) = (λ
(t)
i,j)

U← GL(Nt,Fq), (µ(t)
i,j) = ψ · (Λ(t)T)

−1
,

bi
(t) =

Nt∑
j=1

λ
(t)
i,ja

(t)
j for i = 1, . . . , Nt,B(t) = (b

(t)
1 , . . . , b

(t)
Nt

),

5

b
∗(t)
i =

Nt∑
j=1

µ
(t)
i,ja

(t)
j for i = 1, . . . , Nt,B∗(t) = (b

∗(t)
1 , . . . , b

∗(t)
Nt

),

gT = e(G,G)ψ, param−→n = ({paramVt}t=0,...,d, gT),

Output (param−→n , {B(t),B∗(t)}t=0,...,d).

Note that gT = e(bi
(t), b

∗(t)
i) for t = 0, . . . , d; i = 1, . . . , Nt.

Definition 2 (Decisional Linear Assumption (DLIN) [6]). The DLIN problem is to find bit β ∈ {0, 1}, given the
output (paramG, G, aG, bG, acG, bdG, Yβ) of the probabilistic algorithm

GDLIN
β (1λ) : paramG = (q,G,GT , G, e)

R← Gbpg(1λ), a, b, c, d
U← Fq,

Y0 = (c+ d)G, Y1
U← G, β U← {0, 1};

Output (paramG, G, aG, bG, acG, bdG, Yβ).

The advantage of a probabilistic polynomial-time DLIN solver D is defined as

AdvDLIN
D (λ) =

∣∣∣ Pr[D(1λ, $)→ 1
∣∣∣ $ R← GDLIN

0 (1λ)
]
− Pr

[
D(1λ, $)→ 1

∣∣∣ $ R← GDLIN
1 (1λ)

] ∣∣∣.
The DLIN assumption states that for any such D this advantage is negligible in λ.

3 Forward-Secure Hierarchical Predicate Encryption

In this section we present our model for forward secure hierarchical predicate encryption (FS-HPE). First, we highlight
the idea behind FS-HPE concept and introduce some notations. In FS-HPE private keys are associated with predicate
vectors and evolve over the time. At any time period i a user may join the hierarchy and receive delegated private
keys. These keys are computed by the parent user for time period i and together with further secret information that
is necessary to derive private keys for later time periods is handed over to the joined user. Once the user receives
this secret information, at the end of each period the user updates his private key locally and erases secrets that are
no longer needed. Additionally, at any time j ≥ i the user may delegate its private key down the hierarchy without
contacting its parent. In any time period i a message can be encrypted using public parameters, the attribute vectors,
and i. In order to decrypt for time period i users must possess private keys satisfying attributes from the ciphertext for
that time.

3.1 Notations

Time Period Let the total number of time periods N = 2κ, where κ ∈ N.
Hierarchical Inner-Product Predicate Encryption We borrow some notations from [25] to describe our HPE with

inner-product predicates (in Appendix A we also recall the syntax and the HPE scheme from [25]). Let −→µ =
(n; d, µ1, . . . , µd) be a tuple of positive integers such that µ0 = 0 < µ1 < µ2 < · · · < µd = n. We call
−→µ a format of hierarchy of depth d attribute spaces. With Σl, l = 1, . . . , d we denote attribute sets and each
Σl = Fµl−µl−1

q \ {0}. A hierarchical attribute Σ = ∪dl=1(Σ1 × . . . × Σl) is defined using the disjoint union.
For −→v i ∈ Fµi−µi−1

q \ {−→0 }, a hierarchical attribute (−→y 1, . . . ,
−→y h) ∈ Σ is said to satisfy a hierarchical predicate

f(−→x 1,...,
−→x l) iff l ≤ h and −→x i · −→y i = 0 for 1 ≤ i ≤ l, which we denote as f(−→x 1,...,

−→x l)(
−→y 1, . . . ,

−→y h) = 1.

The space of hierarchical predicates is F = {f(−→x 1,...,
−→x l)|
−→x i ∈ Fµi−µi−1

q \ {−→0 }}. We call h (resp. l) the level
of (−→y 1, . . . ,

−→y h) (resp. (−→x 1, . . . ,
−→x l)). Throughout the paper we will assume that an attribute vector −→y 1 =

(y1, . . . , yµ1
) is normalized such that y1 = 1 (note that −→y 1 can be normalized via (1/y1) · −→y 1, assuming that

y1 is non-zero). By −→e (k)
i we denote the canonical basis vector (

i−1︷ ︸︸ ︷
0, . . . , 0, 1,

nk−i︷ ︸︸ ︷
0, . . . , 0) ∈ Fnkq for k = 1, 2 and

i = 1, . . . , nk.

6

Keys We will work with two notations for secret keys: skw,(−→x 1,...,
−→x l) is the key associated with some prefix w

of the bit representation of a time period i and a hierarchical predicate (−→x 1, . . . ,
−→x l), whereas SKi,(−→x 1,...,

−→x l)
denotes the key associated with time i and a hierarchical predicate (−→x 1, . . . ,

−→x l). That is, SKi,(−→x 1,...,
−→x l) =

{ski,(−→x 1,...,
−→x l), skw1,(−→x 1,...,

−→x l) : w0 is a prefix of i}.

3.2 Syntax

Definition 3. A forward secure hierarchical predicate encryption scheme (FS-HPE) is a tuple of five algorithms
(RootSetup,Delegate,Update,Encrypt,Decrypt) described in the following:

RootSetup(1λ, N,−→µ) This algorithm takes as input a security parameter 1λ, the total number of time periods N
and the format of hierarchy −→µ . It outputs public parameters of the system, incl. public key PK , and a root secret
key SK 0,1, which is assumed to be known only to the master authority of the hierarchy.

Delegate(SK i,l, i,
−→x l+1) This algorithm takes as input a secret key SK i,l associated with time i on hierarchy level l

and an (l+1)-th level predicate vector−→x l+1. It outputs the delegated secret key SK i,l+1. This key is intended for
the direct descendant at level l + 1. It is assumed that predicate vector −→x l+1 is added to the predicate hierarchy
during the time period i.

Update(SK i,l, i) This algorithm takes as input a secret key SK i,l and the current time period i. It outputs an updated
secret key SK i+1,l for the following time period i+ 1 and erases SK i,l.

Encrypt(PK, (−→y 1, . . . ,
−→y h), i,M) This algorithm takes as input the public key PK, hierarchical attribute vectors

(−→y 1, . . . ,
−→y h), a time period i, and a message M from the associated message space. It outputs a ciphertext C.

We assume that i is included in C.
Decrypt(C,SK i,l) This algorithm takes as input a ciphertext C and a secret key SK i,l for the time period i and

predicate vectors (−→x 1, . . . ,
−→x l). It outputs either a message M or the distinguished symbol ⊥ (to indicate a

failure).

Correctness. For all correctly generated PK and SK i,l associated with predicate vectors (−→x 1, . . . ,
−→x l) and a time

period i, let C R← Encrypt(PK, (−→y 1, . . . ,
−→y h), i,M) and M ′ = Decrypt(C,SK i,l). Then, if f(−→x 1,...,

−→x l)(
−→y 1, . . . ,−→y h) = 1 then M =M ′; otherwise, M 6=M ′ with all but negligible probability.

3.3 Security Definition

Definition 4. A FS-HPE scheme is adaptively attribute hiding against chosen plaintext attacks if for all PPT adver-
saries A, the advantage of A in the following game is negligible in the security parameter:

Setup. RootSetup algorithm is run by the challenger C to generate public key PK and root secret key SK 0,1. PK
is given to A.

Queries I. A may adaptively make a polynomial number of delegation queries by asking C to create a secret key for
any given time period i and hierarchical predicate vectors (−→x 1, . . . ,

−→x l). In response, C computes the secret key
SKi,l and reveals it to A. (Note that C computes SKi,l with the help of algorithms Delegate and Update that it
may need to execute several times, i.e. depending on the input time period i and hierarchy level l.)

Challenge.A outputs its challenge, containing two attribute vectors (Y (0), Y (1)) = ((−→y (0)
1 , . . . ,−→y (0)

h(0)), (
−→y (1)

1 , . . . ,
−→y (1)

h(1))), two plaintexts (M (0),M (1)), and a time period I , such that
– either i > I , or
– i ≤ I and f(−→x 1,...,

−→x l)(
−→y (0)

1 , . . . ,−→y (0)

h(0)) = f(−→x 1,...,
−→x l)(
−→y (1)

1 , . . . ,−→y (1)

h(1)) = 0,
for each revealed key for f(−→x 1,...,

−→x l) and time period i. C then flips a random coin b. If b = 0 then A is given
C = Encrypt(PK, Y (0), I,M (0)) and if b = 1 then A is given C = Encrypt(PK, Y (1), I,M (1)).

Query phase 2. Repeat the Query phase 1 subject to the restrictions as in the challenge phase.
Guess. A outputs a bit b′, and succeeds if b′ = b.

We define the advantage of A as a quantity AdvFS-HPE
A (λ) = |Pr[b = b′]− 1/2|.

7

Remark 1. In Definition 4, adversary A is not allowed to ask a key query for time period i and hierarchical predicate
vectors (−→x 1, . . . ,

−→x l) such that i ≤ I and f(−→x 1,...,
−→x l)(
−→y (b)

1 , . . . ,−→y (b)

h(b)) = 1 for some b ∈ {0, 1}, i.e., the queried
key is not allowed to decrypt the challenge ciphertext. Recently, Okamoto and Takashima [31] proposed a PE (HPE)
which allow such key query, provided that M (0) = M (1). The technique of Okamoto and Takashima [31] can be
applied in our scheme to achieve strong security.

Remark 2. In Definition 4, A may ask delegation queries and obtain the resulting keys. This contrasts slightly with
the HPE security definition in [25], where A may ask the challenger to create and delegate private keys but will not
be given any of them, unless it explicitly asks a separate reveal query. This is because HPE in [25] has two algorithms
for computing secret keys, either directly (using the master secret key) or through delegation (using secret key of the
parent node). In our FS-HPE syntax we compute secret keys through delegation only and in the security definition we
are mainly concerned with maintaining time evolution for delegated keys.

Remark 3. Definition 4 can be easily extended to address chosen-ciphertext attacks (CCA) by allowing decryption
queries. The usual restriction is that decryption queries cannot be used for the challenge ciphertext. Our CPA-secure
FS-HPE scheme from Section 4 can be strengthened to resist CCA by applying the well-known CHK transformation
from [12] that uses one-time signatures to authenticate the ciphertext.

4 Our Forward-Secure HPE Scheme

4.1 High-Level Description

For simplicity of presentation, our FS-HPE makes use of a version of FS-PKE scheme by Katz [22]. In Katz’s scheme,
time periods are associated with the leaf nodes of a binary tree while in Canetti et al. scheme [11], time periods
correspond to all nodes of the tree. Our scheme can also be realized based on the FS-PKE scheme by Canetti et al.,
which will give faster key update time. We utilize a full binary tree of height κ, whose root is labeled ε and all other
nodes are labeled recursively: if the label of a node is w, then its left child is w0, and its right child is w1. Each time
period i ∈ {0, . . . , N −1} corresponds to a leaf identified via the binary representation of i. We denote the k-bit prefix
of a d-length word w = w1w2 . . . wd by w|k, i.e. w|k = w1w2 . . . wk for k ≤ d. Let w|0 = ε and w = w|d.

We use two HPE schemes in parallel. Private keys in each scheme contain three components: decryption, delegation
and randomness. Private key of a user contains private keys from both schemes that are linked together using secret
sharing. One HPE scheme is used to handle predicate/attribute hierarchy, while the other one is used to handle time
evolution. Each of the two HPE schemes is a modification of the scheme in [25], in a way that allows us to prove
attribute-hiding property under more sophisticated conditions involving time evolution. The efficiency of the modified
scheme is still comparable to the one in [25], i.e. it increases the ciphertext by an additional component (master
component) that is used to combine both HPE schemes and is crucial for the security proof. This change implies that
the length of the orthonormal bases grows from (2n+ 3) · |G| in [25] to (3n+ 1) · |G| in our scheme, where n is the
dimension of the attribute vectors, and |G| is the length of a group element from G.

At time period i, the entity at level l with a hierarchical predicate (−→x 1, . . . ,
−→x l) holds a secret key SKi,(−→x 1,...,

−→x l),
denoted for simplicity as SKi,l. It contains secret keys ski,l and {skw,l}) for each label w corresponding to a
right sibling node (if one exists) on the path from l to the root. We view ski,l as a decryption key, which is asso-
ciated with current time i and the predicate (−→x 1, . . . ,

−→x l). The secret keys in {skw,l} contain auxiliary informa-
tion used to update ski,l for future time periods and to derive its lower-level predicates. The initial keys sk0,1 and
sk1,1 are computed in the RootSetup algorithm and are associated with the predicate −→x 1. In general, each skw,l
contains three secret components: the decryption component (k(0)

w,l,dec,k
(1)
w,l,dec,k

(2)
w,l,dec), the randomness component

(k
(1)
w,l,ran,1, . . . ,k

(1)
w,l,ran,l+1,k

(2)
w,l,ran,1, . . . ,k

(2)
w,l,ran,|w|+1) and the delegation component (k(1)

w,l,del,µl+1, . . . ,k
(1)
w,l,del,n,

k
(2)
w,l,del,2|w|+1, . . . ,k

(2)
w,l,del,L). All above components are constructed using orthonormal bases B∗ specified in Section

2. There are three different bases in the system. The superscript of each key component denotes its base. k(0)
w,l,dec is the

mentioned master component that links k(1)
w,l,dec and k

(2)
w,l,dec using the secret sharing techniques. In turn, k(1)

w,l,dec and

8

k
(2)
w,l,dec are used in respective HPE schemes. If w represents a leaf of the binary tree then the decryption component

(k
(0)
w,l,dec,k

(1)
w,l,dec,k

(2)
w,l,dec) is used for decryption at time represented by w.

Delegation and randomization of private keys are processed similarly as in [25], except that upon derivation of
keys for lower level predicates, we also delegate and randomize their time-dependent part. In particular, the delegation
component of the l-th level key is essential to compute the (l + 1)-th level child key, and the randomness component
of the l-th level key is used to re-randomize the latter’s coefficients. To handle time hierarchy we deploy “dummy”
nodes. Similarly, we will compute the dummy child for predicate hierarchy when time evolves. In this way, all derived
keys are re-randomized.

We define a helper algorithm ComputeNext that will be called from RootSetup and Update. Given a secret key
skw,l for node w and a hierarchical predicate (−→x 1, . . . ,

−→x l) it outputs sk(wb),l, b ∈ {0, 1} for the nodes w0 and w1 by
updating the three components of skw,l. The algorithm Update computes secret keys for the next time period through
the internal call to ComputeNext and erases all secret information that was used to derive the key for the current
time period. The update procedure involves all three components of the secret key. For example, for a given secret key
SKi,l = (ski,l, {skw,l}), forward security is achieved by deleting its component ski,l and using all three components
of {skw,l}, where w is now the label of an internal node, to derive SKi+1,l for the following time period with the help
of ComputeNext.

In algorithm Delegate, a secret key skw,l for a string w is used to derive skw,u for a lower hierarchy level
u > l and a hierarchical predicate (−→x 1, . . . ,

−→x u) that has restricted capabilities in comparison to (−→x 1, . . . ,
−→x l). As

mentioned, the delegation component for hierarchical predicates of skw,l is essential for the derivation of skw,u, whose
coefficients are re-randomized with the randomization component.

The algorithm Encrypt requires only a time period t and a hierarchical attribute (−→y 1, . . . ,
−→y h) to encrypt the

message. We note that during encryption attributes (−→y 1, . . . ,
−→y h) are extended with random elements from level

h + 1 down to the leaf, i.e., the scheme encrypts attribute vectors on all levels in the hierarchy instead of encrypting
only the input vectors. In this way, parent keys can directly decrypt ciphertexts produced for their children without
taking effort to derive child keys first.

The algorithm Decrypt uses the decryption key ski,l, which is associated with time period i and hierarchical
predicate (−→x 1, . . . ,

−→x l). The message is decrypted iff the attributes in the ciphertext satisfy the predicates in the
decryption component of the key and the ciphertext is created at time i.

Remark 4. The two HPE schemes underlying our construction are modification of the HPE scheme from [25]. We
observe, however, that the recent (H)PE schemes of Okamoto and Takashima [29, 30] could also be modified (in a
similar way as [25]) to build a forward secure HPE scheme using our techniques. In this case the resulting FS-HPE
scheme would have shorter private keys than in our current construction.

4.2 Detailed Specification

The five algorithms of our FS-HPE scheme are detailed in the following:

Algorithm RootSetup
(
1λ, N = 2κ,−→µ = (n; d, µ1, . . . , µd)

)
: Let −→x 1 be the root predicate and let L = 2κ and

−→n = (2;n,L). This initialization algorithm proceeds as follows.

Compute

(param−→n ,B(0),B∗(0),B(1),B∗(1),B(2),B∗(2)) R← Gob(1λ,−→n),

B̃(0) = (b
(0)
1 , b

(0)
3 , b

(0)
5), B̃(1) = (b

(1)
1 , . . . , b

(1)
n , b

(1)
3n+1), B̃(2) = (b

(2)
1 , . . . , b

(2)
L , b

(2)
3L+1),

B̃∗(0) = (b
∗(0)
1 , b

∗(0)
3), B̃∗(1) = (b

∗(1)
1 , . . . , b

∗(1)
n), B̃∗(2) = (b

∗(2)
1 , . . . , b

∗(2)
L),

B̂∗(1) = (b
∗(1)
2n+1, . . . , b

∗(1)
3n), B̂∗(2) = (b

∗(2)
2L+1, . . . , b

∗(2)
3L).

9

The master authority needs to generate not only the secret key associated with the current time period 0 but also secret
keys corresponding to the internal nodes on the binary tree whose bit representations are all 0 except for the last bit.
The secret key for time 0 and predicate −→x 1 is denoted as sk0κ,1. Secret keys that will be used to derive keys for
future time periods are denoted as {sk1,1, sk(01),1, . . . , sk0κ−11,1}. These values are generated recursively as follows,
starting with sk0,1 and sk1,1.

Computing sk0,1:

Pick ψ,ψ′, αdec, α
(1)
dec, α

(2)
dec

U← Fq such that αdec = α
(1)
dec + α

(2)
dec.

Pick η(0)dec, β
(1)
dec,1, β

(2)
dec,1, β

(1)
ran,j,1(j = 1, 2), β

(2)
ran,j,1(j = 1, 2), β

(1)
del,j,1(j = 1, . . . , n), β

(2)
del,j,1(j = 1, . . . , L)

U← Fq ,
−→η (2)

dec,
−→η (2)

ran,j(j = 1, 2),−→η (2)
del,j(j = 1, . . . , L)

U← FLq , −→η (1)
dec,
−→η (1)

ran,j(j = 1, 2),−→η (1)
del,j(j = 1, . . . , n)

U← Fnq .

Compute

k
(0)
0,1,dec = (−αdec, 0, 1, η

(0)
dec, 0)B∗(0) ,

k
(1)
0,1,dec = (α

(1)
dec
−→e (1)

1 + β
(1)
dec,1
−→x 1, 0

2n−µ1 ,−→η (1)
dec, 0)B∗(1) ,

k
(2)
0,1,dec = (α

(2)
dec, β

(2)
dec,1, 0

2L−2,−→η (2)
dec, 0)B∗(2) ,

k
(1)
0,1,ran,j = (β

(1)
ran,j,1

−→x 1, 0
2n−µ1 ,−→η (1)

ran,j , 0)B∗(1) , for j = 1, 2,

k
(2)
0,1,ran,j = (0, β

(2)
ran,j,1, 0

2L−2,−→η (2)
ran,j , 0)B∗(2) , for j = 1, 2,

k
(1)
0,1,del,j = (β

(1)
del,j,1

−→x 1, 0
j−µ1−1, ψ, 02n−j ,−→η (1)

del,j , 0)B∗(1) , for j = µ1 + 1, . . . , n,

k
(2)
0,1,del,j = (0, β

(2)
del,j,1, 0

j−3, ψ′, 02L−j ,−→η (2)
del,j , 0)B∗(2) , for j = 3, . . . , L.

Let sk0,1 = (k
(0)
0,1,dec,k

(1)
0,1,dec,k

(2)
0,1,dec,k

(1)
0,1,ran,1,k

(1)
0,1,ran,2,k

(2)
0,1,ran,1,k

(2)
0,1,ran,2,k

(1)
0,1,del,µ1+1, . . . ,k

(1)
0,1,del,n,

k
(2)
0,1,del,3, . . . ,k

(2)
0,1,del,L).

Computing sk1,1:

Pick π, π′, δdec, δ
(1)
dec, δ

(2)
dec

U← Fq such that δdec = δ
(1)
dec + δ

(2)
dec.

Pick γ
(0)
dec , θ

(1)
dec,1, θ

(2)
dec,1, θ

(1)
ran,j,1(j = 1, 2), θ

(2)
ran,j,1(j = 1, 2), θ

(1)
del,j,1(j = 1, . . . , n), θ

(2)
del,j,1(j = 1, . . . , L)

U← Fq ,
−→γ (1)

dec,
−→γ (1)

ran,j(j = 1, 2),−→γ (1)
del,j(j = 1, . . . , n)

U← Fnq , −→γ (2)
dec,
−→γ (2)

ran,j(j = 1, 2),−→γ (2)
del,j(j = 1, . . . , L)

U← FLq .

Compute

k
(0)
1,1,dec = (−δdec, 0, 1, γ(0)dec , 0)B∗(0) ,

k
(1)
1,1,dec = (δ

(1)
dec
−→e (1)

1 + θ
(1)
dec,1
−→x 1, 0

2n−µ1 ,−→γ (1)
dec, 0)B∗(1) ,

k
(2)
1,1,dec = (δ

(2)
dec + θ

(2)
dec,1, θ

(2)
dec,1, 0

2L−2,−→γ (2)
dec, 0)B∗(2) ,

k
(1)
1,1,ran,j = (θ

(1)
ran,j,1

−→x 1, 0
2n−µ1 ,−→γ (1)

ran,j , 0)B∗(1) , for j = 1, 2,

k
(2)
1,1,ran,j = (θ

(2)
ran,j,1, θ

(2)
ran,j,1, 0

2L−2,−→γ (2)
ran,j , 0)B∗(2) , for j = 1, 2,

k
(1)
1,1,del,j = (θ

(1)
del,j,1

−→x 1, 0
j−µ1−1, π, 02n−j ,−→γ (1)

del,j , 0)B∗(1) , for j = µ1 + 1, . . . , n,

k
(2)
1,1,del,j = (θ

(2)
del,j,1, θ

(2)
del,j,1, 0

j−3, π′, 02L−j ,−→γ (2)
del,j , 0)B∗(2) , for j = 3, . . . , L.

10

Let sk1,1 = (k
(0)
1,1,dec,k

(1)
1,1,dec,k

(2)
1,1,dec,k

(1)
1,1,ran,1,k

(1)
1,1,ran,2,k

(2)
1,1,ran,1,k

(2)
1,1,ran,2,k

(1)
1,1,del,µ1+1, . . . ,k

(1)
1,1,del,n,

k
(2)
1,1,del,3, . . . ,k

(2)
1,1,del,L).

Recursion: Use sk0,1 to recursively invoke algorithm ComputeNext, i.e. compute

(skw00,1, skw01,1) = ComputeNext(PK , skw0,1, w0), for all 1 ≤ |w0| ≤ κ− 1.

Output: The algorithm outputs public key PK =
(
1λ, param−→n , {B̃(k)}k=0,1,2, B̂∗(1), B̂∗(2), b∗(0)4

)
and root secret key

SK 0,1 = (sk0κ,1, {sk1,1, sk(01),1, . . . , sk(0κ−11),1}).

Algorithm ComputeNext(PK , skw,l, w): This is a helper method and is called by the Root Setup and Update al-
gorithms. It takes a public key PK , a secret key skw,l, a node w, and outputs keys skw0,l, skw1,l for time nodes w0
and w1 of predicate vectors (−→x 1, . . . ,

−→x l). The algorithm proceeds as follows.

Parse w as w1, . . . , wr, where |w| = r.

Parse skw,l as (k(0)
w,l,dec,k

(1)
w,l,dec,k

(2)
w,l,dec,k

(1)
w,l,ran,1, . . . ,k

(1)
w,l,ran,l+1,k

(2)
w,l,ran,1, . . . ,k

(2)
w,l,ran,r+1,k

(1)
w,l,del,µl+1, . . . ,

k
(1)
w,l,del,n,k

(2)
w,l,del,(2r+1), . . . ,k

(2)
w,l,del,L).

Computing skw0,l:

Pick ψ,ψ′, ε(0)dec, ε
(1)
dec,t, ε

(1)
ran,j,t(j = 1, . . . , l + 1), ε

(1)
del,j,t(j = 1, . . . , n)

U← Fq for t = 1, . . . , l + 1.

Pick ε(2)dec,t, σdec, ε
(2)
ran,j,t(j = 1, . . . , r + 2), σran,j(j = 1, . . . , r + 2), ε

(2)
del,j,t(j = 1, . . . , L), σdel,j(j = 1, . . . , L)

U← Fq
for t = 1, . . . , r + 1.

Pick r
(1)
dec, r

(1)
ran,j(j = 1, . . . , l + 1), r

(1)
del,j(j = 1, . . . , n)

U← span〈b∗(1)2n+1, . . . , b
∗(1)
3n 〉, r

(2)
dec, r

(2)
ran,j(j = 1, . . . , r +

2), r
(2)
del,j(j = 1, . . . , L)

U← span〈b∗(2)2L+1, . . . , b
∗(2)
3L 〉.

Compute

k
(0)
w0,l,dec = k

(0)
w,l,dec + ε

(0)
decb

∗(0)
4 ,

k
(1)
w0,l,dec = k

(1)
w,l,dec +

l+1∑
t=1

ε
(1)
dec,tk

(1)
w,l,ran,t + r

(1)
dec,

k
(2)
w0,l,dec = k

(2)
w,l,dec +

r+1∑
t=1

ε
(2)
dec,tk

(2)
w,l,ran,t + σdeck

(2)
w,l,del,2(r+1) + r

(2)
dec,

k
(1)
w0,l,ran,j =

l+1∑
t=1

ε
(1)
ran,j,tk

(1)
w,l,ran,t + r

(1)
ran,j , for j = 1, . . . , l + 1,

k
(2)
w0,l,ran,j =

r+1∑
t=1

ε
(2)
ran,j,tk

(2)
w,l,ran,t + σran,jk

(2)
w,l,del,2(r+1) + r

(2)
ran,j , for j = 1, . . . , r + 2,

k
(1)
w0,l,del,j =

l+1∑
t=1

ε
(1)
del,j,tk

(1)
w,l,ran,t + ψk

(1)
w,l,del,j + r

(1)
del,j , for j = µl + 1, . . . , n,

k
(2)
w0,l,del,j =

r+1∑
t=1

ε
(2)
del,j,tk

(2)
w,l,ran,t + σdel,jk

(2)
w,l,del,2(r+1) + ψ′k

(2)
w,l,del,j + r

(2)
del,j , for j = 2(r + 1) + 1, . . . , L.

Let skw0,l = (k
(0)
w0,l,dec,k

(1)
w0,l,dec,k

(2)
w0,l,dec,k

(1)
w0,l,ran,1, . . . ,k

(1)
w0,l,ran,l+1,k

(2)
w0,l,ran,1, . . . ,k

(2)
w0,l,ran,r+2,

11

k
(1)
w0,l,del,µl+1, . . . ,k

(1)
w0,l,del,n,k

(2)
w0,l,del,(2(r+1)+1), . . . ,k

(2)
w0,l,del,L).

Computing skw1,l:

Pick τ, τ ′, ε(0)dec, ε
(1)
dec,t, ε

(1)
ran,j,t(j = 1, . . . , l + 1), ε

(1)
del,j,t(j = 1, . . . , n)

U← Fq for t = 1, . . . , l + 1.

Pick ε(2)dec,t, ςdec, ε
(2)
ran,j,t(j = 1, . . . , r + 2), ςran,j(j = 1, . . . , r + 2), ε

(2)
del,j,t(j = 1, . . . , L), ςdel,j(j = 1, . . . , L)

U← Fq
for t = 1, . . . , r + 1.

Pick t
(1)
dec, t

(1)
ran,j(j = 1, . . . , l + 1), t

(1)
del,j(j = 1, . . . , n)

U← span〈b∗(1)2n+1, . . . , b
∗(1)
3n 〉, t

(2)
dec, t

(2)
ran,j(j = 1, . . . , r +

2), t
(2)
del,j(j = 1, . . . , L)

U← span〈b∗(2)2L+1, . . . , b
∗(2)
3L 〉.

Compute

k
(0)
w1,l,dec = k

(0)
w,l,dec + ε

(0)
decb

∗(0)
4 ,

k
(1)
w1,l,dec = k

(1)
w,l,dec +

l+1∑
t=1

ε
(1)
dec,tk

(1)
w,l,ran,t + t

(1)
dec,

k
(2)
w1,l,dec = k

(2)
w,l,dec +

r+1∑
t=1

ε
(2)
dec,tk

(2)
w,l,ran,t + ςdec

(
2r+2∑
i=2r+1

k
(2)
w,l,del,i

)
+ t

(2)
dec,

k
(1)
w1,l,ran,j =

l+1∑
t=1

ε
(1)
ran,j,tk

(1)
w,l,ran,t + t

(1)
ran,j , for j = 1, . . . , l + 1,

k
(2)
w1,l,ran,j =

r+1∑
t=1

ε
(2)
ran,j,tk

(2)
w,l,ran,t + ςran,j

(
2r+2∑
i=2r+1

k
(2)
w,l,del,i

)
+ t

(2)
ran,j , for j = 1, . . . , r + 2,

k
(1)
w1,l,del,j =

l+1∑
t=1

ε
(1)
del,j,tk

(1)
w,l,ran,t + τk

(1)
w,l,del,j + t

(1)
del,j , for j = µl + 1, . . . , n,

k
(2)
w1,l,del,j =

r+1∑
t=1

ε
(2)
del,j,tk

(2)
w,l,ran,t + ςdel,j

(
2r+2∑
i=2r+1

k
(2)
w,l,del,i

)
+ τ ′k

(2)
w,l,del,j + t

(2)
del,j ,

for j = 2(r + 1) + 1, . . . , L.

Let skw1,l = (k
(0)
w1,l,dec,k

(1)
w1,l,dec,k

(2)
w1,l,dec,k

(1)
w1,l,ran,1, . . . ,k

(1)
w1,l,ran,l+1,k

(2)
w1,l,ran,1, . . . ,k

(2)
w1,l,ran,r+2,

k
(1)
w1,l,del,µl+1, . . . ,k

(1)
w1,l,del,n,k

(2)
w1,l,del,(2(r+1)+1), . . . ,k

(2)
w1,l,del,L).

Output: Output (skw0,l, skw1,l).

Algorithm Delegate(SKi,l, i,
−→x l+1 = (xµl+1, . . . , xµl+1

)): The delegation algorithm proceeds as follows.

Parse i as i1, . . . , iκ where κ = log2N . Parse SKi,l as (ski,l, {ski|k−11,l
}ik=0).

For each skw,l in SKi,l compute skw,l+1 as follows:

− Parse w as w1, . . . , wr, where |w| = r.

− Pick ψ,ψ′, γ(0)dec , γ
(1)
dec,t, γ

(1)
ran,j,t(j = 1, . . . , l + 2), γ

(1)
del,j,t(j = 1, . . . , n)

U← Fq for t = 1, . . . , l + 1.

12

− Pick γ(2)dec,t, σdec, γ
(2)
ran,j,t(j = 1, . . . , r+1), σran,j(j = 1, . . . , l+2), γ

(2)
del,j,t(j = 1, . . . , L), σdel,j(j = 1, . . . , n)

U←
Fq for t = 1, . . . , r + 1.

− Pick r
(1)
dec, r

(1)
ran,j(j = 1, . . . , l + 2), r

(1)
del,j(j = 1, . . . , n)

U← span〈b∗(1)2n+1, . . . , b
∗(1)
3n 〉, r

(2)
dec, r

(2)
ran,j(j = 1, . . . , r +

1), r
(2)
del,j(j = 1, . . . , L)

U← span〈b∗(2)2L+1, . . . , b
∗(2)
3L 〉.

− Compute

k
(0)
w,l+1,dec = k

(0)
w,l,dec + γ

(0)
decb

∗(0)
4 ,

k
(1)
w,l+1,dec = k

(1)
w,l,dec +

l+1∑
t=1

γ
(1)
dec,tk

(1)
w,l,ran,t + σdec(

µl+1∑
i=µl+1

xik
(1)
w,l,del,i) + r

(1)
dec,

k
(2)
w,l+1,dec = k

(2)
w,l,dec +

r+1∑
t=1

γ
(2)
dec,tk

(2)
w,l,ran,t + r

(2)
dec,

k
(1)
w,l+1,ran,j =

l+1∑
t=1

γ
(1)
ran,j,tk

(1)
w,l,ran,t + σran,j(

µl+1∑
i=µl+1

xik
(1)
w,l,del,i) + r

(1)
ran,j , for j = 1, . . . , l + 2,

k
(2)
w,l+1,ran,j =

r+1∑
t=1

γ
(2)
ran,j,tk

(2)
w,l,ran,t + r

(2)
ran,j , for j = 1, . . . , r + 1,

k
(1)
w,l+1,del,j =

l+1∑
t=1

γ
(1)
del,j,tk

(1)
w,l,ran,t + σdel,j(

µl+1∑
i=µl+1

xik
(1)
w,l,del,i) + ψk

(1)
w,l,del,j + r

(1)
del,j ,

for j = µl+1 + 1, . . . , n,

k
(2)
w,l+1,del,j =

r+1∑
t=1

γ
(2)
del,j,tk

(2)
w,l,ran,t + ψ′k

(2)
w,l,del,j + r

(2)
del,j , for j = 2r + 1, . . . , L.

Let skw,l+1 = (k
(0)
w,l+1,dec,k

(1)
w,l+1,dec,k

(2)
w,l+1,dec,k

(1)
w,l+1,ran,1, . . . ,k

(1)
w,l+1,ran,l+2,k

(2)
w,l+1,ran,1, . . . ,

k
(2)
w,l+1,ran,r+1,k

(1)
w,l+1,del,µl+1+1, . . . ,k

(1)
w,l+1,del,n,k

(2)
w,l+1,del,2r+1, . . . ,k

(2)
w,l+1,del,L).

Output SKi,l+1 = (ski,l+1, {ski|k−11,l+1}ik=0) and erase all other information.

Algorithm Update(SKi,l, i): This algorithm follows the concept from [11, 22] to compute a private key for the next
time period i + 1. Parse i as i1, . . . , iκ where |i| = κ. Parse SKi,l as (ski,l, {ski|k−11,l

}ik=0). Erase ski,l. If iκ = 0,

simply output the remaining keys as the key SK(i+1),l for the next period. Otherwise, let k̃ be the largest value
such that ik̃ = 0. Let i′ = i|k̃−11. Using ski′,l, which is part of SKi,l, recursively apply algorithm ComputeNext
to generate keys sk(i′0d1),l for 0 ≤ d ≤ l − k̃ − 1 and sk(i′0d−k̃,l). Erase ski′,l and output the remaining keys as
SK(i+1),l.

Remark 5. Note that the key sk(i′0d−k̃,l) will be used for decryption in the next time period i + 1, whereas other
generated secret keys will be used to compute private key of the next period.

Algorithm Encrypt(PK, (−→y 1, . . . ,
−→y h) = ((y1, . . . , yµ1), . . . , (yµh−1+1, . . . , yµh)), i,M ∈ GT): The encryption

algorithms proceeds as follows.

Parse i as i1, . . . , iκ.
Pick (−→y h+1, . . . ,

−→y d)
U← Fµh+1−µh

q × . . .× Fn−µd−1
q , δ, ζ, ϕ, ϕ(1), ϕ(2) U← Fq .

13

Compute the ciphertext components

c(0) = (δ, 0, ζ, 0, ϕ)B(0) ,

c(1) = (δ(−→y 1, . . . ,
−→y d), 02n, ϕ(1))B(1) ,

c(2) = (δ((1,−i1), . . . , (1,−iκ)), 02L, ϕ(2))B(2) ,

c(M) = gζTM.

Output ciphertext C = (c(0), c(1), c(2), c(M)).

Algorithm Decrypt(C, SKi,l): Parse C as (c(0), c(1), c(2), c(M)). Parse SKi,l as (ski,l, {ski|k−11,l
}ik=0). Use ski,l

to decrypt and output

M =
c(M)

e(c(0),k
(0)
i,l,dec)e(c

(1),k
(1)
i,l,dec)e(c

(2),k
(2)
i,l,dec)

.

4.3 Correctness

To see why the scheme is correct, let C and SKi,l be as above. If −→x i · −→y i = 0 for 1 ≤ i ≤ l, and C and SKi,l

are encoded with the same time period i then M can be recovered as specified in the decryption algorithm due to the
following equality

e(c(0),k
(0)
i,l,dec)e(c

(1),k
(1)
i,l,dec)e(c

(2),k
(2)
i,l,dec) = g−αdecδ+ζ

T g
α

(1)
dec δ

T g
α

(2)
dec δ

T = g−αδ+ζT gαδT = gζT .

In the scheme, the size for the secret key SKi,l is (3n2 + 12κ2 + 3nl + 7n − 3nµl − µl + 14κ − 6rκ + r + 9)|G|,
and the size of the ciphertext is (3n + 6κ + 8)|G| + |GT |, where n denotes the size of predicate vectors, κ is depth
of the hierarchy, l represents the level of hierarchical predicate, µl is the size of level l-predicate and r is the level of
time node, |G| is the size of group element in G, and |GT | is the size of group element in GT .

4.4 Security Analysis

The security of our FS-HPE scheme is established through the following theorem.

Theorem 1. Our FS-HPE scheme is adaptively attribute-hiding against chosen plaintext attacks under the DLIN
assumption. For any adversary A, there exists a probabilistic polynomial time machine D such that for any security
parameter λ,

AdvFS-HPE
A (λ) ≤ (2ν(κ+ 1)(n+ L+ 1) + 1)AdvDLIN

D (λ) + ψ,

where ν is the maximum number of A’s key queries, κ is the depth of the time tree, and ψ = (20ν(κ + 1)(n + L +
1) + 9)/q.

The proof of Theorem 1 is available in Appendix B.

5 Conclusion

In this paper, we introduced the accepted notion of Forward Security to a powerful setting of Hierarchical Predicate
Encryption. The resulting FS-HPE scheme offers time-independent delegation of predicates, autonomous update for
users’ private keys, and its encryption process doesn’t require knowledge of time periods when particular predicates
joined the predicate hierarchy. The scheme is forward-secure and adaptively attribute-hiding under chosen plaintext
attacks under the DLIN assumption in the standard model.

14

Acknowledgements

This research work is part of the bilateral research project between Germany and Australia, funded jointly by the
German Academic Exchange Service (DAAD) through grant Nr. 53361649 and by Australia’s Department of Innova-
tion, Industry, Science and Research (DIISR). Mark Manulis was also supported by the German Research Foundation
(DFG) through grant MA 4096. He wishes further to acknowledge support from the Center of Advanced Security
Research Darmstadt (CASED) and the European Center for Security and Privacy by Design (EC SPRIDE).

References

1. Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange, John Malone-Lee, Gregory Neven,
Pascal Paillier, and Haixia Shi. Searchable encryption revisited: Consistency properties, relation to anonymous ibe, and exten-
sions. J. Cryptology, 21(3):350–391, 2008.

2. Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy in public-key encryption. In Advances
in Cryptology – ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer Science, pages 566–582. Springer-Verlag, 2001.

3. Mihir Bellare and Sara K. Miner. A forward-secure digital signature scheme. In Advances in Cryptology – CRYPTO ’99,
volume 1666 of Lecture Notes in Computer Science, pages 431–448. Springer-Verlag, 1999.

4. John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryption. In IEEE Symposium on Security
and Privacy, pages 321–334. IEEE Computer Society, 2007.

5. Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with constant size ciphertext. In Advances
in Cryptology – EUROCRYPT 2005, Lecture Notes in Computer Science, pages 440–456. Springer-Verlag, 2005.

6. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In CRYPTO 2004, volume 3152 of Lecture Notes in
Computer Science, pages 41–55. Springer-Verlag, 2004.

7. Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key encryption with keyword search. In
Advances in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 506–522. Springer-
Verlag, 2004.

8. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil Pairing. In CRYPTO 2001, volume 2139 of
Lecture Notes in Computer Science, pages 213–229. Springer-Verlag, 2001.

9. Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted data. In TCC 2007, volume 4392 of Lecture
Notes in Computer Science, pages 535–554. Springer-Verlag, 2007.

10. Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryption (without random oracles). In Advances in
Cryptology - CRYPTO 2006, volume 4117 of Lecture Notes in Computer Science, pages 290–307. Springer-Verlag, 2006.

11. Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme. In Advances in Cryptology –
EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 255–271. Springer-Verlag, 2003.

12. Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based encryption. In Advances in
Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 207–222. Springer-Verlag, 2004.

13. Angelo De Caro, Vincenzo Iovino, and Giuseppe Persiano. Fully secure anonymous hibe and secret-key anonymous ibe with
short ciphertexts. In Pairing, volume 6487 of Lecture Notes in Computer Science, pages 347–366. Springer-Verlag, 2010.

14. Melissa Chase. Multi-authority attribute based encryption. In TCC 2007, volume 4392 of Lecture Notes in Computer Science,
pages 515–534. Springer-Verlag, 2007.

15. Whitfield Diffie, Paul C. Van Oorschot, and Michael J. Wiener. Authentication and authenticated key exchanges. Designs,
Codes and Cryptography, 2:107–125, 1992.

16. Léo Ducas. Anonymity from asymmetry: New constructions for anonymous hibe. In CT-RSA, volume 5985 of Lecture Notes
in Computer Science, pages 148–164. Springer-Verlag, 2010.

17. Craig Gentry and Alice Silverberg. Hierarchical id-based cryptography. In Advances in Cryptology – ASIACRYPT 2002,
volume 2501 of Lecture Notes in Computer Science, pages 548–566. Springer-Verlag, 2002.

18. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-grained access control of
encrypted data. In ACM CCS 2006, pages 89–98. ACM, 2006.

19. Christoph G. Günther. An identity-based key-exchange protocol. In In Advances in Cryptology –Eurocrypt’89, volume 434 of
Lecture Notes in Computer Science, pages 29–37. Springer-Verlag, 1989.

20. Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryption. In Advances in Cryptology – EUROCRYPT
2002, volume 2332 of Lecture Notes in Computer Science, pages 466–481. Springer-Verlag, 2002.

21. Gene Itkis and Leonid Reyzin. Forward-Secure Signatures with Optimal Signing and Verifying. In CRYPTO 2001, volume
2139 of LNCS, pages 332–354. Springer, 2001.

15

22. Jonathan Katz. A forward-secure public-key encryption scheme. Cryptology ePrint Archive, Report 2002/060, 2002. http:
//eprint.iacr.org/.

23. Jonathan Katz. Binary Tree Encryption: Constructions and Applications. In Information Security and Cryptology (ICISC
2003), volume 2971 of LNCS, pages 1–11. Springer, 2003.

24. Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions, polynomial equations, and inner
products. In EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science, pages 146–162. Springer-Verlag, 2008.

25. Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters. Fully secure functional encryption:
Attribute-based encryption and (hierarchical) inner product encryption. In EUROCRYPT 2010, volume 6110 of Lecture Notes
in Computer Science, pages 62–91. Springer-Verlag, 2010.

26. Allison B. Lewko and Brent Waters. New techniques for dual system encryption and fully secure hibe with short ciphertexts.
In TCC 2010, volume 5978 of Lecture Notes in Computer Science, pages 455–479. Springer-Verlag, 2010.

27. Tatsuaki Okamoto and Katsuyuki Takashima. Hierarchical predicate encryption for inner-products. In ASIACRYPT 2009,
volume 5912 of Lecture Notes in Computer Science, pages 214–231. Springer-Verlag, 2009.

28. Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with general relations from the decisional
linear assumption. In CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, pages 191–208. Springer-Verlag,
2010.

29. Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with general relations from the decisional
linear assumption. Cryptology ePrint Archive, Report 2010/563, 2010. http://eprint.iacr.org/.

30. Tatsuaki Okamoto and Katsuyuki Takashima. Achieving short ciphertexts or short secret-keys for adaptively secure general
inner-product encryption. In CANS, volume 7092 of Lecture Notes in Computer Science, pages 138–159. Springer-Verlag,
2011.

31. Tatsuaki Okamoto and Katsuyuki Takashima. Adaptively attribute-hiding (hierarchical) inner product encryption. In EURO-
CRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 591–608. Springer-Verlag, 2012.

32. Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT 2005, volume 3494 of Lecture Notes in
Computer Science, pages 457–473. Springer-Verlag, 2005.

33. Jae Hong Seo and Jung Hee Cheon. Fully secure anonymous hierarchical identity-based encryption with constant size cipher-
texts. Cryptology ePrint Archive, Report 2011/021, 2011. http://eprint.iacr.org/.

34. Jae Hong Seo, Tetsutaro Kobayashi, Miyako Ohkubo, and Koutarou Suzuki. Anonymous hierarchical identity-based encryption
with constant size ciphertexts. In Public Key Cryptography - PKC 2009, volume 5443 of Lecture Notes in Computer Science,
pages 215–234. Springer-Verlag, 2009.

35. Adi Shamir. Identity based cryptosystems and signature schemes. In CRYPTO’84, volume 0196 of Lecture Notes in Computer
Science, pages 47–53. Springer-Verlag, 1984.

36. Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption systems. In TCC 2009, volume 5444 of Lecture
Notes in Computer Science, pages 457–473. Springer-Verlag, 2009.

37. Elaine Shi and Brent Waters. Delegating capabilities in predicate encryption systems. In ICALP 2008 (2), volume 5126 of
Lecture Notes in Computer Science, pages 560–578. Springer-Verlag, 2008.

38. Brent Waters. Dual system encryption: Realizing fully secure ibe and hibe under simple assumptions. In CRYPTO 2009,
volume 5677 of Lecture Notes in Computer Science, pages 619–636. Springer-Verlag, 2009.

39. Danfeng Yao, Nelly Fazio, Yevgeniy Dodis, and Anna Lysyanskaya. Id-based encryption for complex hierarchies with appli-
cations to forward security and broadcast encryption. In Proceedings of the 11th ACM Conference on Computer and Commu-
nications Security – CCS 2004, pages 354–363. ACM, 2004.

16

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

A Hierarchical Predicate Encryption

We include the syntax for Hierarchical Predicate Encryption (HPE) [25], followed by the HPE scheme.

A.1 Syntax

Definition 5. Let −→µ = (n; d, µ1, . . . , µd) s.t. µ0 = 0 < µ1 < µ2 < . . . < µd = n be a format of hierarchy of depth d
attribute spaces. A Hierarchical Predicate Encryption (HPE) comprises of five algorithms (Setup,Genkey,Encrypt,
Decrypt,Delegate).

Setup(1λ,−→µ) This algorithm takes as input a security parameter 1λ and the format of hierarchy −→µ . It outputs a
public key PK and a master secret key SK .

Genkey(PK ,SK , (−→x 1, . . . ,
−→x l)) This algorithm takes as input a public key PK , a master secret key SK , and

predicate vectors (−→x 1, . . . ,
−→x l). It outputs a secret key sk (−→x 1,...,

−→x l).
Encrypt(PK , (−→y 1, . . . ,

−→y h),M) This algorithm takes as input a public key PK , hierarchical attribute vectors
(−→y 1, . . . ,

−→y h), and a message M in some associated message space. It outputs a ciphertext C.
Decrypt(C, sk (−→x 1,...,

−→x l)) This algorithm takes as input a ciphertext C and a secret key sk (−→x 1,...,
−→x l) for attribute

vectors (−→x 1, . . . ,
−→x l). It outputs either a message M or the distinguished symbol ⊥.

Delegate(PK , sk (−→x 1,...,
−→x l),
−→x l+1) This algorithm takes as input the public key pk, l-th level secret key sk (−→x 1,...,

−→x l),
and (l + 1)-th level predicate vector −→x l+1. It outputs (l + 1)-th level secret key sk (−→x 1,...,

−→x l+1).

Correctness. We require the following correctness property: for all correctly generated PK and sk (−→x 1,...,
−→x l) associ-

ated with predicate vectors (−→x 1, . . . ,
−→x l), generate C R← Encrypt(PK , (−→y 1, . . . ,

−→y h),M) and M ′ = Decrypt(C,
sk (−→x 1,...,

−→x l)). If f(−→x 1,...,
−→x l)(
−→y 1, . . . ,

−→y h) = 1, then M = M ′. Otherwise, M 6= M ′ with all but negligible proba-
bility.

A.2 Underlying HPE Scheme

Our forward secure HPE scheme is based on the following variant of the HPE scheme from [25]. Informally, l-th
level secret key skl = (k

(0)
l,dec,k

(1)
l,dec,k

(1)
l,ran,1, . . . ,k

(1)
l,ran,l+1,k

(1)
l,del,µl+1, . . . ,k

(1)
l,del,n) consists of three components. The

decryption component (k(0)
l,dec,k

(1)
l,dec), the randomness component (k(1)

l,ran,1, . . . ,k
(1)
l,ran,l+1) and delegation component

(k
(1)
l,del,µl+1, . . . ,k

(1)
l,del,n). The decryption component is used to decrypt the ciphertext. The randomness component is

used to re-randomize the coefficients of the delegated key, and the delegation component is essential to delegate the
decryption rights to the l + 1-th level child key. We refer to [25] for the key idea of constructing the HPE.

Setup
(
1λ,−→µ = (n; d, µ1, . . . , µd)

)
: The initialization algorithm proceeds as follows.

Let −→n = (1;n), (param−→n ,B(0),B∗(0),B(1),B∗(1)) R← Gob(1λ,−→n).

B̃(0) = (b
(0)
1 , b

(0)
3 , b

(0)
5), B̃(1) = (b

(1)
1 , . . . , b

(1)
n , b

(1)
3n+1),

B̃∗(0) = (b
∗(0)
1 , b

∗(0)
3), B̃∗(1) = (b

∗(1)
1 , . . . , b

∗(1)
n), B̂∗(1) = (b

∗(1)
2n+1, . . . , b

∗(1)
3n),

Output public key PK =
(
1λ, param−→n , {B̃(k)}k=0,1, B̂∗(1), b∗(0)4

)
and secret key SK = {B̃∗(k)}k=0,1.

GenKey(PK,MSK , (−→x 1, . . . ,
−→x l) = ((x1, . . . , xµ1

), . . . , (xµl−1+1, . . . , xµl))): The key generation algorithm con-
tains the following steps.

Pick ψ, αdec, η
(0)
dec, β

(1)
dec,t, β

(1)
ran,j,t(j = 1, . . . , l + 1), β

(1)
del,j,t(j = 1, . . . , n)

U← Fq , −→η (1)
dec,
−→η (1)

ran,j(j = 1, . . . , l +

1),−→η (1)
del,j(j = 1, . . . , n)

U← Fnq , for t = 1, . . . , l.

17

Compute

k
(0)
l,dec = (−αdec, 0, 1, η

(0)
dec, 0)B∗(0) ,

k
(1)
l,dec = (αdec

−→e (1)
1 + β

(1)
dec,1
−→x 1, β

(1)
dec,2
−→x 2, . . . , β

(1)
dec,l
−→x l, 02n−µl ,−→η (1)

dec, 0)B∗(1) ,

k
(1)
l,ran,j = (β

(1)
ran,j,1

−→x 1, β
(1)
ran,j,2

−→x 2, . . . , β
(1)
ran,j,l

−→x l, 02n−µl ,−→η (1)
ran,j , 0)B∗(1) , for j = 1, . . . , l + 1,

k
(1)
l,del,j = (β

(1)
del,j,1

−→x 1, β
(1)
del,j,2

−→x 2, . . . , β
(1)
del,j,l

−→x l, 0j−µl−1, ψ, 02n−j ,−→η (1)
del,j , 0)B∗(1) , for j = µl + 1, . . . , n,

Output skl = (k
(0)
l,dec,k

(1)
l,dec,k

(1)
l,ran,1, . . . ,k

(1)
l,ran,l+1,k

(1)
l,del,µl+1, . . . ,k

(1)
l,del,n).

Encrypt(PK, (−→y 1, . . . ,
−→y l) = ((y1, . . . , yµ1), . . . , (yµl−1+1, . . . , yµl)),M ∈ GT): The encryption algorithm pro-

ceeds as follows.

Pick (−→y l+1, . . . ,
−→y d)

U← Fµl+1−µl
q × . . .× Fn−µd−1

q , δ, ζ, ϕ, ϕ(1), δ1, . . . , δd
U← Fq ,

c(0) = (δ, 0, ζ, 0, ϕ)B(0) ,
c(1) = (δ1

−→y 1, . . . , δd
−→y d, 02n, ϕ(1))B(1) ,

c(M) = gζTM.

Output ciphertext C = (c(0), c(1), c(M)).

Decrypt(C, skl): The decryption algorithm on input a ciphertext C = (c(0), c(1), c(M)) and a secret key skl =

(k
(0)
l,dec,k

(1)
l,dec,k

(0)
l,ran,k

(1)
l,ran,j , . . . ,k

(1)
l,ran,l+1,k

(1)
l,del,µ+1, . . . ,k

(1)
l,del,n) outputs

M =
c(M)

e(c(0),k
(0)
l,dec)e(c

(1),k
(1)
l,dec)

.

Delegate(PK, skl,−→x l+1 = (xµl+1, . . . , xµl+1
)): The delegation algorithm executes the following steps.

Pick ψ′, γdec, σdec, γdec,t, γran,j,t, σran,j(j = 1, . . . , l+ 2), γdel,j,t, σdel,j(j = 1, . . . , n)
U← Fq for t = 1, . . . , l+ 1.

Pick rdec, rran,j(j = 1, . . . , l + 2), rdel,j(j = 1, . . . , n)
U← span〈b∗(1)2n+1, . . . , b

∗(1)
3n 〉.

Compute

k
(0)
l+1,dec = k

(0)
l,dec + γdecb

∗(0)
4 ,

k
(1)
l+1,dec = k

(1)
l,dec +

∑l+1
t=1 γdec,tk

(1)
l,ran,t + σdec

(∑µl+1

i=µl+1 xik
(1)
l,del,i

)
+ rdec,

k
(1)
l+1,ran,j =

∑l+1
t=1 γran,j,tk

(1)
l,ran,t + σran,j

(∑µl+1

i=µl+1 xik
(1)
l,del,i

)
+ rran,j , for j = 1, . . . , l + 2,

k
(1)
l+1,del,j =

∑l+1
t=1 γdel,j,tk

(1)
l,ran,t + σdel,j

(∑µl+1

i=µl+1 xik
(1)
l,del,i

)
+ ψ′k

(1)
l,del,j + rdel,j , for j = µl+1 + 1, . . . , n,

Output
−→
k l+1 = (k

(0)
l+1,dec,k

(1)
l+1,dec,k

(1)
l+1,ran,1, . . . ,k

(1)
l+1,ran,l+2,k

(1)
l+1,del,µl+1+1, . . . ,k

(1)
l+1,del,n).

B Proof of Theorem 1

Outline of the Proof of Theorem 1: In the proof, we have semi-functional ciphertexts and keys in addition to normal
ciphertexts and keys. Semi-functional keys can decrypt all normal ciphertexts, but decryption will fail if one attempts
to decrypt semi-functional ciphertexts with semi-functional keys. Similarly, semi-functional ciphertexts can be de-
crypted only by normal keys. A normal secret key SKi,l = (ski,l, {ski|k−11,l

}ik=0) associated with time period i
and hierarchical predicate (−→x 1, . . . ,

−→x l) , a normal ciphertext C with hierarchical predicate (−→y 1, . . . ,
−→y h) and time

18

period i are shown in the scheme. A semi-functional secret key and a semi-functional ciphertext are expressed in Eqs.
(9)-(11) and Eq.(12) respectively. We also introduce nominal semi-functional form which is analogue to that in [26].
A nominal semi-functional secret key and a nominal semi-functional ciphertext are expressed in in Eqs. (5)-(7) and
Eq.(8) respectively. Normal ciphertexts and keys are used in the real system, while their nominal semi-functional or
semi-functional counterparts are used in a sequence of security games only.

To prove the theorem, we analyze a sequence of games from Game 0 (original game) to Game 3. The challenge
ciphertext is changed to a semi-functional one in Game 1. When at most ν delegation queries are issued and let κ be the
depth of the time tree, there are 2ν(κ+1)(n+L+1) game changes from Game 1 (Game 2-(0, 0, 0)), Game 2-(0, 0, 0′),
Game 2-(0, 0, 1), Game 2-(0, 0, 1′), Game 2-(0, 0, 2), Game 2-(0, 0, 2′) through Game 2-(ν−1, κ, (n+L)′) and Game
2-(ν − 1, κ, n+ L+ 1) (Game 2-(ν, 0, 0)). In Game 2-(m, k, j), the first m× k × j keys are semi-functional and the
rest of keys are normal, and challenge ciphertext is semi-functional. In Game 2-(m, k, j′), the first m × k × j keys
are semi-functional and the (m× k × j + 1)-th key is nominal semi-functional while the remaining keys are normal,
and challenge ciphertext is nominal semi-functional. In Game 3, all keys and challenge ciphertext are semi-functional,
where the adversary has 0 advantage.

The advantage difference between Games 0 and 1 is equivalent to the advantage of Problem 1. To prove that, we
construct a simulator that uses a Problem 1 instance as an input, and interpolates between Game 0 and Game 1. We
show that the distribution of the secret keys and the challenge ciphertext answered by the simulator is identical to those
of Game 0 provided β = 0 and those of Game 1 provided β = 1. The hardness of Problem 1 is also based on the
DLIN assumption.

The advantage difference between Game 2-(m, k, j) and Game 2-(m, k, j′), is equivalent to the advantage of
Problem 2 (i.e., advantage of the DLIN assumption). Here, we introduce special forms of nominal semi-functional
keys and ciphertext. They are same as their counterparts in semi-functional forms except that εw = γ = γ(1)+γ(2) and
ε

U← Fq . Semi-functional keys and ciphertext are simulated using Problem 2 instance when β = 1. Due to their algebra
structures, semi-functional keys can always decrypt Semi-functional ciphertext when f(−→x 1,...,

−→x l)(
−→y 1, . . . ,

−→y h) = 1
and time periods match. Therefore, it is hard for the simulator to test for the semi-functional key by creating the semi-
functional ciphertext by itself. On the other hand, γ is independently distributed from the other variables when either
the predicate does not hold or time for queried key is greater than the challenge time. That is, the joint distribution
of nominal semi-functional key and ciphertext is equivalent to that of semi-functional key and ciphertext when either
condition holds. Hence, both of them appear identical from the adversary’s view, since from the security definition the
adversary’s queries should satisfy at least one of the conditions (predicate does not holds and time for queried key is
greater than the challenge time).

With the similar argument, we show that the advantage difference between Game 2-(m, k, j′) and Game 2-(m, k, j+
1) is equivalent to the advantage of Problem 2 (i.e., advantage of the DLIN assumption).

In the final step, we show that Game 2-(ν, 0, 0) can be conceptually changed to Game 3.

Definition 6 (Problem 1). Problem 1 is to find bit β given (param−→n , {B(k), B̂∗(k)}k=0,1,2, t
(0)
β , {t(k)β,1}k=1,2,

{t(k)i }i=2,...,nk;k=1,2)
R← GP1

β (1λ,−→n = (2;n1, n2)) for β U← {0, 1} with probability non-negligibly better than by a
random guess, where

GP1
β (1λ,−→n = (2;n1, n2)) : (param−→n ,B(0),B∗(0),B(1),B∗(1),B(2),B∗(2)) R← Gob(1λ,−→n),

B̂∗(0) = (b
∗(0)
1 , b

∗(0)
3 , b

∗(0)
4 , b

∗(0)
5),

B̂∗(1) = (b
∗(1)
1 , . . . , b∗(1)n1

, b
∗(1)
2n1+1, . . . , b

∗(1)
3n1+1),

B̂∗(2) = (b
∗(2)
1 , . . . , b∗(2)n2

, b
∗(2)
2n2+1, . . . , b

∗(2)
3n2+1),

δ, u, ρ
U← Fq, t

(0)
0 = (δ, 0, 0, 0, ρ)B(0) , t

(0)
1 = (δ, u, 0, 0, ρ)B(0) ,

For k = 1, 2 :

ρ(k)
U← Fq, −→u (k) U← Fnkq ,

t
(k)
0,1 = (

nk︷ ︸︸ ︷
δ−→e (k)

1 ,

nk︷ ︸︸ ︷
0nk ,

nk︷ ︸︸ ︷
0nk ,

1︷︸︸︷
ρ(k))B(k) ,

19

t
(k)
1,1 = (

nk︷ ︸︸ ︷
δ−→e (k)

1 ,

nk︷ ︸︸ ︷
−→u (k),

nk︷ ︸︸ ︷
0nk ,

1︷︸︸︷
ρ(k))B(k) ,

For i = 2, . . . , nk : t
(k)
i = δb

(k)
i ,

return (param−→n , {B(k), B̂∗(k)}k=0,1,2, t
(0)
β , {t(k)β,1}k=1,2, {t(k)i }i=2,...,nk;k=1,2).

The corresponding advantage of PPT algorithm B in solving Problem 1 is defined as follows:

AdvP1
B (λ) =

∣∣∣ Pr[B(1λ, $)→ 1
∣∣∣ $ R← GP1

0 (1λ,−→n)
]
− Pr

[
B(1λ, $)→ 1

∣∣∣ $ R← GP1
1 (1λ,−→n)

] ∣∣∣.
Lemma 1. For any adversary B, there exists a probabilistic machine D, whose running time is essentially the same
as that of B, such that for any security parameter λ, AdvP1

B (λ) ≤ AdvDLIN
D (λ) + 8/q.

The proof for Lemma 1 can be found in section B.1.

Definition 7 (Problem 2). Problem 2 is to find bit β ∈ {0, 1}, given (param−→n , B̂(0),B∗(0),h∗(0)β , t(0), {B̂(k),B∗(k),

{h∗(k)β,i , t
(k)
i }i=1,...,nk}k=1,2)

R← GP2
β (1λ,−→n = (2;n1, n2)), where

GP2
β (1λ,−→n = (2;n1, n2)) : (param−→n ,B(0),B∗(0),B(1),B∗(1),B(2),B∗(2)) R← Gob(1λ,−→n),

B̂(0) = (b
(0)
1 , b

(0)
3 , b

(0)
4 , b

(0)
5),

B̂(1) = (b
(1)
1 , . . . , b(1)n1

, b
(1)
2n1+1, . . . , b

(1)
3n1+1),

B̂(2) = (b
(2)
1 , . . . , b(2)n2

, b
(2)
2n2+1, . . . , b

(2)
3n2+1),

ω, ξ, δ
U← Fq, z, π

U← F×q , u = z−1,

h
∗(0)
0 = (ω, 0, 0, ξ, 0)B∗(0) , h

∗(0)
1 = (ω, z, 0, ξ, 0)B∗(0) , t(0) = (δ, πu, 0, 0, 0)B(0) ,

For k = 1, 2 :

For i = 1, . . . , nk and j = 1, . . . , nk :

(u
(k)
i,j)

U← GL(Fq, nk), (z(k)i,j) =
(
(u

(k)
i,j)
−1)T

;

For i = 1, . . . , nk :

−→ω (k)
i

U← Fnkq ,

h
∗(k)
0,i = (

nk︷ ︸︸ ︷
ω−→e (k)

i ,

nk︷ ︸︸ ︷
0nk ,

nk︷ ︸︸ ︷
−→ω (k)
i ,

1︷︸︸︷
0)B∗(k) ,

h
∗(k)
1,i = (

nk︷ ︸︸ ︷
ω−→e (k)

i ,

nk︷ ︸︸ ︷
z
(k)
i,1 , . . . , z

(k)
i,nk

,

nk︷ ︸︸ ︷
−→ω (k)
i ,

1︷︸︸︷
0)B∗(k) ,

t
(k)
i = (

nk︷ ︸︸ ︷
δ−→e (k)

i ,

nk︷ ︸︸ ︷
πu

(k)
i,1 , . . . , πu

(k)
i,nk

nk︷ ︸︸ ︷
0nk ,

1︷︸︸︷
0)B(k)

,

Output (param−→n , B̂(0),B∗(0),h∗(0)β , t(0), {B̂(k),B∗(k), {h∗(k)β,i , t
(k)
i }i=1,...,nk}k=1,2).

Let B be a probabilistic machine, we define the advantage of B for Problem 2 as follows:

AdvP2
B (λ) =

∣∣∣ Pr[B(1λ, $)→ 1
∣∣∣ $ R← GP2

0 (1λ,−→n)
]
− Pr

[
B(1λ, $)→ 1

∣∣∣ $ R← GP2
1 (1λ,−→n)

] ∣∣∣.
Lemma 2. For any adversary B, there exists a probabilistic machine D, whose running time is essentially the same
as that of B, such that for any security parameter λ, AdvP2

B (λ) ≤ AdvDLIN
D (λ) + 5/q.

The proof for Lemma 2 can be found in section B.1.

20

Lemma 3. For p ∈ Fq , let Cp = {(−→x ,−→v)|−→x · −→v = p} ⊂ V × V ∗ where V is n-dimensional vector space Fnq , and
V ∗ its dual. For all (−→x ,−→v) ∈ Cp, for all (−→r ,−→w) ∈ Cp, Pr[−→x U = −→r ∧−→v Z = −→w] = Pr[−→x Z = −→r ∧−→v U = −→w] =

1/]Cp, where Z U← GL(n,Fq), U = (Z−1)
T , and]Cp denotes the number of elements in Cp.

The proof of Lemma 3 was given in [28].

Proof of Theorem 1: To prove Theorem 1, We consider the following games:

Game 0. Let Game 0 denote the real security game defined in Definition 4.
Game 1. Game 1 is almost identical to Game 0, except that the ciphertext for challenge attribute vectors Y (0) =

(−→y (0)
1 , . . . ,−→y (0)

h(0)) and Y (1) = (−→y (1)
1 , . . . ,−→y (1)

h(1)), challenge plaintexts (M (0),M (1)) and a time period I is

c(0) = (δ, w, ζ, 0, ϕ)B(0) , (1)

c(1) = (δ(−→y (b)
1 , . . . ,−→y (b)

h(b) ,
−→y h(b)+1, . . . ,

−→y d),−→w 1, 0
n, ϕ(1))B(1) , (2)

c(2) = (δ((1,−i1), . . . , (1,−iκ)),−→w 2, 0
L, ϕ(2))B(2) , (3)

c(M) = gζTM
(b). (4)

where δ, w, ζ, ϕ, ϕ(1), ϕ(2) U← Fq , b
U← {0, 1},

(−→y (b)
1 , . . . ,−→y (b)

h(b) ,
−→y h(b)+1, . . . ,

−→y d) = ((y
(b)
1 , . . . , y(b)µ1

) , . . . , (y
(b)
µ
h(b)−1

+1, . . . , y
(b)
µ
h(b)

),

(yµ
h(b)

+1, . . . , yµ
h(b)+1

), . . . , (yµd−1+1, . . . , yn)), and

(−→y h(b)+1, . . . ,
−→y d)

U← F
µ
h(b)+1

−µ
h(b)

q × . . .× Fn−µd−1
q , −→w 1

U← Fnq \ {
−→
0 }, −→w 2

U← FLq \ {
−→
0 }.

Game 2-(m, k, j′) (m = 0, . . . , ν−1; k = 0, . . . , κ; j = 0, . . . , n+L): Game 2-(0, 0, 0) is Game 1. The number of
keys in SKi,l = (ski,l, {ski|z−11,l

}iz=0) which is a reply to them-th delegation query, is less than or equal to κ+1,

where κ is the depth of the time tree. The number of keys in skw,l = (kw,l,k
(1)
w,l,ran,1, . . . ,k

(1)
w,l,ran,l+1,k

(2)
w,l,ran,1,

. . . ,k
(2)
w,l,ran,r+2,k

(1)
w,l,del,µl+1, . . . ,k

(1)
w,l,del,n,k

(2)
w,l,del,(2(r+1)+1), . . . ,k

(2)
w1,l,del,L), which is the k-th skw,l value in

SKi,l, is less than or equal to n+L+ 1, where (kw,l = k
(0)
w,l,dec,k

(1)
w,l,dec,k

(2)
w,l,dec). Game 2-(m,κ, n+L+ 1) is

Game 2-(m+ 1, 0, 0). Game 2-(m, k, j′) is almost identical to Game 2-(m, k, j), except that (m× k × j + 1)-th
key in skw,l has the following form:

− If j = 0 then

k
(0)norm−semi
w,l,dec = (−αdec, ε, 1, η

(0)
dec, 0)B∗(0) ,

k
(1)norm−semi
w,l,dec = ((α

(1)
dec
−→e (1)

1 + β
(1)
dec,1
−→x 1, . . . , β

(1)
dec,l
−→x l, 0n−µl), (γ(1)dec

−→e (1)
1 + σ

(1)
dec,1
−→x 1, . . . ,

σ
(1)
dec,l
−→x l, 0n−µl) · Z(1),−→η (1)

dec, 0)B∗(1) ,

k
(2)norm−semi
w,l,dec = ((α

(2)
dec
−→e (2)

1 + β
(2)
dec,1

−→
I 1, . . . , β

(2)
dec,r

−→
I r, 0

L−2r), (γ
(2)
dec
−→e (2)

1 + σ
(2)
dec,1

−→
I 1, . . . ,

σ
(2)
dec,r

−→
I r, 0

L−2r) · Z(2),−→η (2)
dec, 0)B∗(2) ,


(5)

where ε, γ(1)dec , σ
(1)
dec,i(i = 1, . . . , l), γ

(2)
dec , σ

(2)
dec,i(i = 1, . . . , r)

U← Fq , Z(1) U← GL(Fq, n), Z(2) U← GL(Fq, L), and
all the other variables are generated as in Game 2-(m, k, j).

− If j > 0 then we have

knorm−semi
(m,k,j+1) = knormal

(m,k,j+1) + (0n, (σj+1,1
−→x 1, . . . , σj+1,l

−→x l, 0n−µl) · Z(1), 0n, 0)B∗(1) (6)

21

for randomness and delegate components of the hierarchical predicate, or

knorm−semi
(m,k,j+1) = knormal

(m,k,j+1) + (0n, (σj+1,1
−→
I 1, . . . , σj+1,r

−→
I r, 0

L−2r) · Z(2), 0n, 0)B∗(2) (7)

for randomness and delegate components of the time period, where knormal
(m,k,j+1) is a correctly generated value of

the reply to the j-th key in skw,l.

Another difference is that the challenge ciphertext has the following form:

c(0) = (δ, w, ζ, 0, ϕ)B(0) ,

c(1) = (δ(−→y (b)
1 , . . . ,−→y (b)

h(b) ,
−→y h(b)+1, . . . ,

−→y d),

(−→y (b)
1 , . . . ,−→y (b)

h(b) ,
−→y h(b)+1, . . . ,

−→y d) · U (1), 0n, ϕ(1))B(1) ,

c(2) = (δ((1,−i1), . . . , (1,−iκ)), ((1,−i1), . . . , (1,−iκ)) · U (2), 0L, ϕ(2))B(2) ,

c(M) = gζTM
(b).


(8)

whereU (1) =
(
Z(1)−1)T andU (2) =

(
Z(2)−1)T , and all the other variables are generated as in Game 2-(m, k, j).

Game 2-(m, k, j + 1) (m = 0, . . . , ν − 1; k = 0, . . . , κ; j = 0, . . . , n + L): The number of keys in SKi,l =
(ski,l, {ski|z−11,l

}iz=0) which is a reply to the m-th delegation query in the game, is less than or equal to κ + 1,

where κ is the depth of the time tree. The number of keys in skw,l = (kw,l,k
(1)
w,l,ran,1, . . . ,k

(1)
w,l,ran,l+1,k

(2)
w,l,ran,1,

. . . ,k
(2)
w,l,ran,r+2,k

(1)
w,l,del,µl+1, . . . ,k

(1)
w,l,del,n,k

(2)
w,l,del,(2(r+1)+1), . . . ,k

(2)
w1,l,del,L), which is the k-th skw,l in SKi,l,

is less than or equal to n + L + 1, where (kw,l = k
(0)
w,l,dec,k

(1)
w,l,dec,k

(2)
w,l,dec). Game 2-(m, k, j + 1) is almost

identical to Game 2-(m, k, j′), except that (j + 1)-th key in skw,l is computed as follows:

− If j = 0 then

k
(0)semi
w,l,dec = (−αdec, ε, 1, η

(0)
dec, 0)B∗(0) ,

k
(1)semi
w,l,dec = ((α

(1)
dec
−→e (1)

1 + β
(1)
dec,1
−→x 1, . . . , β

(1)
dec,l
−→x l, 0n−µl),−→v 1,

−→η (1)
dec, 0)B∗(1) ,

k
(2)semi
w,l,dec = ((α

(2)
dec
−→e (2)

1 + β
(2)
dec,1

−→
I 1, . . . , β

(2)
dec,r

−→
I r, 0

L−2r),−→v 2,
−→η (2)

dec, 0)B∗(2) ,

 (9)

where −→v 1
U← Fnq ,−→v 2

U← FLq , Z(1) U← GL(Fq, n), Z(2) U← GL(Fq, L), and all the other variables are generated as
in Game 2-(m+ 1, k, j − 1).

− If j > 0 then we have

ksemi
(m,k,j+1) = knormal

(m,k,j+1) + (0n,−→v ′j+1, 0
n, 0)B∗(1) (10)

for randomness and delegate components of the hierarchical predicate, or

ksemi
(m,k,j+1) = knormal

(m,k,j+1) + (0L,−→v ′j+1, 0
L, 0)B∗(2) (11)

for randomness and delegate components of the time period, where knormal
(m+1,k,j) is a correctly generated value of

the reply to the j-th key in the k-th skw,l in SKi,l and in m-th key query, and −→v ′j+1
U← Fnkq , k = 1, 2.

Another difference is that the challenge ciphertext is computed as follows:

c(0) = (δ, w, ζ, 0, ϕ)B(0) ,

c(1) = (δ(−→y (b)
1 , . . . ,−→y (b)

h(b) ,
−→y h(b)+1, . . . ,

−→y d),−→w 1, 0
n, ϕ(1))B(1) ,

c(2) = (δ((1,−i1), . . . , (1,−iκ)),−→w 2, 0
L, ϕ(2))B(2) ,

c(M) = gζTM
(b).


(12)

22

where −→w 1
U← Fnq \ {

−→
0 }, −→w 2

U← FLq \ {
−→
0 }, and all the other variables are generated as in Game 2-(m, k, j′).

Game 3. Game 3 is almost identical to Game 2-(ν, 0, 0), except that the ciphertext for challenge attribute vectors
Y (0) = (−→y (0)

1 , . . . ,−→y (0)

h(0)) and Y (1) = (−→y (1)
1 , . . . ,−→y (1)

h(1)), challenge plaintexts (M (0),M (1)), and a time period
I is

c(0) = (δ, w, ζ ′, 0, ϕ)B(0) ,

c(1) = (δ(−→y
′

1, . . . ,
−→y
′

d),
−→w 1, 0

n, ϕ(1))B(1) ,

c(2) = (δ((1,−i1), . . . , (1,−iκ)),−→w 2, 0
L, ϕ(2))B(2) ,

c(M) = gζTM
(b).

 (13)

where ζ ′ U← Fq , (−→y
′

1, . . . ,
−→y ′d)

U← Fnq , and all the other variables are generated as in Game 2-ν. We note that ζ ′

and (−→y ′1, . . . ,−→y
′

d) are chosen uniformly and independently from ζ and (Y (0), Y (1)), respectively.

Let Adv(0)A (λ) be AdvFS-HPE
A (λ) in Game 0, and Adv

(1)
A (λ), Adv(2-(m,k,j))

A (λ), Adv(2-(m,k,j′))
A (λ), Adv(3)A (λ) be the

advantage of A in Game 1, (2-(m, k, j)), (2-(m, k, j′)), 3, respectively. It is clear that Adv(3)A (λ) = 0 by Lemma
8. We will show Lemmas 4 - 7 which evaluate the gaps between pairs of Adv(0)A (λ), Adv(1)A (λ), Adv(2-(m,k,j))

A (λ),
Adv

(2-(m,k,j′))
A (λ), Adv(2-(m,k,j+1))

A (λ), for (m = 0, . . . , ν − 1; k = 0, . . . , κ; j = 0, . . . , n+ L) and Adv
(3)
A (λ).

From these lemmas, we obtain

AdvFS-HPE
A (λ) = Adv

(0)
A (λ)

≤ | Adv(0)A (λ)− Adv
(1)
A (λ) | +

ν−1∑
m=0

κ∑
k=0

n+L∑
j=0

| Adv(2-(m,k,j))
A (λ)− Adv

(2-(m,k,j′))
A (λ) | +

ν−1∑
m=0

κ∑
k=0

n+L∑
j=0

| Adv(2-(m,k,j′))
A (λ)− Adv

(2-(m,k,j+1))
A (λ) | +

| Adv(2-(ν,0,0))
A (λ)− Adv

(3)
A (λ) | +Adv

(3)
A (λ)

≤ AdvP1
B1
(λ) +

ν−1∑
m=0

κ∑
k=0

n+L∑
j=0

AdvP2
B′2mkj

(λ) +

ν−1∑
m=0

κ∑
k=0

n+L∑
j=0

AdvP2
B2mk(j+1)

(λ) + (10ν(κ+ 1)(n+ L+ 1) + 1)/q

≤ (2ν(κ+ 1)(n+ L+ 1) + 1)AdvDLIN
D (λ) + (20ν(κ+ 1)(n+ L+ 1) + 9)/q.

This completes the proof of Theorem 1. ut

Lemma 4. For any adversary A, there exists a probabilistic machine B1, whose running time is essentially the same
as that of A, such that for any security parameter λ, | Adv(0)A (λ)− Adv

(1)
A (λ) |≤ AdvP1

B1
(λ).

Proof. Suppose a polynomial time adversary A can successfully distinguish between Game 0 and Game 1. We con-
struct a simulator B1 that leverages A as a black box to solve Problem 1. The procedure is shown as follows:

1. B1 is given an instance of Problem 1, i.e. (param−→n , {B(k), B̂∗(k)}k=0,1,2, t
(0)
β , {t(k)β,1}k=1,2,

{t(k)i }i=2,...,nk,k=1,2) where n1 = n and n2 = L, and plays the role of the challenger in the security game against
adversary A.

23

2. At the beginning of the game, B1 gives A the public key PK =
(
1λ, param−→n , (b

(0)
1 , b

(0)
3 , b

(0)
5 , b

(1)
1 , . . . , b

(1)
n ,

b
(1)
3n+1, b

(2)
1 , . . . , b

(2)
L , b

(2)
3L+1, b

∗(1)
2n+1, . . . , b

∗(1)
3n , b

∗(2)
2L+1, . . . , b

∗(2)
3L , b

∗(0)
4), which is obtained from the Problem 1 in-

stance.
3. When a delegation query is issued, B1 computes a normal secret key using Delegate, Update and SK0,1, which

is computed from (B̂∗(0), B̂∗(1), B̂∗(2)).
4. When B1 receives challenge attribute vectors Y (0) = (−→y (0)

1 , . . . ,−→y (0)

h(0)) and Y (1) = (−→y (1)
1 , . . . ,−→y (1)

h(1)), chal-
lenge plaintexts (M (0),M (1)) and a time period I from A, B1 computes and returns

C = (c(0), c(1), c(2), c(M)),

where c(0) = t
(0)
β +ζb

(0)
3 , c(1) = y

(b)
1 t

(1)
β,1+

∑µ
h(b)

i=2 y
(b)
i t

(1)
i +

∑n
i=µ

h(b)
+1 yit

(1)
i , c(2) = t

(2)
β,1+(−i1)t(2)2 + · · ·+

t
(2)
L−1 + (−iκ)t(2)L , and c(M) = gζTM

(b) using (t
(0)
β , {t(k)β,1}k=1,2, {t(k)i }i=2,...,nk;k=1,2, b

(0)
3) from the instance of

Problem 1 and (−→y (b)
1 , . . . ,−→y (b)

h(b)), M (b), I where ζ, yµ
h(b)

+1, . . . , yn
U← Fq , b

U← {0, 1}. i1, . . . , iκ are parsed
from I .

5. After the challenge phase, delegation oracle simulation for a key query is executed in the same manner as step 3.
6. A outputs a bit b′. If b = b′, B1 outputs 1. Otherwise, B1 outputs 0.

Claim. For β = 0 the challenge ciphertext C = (c(0), c(1), c(2), c(M)) generated in step 4 is distributed exactly as
in Game 0, whereas if β = 1, the challenge ciphertext C = (c(0), c(1), c(2), c(M)) generated in step 4 is identically
distributed to Game 1.

Proof. First recall that y(b)1 = 1. If β = 0 then the ciphertext given by

c(0) = (δ, 0, ζ, 0, ρ)B(0) ,

c(1) = (δ(−→y 1, . . . ,
−→y d), 02n, ρ(1))B(1) ,

c(2) = (δ((1,−i1), . . . , (1,−iκ)), 02L, ρ(2))B(2) ,

c(M) = gζTM.

is the challenge ciphertext from Game 0. In contrast, if β = 1 then the following components of the ciphertext have a
different form

c(0) = (δ, u, ζ, 0, ρ)B(0) ,

c(1) = (δ(−→y 1, . . . ,
−→y d),−→u (1), 0n, ρ(1))B(1) ,

c(2) = (δ((1,−i1), . . . , (1,−iκ)),−→u (2), 0L, ρ(2))B(2) ,

c(M) = gζTM
(b).

the challenge ciphertext from Game 1.

From the above claim, if β = 0 then simulated ciphertexts are distributed exactly as in Game 0, whereas for β = 1

their distribution is identical to Game 1. Therefore, | Adv(0)A (λ) − Adv
(1)
A (λ) |=

∣∣∣ Pr[B1(1λ, $) → 1
∣∣∣ $ R←

GP1
0 (1λ,−→n)

]
− Pr

[
B1(1λ, $)→ 1

∣∣∣ $ R← GP1
1 (1λ,−→n)

] ∣∣∣ ≤ AdvP1
B1
(λ). This completes the proof of Lemma 4.

ut

Lemma 5. For any adversary A, there exists a probabilistic machine B′2mkj , whose running time is essentially the

same as that ofA, such that for any security parameter λ, | Adv(2-(m,k,j))
A (λ)−Adv

(2-(m,k,j′))
A (λ) |≤ AdvP2

B′2mkj
(λ)+

5/q.

Proof. Suppose a polynomial time adversary A can successfully distinguish between Game 2-(m, k, j) and Game
2-(m, k, j′). We construct a simulator B′2mkj that leverages A as a black box to solve Problem 2. The procedure is
shown as follows:

24

1. B′2mkj is given an instance of Problem 2, that is a tuple (param−→n , B̂(0),B∗(0),h∗(0)β , t(0), {B̂(k),B∗(k), {h∗(k)β,i ,

t
(k)
i }i=1,...,nk}k=1,2) where n1 = n and n2 = L, and acts as challenger in the security game against adversaryA.

2. At the beginning of the game, B′2mkj gives A the public key PK =
(
1λ, param−→n , (b

(0)
1 , b

(0)
3 , b

(0)
5 , b

(1)
1 , . . . , b

(1)
n ,

b
(1)
3n+1, b

(2)
1 , . . . , b

(2)
L , b

(2)
3L+1, b

∗(1)
2n+1, . . . , b

∗(1)
3n , b

∗(2)
2L+1, . . . , b

∗(2)
3L , b

∗(0)
4), which is obtained from the Problem 2 in-

stance.
3. The answer to the s-th key in the k-th skw,l in the m-th SKi,l query for time period i and hierarchical predicate

vectors (−→x 1, . . . ,
−→x l) is as follows:

a) For 0 ≤ s ≤ j the algorithm B′2mkj computes a semi-functional key using {B∗(k)}k=0,1,2 of the Problem 2
instance.

b) For s = j + 1 it computes as follows:
− If j = 0 then it computes

(k
(0)
w,l,dec,k

(1)
w,l,dec,k

(2)
w,l,dec)

using {h∗(0)β , b
∗(0)
1 , b

∗(0)
3 , {h∗(i)β,j , b

∗(i)
j }i=1,2;j=1,...,ni} of the Problem 2 instance as follows:

For i = 1, 2 : %i, vi, v
′
i, θi, ϑk(k = 1, . . . , l), φk′(k

′ = 1, . . . , r)
U← Fq;

s
(0)
β =

2∑
i=1

(%ih
∗(0)
β + vib

∗(0)
1), k

(0)
w,l,dec = −s

(0)
β + b

∗(0)
3 ,

For i = 1, 2 and j = 1, . . . , ni :

s
(i)
β,j = θih

∗(i)
β,j + v′ib

∗(i)
j , ŝ

(i)
β,j = %ih

∗(i)
β,j + vib

∗(i)
j ,

k
(1)
w,l,dec =

l∑
k=1

ϑk µk∑
j=µk−1+1

xjs
(1)
β,j

+ ŝ
(1)
β,1,

k
(2)
w,l,dec =

r∑
k′=1

φk′ 2k′∑
j=2k′−1

Ijs
(2)
β,j

+ ŝ
(2)
β,1,

− If j > 0 then compute randomness and delegation components using {{h∗(i)β,j , b
∗(i)
j }i=1,2;j=1,...,ni} of the

Problem 2 instance as follows::

For i = 1, 2 : v′i, θi, ψ, ψ
′, ϑk(k = 1, . . . , l), φk′(k

′ = 1, . . . , r)
U← Fq;

For i = 1, 2 and j = 1, . . . , ni :

s
(i)
β,j = θih

∗(i)
β,j + v′ib

∗(i)
j ,

k
(1)
w,l,ran,h =

l∑
k=1

ϑk µk∑
j=µk−1+1

xjs
(1)
β,j

 ,

k
(2)
w,l,ran,h′ =

r∑
k′=1

φk′ 2k′∑
j=2k′−1

Ijs
(2)
β,j

 ,

k
(1)
w,l,del,h =

l∑
k=1

ϑk µk∑
j=µk−1+1

xjs
(1)
β,j

+ ψb
∗(1)
h ,

k
(2)
w,l,del,h′ =

r∑
k′=1

φk′ 2k′∑
j=2k′−1

Ijs
(2)
β,j

+ ψ′b
∗(2)
h′ ,

25

c) For s ≥ j + 2 the algorithm B′2mkj computes a normal key using {B∗(k)}k=0,1,2 from the Problem 2 instance.

4. When B′2mkj receives challenge attribute vectors Y (0) = (−→y (0)
1 , . . . ,−→y (0)

h(0)) and Y (1) = (−→y (1)
1 , . . . ,−→y (1)

h(1)),
challenge plaintexts (M (0),M (1)) and a time period I from A, B′2mkj computes and returns the ciphertext C =

(c(0), c(1), c(2), c(M)) where

c(0) = t(0) + ζb
(0)
3 + ϕb

(0)
5 ,

c(1) =

µ
h(b)∑
i=1

y
(b)
i t

(1)
i +

n∑
i=µ

h(b)
+1

yit
(1)
i + ϕ(1)b

(1)
3n+1,

c(2) =

L∑
j=1

Ijt
(2)
j + ϕ(2)b

(2)
3L+1,

c(M) = gζTM
(b),

using (t(0), {t(1)i }i=1,...,n, {t(2)i }i=1,...,L, b
(0)
3 , b

(0)
5 , b

(1)
3n+1, b

(2)
3L+1) from the instance of Problem 2 and (−→y (b)

1 , . . . ,
−→y (b)

h(b)), M (b), I where ζ, ϕ, ϕ(1), ϕ(2), yµ
h(b)

+1, . . . , yn
U← Fq , b

U← {0, 1}. (I2k−1, I2k) denotes the vector for
ik, and i1, . . . , iκ is parsed from I .

5. After the challenge phase, delegation oracle simulation for a key query is executed in the same manner as step 3.
6. A outputs a bit b′. If b = b′, B′2mkj outputs 1. Otherwise, B′2mkj outputs 0.

Claim. The distribution of the view of adversaryA in the above-mentioned game simulated by B′2mkj given a Problem
2 instance with β ∈ {0, 1} is the same as that in Game 2-(m, k, j) (resp. Game 2-(m, k, j′)) if β = 0 (resp. β = 1)
except with probability 4/q (resp. 1/q).

Proof. It is clear that B′2mkj’s simulation of the public key generation (step 2) and the answers to the s-th query where
s 6= j + 1 (case (a) and (c) of steps (3) and (5)) are exactly the same as the Setup and delegation oracle in Game
2-(m, k, j) and Game 2-(m, k, j′).

Next we analyze the distribution of the s-th key in the k-th skw,l in the m-th SKi,l query for time period i and
hierarchical predicate vectors (−→x 1, . . . ,

−→x l) where s = j + 1 (case (b) of steps (3) and (5)). In this case values
s
(0)
β , s

(i)
β,j , ŝ

(i)
β,j , i = 1, 2, j = 1, . . . , ni can be expressed as follows. Let β(i) = θiω + v′i, α(i) = %iω + vi, α =

α(1) + α(2), γ = %1 + %2, ε = γz. Then,

s
(0)
0 = (α, 0, 0, γξ, 0)B∗(0) , s

(0)
1 = (α, ε, 0, γξ, 0)B∗(0) ,

s
(i)
0,j = (

ni︷ ︸︸ ︷
β(i)−→e (i)

j ,

ni︷ ︸︸ ︷
0ni ,

ni︷ ︸︸ ︷
θi
−→ω (i)
j ,

1︷︸︸︷
0)B∗(i) , s

(i)
1,j = (

ni︷ ︸︸ ︷
β(i)−→e (i)

j ,

ni︷ ︸︸ ︷
θi
−→z (i)
j

ni︷ ︸︸ ︷
θi
−→ω (i)
j ,

1︷︸︸︷
0)B∗(i) ,

ŝ
(i)
0,j = (

ni︷ ︸︸ ︷
α(i)−→e (i)

j ,

ni︷ ︸︸ ︷
0ni ,

ni︷ ︸︸ ︷
%i
−→ω (i)
j ,

1︷︸︸︷
0)B∗(i) , ŝ

(i)
1,j = (

ni︷ ︸︸ ︷
α(i)−→e (i)

j ,

ni︷ ︸︸ ︷
%i
−→z (i)
j

ni︷ ︸︸ ︷
%i
−→ω (i)
j ,

1︷︸︸︷
0)B∗(i) ,

where −→z (i)
j = z

(i)
j,1, . . . , z

(i)
j,ni

, ω, z, ξ, {−→ω (i)
j ,−→z (i)

j }i=1,2;j=1,...,ni are defined as in Problem 2. If β = 1 in the

instance of Problem 2 then the decryption component (k(0)
w,l,dec,k

(1)
w,l,dec,k

(2)
w,l,dec) has the same distribution as in Eq.

5, except that εw = γ, where γ = %1 + %2 and w = u
U← Fq of c0 in Eq. 1. Randomness and delegation components

for the hierarchical predicate and time period have the same distribution as in Eq. 6 and 7 respectively.
Next, we show that the joint distribution of the response to j + 1-th key in the k-th skw,l in the m-th SKi,l query

and of the challenge ciphertext in the simulation by B′2mkj for the given instance of Problem 2 is equivalent to the
distribution in Game 2-(m, k, j) if β = 0 and to the distribution in Game 2-(m, k, j′) if β = 1.

If β = 0 then this equivalence follows easily, unless one of the following conditions holds: (1) ω defined in Problem
2 is zero, (2) w = 0, (3) −→w 1 =

−→
0 , (4) −→w 2 =

−→
0 . However, those events occur with probability 4/q.

26

If β = 1, then B′2mkj’s simulation for the key is the same as that expressed in Eq. 5, 6 and 7, and B′2mkj’s
simulation for the challenge ciphertext is the same as that expressed in Eq. 8, except that εw = γ, where γ = %1 + %2,
and w U← Fq of c0 in Eq. 1.

Therefore, we will show that γ is uniformly distributed and is independent from the other variables used in the
simulation by B′2mkj . Since γ is related to

−→
A 1,
−→
A 2,
−→
B 1, and

−→
B 2, where

−→
A 1 = (%1

−→e (1)
1 + θ′1

−→x 1, . . . , θ
′
l
−→x l, 0n−µl) ·

Z(1),
−→
A 2 = (%2

−→e (2)
1 + θ′′1

−→
I 1, . . . , θ

′′
κ

−→
I κ) · Z(2), and

−→
B 1 = (−→y (b)

1 , . . . ,−→y (b)

h(b) ,
−→y h(b)+1, . . . ,

−→y d) · U (1),
−→
B 2 =

(
−→
I ′1, . . . ,

−→
I ′κ) · U (2) where

−→
I z = (1,−iz) and i1, . . . , iκ is parsed from I . We analyze joint distribution of these

variables for the cases that appear in Definition 4.

1. When i > I , i.e., the time period of the queried key is after the time period of encoded in the ciphertext,
due to Lemma 3, the pair (

−→
A 2,
−→
B 2) is uniformly and independently distributed over C∑κ

z=1 θ
′′
z ·(
−→
I ′z·
−→
I z)+%2

=

{(−→w ,−→r)|−→w · −→r =
∑κ
z=1 θ

′′
z · (
−→
I ′z ·
−→
I z) + %2} (over Z(2) U← GL(Fq, n)). Since θ′′z

U← Fq , the pair (
−→
A 2,
−→
B 2)

is thus uniformly and independently distributed over F2n
q .

2. When i ≤ I and f(−→x 1,...,
−→x l)(
−→y (0)

1 , . . . ,−→y (0)

h(0)) = f(−→x 1,...,
−→x l)(
−→y (1)

1 , . . . ,−→y (1)

h(1)) = 0, the pair (
−→
A 2,
−→
B 2) is

uniformly and independently distributed over C%2 (over Z(2) U← GL(Fq, n)). The pair (
−→
A 1,
−→
B 1) is uniformly

and independently distributed over C∑l
z=1 θ

′
z·(
−→x z·−→y z)+%1 (over Z(1) U← GL(Fq, L)). Since θ′z

U← Fq , the pair

(
−→
A 1,
−→
B 1) is thus uniformly and independently distributed over F2L

q .

Considering the adversary A’s restriction on key queries from Definition 4, in above two cases at least one of
(
−→
A 1,
−→
B 1 and (

−→
A 2,
−→
B 2) is uniformly and independently distributed over F2nk

q for k = 1, 2. Therefore, γ = %1 + %2

is independent from the distribution of %1(resp. %2), which can be given by (
−→
A 1,
−→
B 1) (resp. (

−→
A 2,
−→
B 2)). Thus, γ is

uniformly and independently distributed from the other variables in the simulation of B′2mkj .
Therefore, the view of A in the game simulated by B′2mkj on input an instance of Problem 2 with β = 1 is the

same as in Game 2-(m, k, j′) unless ω = 0 occurs. This event happens with probability 1/q.

This completes the proof of Lemma 5. ut

Lemma 6. For any adversary A, there exists a probabilistic machine B2mk(j+1), whose running time is essen-

tially the same as that of A, such that for any security parameter λ, | Adv(2-(m,k,j′))
A (λ) − Adv

(2-(m,k,j+1))
A (λ) |≤

AdvP2
B2mk(j+1)

(λ) + 5/q.

Proof. Suppose a polynomial time adversary A can successfully distinguish between Game 2-(m, k, j′) and Game
2-(m, k, j+1). We construct a simulator B2mk(j+1) that leveragesA as a black box to solve Problem 2. The procedure
is shown as follows:

1. B2mk(j+1) is given an instance of Problem 2, that is a tuple (param−→n , B̂(0),B∗(0),h∗(0)β , t(0), {B̂(k),B∗(k), {h∗(k)β,i ,

t
(k)
i }i=1,...,nk}k=1,2) where n1 = n and n2 = L, and acts as challenger in the security game against adversaryA.

2. At the beginning of the game, B2mk(j+1) gives A the public key PK =
(
1λ, param−→n , (b

(0)
1 , b

(0)
3 , b

(0)
5 , b

(1)
1 ,

. . . , b
(1)
n , b

(1)
3n+1, b

(2)
1 , . . . , b

(2)
L , b

(2)
3L+1, b

∗(1)
2n+1, . . . , b

∗(1)
3n , b

∗(2)
2L+1, . . . , b

∗(2)
3L , b

∗(0)
4), which is obtained from the Prob-

lem 2 instance.
3. The answer to the s-th key in the k-th skw,l in the m-th SKi,l query for time period i and hierarchical predicate

vectors (−→x 1, . . . ,
−→x l) is as follows:

a) For 0 ≤ s ≤ j the algorithm B2mk(j+1) computes a semi-functional key using {B∗(k)}k=0,1,2 of the Problem
2 instance.

b) For s = j + 1 it proceeds as follows:
− If j = 0 then it computes

(k
(0)
w,l,dec,k

(1)
w,l,dec,k

(2)
w,l,dec)

27

using {h∗(0)β , b
∗(0)
1 , b

∗(0)
3 , {h∗(i)β,j , b

∗(i)
j }i=1,2;j=1,...,ni} of the Problem 2 instance as follows:

For i = 1, 2 : %i, vi, v
′
i, θi, r

′, ϑk(k = 1, . . . , l), φk′(k
′ = 1, . . . , r)

U← Fq;

s
(0)
β =

2∑
i=1

(%ih
∗(0)
β + vib

∗(0)
1), k

(0)
w,l,dec = −s

(0)
β + r′b

∗(0)
2 + b

∗(0)
3 ,

For i = 1, 2 and j = 1, . . . , ni :

s
(i)
β,j = θih

∗(i)
β,j + v′ib

∗(i)
j , ŝ

(i)
β,j = %ih

∗(i)
β,j + vib

∗(i)
j ,

k
(1)
w,l,dec =

l∑
k=1

ϑk µk∑
j=µk−1+1

xjs
(1)
β,j

+ ŝ
(1)
β,1 +

n∑
k=1

vkb
∗(1)
n+k,

k
(2)
w,l,dec =

r∑
k′=1

φk′ 2k′∑
j=2k′−1

Ijs
(2)
β,j

+ ŝ
(2)
β,1 +

L∑
k′=1

v′k′b
∗(2)
L+k′ ,

where vk(k = 1, . . . , n), v′k′(k
′ = 1, . . . , L)

U← Fq .
− If j > 0 then compute randomness and delegation components using {{h∗(i)β,j , b

∗(i)
j }i=1,2;j=1,...,ni} of the

Problem 2 instance as follows::

For i = 1, 2 : v′i, θi, ψ, ψ
′, ϑk(k = 1, . . . , l), φk′(k

′ = 1, . . . , r)
U← Fq;

For i = 1, 2 and j = 1, . . . , ni :

s
(i)
β,j = θih

∗(i)
β,j + v′ib

∗(i)
j ,

k
(1)
w,l,ran,h =

l∑
k=1

ϑk µk∑
j=µk−1+1

xjs
(1)
β,j

+

n∑
k=1

vkb
∗(1)
n+k,

k
(2)
w,l,ran,h′ =

r∑
k′=1

φk′ 2k′∑
j=2k′−1

Ijs
(2)
β,j

+

L∑
k′=1

v′k′b
∗(2)
L+k′ ,

k
(1)
w,l,del,h =

l∑
k=1

ϑk µk∑
j=µk−1+1

xjs
(1)
β,j

+ ψb
∗(1)
h +

n∑
k=1

vkb
∗(1)
n+k,

k
(2)
w,l,del,h′ =

r∑
k′=1

φk′ 2k′∑
j=2k′−1

Ijs
(2)
β,j

+ ψ′b
∗(2)
h′ +

L∑
k′=1

v′k′b
∗(2)
L+k′ ,

where vk(k = 1, . . . , n), v′k′(k
′ = 1, . . . , L)

U← Fq .
c) For s ≥ j + 2 the algorithm B2mk(j+1) computes a normal key using {B∗(k)}k=0,1,2 from the instance of

Problem 2.

4. When B2mk(j+1) receives challenge attribute vectors Y (0) = (−→y (0)
1 , . . . ,−→y (0)

h(0)) and Y (1) = (−→y (1)
1 , . . . ,−→y (1)

h(1)),
challenge plaintexts (M (0),M (1)) and a time period I from A, B2mk(j+1) computes and returns the ciphertext
C = (c(0), c(1), c(2), c(M)) where

c(0) = t(0) + ζb
(0)
3 + ϕb

(0)
5 ,

c(1) =

µ
h(b)∑
i=1

y
(b)
i t

(1)
i +

n∑
i=µ

h(b)
+1

yit
(1)
i + ϕ(1)b

(1)
3n+1,

28

c(2) =

L∑
j=1

Ijt
(2)
j + ϕ(2)b

(2)
3L+1,

c(M) = gζTM
(b),

using (t(0), {t(1)i }i=1,...,n, {t(2)i }i=1,...,L, b
(0)
3 , b

(0)
5 , b

(1)
3n+1, b

(2)
3L+1) from the instance of Problem 2 and (−→y (b)

1 , . . . ,
−→y (b)

h(b)), M (b), I where ζ, ϕ, ϕ(1), ϕ(2), yµ
h(b)

+1, . . . , yn
U← Fq , b

U← {0, 1}. (I2k−1, I2k) denotes the vector for
ik, and i1, . . . , iκ is parsed from I .

5. After the challenge phase, delegation oracle simulation for a key query is executed in the same manner as step 3.
6. A outputs a bit b′. If b = b′, B2mk(j+1) outputs 1. Otherwise, B2mk(j+1) outputs 0.

Claim. The distribution of the view of adversary A in the above-mentioned game simulated by B2mk(j+1) given a
Problem 2 instance with β ∈ {0, 1} is the same as that in Game 2-(m, k, j + 1) (resp. Game 2-(m, k, j′)) if β = 0
(resp. β = 1) except with probability 4/q (resp. 1/q).

Proof. It is clear that B2mk(j+1)’s simulation of the public key generation (step 2) and the answers to the s-th query
where s 6= j+1 (case (a) and (c) of steps (3) and (5)) are exactly the same as the Setup and delegation oracle in Game
2-(m, k, j + 1) and Game 2-(m, k, j′).

Next we analyze the distribution of the s-th key in the k-th skw,l in the m-th SKi,l query for time period i and
hierarchical predicate vectors (−→x 1, . . . ,

−→x l) where s = j + 1 (case (b) of steps (3) and (5)). In this case values
s
(0)
β , s

(i)
β,j , ŝ

(i)
β,j , i = 1, 2, j = 1, . . . , ni can be expressed as follows. Let β(i) = θiω + v′i, α(i) = %iω + vi, α =

α(1) + α(2), γ = %1 + %2. Then,

s
(0)
0 = (α, 0, 0, γξ, 0)B∗(0) , s

(0)
1 = (α, ε, 0, γξ, 0)B∗(0) ,

s
(i)
0,j = (

ni︷ ︸︸ ︷
β(i)−→e (i)

j ,

ni︷ ︸︸ ︷
0ni ,

ni︷ ︸︸ ︷
θi
−→ω (i)
j ,

1︷︸︸︷
0)B∗(i) , s

(i)
1,j = (

ni︷ ︸︸ ︷
β(i)−→e (i)

j ,

ni︷ ︸︸ ︷
θi
−→z (i)
j

ni︷ ︸︸ ︷
θi
−→ω (i)
j ,

1︷︸︸︷
0)B∗(i) ,

ŝ
(i)
0,j = (

ni︷ ︸︸ ︷
α(i)−→e (i)

j ,

ni︷ ︸︸ ︷
0ni ,

ni︷ ︸︸ ︷
%i
−→ω (i)
j ,

1︷︸︸︷
0)B∗(i) , ŝ

(i)
1,j = (

ni︷ ︸︸ ︷
α(i)−→e (i)

j ,

ni︷ ︸︸ ︷
%i
−→z (i)
j

ni︷ ︸︸ ︷
%i
−→ω (i)
j ,

1︷︸︸︷
0)B∗(i) ,

where−→z (i)
j = z

(i)
j,1, . . . , z

(i)
j,ni

, ω, ξ, {−→ω (i)
j ,−→z (i)

j }i=1,2;j=1,...,ni are defined as in Problem 2. If β = 1 in the instance

of Problem 2 then the decryption component (k(0)
w,l,dec,k

(1)
w,l,dec,k

(2)
w,l,dec) has the same distribution as in Eq. 5, except

that (γ(1)dec
−→e (1)

1 + σ
(1)
dec,1
−→x 1, . . . , σ

(1)
dec,l
−→x l, 0n−µl) · Z(1) + −→v ′1 and (γ

(2)
dec
−→e (2)

1 + σ
(2)
dec,1

−→
I 1, . . . , σ

(2)
dec,r

−→
I r, 0

L−2r) ·
Z(2) + −→v ′2 where −→v ′1

U← Fnq ,−→v ′2
U← FLq . Randomness and delegation components for the hierarchical predicate and

time period have the same distribution as in Eq. 6 and 7 respectively, except the added −→v ′1 and −→v ′2 randomness.
Next, we show that the joint distribution of the response to j-th key in the k-th skw,l in the m-th SKi,l query and

of the challenge ciphertext in the simulation by B2mk(j+1) for the given instance of Problem 2 is equivalent to the
distribution in Game 2-(m, k, j + 1) if β = 0 and to the distribution in Game 2-(m, k, j′) if β = 1.

If β = 0 then this equivalence follows easily, unless one of the following conditions holds: (1) ω defined in Problem
2 is zero, (2) w = 0, (3) −→w 1 =

−→
0 , (4) −→w 2 =

−→
0 . However, those events occur with probability 4/q.

If β = 1, then B2mk(j+1)’s simulation for the key is the same as that expressed in Eq. 5, 6 and 7, and B2mk(j+1)’s
simulation for the challenge ciphertext is the same as that expressed in Eq. 8, except that except that (γ(1)dec

−→e (1)
1 +

σ
(1)
dec,1
−→x 1, . . . , σ

(1)
dec,l
−→x l, 0n−µl) · Z(1) + −→v ′1 and (γ

(2)
dec
−→e (2)

1 + σ
(2)
dec,1

−→
I 1, . . . , σ

(2)
dec,r

−→
I r, 0

L−2r) · Z(2) + −→v ′2 where
−→v ′1

U← Fnq ,−→v ′2
U← FLq .

Therefore, we will show that (γ(1)dec
−→e (1)

1 +σ
(1)
dec,1
−→x 1, . . . , σ

(1)
dec,l
−→x l, 0n−µl) ·Z(1)+−→v ′1 and (γ

(2)
dec
−→e (2)

1 +σ
(2)
dec,1

−→
I 1,

. . . , σ
(2)
dec,r

−→
I r, 0

L−2r)·Z(2)+−→v ′2 are uniformly distributed and independent from the other variables used in the simu-

lation by B2mk(j+1). Let
−→
A 1 = (%1

−→e (1)
1 +θ′1

−→x 1, . . . , θ
′
l
−→x l, 0n−µl)·Z(1)+−→v ′1,

−→
A 2 = (%2

−→e (2)
1 +θ′′1

−→
I 1, . . . , θ

′′
κ

−→
I κ)·

29

Z(2)+−→v ′2, and
−→
B 1 = (−→y (b)

1 , . . . ,−→y (b)

h(b) ,
−→y h(b)+1, . . . ,

−→y d) ·U (1),
−→
B 2 = (

−→
I ′1, . . . ,

−→
I ′κ) ·U (2) where

−→
I z = (1,−iz)

and i1, . . . , iκ is parsed from I . We analyze joint distribution of these variables for the cases that appear in Definition
4.

1. If i > I , i.e., the time period of the queried key is after the time period of encoded in the ciphertext, then due to
Lemma 3, the pair (

−→
A 2,
−→
B 2) is uniformly and independently distributed over F2n

q .
2. If i ≤ I and f(−→x 1,...,

−→x l)(
−→y (0)

1 , . . . ,−→y (0)

h(0)) = f(−→x 1,...,
−→x l)(
−→y (1)

1 , . . . ,−→y (1)

h(1)) = 0 then the pair (
−→
A 2,
−→
B 2) is

uniformly and independently distributed over F2n
q and (

−→
A 1,
−→
B 1) is uniformly and independently distributed over

F2L
q .

Considering the adversary A’s restriction on key queries from Definition 4, in above two cases at least one of
(
−→
A 1,
−→
B 1) and (

−→
A 2,
−→
B 2) is uniformly and independently distributed over F2nk

q for k = 1, 2. Therefore, (γ(1)dec
−→e (1)

1 +

σ
(1)
dec,1
−→x 1, . . . , σ

(1)
dec,l
−→x l, 0n−µl)·Z(1)+−→v ′1 and (γ

(2)
dec
−→e (2)

1 +σ
(2)
dec,1

−→
I 1, . . . , σ

(2)
dec,r

−→
I r, 0

L−2r)·Z(2)+−→v ′2 are uniformly
distributed and independent from the other variables used in the simulation by B2mk(j+1).

Therefore, the view of A in the game simulated by B2mk(j+1) on input an instance of Problem 2 with β = 1 is the
same as in Game 2-(m, k, j′) unless ω = 0 occurs. This event happens with probability 1/q.

This completes the proof of Lemma 6. ut

Lemma 7. For any adversary A, Adv(3)A (λ) ≤ Adv
(2-(ν,0,0))
A (λ) + 1/q.

Proof. First we show the distribution (param−→n , {B̂(k)}k=0,1,2, {SK(j)
i,l }j=1,...,ν , C = (c(0), c(1),

c(2), c(M))) of Game 3 is same as that of Game 2-(ν, 0, 0), where SK(j)
i,l is the answer to the j-th key query, and

C = (c(0), c(1), c(2), c(M)) is the challenge ciphertext. We will define new bases D(k) of Vk and D∗(k) of V∗k for
k = 0, 1, 2.

For k = 0, we set d(0)
2 = b

(0)
2 − λb

(0)
3 and d

∗(0)
3 = b

∗(0)
3 + λb

∗(0)
2 , where λ U← Fq . The new bases are D(0) =

(b
(0)
1 ,d

(0)
2 , b

(0)
3 , b

(0)
4 , b

(0)
5) and D∗(0) = (b

∗(0)
1 , b

∗(0)
2 ,d

∗(0)
3 , b

∗(0)
4 , b

∗(0)
5). We can easily verify that D(0) and D∗(0) are

dual orthonormal, and are distributed the same as the original bases B(0) and B∗(0) respectively.
For i, j = 1, . . . , n, choose Q(1) = (µ

(1)
i,j)

U← Fn×nq , and compute d
(1)
n+i = b

(1)
n+i +

∑n
j=1 µ

(1)
i,j b

(1)
j , d∗(1)i =

b
∗(1)
i −

∑n
j=1 µ

(1)
j,i b
∗(1)
n+j , which are equivalent to the following matrix computations:(−→

B
(1)
1−→

D
(1)
2

)
=

(
In 0n
Q(1) In

)(−→
B

(1)
1−→

B
(1)
2

)
,

(−→
D
∗(1)
1−→

B
∗(1)
2

)
=

(
In −QT(1)

0n In

)(−→
B
∗(1)
1−→

B
∗(1)
2

)
.

where
−→
B

(1)
1 = (b

(1)
1 , . . . , b

(1)
n)

T
,
−→
B

(1)
2 = (b

(1)
n+1, . . . , b

(1)
2n)

T
,
−→
B
∗(1)
1 = (b

∗(1)
1 , . . . , b

∗(1)
n)

T
,
−→
B
∗(1)
2 = (b

∗(1)
n+1, . . . , b

∗(1)
2n)

T
,

−→
D

(1)
2 = (d

(1)
n+1, . . . ,d

(1)
2n)

T
,
−→
D
∗(1)
1 = (d

∗(1)
1 , . . . ,d

∗(1)
n)

T
.

The new bases are D(1) = (b
(1)
1 , . . . , b

(1)
n ,d

(1)
n+1, . . . ,d

(1)
2n , b

(1)
2n+1, . . . , b

(1)
3n+1) and D∗(1) = (d

∗(1)
1 , . . . ,d

∗(1)
n ,

b
∗(1)
n+1, . . . , b

∗(1)
2n , b

∗(1)
2n+1, . . . , b

∗(1)
3n+1). It is clear that D(1) and D∗(1) are dual orthonormal and have the same distribution

as the original bases B(1) and B∗(1) respectively. Similarly, distribution of bases D(2) and D∗(2) is the same as of B(2)

and B∗(2), respectively.
Keys and challenge ciphertext ({SK(j)

i,l }j=1,...,ν , C = (c(0), c(1), c(2), c(M))) of Game 2-ν are expressed over
bases B(k) and B∗(k) for k = 0, 1, 2 as follows:

Parse SK(j)
i,l as (sk(j)i,l , {sk

(j)
i|z−11,l

}iz=0). Parse each skw,l as (k(0)
w,l,dec,j ,k

(1)
w,l,dec,j ,k

(2)
w,l,dec,j ,k

(1)
w,l,ran,1,j , . . . ,k

(1)
w,l,ran,l+1,j ,

k
(2)
w,l,ran,1,j , . . . ,k

(2)
w,l,ran,r+1,j ,k

(1)
w,l,del,µl+1,j , . . . ,k

(1)
w,l,del,n,j ,k

(2)
w,l,del,(2r+1),j , . . . ,k

(2)
w,l,del,L,j).

For simplicity we only show the transformation of decryption key component (k(0)
w,l,dec,j ,k

(1)
w,l,dec,j ,k

(2)
w,l,dec,j), The

randomness and the delegation components can be constructed in a similar way.

k
(0)
i,l,dec,j = (−αj , εj , 1, ηj , 0)B∗(0) ,

30

k
(1)
i,l,dec,j = (

n︷ ︸︸ ︷
α
(1)
j
−→e (1)

1 + β
(1)
dec,1,j

−→x 1,j , . . . , β
(1)
dec,l,j

−→x l,j , 0n−µl ,

n︷ ︸︸ ︷
γ
(1)
1,j , . . . , γ

(1)
n,j ,

n︷ ︸︸ ︷
η
(1)
1,j , . . . , η

(1)
n,j ,

1︷︸︸︷
0)

B∗(1)
,

k
(2)
i,l,dec,j = (

L︷ ︸︸ ︷
α
(2)
j
−→e (2)

1 + β
(2)
dec,1,j

−→
I 1,j , . . . , β

(2)
dec,κ,j

−→
I κ,j ,

L︷ ︸︸ ︷
γ
(2)
1,j , . . . , γ

(2)
L,j ,

L︷ ︸︸ ︷
η
(2)
1,j , . . . , η

(2)
L,j ,

1︷︸︸︷
0)

B∗(2)
.

c(0) = (δ, w, ζ, 0, ϕ)B(0) ,

c(1) = (δ(−→y (b)
1 , . . . ,−→y (b)

h(b) ,
−→y h(b)+1, . . . ,

−→y d),−→w 1, 0
n, ϕ(1))B(1) ,

c(2) = (δ((1,−i1), . . . , (1,−iκ)),−→w 2, 0
L, ϕ(2))B(2) ,

c(M) = gζTM
(b).

Above keys and challenge ciphertext can also be expressed over bases D(k) and D∗(k) for k = 0, 1, 2 as:

k
(0)
i,l,dec,j = (−αj , εj , 1, ηj , 0)B∗(0) = (−αj , θj , 1, ηj , 0)D∗(0) ,

where θj = εj − λ which are uniformly, independently distributed since εj
U← Fq .

k
(1)
i,l,dec,j = (

n︷ ︸︸ ︷
α
(1)
j
−→e (1)

1 + β
(1)
dec,1,j

−→x 1,j , . . . , β
(1)
dec,l,j

−→x l,j , 0n−µl ,

n︷ ︸︸ ︷
γ
(1)
1,j , . . . , γ

(1)
n,j ,

n︷ ︸︸ ︷
η
(1)
1,j , . . . , η

(1)
n,j ,

1︷︸︸︷
0)

B∗(1)

= (

n︷ ︸︸ ︷
α
(1)
j
−→e (1)

1 + β
(1)
dec,1,j

−→x 1,j , . . . , β
(1)
dec,l,j

−→x l,j , 0n−µl ,

n︷ ︸︸ ︷
θ
(1)
1,j , . . . , θ

(1)
n,j ,

n︷ ︸︸ ︷
η
(1)
1,j , . . . , η

(1)
n,j ,

1︷︸︸︷
0)

D∗(1)

k
(2)
i,l,dec,j = (

L︷ ︸︸ ︷
α
(2)
j
−→e (2)

1 + β
(2)
dec,1,j

−→
I 1,j , . . . , β

(2)
dec,κ,j

−→
I κ,j ,

L︷ ︸︸ ︷
γ
(2)
1,j , . . . , γ

(2)
L,j ,

L︷ ︸︸ ︷
η
(2)
1,j , . . . , η

(2)
L,j ,

1︷︸︸︷
0)

B∗(2)

= (

L︷ ︸︸ ︷
α
(2)
j
−→e (2)

1 + β
(2)
dec,1,j

−→
I 1,j , . . . , β

(2)
dec,κ,j

−→
I κ,j ,

L︷ ︸︸ ︷
γ
(2)
1,j , . . . , γ

(2)
L,j ,

L︷ ︸︸ ︷
η
(2)
1,j , . . . , η

(2)
L,j ,

1︷︸︸︷
0)

D∗(2)
,

where θ(1)i,j = µ
(1)
i,1α

(1)
j + β

(1)
dec,1,j

−→x 1,j · −→µ (1)
i1

+ · · ·+ β
(1)
dec,l,j

−→x l,j · −→µ (1)
il

+ γ
(1)
i,j for i = 1, . . . , n, j = 1, . . . , ν, which

are uniformly, independently distributed since γ(1)i,j
U← Fq .

c0 = (δ, w, ζ, 0, ϕ)B(0) = (δ, w, ζ ′, 0, ϕ)D(0) ,

where ζ ′ = ζ + λw which are uniformly, independently distributed since w, ζ U← Fq .

c(1) = (δ(−→y (b)
1 , . . . ,−→y (b)

h(b) ,
−→y h(b)+1, . . . ,

−→y d),−→w 1, 0
n, ϕ(1))B(1)

= (δ(−→y
′

1, . . . ,
−→y
′

d),
−→w 1, 0

n, ϕ(1))D(1) ,

c(2) = (δ((1,−i1), . . . , (1,−iκ)),−→w 2, 0
L, ϕ(2))B(2)

= (δ((1,−i1), . . . , (1,−iκ)),−→w 2, 0
L, ϕ(2))D(2) ,

where y′i = δy
(b)
i −

−→w 1
−→µ (1)
i for i = 1, . . . , n, which is uniformly and independently distributed since −→w 1

U← Fnq .
In the light of the adversary’s view, both (B(k),B∗(k)) and (D(k),D∗(k)) for k = 0, 1, 2 are consistent with public key
(1λ, param−→n , {B̂(k)}k=0,1,2). Therefore, {SK(j)

i,l }j=1,...,ν and C can be expressed as keys and ciphertext in two ways,
in Game 2-(ν, 0, 0) over bases (B(k),B∗(k)) and in Game 3 over bases (D(k),D∗(k)). Thus, Game 2-(ν, 0, 0) can be
conceptually changed to Game 3 if w 6= 0 (in c(0)), i.e., except with probability 1/q. ut

Lemma 8. For any adversary A, Adv(3)A (λ) = 0.

Proof. The value of b is independent from the adversarys view in Game 3. Hence, Adv(3)A (λ) = 0. ut

31

B.1 Proof of Lemmas 1 and 2

In order to reduce the DLIN problem to Problems 1 and 2 from Definitions 6 and 7, respectively, we further introduce
three “basic problems” that will serve in intermediate steps of the reduction:

– Basic Problem 0 in Definition 8.
– Basic Problem 1 in Definition 9.
– Basic Problem 2 in Definition 10.

In order to prove Lemmas 1 and 2 we use two intermediate Lemmas 9 and 10 which are two common lemmas in the
proofs of Lemmas 1 and 2:

Lemma 9. Let (q,V,GT ,A, e) be dual pairing vector spaces by direct product of symmetric pairing groups. Using
{φi,j}, we can efficiently sample a random linear transformation W =

∑N,N
i=1,j=1 ri,jφi,j of V with random coeffi-

cients {ri,j}i,j∈{1,...,N}
U← GL(N,Fq). The matrix (r∗i,j) = ({ri,j}−1)T defines the adjoint action on V for pairing

e, i.e., e(W (x), (W−1)T (y)) = e(x,y) for any x,y ∈ V, where (W−1)T =
∑N,N
i=1,j=1 r

∗
i,jφi,j .

Definition 8 (Basic Problem 0). Basic Problem 0 is to decide bit β, given (paramBP0, B̂,B∗,y∗β ,f , bG, aG, acG)
R←

GBP0
β (1λ) for β U← {0, 1} with probability non-negligibly better than by a random guess, where

GBP0
β (1λ) :

paramG = (q,G,GT , G, e)
R← Gbpg(1λ),

paramV = (q,V,GT ,A, e)
R← Gdpvs(1λ, 3, paramG),

Λ = (λi,j)
U← GL(3,Fq), (µi,j) = (ΛT)

−1
, b, a

U← F×q ,

bi = b

3∑
j=1

λi,jaj , i = 1, 3, B̂ = (b1, b3),

b∗i = a

3∑
j=1

µi,jaj , i = 1, 2, 3, B∗ = (b∗1, b
∗
2, b
∗
3),

gT = e(G,G)ab, paramBP0 = (paramV, gT),

δ, σ, ω
U← Fq, ρ, τ

U← F×q ,
y∗0 = (δ, 0, σ)B∗ , y∗1 = (δ, ρ, σ)B∗ , f = (ω, τ, 0)B,

Output (paramBP0, B̂,B∗,y∗β ,f , bG, aG, acG).

Let AdvBP0
F (λ) denote the corresponding advantage of a PPT algorithm F for the Basic Problem 0.

Lemma 10. For any adversary F , there exists a probabilistic machine D, whose running time is essentially the same
as that of D, such that for any security parameter λ, AdvBP0

F (λ) ≤ AdvDLIN
D (λ) + 5/q.

The proof of Lemma 10 can be found in [28].

Proof of Lemma 1: Combining Lemma 9, 10, 11 and 12, we obtain Lemma 1.

Definition 9 (Basic Problem 1). Basic Problem 1 is to decide bit β, given (param−→n , {B(k), B̂∗(k)}k=0,1,2,

f
(0)
β ,f

(1)
β,1,f

(2)
β,1, {f

(1)
i }i=2,...,n1

, {f (2)
i }i=2,...,n2

,)
R← GBP1

β (1λ,−→n = (2;n1, n2)) for β U← {0, 1}, with probability
non-negligibly better than by a random guess, where

GBP1
β (1λ,−→n = (2;n1, n2)) :

32

(param−→n ,B(0),B∗(0),B(1),B∗(1),B(2),B∗(2)) R← Gob(1λ,−→n),

B̂∗(0) = (b
∗(0)
1 , b

∗(0)
3 , b

∗(0)
4 , b

∗(0)
5),

B̂∗(1) = (b
∗(1)
1 , . . . , b∗(1)n1

, b
∗(1)
n1+2, . . . , b

∗(1)
3n1+1),

B̂∗(2) = (b
∗(2)
1 , . . . , b∗(2)n2

, b
∗(2)
n2+2, . . . , b

∗(2)
3n2+1),

ω, γ
U← Fq, τ

U← F×q , f
(0)
0 = (ω, 0, 0, 0, γ)B(0) , f

(0)
1 = (ω, τ, 0, 0, γ)B(0) ,

f
(1)
0,1 = (

n1︷ ︸︸ ︷
ω−→e (1)

1 ,

n1︷ ︸︸ ︷
0n1 ,

n1︷ ︸︸ ︷
0n1 ,

1︷︸︸︷
γ)B(1) ,

f
(1)
1,1 = (

n1︷ ︸︸ ︷
ω−→e (1)

1 ,

n1︷ ︸︸ ︷
τ−→e (1)

1 ,

n1︷ ︸︸ ︷
0n1 ,

1︷︸︸︷
γ)B(1) ,

For i = 2, . . . , n1 : f
(1)
i = ωb

(1)
i ;

f
(2)
0,1 = (

n2︷ ︸︸ ︷
ω−→e (2)

1 ,

n2︷ ︸︸ ︷
0n2 ,

n2︷ ︸︸ ︷
0n2 ,

1︷︸︸︷
γ)B(2) ,

f
(2)
1,1 = (

n2︷ ︸︸ ︷
ω−→e (2)

1 ,

n2︷ ︸︸ ︷
τ−→e (2)

1 ,

n2︷ ︸︸ ︷
0n2 ,

1︷︸︸︷
γ)B(2) ,

For i = 2, . . . , n2 : f
(2)
i = ωb

(2)
i ;

Output (param−→n , {B(k), B̂∗(k)}k=0,1,2,f
(0)
β ,f

(1)
β,1,f

(2)
β,1, {f

(1)
i }i=2,...,n1 , {f

(2)
i }i=2,...,n2 ,).

Let AdvBP1
C (λ) denote the advantage of a PPT algorithm C for the Basic Problem 1.

Lemma 11. For any adversary C, there exists a probabilistic machine F , whose running time is essentially the same
as that of C, such that for any security parameter λ, AdvBP1

C (λ) ≤ AdvBP0
F (λ) for −→n = (2;n1, n2).

Proof. F is given a Basic Problem 0 instance (paramBP0, B̂,B∗,y∗β ,f , bG, aG, acG). Using paramG = (q,G,GT ,
G, e) contained in paramBP0, F computes:

paramV0
= (q,V0,GT ,A0, e)

R← Gdpvs(1λ, 5, paramG),

paramVl = (q,Vl,GT ,Al, e)
R← Gdpvs(1λ, 3nl + 1, paramG), l = 1, 2,

param−→n = ({paramVl}l=0,1,2, gT),

where gT is contained in paramBP0. F generates random linear transformation Wl on Vl(l = 0, 1, 2) given in Lemma
9, then sets

d
(0)
l =W0(b

∗
l , 0, 0), l = 1, 2; d

(0)
3 =W0(0, 0, 0, 0, aG),

d
(0)
4 =W0(0, 0, 0, aG, 0), d

(0)
5 =W0(b

∗
3, 0, 0),

d
∗(0)
l = (W−10)T (bl, 0, 0), l = 1, 2; d

∗(0)
3 = (W−10)T (0, 0, 0, 0, bG),

d
∗(0)
4 = (W−10)T (0, 0, 0, bG, 0), d

∗(0)
5 = (W−10)T (b3, 0, 0),

g
(0)
β =W0(y

∗
β , 0, 0),

d
(1)
1 =W1(b

∗
1, 0

N1−3), d
(1)
n1+1 =W1(b

∗
2, 0

N1−3), d
(1)
N1

=W1(b
∗
3, 0

N1−3),

d
(1)
l =W1(0

m, aG, 0N1−m−1) where

{
m = l + 1 if l ∈ {2, . . . , n1},
m = l if l ∈ {n1 + 2, . . . , N1 − 1},

d
∗(1)
1 = (W−11)T (b1, 0

N1−3), d
∗(1)
n1+1 = (W−11)T (b2, 0

N1−3), d
∗(1)
N1

= (W−11)T (b3, 0
N1−3),

33

d
∗(1)
l = (W−11)T (0m, bG, 0N1−m−1) where

{
m = l + 1 if l ∈ {2, . . . , n1},
m = l if l ∈ {n1 + 2, . . . , N1 − 1},

g
(1)
β,1 =W1(y

∗
β , 0

N1−3),

g
(1)
l =W1(0

l+1, acG, 0N1−l−2), l = 2, . . . , n1;

d
(2)
1 =W2(b

∗
1, 0

N2−3), d
(2)
n2+1 =W2(b

∗
2, 0

N2−3), d
(2)
N2

=W2(b
∗
3, 0

N2−3),

d
(2)
l =W2(0

m, aG, 0N2−m−1) where

{
m = l + 1 if l ∈ {2, . . . , n2},
m = l if l ∈ {n2 + 2, . . . , N2 − 1},

d
∗(2)
1 = (W−12)T (b1, 0

N2−3), d
∗(2)
n2+1 = (W−12)T (b2, 0

N2−3), d
∗(2)
N2

= (W−12)T (b3, 0
N2−3),

d
∗(2)
l = (W−12)T (0m, bG, 0N2−m−1) where

{
m = l + 1 if l ∈ {2, . . . , n2},
m = l if l ∈ {n2 + 2, . . . , N2 − 1},

g
(2)
β,1 =W2(y

∗
β , 0

N2−3),

g
(2)
l =W2(0

l+1, acG, 0N2−l−2), l = 2, . . . , n2;

where (v, 0Nl−3) = (G′, G′′, G′′′, 0Nl−3) for any v = (G′, G′′, G′′′) ∈ V = G3. In this way bases D(0) =

(d
(0)
l)l=1,...,5 and D∗(0) = (d

∗(0)
l)l=1,...,5, D(j) = (d

(j)
l)l=1,...,3nj+1 and D∗(j) = (d

∗(j)
l)l=1,...,3nj+1, j = 1, 2

are dual orthonormal bases.

Therefore, from B̂ = (b1, b3), B∗, bG, and aG the algorithm F can compute D(j), j = 0, 1, 2; D̂∗(0) = (d
∗(0)
1 ,d

∗(0)
3 ,

d
∗(0)
4 ,d

∗(0)
5), and D̂∗(j) = (d

∗(j)
1 , . . . ,d

∗(j)
nj ,d

∗(j)
nj+2, . . . ,d

∗(j)
3nj+1), j = 1, 2.

Finally, F hands (param−→n , {D(k), D̂∗(k)}k=0,1,2, g
(0)
β , g

(1)
β,1, g

(2)
β,1, {g

(1)
i }i=2,...,n1

, {g(2)
i }i=2,...,n2

,) over to C and, if
C outputs its bit β′ then F forwards this bit as its own output.

We observe that:

g
(0)
0 = (ω′, 0, 0, 0, γ′)D(0) , g

(0)
1 = (ω′, τ ′, 0, 0, γ′)D(0) ,

g
(1)
0,1 = (

n1︷ ︸︸ ︷
ω′−→e (1)

1 ,

n1︷ ︸︸ ︷
0n1 ,

n1︷ ︸︸ ︷
0n1 ,

1︷︸︸︷
γ′)D(1) , g

(2)
0,1 = (

n2︷ ︸︸ ︷
ω′−→e (2)

1 ,

n2︷ ︸︸ ︷
0n2 ,

n2︷ ︸︸ ︷
0n2 ,

1︷︸︸︷
γ′)D(2) ,

g
(1)
1,1 = (

n1︷ ︸︸ ︷
ω′−→e (1)

1 ,

n1︷ ︸︸ ︷
τ ′−→e (1)

1 ,

n1︷ ︸︸ ︷
0n1 ,

1︷︸︸︷
γ′)D(1) , g

(2)
1,1 = (

n2︷ ︸︸ ︷
ω′−→e (2)

1 ,

n2︷ ︸︸ ︷
τ ′−→e (2)

1 ,

n2︷ ︸︸ ︷
0n2 ,

1︷︸︸︷
γ′)D(2)

g
(1)
i = ω′b

(1)
i , i = 2, . . . , n1; g

(2)
i = ω′b

(2)
i , i = 2, . . . , n2;

where ω′ = δ, τ ′ = ρ, γ′ = σ are distributed uniformly in Fq , Therefore, the distribution of (param−→n , {D(k),

D̂∗(k)}k=0,1,2, g
(0)
β , g

(1)
β,1, g

(2)
β,1, {g

(1)
i }i=2,...,n1

, {g(2)
i }i=2,...,n2

) is exactly the same as in the instance of Basic Prob-
lem 1. ut

Lemma 12. For any adversary B, there exists a probabilistic machine C, whose running time is essentially the same
as that of B, such that for any security parameter λ, AdvP1

B (λ) ≤ AdvBP1
C (λ) + 3/q for (−→n = (2;n1, n2)).

Proof. C is given an instance of the Basic Problem 1, that is a tuple (param−→n , {B(k), B̂∗(k)}k=0,1,2,f
(0)
β ,f

(1)
β,1,f

(2)
β,1,

{f (1)
i }i=2,...,n1

, {f (2)
i }i=2,...,n2

), and computes r
U← span〈b(1)3n1+1〉, r′

U← span〈b(2)3n2+1〉, and sets t
(1)
β,1 = f

(1)
β,1 + r

and t
(2)
β,1 = f

(2)
β,1 + r′.

Then, C chooses u0
U← F×q , (u(k)i,j)

U← GL(Fq, nk), (z(k)i,j) =
(
(u

(k)
i,j)
−1)T

for i = 1, . . . , nk, j = 1, . . . , nk, and
k = 1, 2, and computes:

d
(0)
2 = (0, u0, 0, 0, 0)B(0) ,

34

d
(k)
nk+i

= (

nk︷ ︸︸ ︷
0nk ,

nk︷ ︸︸ ︷
u
(k)
i,1 , . . . , u

(k)
i,nk

,

nk︷ ︸︸ ︷
0nk ,

1︷︸︸︷
0)B(k)

, i = 1, . . . , nk, k = 1, 2.

C then sets dual orthonormal basis vectors

d
∗(0)
2 = (0, u−10 , 0, 0, 0)B∗(0) ,

d
∗(k)
nk+i

= (

nk︷ ︸︸ ︷
0nk ,

nk︷ ︸︸ ︷
z
(k)
i,1 , . . . , z

(k)
i,nk

,

nk︷ ︸︸ ︷
0nk ,

1︷︸︸︷
0)B∗(k) , i = 1, . . . , nk, k = 1, 2.

Note that C cannot compute d
∗(0)
2 and d

∗(k)
nk+i

, i = 1, . . . , nk, k = 1, 2 due to the lack of b∗(0)2 and b
∗(k)
nk+1.

Then, C sets bases D(0) = (b
(0)
1 ,d

(0)
2 , b

(0)
3 , b

(0)
4 , b

(0)
5), D̂∗(0) = (b

∗(0)
1 , b

∗(0)
3 , b

∗(0)
4 , b

∗(0)
5), D(k) = (b

(k)
1 , . . . , b

(k)
nk ,

d
(k)
nk+1, . . . ,d

(k)
2nk

, b
(k)
2nk+1, . . . , b

(k)
3nk+1), D̂∗(k) = (b

∗(k)
1 , . . . , b

∗(k)
nk , b

∗(k)
2nk+1, . . . , b

∗(k)
3nk+1), k = 1, 2.

Finally, C hands (param−→n , {D(k), D̂∗(k)}k=0,1,2,f
(0)
β , t

(1)
β,1, t

(2)
β,1, {f

(1)
i }i=2,...,n1

, {f (2)
i }i=2,...,n2

) over to B and, if B
outputs its bit β′ then C forwards this bit as its own output. Note that with respect to D(k),D∗(k), k = 0, 1, 2, the above
input to B has the same distribution as the instance of the Problem 1 unless following events occur: u = 0,−→u (1) =

−→
0 ,

or −→u (2) =
−→
0 . Those events occur with probability 3/q when β = 1. ut

Proof of Lemma 2: Combining Lemmas 9, 10, 13 and 14, we obtain Lemma 2.

Definition 10 (Basic Problem 2). Basic Problem 2 is to find bit β, given (param−→n , B̂(0),B∗(0),y∗(0)β ,f (0), {B̂(k),

B∗(k), {y∗(k)β,i ,f
(k)
i }i=1,...,nk}k=1,2)

R← GBP2
β (1λ,−→n = (2;n1, n2)) for β U← {0, 1} with probability non-negligibly

better than by a random guess, where

GBP2
β (1λ,−→n = (2;n1, n2)) :

(param−→n ,B(0),B∗(0),B(1),B∗(1),B(2),B∗(2)) R← Gob(1λ,−→n),

B̂(0) = (b
(0)
1 , b

(0)
3 , b

(0)
4 , b

(0)
5),

B̂(1) = (b
(1)
1 , . . . , b(1)n1

, b
(1)
2n1+1, . . . , b

(1)
3n1+1),

B̂(2) = (b
(2)
1 , . . . , b(2)n2

, b
(2)
2n2+1, . . . , b

(2)
3n2+1),

ω, ξ, δ
U← Fq, z, π

U← F×q ,

y
∗(0)
0 = (ω, 0, 0, ξ, 0)B∗(0) , y

∗(0)
1 = (ω, z, 0, ξ, 0)B∗(0) , f (0) = (δ, π, 0, 0, 0)B(0) ,

For k = 1, 2 and i = 1, . . . , nk :

y
∗(k)
0,i = (

nk︷ ︸︸ ︷
ω−→e (k)

i ,

nk︷ ︸︸ ︷
0nk ,

nk︷ ︸︸ ︷
ξ−→e (k)

i ,

1︷︸︸︷
0)B∗(k) ,

y
∗(k)
1,i = (

nk︷ ︸︸ ︷
ω−→e (k)

i ,

nk︷ ︸︸ ︷
z−→e (k)

i ,

nk︷ ︸︸ ︷
ξ−→e (k)

i ,

1︷︸︸︷
0)B∗(k) ,

f
(k)
i = (

nk︷ ︸︸ ︷
δ−→e (k)

i ,

nk︷ ︸︸ ︷
π−→e (k)

i

nk︷ ︸︸ ︷
0nk ,

1︷︸︸︷
0)B(k) ,

Output (param−→n , B̂(0),B∗(0),y∗(0)β ,f (0), {B̂(k),B∗(k), {y∗(k)β,i ,f
(k)
i }i=1,...,nk}k=1,2).

Let AdvBP2
C (λ) denote the corresponding advantage of a PPT algorithm C for the Basic Problem 2.

Lemma 13. For any adversary C, there exists a probabilistic machine F , whose running time is essentially the same
as that of C, such that for any security parameter λ, AdvBP2

C (λ) = AdvBP0
F (λ) for −→n = (2;n1, n2).

35

Proof. F is given an instance of the Basic Problem 0, i.e. (paramBP0, B̂,B∗,y∗β ,f , bG, aG, acG). Using paramG =
(q,G,GT , G, e) contained in paramBP0 it computes

paramV0
= (q,V0,GT ,A0, e)

R← Gdpvs(1λ, 5, paramG),

paramVl = (q,Vl,GT ,Al, e)
R← Gdpvs(1λ, 3nl + 1, paramG), l = 1, 2,

param−→n = ({paramVl}l=0,1,2, gT),

where gT is contained in paramBP0. Then, F generates random linear transformation Wl on Vl(l = 0, 1, 2) given in
Lemma 9 and sets

d
(0)
l =W0(bl, 0, 0), l = 1, 2; d

(0)
3 =W0(0, 0, 0, 0, bG),

d
(0)
4 =W0(b3, 0, 0), d

(0)
5 =W0(0, 0, 0, bG, 0),

d
∗(0)
l = (W−10)T (b∗l , 0, 0), l = 1, 2; d

∗(0)
3 = (W−10)T (0, 0, 0, 0, aG),

d
∗(0)
4 = (W−10)T (b∗3, 0, 0), d

∗(0)
5 = (W−10)T (0, 0, 0, aG, 0),

p
∗(0)
β = (W−10)T (y∗β , 0, 0), g(0) =W0(f , 0, 0),

For k = 1, 2 :

For l = 1, 2, 3 and i = 1, . . . , nk :

d
(k)
(l−1)nk+i =Wk(0

3(i−1), bl, 0
3(nk−i), 0),

d
(k)
3nk+1 =Wk(0

3nk , bG),

For l = 1, 2, 3 and i = 1, . . . , nk :

d
∗(k)
(l−1)nk+i = (W−1k)T (03(i−1), b∗l , 0

3(nk−i), 0),

d
∗(k)
3nk+1 = (W−1k)T (03nk , aG),

For i = 1, . . . , nk :

p
∗(k)
β,i = (W−1k)T (03(i−1),y∗β , 0

3(nk−i), 0),

g
(k)
i =W1(0

3(i−1),f , 03(nk−i), 0).

Observe that D(0) = (d
(0)
l)l=1,...,5 and D∗(0) = (d

∗(0)
l)l=1,...,5, D(j) = (d

(j)
l)l=1,...,3nj+1 and D∗(j) = (d

∗(j)
l)l=1,...,3nj+1,

j = 1, 2 are dual orthonormal bases.
Therefore, F can use B̂ = (b1, b3), B∗, bG, and aG to compute bases D∗(j), j = 0, 1, 2; D̂(0) = (d

(0)
1 ,d

(0)
3 ,d

(0)
4 ,

d
(0)
5), and D̂(j) = (d

(j)
l , . . . ,d

(j)
nj ,d

(j)
2nj+1, . . . ,d

(j)
3nj+1), j = 1, 2.

Finally, F hands (param−→n , D̂(0),D∗(0),p∗(0)β , g(0), {D̂(k),D∗(k), {p∗(k)β,i , g
(k)
i }i=1,...,nk}k=1,2) over to C and, if C out-

puts a bit β′, forwards this bit as its own output.
Observe that:

p
∗(0)
0 = (ω, 0, 0, ξ, 0)D∗(0) , p

∗(0)
1 = (ω, z, 0, ξ, 0)D∗(0) , g(0) = (δ, π, 0, 0, 0)D(0) ,

For k = 1, 2 and i = 1, . . . , nk :

p
∗(k)
0,i = (

nk︷ ︸︸ ︷
ω−→e (k)

i ,

nk︷ ︸︸ ︷
0nk ,

nk︷ ︸︸ ︷
ξ−→e (k)

i ,

1︷︸︸︷
0)D∗(k) ,

p
∗(k)
1,i = (

nk︷ ︸︸ ︷
ω−→e (k)

i ,

nk︷ ︸︸ ︷
z−→e (k)

i ,

nk︷ ︸︸ ︷
ξ−→e (k)

i ,

1︷︸︸︷
0)D∗(k) ,

g
(k)
i = (

nk︷ ︸︸ ︷
δ−→e (k)

i ,

nk︷ ︸︸ ︷
π−→e (k)

i

nk︷ ︸︸ ︷
0nk ,

1︷︸︸︷
0)D(k) .

Therefore, the distribution of (param−→n , D̂(0),D∗(0),p∗(0)β , g(0), {D̂(k),D∗(k), {p∗(k)β,i , g
(k)
i }i=1,...,nk}k=1,2) is exactly

the same as in the instance of the Basic Problem 2. ut

36

Lemma 14. For any adversary B, there exists a probabilistic machine C, whose running time is essentially the same
as that of B, such that for any security parameter λ, AdvP2

B (λ) = AdvBP2
C (λ).

Proof. Given an instance of the Basic Problem 2, that is a tuple (param−→n , B̂(0),B∗(0),y∗(0)β ,f (0), {B̂(k),B∗(k), {y∗(k)β,i ,

f
(k)
i }i=1,...,nk}k=1,2) the algorithm C computes r

∗(k)
i

U← span〈b∗(k)2nk+1, . . . , b
∗(k)
3nk
〉 and sets h

∗(k)
β,i = y

∗(k)
β,i + r

∗(k)
i ,

k = 1, 2.
Then, C chooses z′0

U← F×q , (z′(k)i,j)
U← GL(Fq, nk), i = 1, . . . , nk, j = 1, . . . , nk, k = 1, 2, and computes:

d
∗(0)
2 = (0, z′0, 0, 0, 0)B∗(0) ,

d
∗(k)
nk+i

= (

nk︷ ︸︸ ︷
0nk ,

nk︷ ︸︸ ︷
z′

(k)
i,1 , . . . , z

′(k)
i,nk

,

nk︷ ︸︸ ︷
0nk ,

1︷︸︸︷
0)B∗(k) , i = 1, . . . , nk, k = 1, 2,

Then, C sets z0 = z−1z′0, u0 = z−10 , (z
(k)
i,j) = z−1(z′

(k)
i,j), and (u

(k)
i,j) =

(
(z

(k)
i,j)
−1)T

, where z is defined as in the
Basic Problem 2. This leads to

d
∗(0)
2 = (0, zz0, 0, 0, 0)B∗(0) ,

d
∗(k)
nk+i

= (

nk︷ ︸︸ ︷
0nk ,

nk︷ ︸︸ ︷
zz

(k)
i,1 , . . . , zz

(k)
i,nk

,

nk︷ ︸︸ ︷
0nk ,

1︷︸︸︷
0)B∗(k) , i = 1, . . . , nk, k = 1, 2,

d
(0)
2 = (0, z−1u0, 0, 0, 0)B(0) ,

d
(k)
nk+i

= (

nk︷ ︸︸ ︷
0nk ,

nk︷ ︸︸ ︷
z−1u

(k)
i,1 , . . . , z

−1u
(k)
i,nk

,

1︷︸︸︷
0,

1︷︸︸︷
0)B(k)

, i = 1, . . . , nk, k = 1, 2.

C then computes D∗(0) = (b
∗(0)
1 ,d

∗(0)
2 , b

∗(0)
3 , b

∗(0)
4 , b

∗(0)
5), D̂(0) = (b

(0)
1 , b

(0)
3 , b

(0)
4 , b

(0)
5), D∗(k) = (b

∗(k)
1 , . . . , b

∗(k)
nk ,

d
∗(k)
nk+1, . . . ,d

∗(k)
2nk

, b
∗(k)
2nk+1, . . . , b

∗(k)
3nk+1), D̂(k) = (b

(k)
1 , . . . , b

(k)
nk , b

(k)
2nk+1, . . . , b

(k)
3nk+1), k = 1, 2.

Finally, C hands (param−→n , D̂(0),D∗(0),y∗(0)β ,f (0), {D̂(k),D∗(k), {y∗(k)β,i ,f
(k)
i }i=1,...,nk}k=1,2) over to B and outputs

β′ ∈ {0, 1} if B outputs β′.
For π in Basic Problem 2, let π′ = zπ. Then, with respect to π′,D(k),D∗(k), k = 0, 1, 2, the above answer to B has
the same distribution as in the instance of Problem 2. ut

37

	Forward-Secure Hierarchical Predicate Encryption
	Juan Manuel González Nieto1 and Mark Manulis2 and Dongdong Sun1

