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Abstract. In this paper we present a comprehensive comparison of all Round 3 SHA-3 
candidates and the current standard SHA-2 from the point of view of hardware performance in 
modern FPGAs. Each algorithm is implemented using multiple architectures based on the 
concepts of iteration, folding, unrolling, pipelining, and circuit replication. Trade-offs between 
speed and area are investigated, and the best architecture from the point of view of the 
throughput to area ratio is identified. Finally, all algorithms are ranked based on their overall 
performance in FPGAs. The characteristic features of each algorithm important from the point 
of view of its implementation in hardware are identified. 

 
Keywords: benchmarking, hash functions, SHA-3, hardware, FPGA. 

 
1. Introduction 
 
Performance in hardware is one of the major criteria used in the SHA-3 competition [1]. Typically, this 
performance is evaluated using two major technologies: Field Programmable Gate Arrays (FPGAs) and 
Application Specific Integrated Circuits (ASICs). Comparison using FPGAs offers several important 
advantages, such as short development time, accurate post place & route results, existence of tools for 
optimum choice of program options and automated collection of a large number of results [2,16], and 
relatively small number of vendors and device families that dominate the market. As a result, our FPGA 
performance evaluation covers significantly broader design space than any ASIC comparison we are 
aware of. In particular, in this paper, each of the SHA-3 finalists is implemented in both basic variants, 
with a 256-bit and a 512-bit output, and each variant is implemented using from 5 to 10 different 
hardware architectures based on the concepts of iteration, folding, unrolling, pipelining, and circuit 
replication. Each architecture is equipped with a realistic FIFO-based interface with a modest pin 
requirement, and the capability for simultaneous processing of the current message block, reading the 
next message block, and writing the previously computed hash value to the output FIFO [15,23,24]. 
Unlike any ASIC implementations, and majority of earlier reported FPGA implementations, our SHA-3 
candidate cores are equipped with full padding units, capable of processing any messages ending on a 
boundary of a byte. All VHDL source codes have been developed by two primary designers, closely 
collaborating with each other, which substantially minimizes the potential influence of different designer 
skills. Majority of source codes and the corresponding block diagrams have been published on the web 
and made available for public scrutiny [5]. All cores have been implemented and characterized using four 
modern high-performance FPGA families from two major vendors, Xilinx and Altera. All implementation 
results have been optimized and generated using ATHENa (Automated Tool for Hardware Evaluation) 
[2,16]. The details of all 600+ results are available in the ATHENa database [3], where they can be 
interactively accessed, reviewed, ranked, searched for, and compared to one another. For each set of 
results, ATHENa database holds also a set of replication scripts and configuration files that can be used 
by a third party to efficiently reproduce all results without using ATHENa. Finally, we also demonstrate 
in this paper that selected FPGA results show very good correlation with the corresponding ASIC results 
[20] obtained using a typical standard-cell library based on the similar 65nm CMOS technology. 
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2. Previous Work 
 
Previous results on comparison of Round 2 SHA-3 candidates in hardware are summarized in [7,3,4]. 
These results are classified into four major categories, based on the technology (FPGA vs. ASIC), and the 
optimization target (High-Speed vs. Low-Area). The previous results most relevant to the subject of this 
paper belong to the category of High-Speed Implementations in FPGAs. The most comprehensive results 
belonging to this category were reported by Baldwin et al. [10,11], Gaj et al. [15], Homsirikamol et al. 
[23], Matsuo et al. [34], and Knežević et al. [32]. All these groups have published results for all 14 Round 
2 candidates. Majority of published results concern 256-bit variants of the candidates, implemented using 
Xilinx Virtex 5 FPGAs. In [23], results for 256-bit and 512-bit variants of all algorithms, implemented 
using 10 FPGA families from Xilinx and Altera are discussed. Additionally, pipelined implementations of 
three Round 2 SHA-3 candidates have been investigated in [8]. In our earlier paper, published at CHES 
2011 [24], we investigated the throughput vs. area trade-offs in implementations of SHA-2 and five SHA-
3 finalists. In this paper, we present results obtained by extending each architecture with a padding unit, 
and optimizing selected pipelined implementations of the SHA-3 candidates. A similar study, limited to 
most efficient high-speed single-message architectures has been reported in [33]. Additionally, two 
unified high-speed hardware architectures of AES and Groestl have been reported in [25,36]. The 
influence of system parameters on the performance of selected SHA-3 candidates have been investigated 
in [14]. 

Several comprehensive comparisons of low-area implementations of Round 3 SHA-3 candidates in 
FPGAs have been presented in [26,27,29,30,31]. Additional results for BLAKE and Skein have been 
discussed in [13,9]. The most comprehensive studies of ASIC implementations of the Round 3 SHA-3 
candidates have been described in [18,19,20] and documented in [4]. These studies follow previous 
investigation of Round 2 SHA-3 candidates described in [17,21,22,38]. 

All results obtained based on the Round 2 specifications of SHA-3 candidates carry without any 
changes for Keccak and Skein. The specifications of BLAKE, Groestl, and JH have been tweaked at the 
start of Round 3, in January 2011. The throughput of the Round 3 BLAKE and JH can be calculated 
based on the results from Round 2 by decreasing it by a factor proportional to the increase in the number 
of rounds. The area of these implementations will remain practically the same. The change in the 
throughput and area of Groestl is much more difficult to approximate, as demonstrated in [35]. 

 
3. Performance Metrics 
 
Three major performance metrics used in our study are throughput, area, and throughput to area ratio.  
Throughput presented in all tables and graphs in this paper (except Section 11) is calculated as the 
throughput for long messages. The formulas describing the adjustments to the values of the throughput 
required when processing short messages are presented in Section 11. 
The resource utilization in FPGAs is a vector, with coordinates specific to the given FPGA family, e.g. 

Resource UtilizationVirtex 5 = (#CLB slices, #BRAMs, #DSPs)                                        (1) 

Resource UtilizationStratix III = (#ALUTs, #memory_bits, #DSPs).                                       (2) 

In these formulas: #CLB_slices is the number of Configurable Logic Block slices, BRAM stands for 
Block RAM, DSP is a Digital Signal Processing unit, #ALUTs represents the number of Adaptive Look-
Up Tables, and #mem-bits is the number of bits stored in dedicated Altera FPGA memories. 

Taking into account that vectors cannot be easily compared to one another, we have decided to opt out 
of using any dedicated resources in the hash function implementations used for our comparison. Thus, all 
coordinates of our vectors, other than the first one have been forced (by choosing appropriate options of 
the synthesis and implementation tools) to be zero. This way, our resource utilization (further referred to 
as Area) is characterized using a single number, specific to the given family of FPGAs, namely 
#CLB_slices for Xilinx Virtex 5 and Virtex 6, #ALUTs in Stratix III and Stratix IV. 
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4. Investigated Hardware Architectures 
 
Investigated architectures are described in more detail in our earlier paper presented at CHES 2011 [24]. 
Additionally, full VHDL source codes and corresponding hierarchical block diagrams of majority of these 
architectures have been published at [5]. Below, we present only a short summary of major features of the 
known-to-date high-speed and medium-speed hardware architectures of SHA-3 finalists. 

A starting point for our exploration is the basic iterative architecture, shown in Fig. 1a. This 
architecture is the most efficient (in terms of the throughput to area ratio) non-pipelined architecture of 
SHA-2, Groestl, JH, and Keccak. 

In order to reduce area necessary to implement a given hash algorithm, at the cost of decreasing its 
throughput, folded architectures can be used. These architectures can be employed only if a round of a 
hash function has a symmetric structure with respect to either horizontal or vertical axis (with input to a 
round shown at the top and output shown at the bottom of the round block), as illustrated in Fig. 1. 

In Fig. 1b, horizontal folding by a factor of two is demonstrated. We will denote this architecture by 
/2(h). In this architecture, a half of a round is implemented as combinational logic, and the entire round is 
executed using two clock cycles. As a result, the block processing time (and thus also throughput) stays 
approximately the same, and area decreases. These dependencies lead to the overall increase of the 
Throughput to Area ratio. In general, folding by a factor of k might be possible, and the corresponding 
architecture will be denoted by /k(h). Among the five finalists, the only candidate that can benefit 
substantially from horizontal folding is BLAKE. The round of BLAKE consists of two horizontal layers 
of identical G functions, separated only by a permutation. By implementing only one layer in 
combinational logic, horizontal folding by a factor of two can be easily achieved. Additionally, each G 
function has a very symmetric structure along the horizontal axis, and can be easily folded horizontally by 
a factor of 2. As a result, a folding factor of 4 can be achieved for the entire round. Other SHA-3 finalists 
do not demonstrate any similar symmetry.  

In Fig. 1c, we demonstrate vertical folding by a factor of 2. We will denote this folding by /2(v). In 
this architecture, the datapath width is reduced by a factor of two. As a result two clock cycles are 
required to complete a round. In the first clock cycle, only bits of the internal state affecting the first half 
of the round output are provided to the input of R/2. In the second clock cycle, the remaining bits of the 
internal state are processed. The first output is stored in an auxiliary register of the size of s/2 bits. This 
output is concatenated with the output from the second iteration to form a new internal state. The clock 
period of this architecture is approximately equal to the clock period of the basic iterative architecture. As 
a result, the block processing time increases approximately by a factor of two compared to the basic 
iterative architecture. The area  reduction is also  smaller than in case of horizontal folding, because of the 
need for  an extra s/2-bit register and a multiplexer.  As a result the throughput to area ratio is likely to go  

 

                            
 
Fig. 1. Three hardware architectures of a hash function: a) basic iterative, x1, b) folded horizontally by a 

factor of 2, /2(h), c) folded vertically by a factor of 2, /2(v).   
Notation: R – round, R/2 – half-round, S1, S2 – selection functions, s – state size in bits. 
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down. In general, vertical  folding by  a factor  of k might be possible,  and  the corresponding 
architecture will be denoted by /k(v). Out of five final SHA-3 candidates, BLAKE and Groestl are most 
suitable for vertical folding. JH can be folded, but the gain in area is not expected to be substantial, 
because the round of JH is very simple, and does not dominate the total area of the circuit. For Skein and 
Keccak, the internal round symmetry, necessary for implementation of vertical folding, is limited.  

For vertical folding with the factor k≥4 it is beneficial to store the internal state in memory, rather 
than in registers. The obtained throughput to area ratio can be substantially increased as a result of this 
change in the storage element. We will denote the obtained architectures as /k(v)-m. 

In order to increase circuit throughput for processing of a single message, unrolling can be used. In 
Fig. 2a, architecture with unrolling by a factor of two is demonstrated. The combinational logic of a round 
is replicated, so now two rounds are performed per clock cycle. Since the total number of clock cycles is 
reduced approximately by a factor of two, and the clock period increases by a factor less than two (due to 
optimizations on the boundaries of two rounds, and the smaller relative contributions of the multiplexer 
delay, the register delay, and the register setup time), the total throughput increases. Unfortunately, at the 
same time, the area of the circuit is likely to increase by a factor close to the unrolling factor. As a result, 
in most cases, the throughput to area ratio decreases substantially compared to the basic iterative 
architecture. As such, architectures with unrolling are typically used only when throughput for a single 
long message is of the utmost concern, and area is abundant.   

Nevertheless, there are exceptions to this rule. Unrolling can improve the throughput to area ratio 
when rounds used by an algorithm in subsequent iterations are not the same, or there is a potential for 
substantial delay reductions on the boundary between consecutive rounds. Among the five final SHA-3 
finalists, this situation happens only for Skein. As a result, the throughput to area ratio of Skein becomes 
optimum for one of the unrolled architectures. 

Further increase in the throughput and the throughput to area ratio of SHA-3 candidates is possible by 
using pipelined architectures. In order to take full advantage of the pipelined architectures multiple 
messages must be processed at the same time. Luckily, this is exactly the situation that appears most often 
in practical applications of hash functions. For example, in the most widespread Internet security 
protocols, such as IPSec, SSL, and WLAN (802.11), the inputs to a hash unit are packets. The maximum 
size of a packet for Internet is limited by so called Maximum Transmission Unit (MTU). The typical size 
of MTU for Ethernet based networks is 1500 bytes. The Maximum Transmission Unit for the Internet 
IPv4 path is even smaller, and set to 576 bytes. As a result, in a typical internet node, up to 80% of 
packets processed have the size of 576 bytes or less, and 100% of packets have sizes equal or smaller than 
1500 bytes. Such small sizes of packets mean that hundreds of packets could be easily buffered in the 
processing nodes, in the form of packet queues, without introducing any significant latency to the total 
packet travel time from the source to destination. Therefore, the capabilities for parallel processing 
(including pipelining) seem to be primarily limited by the total area of the hash unit, and not by the 
number of messages available in parallel. In this paper, we will assume that the number of messages 
available in parallel is large (at least 10), and we will look at the combined throughput for all available 
streams of data. 

The easiest way to implement pipelining in hash functions is to first unroll, and then introduce 
pipeline registers between adjacent rounds. The simplest case is the architecture that is two times 
unrolled, and has two pipeline stages, as shown in Fig. 2b. We will denote this architecture as x2-PPL2. 
The throughput to area ratio remains roughly the same, and may be either larger or smaller than in the 
basic iterative architecture, depending on a particular algorithm. The more challenging way of using 
pipelining is to introduce pipeline registers inside of a hash function round, as shown in Fig. 2c. The 
improvement in throughput compared to the basic iterative architecture is then equal (either exactly or at 
least approximately) to the ratio of the new clock frequency to the original clock frequency. Since the 
critical path is reduced, the increase in throughput is guaranteed, but its level depends on how well the 
critical path has been divided by pipeline registers into shorter paths with approximately equal delays. At 
the same time, the area of the circuit increases by the area of pipeline registers, plus any logic required for  
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Fig. 2. Three hardware architectures of a hash function a) unrolled by a factor of 2, x2, b) unrolled by a 
factor of 2 with 2 pipeline stages, x2-PPL2, c) basic iterative with 2 pipeline stages, x1-PPL2.  

Notation: R – round, R/2 – half-round, s – state size in bits. 
 
simultaneous processing of multiple streams of data.  The throughput to area  ratio may  increase,   but the  
improvement  is   not guaranteed   for  all  algorithms,  and   all  FPGA  families,   and  may  be   small  or 
negative in case the basic iterative architecture operates already at the clock frequency close to the 
maximum clock frequency supported by a given FPGA family. 

The final alternative is architecture obtained by replicating the entire circuit multiple number of times. 
We call this architecture a multi-unit architecture, and we denote it by MUn, where n denotes the number 
of repetitions of the hash core. Obviously, in this architecture, throughput and area increase 
proportionally, and n messages are required to be present concurrently in order to take full advantage of 
the potential increase in throughput. A typical design approach would be to first find an architecture with 
the best throughput to area ratio, and then replicate it as many times as necessary in order to reach the 
desired throughput. 

The formulas for the throughput of all aforementioned architectures, assuming processing of long 
messages, are summarized in Table 1. 
 
Table 1: Formulas for the Throughput, Tp, of all investigated architectures. Notation: b – block size, r – 
number of rounds, f – number of clock cycles required to finalize computations for a block (f = 0 for 
Keccak and Groestl (P+Q), f=1 for all remaining algorithms), k – folding factor or unrolling factor, n – 
number of pipeline stages, T – clock period. 
 

Notation Architecture Throughput 
x1 Basic iterative Tp = b/(( r + f ) ⋅ T) 
/k Folded by a factor of k Tp = b/(( k⋅r + f ) ⋅ T) 
xk Unrolled by a factor of k Tp = b/(( r/k + f ) ⋅ T) 
x1-PPLn Basic iterative 

with n pipeline stages 
Tp = n⋅b/(( n⋅r + f ) ⋅ T) 

/k-PPLn Folded by a factor of k 
with n pipeline stages 

Tp = n⋅b/(( n⋅k⋅r + f ) ⋅ T) 

xk-PPLn Unrolled by a factor of k 
with n pipeline stages 

Tp* = n⋅b/(( n⋅r/k + f ) ⋅ T) 

MUn Multi-unit architecture based 
on n repetitions of the basic 
iterative architecture 

Tp = n⋅b/(( r + f ) ⋅ T) 

•  for Skein a modified formula, Tp = n⋅b/n⋅(r/k + f )⋅T, applies 
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5. Design Methodology and Design Environment 
 
Our designs for the basic iterative, folded, and unrolled architectures use the interface and the 
communication protocol proposed in [15,23]. Our designs for the pipelined architectures, use the interface 
and surrounding logic shown in Fig. 3. Input FIFOs serve as packet queues. Each FIFO communicates 
with the corresponding Padding Unit and the associated Finite State Machine 1 (FSM1). FSM1 is 
responsible for loading the next block of data and padding the last block of a message, if needed (possibly 
in parallel with the Datapath processing the previous block under the control of FSM2). Outputs 
corresponding to four independent packets are first stored in the corresponding Parallel-In Serial-Out 
Units, and then multiplexed to the output FIFO. 

All architectures have been modeled in VHDL-93. All VHDL codes have been thoroughly verified 
using a universal testbench, capable of testing an arbitrary hash function core. A special padding script 
was developed in Perl in order to pad messages included in the Known Answer Test (KAT) files 
distributed as a part of each candidate’s submission package.  

For synthesis and implementation, we have used tools developed by FPGA vendors themselves:  
• for Xilinx: Xilinx ISE Design Suite v. 13.1, including Xilinx XST, 
• for Altera: Quartus II v. 11.1 Subscription Edition Software. 

The generation of a large number of results and optimization of tool options was facilitated by an open 
source benchmarking environment, called ATHENa (Automated Tool for Hardware EvaluatioN) [2,16]. 

All result graphs included in this paper use color codes introduced by Bernstein and Lange in [6,12]. 
 

       
 

Fig. 3: The interface, high-level block diagram, and surrounding logic of the Hash Unit for the pipelined 
architecture with four pipeline stages. Notation: Padding – Padding Unit, including SIPO (Serial-In 
Parallel-Out unit), PISO – Parallel-In Serial-Out unit, w – input/output bus width, w=64 for all 
investigated algorithms, except SHA-2-256, where w=32. 
 
6. Results with Padding 
 
The results of our implementations with padding units are summarized in Figs. 4-9, and in Tables 2 and 3. 
In Figs. 4 and 5, we present the detailed throughput vs. area graphs for all implemented architectures of 
the 256-bit variants of six investigated algorithms in Xilinx Virtex 5 and Altera Stratix III, respectively. 

For BLAKE (see Figs. 4a and 5a), the best architecture overall is x1-PPL4, i.e., basic architecture with 
four pipeline stages. The good performance of this architecture is associated with the symmetric 
structures of the basic round and each individual G function, which make it easy to divide the datapath 
into four well-balanced pipeline stages (see Figs. 14 and 15). The best non-pipelined architectures are:  
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• for Virtex 5: /4(h)/4(v)-m, i.e., architecture with horizontal folding by a factor of 4, combined 
with vertical folding by a factor of 4, and internal state stored in memory; 

• for Stratix III: /2(h), i.e., architecture with horizontal folding by a factor of 2. 
The good performance of the former of these two architectures is associated with the significant reduction 
of the complexity of the input permutation module as a result of vertical folding by a factor of 4. The two 
less successful architectures include x1 and /2(h)-PPL4 for Virtex 5, and x1 and x1-PPL2 for Stratix III. 
These architectures are not included in our combined graphs shown in Figs. 6-9. 

For Groestl (see Figs. 4b and 5b), we consider two major architecture types: a) parallel architectures, 
denoted (P+Q), in which Groestl permutations P and Q are implemented using two independent units, 
working in parallel, and b) quasi-pipeline architectures, denoted (P/Q), in which, the same unit is used to 
implement both P and Q, and the computations belonging to these two permutations are interleaved [38]. 
The details of the basic quasi-pipelined architecture of Groestl are described in [38, Section 9] and [23, 
Section 3.8]. In this study, we apply vertical folding and pipelining to both architectures. The best 
architectures overall appear to be: x1-PPL2 (P+Q) for Virtex 5, and x1-PPL4 (P+Q) for Stratix III. The 
best non-pipelined architectures are: x1 (P/Q) for Virtex 5, and /2(v) (P/Q) for Stratix III. Folded parallel 
architectures, /k(v) (P+Q), are slower than the quasi-pipelined architectures (P/Q) using comparable area. 
The same is true for the basic iterative parallel architecture, x1 (P+Q). An attempt to pipeline Groestl 
using 7 pipeline stages (x1-PPL7), using logic-only implementation of S-boxes, appeared to be rather 
unsuccessful. 

For JH (see Figs. 4c and 5c), we consider two major types of architectures: a) with round constants 
stored in memory, JH (MEM), and b) with round constants calculated on the fly, JH (OTF). Both 
approaches seem to result in a very similar performance for the basic iterative architectures, x1. Neither 
vertical folding nor pipelining seem to be efficient when applied directly to the basic architecture. Vertical 
folding by two, somewhat unexpectedly, increases area, and the basic architecture with two pipeline 
stages does not improve throughput. Both undesired effects can be tracked back to the simplicity of the 
main round. Folding does not reduce area, because of extra registers and multiplexers introduced to a very 
simple round. Pipelining does not increase throughput, because a simple basic round has already very 
short delay, and is hard to divide into two well balanced pipeline stages. Overall, the best architectures 
are: x1 (MEM) for Virtex 5 and x2-PPL2 (MEM) for Stratix III. 

For Keccak (see Figs. 4d and 5d), the best architecture overall is the basic iterative architecture. 
Pipelining appears to be quite unsuccessful in Virtex 5, and somewhat more successful in Stratix III, 
where three different pipelined architectures (x1-PPL2, x2-PPL2, and x2-PPL4) give similar throughput 
to area ratio as the basic iterative architecture, x1. Vertical folding has been attempted only for a version 
without padding, and therefore the corresponding results are not shown in Figs. 4-9. As shown in Table 5, 
vertical folding by a factor of 8, with internal state stored in memory, leads to the reduction in area by a 
factor of about 4 for Virtex 5 and about 1.5 for Stratix III, at the cost of a significant reduction in 
throughput, by a factor of about 16 in Virtex 5 and by a factor of about 18 in Stratix III. Thus, the 
throughput to area ratio decreases by a factor of 4 for Virtex 5, and a factor of 12 for Stratix III. 

For Skein (see Figs. 4e and 5e), the unrolled by 4 architecture, x4, is significantly more efficient than 
the basic architecture, x1. At the same time, unrolling by 8 does not give any additional improvement in 
the throughput to area ratio. The best pipelined architectures are obtained by first unrolling basic 
architecture by a factor of four, and then pipelining the obtained circuit using two stages in Virtex 5, and 
five stages in Stratix III. Five pipeline stages are efficient in Stratix III because of an extra addition 
executed every fourth round, but they do not improve the overall throughput to area ratio in Virtex 5. 

For SHA-2 (see Figs. 4f and 5f), none of the discussed techniques applies. The implementation of this 
function is already small, so reducing area is not necessary. The best way to speed up this function is by 
using multiple independent units of SHA-2 working in parallel. We denote this architecture by MUn, 
where n denotes the number of hash units. 
The combined graphs for the 256-bit variants and the 512-bit variants of all algorithms, implemented 
using Xilinx Virtex 5 FPGAs, are presented in Figs. 6 and 7. Individual dots placed in regular intervals on 
the dashed lines represent multi-unit architectures. Algorithms can be ranked first in terms of the 
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throughput to area ratio of their best architecture, as identified above. This is because this architecture can 
be easily replicated, allowing for processing n streams of data in parallel. Both throughput and area will 
increase by a factor of n. The secondary criterion is the area of the best architecture. The smaller the area, 
the denser is the graph representing possible locations of a given function on the throughput vs. area 
graph. 

 
 

a)  b)  
 
 

c)  d)  
 

e)  f)  
 
Fig. 4. Throughput vs. Area graphs for multiple architectures of a) BLAKE-256, b) Groestl-256, c) JH-256,  
d) Keccak-256, e) Skein-256, and f) SHA-256, implemented in Xilinx Virtex 5 FPGAs. Notation: x1 – basic iterative 
architecture, /k(h) – horizontally folded by a factor of k, /k(v) - vertically folded by a factor of k, /k(v)-m - vertically 
folded by a factor of k with internal state stored in memory, xk – unrolled by a factor of k, PPLn – pipelined with n 
pipeline stages, (P+Q) – parallel architecture of Groestl, P/Q – quasi-pipelined architecture of Groestl, MEM – 
architecture of JH with round constants stored in memory, OTF – architecture of JH with round constants calculated on 
the fly. 
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a)  b)  
 

c)  d)   
 

e) f)  
 
Fig. 5. Throughput vs. Area graphs for multiple architectures of a) BLAKE-256, b) Groestl-256, c) JH-256,  
d) Keccak-256, e) Skein-256, and f) SHA-256, implemented in Altera Stratix III FPGAs. Notation: x1 – basic iterative 
architecture, /k(h) – horizontally folded by a factor of k, /k(v) - vertically folded by a factor of k, /k(v)-m - vertically 
folded by a factor of k with internal state stored in memory, xk – unrolled by a factor of k, PPLn – pipelined with n 
pipeline stages, (P+Q) – parallel architecture of Groestl, P/Q – quasi-pipelined architecture of Groestl, MEM – 
architecture of JH with round constants stored in memory, OTF – architecture of JH with round constants calculated on 
the fly. 
 

The results for the 256-bit variants of hash functions are shown in Fig. 6. Keccak is the only function that significantly 
outperforms SHA-2 in terms of the throughput to area ratio. Keccak is also significantly faster than SHA-2, for any area 
greater than 1400 CLB slices. Groestl and JH demonstrate performance similar to SHA-2, with JH implementations 
slightly faster than SHA-2 consistently starting from around 1000 CLB slices, and Groestl implementations exceeding the 
speed of SHA-2 (and JH) only for one implementation shown in the diagram, taking around 3000 CLB slices. Skein and 
BLAKE trail significantly behind SHA-2, independently of the area. The results for the 512-bit variants of hash functions, 
shown in Fig. 7, are quite similar, with the exception that, JH performs almost equally well as Keccak (because of the 
decrease in the Keccak message block size from 1088 to 576 bits), Groestl outperforms SHA-2 and Skein only for area 
around 6000 CLB slices, Skein has a performance close to SHA-2, and BLAKE is a distant fifth. 
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Fig. 6. Combined Throughput vs. Area graph for multiple hardware architectures of the 256-bit variants of 

BLAKE, Groestl, JH, Keccak, Skein, and SHA-2 implemented in Xilinx Virtex 5 FPGAs. 
 
 
 

 
Fig. 7. Combined Throughput vs. Area graph for multiple hardware architectures of the 512-bit variants of 

BLAKE, Groestl, JH, Keccak, Skein, and SHA-2 implemented in Xilinx Virtex 5 FPGAs. 



	
   11	
  

 
Fig. 8. Combined Throughput vs. Area graph for multiple hardware architectures of the 256-bit variants of 

BLAKE, Groestl, JH, Keccak, Skein, and SHA-2 implemented in Altera Stratix III FPGAs. 

 
Fig. 9. Combined Throughput vs. Area graph for multiple hardware architectures of the 512-bit variants of 

BLAKE, Groestl, JH, Keccak, Skein, and SHA-2 implemented in Altera Stratix III FPGAs. 
 

The performance for Altera devices, shown in Figs. 8 and 9, is somewhat different. For the 256-bit 
versions of the algorithms, Keccak by far outperforms all remaining candidates and SHA-2. Best 
implementations of JH work as fast as the similar-size implementations of SHA-2, but SHA-2 offers finer 
granularity, as its size can be increased in much smaller increments, and the throughput changes 
proportionally. Groestl, BLAKE, and Skein are in tie with each, with performance consistently worse than 
SHA-2. For the 512-bit versions of the algorithms (see Fig. 9), Keccak and JH outperform SHA-2, Skein 
is in tie with SHA-2, Groestl and BLAKE fall behind the current standard. The numerical results for all 
our implementations are summarized in Tables 2 and 3. The best values of the throughput to area ratios 
and the best architectures for each hash function are listed in bold in these tables. 
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Table 2: Results for 256-bit variants with padding unit of the Round 3 SHA-3 candidates and SHA-2, implemented 
using all investigated architectures and four FPGA families, Virtex 5 and Virtex 6 from Xilinx, and Stratix III and 
Stratix IV from Altera. Notation: Tp – throughput, A – area, Tp/A – Throughput to Area Ratio. The best values of 
the throughput to area ratios and the best architectures for each hash function are listed in bold. 
 

Arch Virtex 5 Virtex 6 Stratix III Stratix IV 
 Tp A Tp/A Tp A Tp/A Tp A Tp/A Tp A Tp/A 

BLAKE-256 
/4(h)/4(v)-­‐m	
   379	
   230	
   1.65	
   428	
   200	
   2.14	
   379	
   992	
   0.38	
   395	
   1022	
   0.39	
  
/4(h)	
   1713	
   1493	
   1.15	
   1957	
   891	
   2.20	
   1665	
   3238	
   0.51	
   1691	
   3234	
   0.52	
  
/2(h)	
   2266	
   1860	
   1.22	
   2363	
   1391	
   1.70	
   2206	
   3660	
   0.60	
   2316	
   3680	
   0.63	
  
x1	
   2156	
   2032	
   1.06	
   2174	
   1505	
   1.44	
   2244	
   4807	
   0.47	
   2322	
   4802	
   0.48	
  
/2(h)-­‐PPL2	
   3510	
   2107	
   1.67	
   3260	
   1690	
   1.93	
   3118	
   4765	
   0.65	
   3421	
   4765	
   0.72	
  
/2(h)-­‐PPL4	
   4675	
   3228	
   1.45	
   4332	
   2268	
   1.91	
   5238	
   5442	
   0.96	
   5443	
   5449	
   1.00	
  
x1-­‐PPL2	
   4943	
   3099	
   1.59	
   4542	
   2040	
   2.23	
   4193	
   5619	
   0.75	
   4483	
   5642	
   0.79	
  
x1-­‐PPL4	
   7510	
   3526	
   2.13	
   8246	
   2609	
   3.16	
   7787	
   6657	
   1.17	
   7898	
   6657	
   1.19	
  

Groestl-256 
/8(v)	
  (P+Q)	
   1211	
   1191	
   1.02	
   1353	
   958	
   1.41	
   1248	
   3526	
   0.35	
   1172	
   3472	
   0.34	
  
/4(v)	
  (P+Q)	
   2486	
   1362	
   1.83	
   2901	
   1200	
   2.42	
   2533	
   4608	
   0.55	
   2391	
   4585	
   0.52	
  
/2(v)	
  (P+Q)	
   4508	
   1836	
   2.46	
   4915	
   1565	
   3.14	
   4685	
   7128	
   0.66	
   4597	
   7343	
   0.63	
  
x1	
  (P+Q)	
   7081	
   2689	
   2.63	
   9187	
   2441	
   3.76	
   9760	
   11538	
   0.85	
   9181	
   11294	
   0.81	
  
x1-­‐PPL2	
  (P+Q)	
   13382	
   3172	
   4.22	
   11746	
   2968	
   3.96	
   13213	
   12572	
   1.05	
   12586	
   12570	
   1.00	
  
x1-­‐PPL4	
  (P+Q)	
   15015	
   4587	
   3.27	
   15624	
   4172	
   3.74	
   16903	
   13261	
   1.27	
   16126	
   13258	
   1.22	
  
/8(v)	
  (P/Q)	
   918	
   990	
   0.93	
   1105	
   750	
   1.47	
   1005	
   2526	
   0.40	
   966	
   2504	
   0.39	
  
/4(v)	
  (P/Q)	
   1920	
   1074	
   1.79	
   2099	
   811	
   2.59	
   1964	
   3061	
   0.64	
   1829	
   3059	
   0.60	
  
/2(v)	
  (P/Q)	
   3784	
   1302	
   2.91	
   4407	
   944	
   4.67	
   3925	
   4086	
   0.96	
   3644	
   4069	
   0.90	
  
x1	
  (P/Q)	
   6572	
   2020	
   3.25	
   7071	
   1884	
   3.75	
   6140	
   7564	
   0.81	
   5640	
   7464	
   0.76	
  

JH-256 
/2(v)	
  (MEM)	
   2176	
   1139	
   1.91	
   1978	
   879	
   2.25	
   2124	
   3636	
   0.58	
   2086	
   3629	
   0.57	
  
x1	
  (MEM)	
   4543	
   1001	
   4.54	
   5086	
   918	
   5.54	
   5024	
   3383	
   1.49	
   4815	
   3415	
   1.41	
  
x2	
  (MEM)	
   5972	
   1473	
   4.05	
   6883	
   1381	
   4.98	
   6532	
   5830	
   1.12	
   6099	
   5793	
   1.05	
  
x1-­‐PPL2	
  (MEM)	
   3838	
   2147	
   1.79	
   4840	
   1486	
   3.26	
   5177	
   4280	
   1.21	
   5233	
   4278	
   1.22	
  
x2-­‐PPL2	
  (MEM)	
   7041	
   2099	
   3.35	
   8409	
   1781	
   4.72	
   9804	
   6339	
   1.55	
   9526	
   6331	
   1.50	
  
x2-­‐PPL4	
  (MEM)	
   8526	
   3085	
   2.76	
   7928	
   2424	
   3.27	
   9342	
   7962	
   1.17	
   9207	
   7960	
   1.16	
  
/2(v)	
  (OTF) 2054	
   1194	
   1.72	
   2206	
   1094	
   2.02	
   2114	
   3766	
   0.56	
   1981	
   3798	
   0.52	
  
x1	
  (OTF) 4392	
   1080	
   4.07	
   5177	
   920	
   5.63	
   5091	
   3569	
   1.43	
   4807	
   3656	
   1.31	
  
x2	
  (OTF) 6094	
   1695	
   3.60	
   7198	
   1604	
   4.49	
   6401	
   6372	
   1.00	
   5878	
   6360	
   0.92	
  

Keccak-256 
x1 12745	
   1375	
   9.27	
   12451	
   1147	
   10.86	
   14624	
   4060	
   3.60	
   14009	
   4052	
   3.46	
  
x1-­‐PPL2 12523	
   2123	
   5.90	
   14942	
   1456	
   10.26	
   16047	
   5003	
   3.21	
   16878	
   5004	
   3.37	
  
x2-­‐PPL2 9610	
   2036	
   4.72	
   14444	
   2338	
   6.18	
   24242	
   7103	
   3.41	
   24942	
   7869	
   3.17	
  
x2-­‐PPL4 21717	
   3764	
   5.77	
   24644	
   2900	
   8.50	
   31296	
   9201	
   3.40	
   31691	
   9203	
   3.44	
  

Skein-256 
x1 1372	
   1145	
   1.20	
   1343	
   889	
   1.51	
   1152	
   3032	
   0.38	
   1269	
   3031	
   0.42	
  
x4 3127	
   1245	
   2.51	
   2957	
   1026	
   2.88	
   2494	
   3960	
   0.63	
   2647	
   3970	
   0.67	
  
x8 3168	
   1627	
   1.95	
   3548	
   1326	
   2.68	
   3193	
   5455	
   0.59	
   3336	
   5451	
   0.61	
  
x4-­‐PPL2 4873	
   2030	
   2.40	
   5679	
   1485	
   3.82	
   4280	
   4482	
   0.95	
   4688	
   4496	
   1.04	
  
x4-­‐PPL5 7077	
   3840	
   1.84	
   7325	
   2720	
   2.69	
   6869	
   6068	
   1.13	
   7824	
   6070	
   1.29	
  
x8-­‐PPL10 N/A	
   N/A	
   N/A	
   11118	
   5928	
   1.88	
   11390	
   11267	
   1.01	
   11485	
   11267	
   1.02	
  

SHA-256 

x1 1692	
   462	
   3.66	
   1665	
   305	
   5.46	
   1690	
   1122	
   1.51	
   1764	
   1114	
   1.58	
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Table 3: Results for 512-bit variants with padding unit of the Round 3 SHA-3 candidates and SHA-2, implemented 
using all investigated architectures and four FPGA families, Virtex 5 and Virtex 6 from Xilinx, and Stratix III and 
Stratix IV from Altera. Notation: Tp – throughput, A – area, Tp/A – Throughput to Area Ratio. The best values of 
the throughput to area ratios and the best architectures for each hash function are listed in bold. 
 

 Arch Virtex 5 Virtex 6 Stratix III Stratix IV 
 Tp A Tp/A Tp A Tp/A Tp A Tp/A Tp A Tp/A 

BLAKE-512 
/4(h)/4(v)-­‐m	
   575	
   449	
   1.28	
   625	
   350	
   1.79	
   495	
   1797	
   0.28	
   537	
   1791	
   0.30	
  
/4(h)	
   2278	
   2805	
   0.81	
   2675	
   1639	
   1.63	
   2206	
   6124	
   0.36	
   2492	
   6399	
   0.39	
  
/2(h)	
   3156	
   3569	
   0.88	
   3333	
   2608	
   1.28	
   3003	
   7115	
   0.42	
   3320	
   7114	
   0.47	
  
x1	
   3046	
   3384	
   0.90	
   N/A	
   N/A	
   N/A	
   3010	
   9343	
   0.32	
   3387	
   9334	
   0.36	
  
/2(h)-­‐PPL2	
   4853	
   4123	
   1.18	
   4452	
   2882	
   1.54	
   3963	
   9188	
   0.43	
   4799	
   9177	
   0.52	
  
/2(h)-­‐PPL4	
   6225	
   6104	
   1.02	
   5412	
   3951	
   1.37	
   5938	
   10137	
   0.59	
   7668	
   10144	
   0.76	
  
x1-­‐PPL2	
   6296	
   5534	
   1.14	
   6430	
   4171	
   1.54	
   5705	
   10828	
   0.53	
   6356	
   10831	
   0.59	
  
x1-­‐PPL4	
   8882	
   7600	
   1.17	
   11030	
   5080	
   2.17	
   9908	
   12537	
   0.79	
   11048	
   12530	
   0.88	
  

Groestl-512 
/8(v)	
  (P+Q)	
   1602	
   2233	
   0.72	
   1683	
   1726	
   0.98	
   1697	
   6768	
   0.25	
   1589	
   6723	
   0.24	
  
/4(v)	
  (P+Q)	
   3147	
   2570	
   1.22	
   3078	
   1952	
   1.58	
   3562	
   9089	
   0.39	
   3323	
   8916	
   0.37	
  
/2(v)	
  (P+Q)	
   5413	
   3364	
   1.61	
   6051	
   3078	
   1.97	
   6642	
   14597	
   0.46	
   6175	
   14263	
   0.43	
  
x1	
  (P+Q)	
   8781	
   5448	
   1.61	
   11608	
   5112	
   2.27	
   12976	
   22239	
   0.58	
   11903	
   21807	
   0.55	
  
x1-­‐PPL2	
  (P+Q)	
   17655	
   6525	
   2.71	
   16218	
   5740	
   2.83	
   17826	
   24518	
   0.73	
   16363	
   24612	
   0.66	
  
x1-­‐PPL4	
  (P+Q)	
   17918	
   8453	
   2.12	
   16033	
   7391	
   2.17	
   21595	
   25529	
   0.85	
   20357	
   25530	
   0.80	
  
/8(v)	
  (P/Q)	
   1238	
   1890	
   0.65	
   1271	
   1358	
   0.94	
   1317	
   4780	
   0.28	
   1296	
   4774	
   0.27	
  
/4(v)	
  (P/Q)	
   2602	
   2107	
   1.24	
   2684	
   1459	
   1.84	
   2710	
   5961	
   0.45	
   2586	
   5887	
   0.44	
  
/2(v)	
  (P/Q)	
   4750	
   2449	
   1.94	
   5040	
   1797	
   2.80	
   5352	
   7995	
   0.67	
   5023	
   7896	
   0.64	
  
x1	
  (P/Q)	
   7462	
   3895	
   1.92	
   6843	
   3285	
   2.08	
   8310	
   14578	
   0.57	
   7882	
   14542	
   0.54	
  

JH-512 
/2(v)	
  (MEM) 2044	
   1145	
   1.79	
   2052	
   925	
   2.22	
   2124	
   3636	
   0.58	
   2086	
   3629	
   0.57	
  
x1	
  (MEM) 4533	
   1125	
   4.03	
   4834	
   901	
   5.37	
   4309	
   3930	
   1.10	
   4201	
   3919	
   1.07	
  
x2	
  (MEM) 6067	
   1561	
   3.89	
   6701	
   1417	
   4.73	
   6532	
   5830	
   1.12	
   6099	
   5793	
   1.05	
  
x1-­‐PPL2	
  (MEM) 3897	
   2244	
   1.74	
   4541	
   1589	
   2.86	
   5157	
   4537	
   1.14	
   5319	
   4536	
   1.17	
  
x2-­‐PPL2	
  (MEM) 8266	
   2223	
   3.72	
   8514	
   1977	
   4.31	
   9514	
   6297	
   1.51	
   9484	
   6303	
   1.50	
  
x2-­‐PPL4	
  (MEM) 6186	
   3645	
   1.70	
   8047	
   2744	
   2.93	
   9328	
   8084	
   1.15	
   9512	
   8079	
   1.18	
  
/2(v)	
  (OTF) 1985	
   1228	
   1.62	
   2131	
   1077	
   1.98	
   2114	
   3766	
   0.56	
   1981	
   3798	
   0.52	
  
x1	
  (OTF) 4443	
   1114	
   3.99	
   4914	
   965	
   5.09	
   5091	
   3569	
   1.43	
   4807	
   3656	
   1.31	
  
x2	
  (OTF) 5940	
   1664	
   3.57	
   6732	
   1546	
   4.35	
   6401	
   6372	
   1.00	
   5878	
   6360	
   0.92	
  

Keccak-512 
x1 7179	
   1283	
   5.60	
   7465	
   1052	
   7.10	
   8029	
   3734	
   2.15	
   7607	
   3723	
   2.04	
  
x1-­‐PPL2 7380	
   1774	
   4.16	
   8114	
   1263	
   6.42	
   8550	
   4484	
   1.91	
   8962	
   4481	
   2.00	
  
x2-­‐PPL2 7126	
   1996	
   3.57	
   N/A	
   N/A	
   N/A	
   13090	
   6617	
   1.98	
   12490	
   6580	
   1.90	
  
x2-­‐PPL4 13552	
   3428	
   3.95	
   13640	
   2550	
   5.35	
   17058	
   8934	
   1.91	
   17335	
   8934	
   1.94	
  

Skein-512 
x1 1258	
   1267	
   0.99	
   1446	
   987	
   1.47	
   1103	
   3086	
   0.36	
   1216	
   3088	
   0.39	
  
x4 2972	
   1348	
   2.20	
   3141	
   1186	
   2.65	
   2493	
   4035	
   0.62	
   2597	
   4026	
   0.65	
  
x8 2870	
   1556	
   1.84	
   3690	
   1454	
   2.54	
   3137	
   5527	
   0.57	
   3357	
   5536	
   0.61	
  
x4-­‐PPL2 4916	
   2157	
   2.28	
   5713	
   1567	
   3.65	
   4292	
   4756	
   0.90	
   4758	
   4767	
   1.00	
  
x4-­‐PPL5 5829	
   4377	
   1.33	
   7337	
   3160	
   2.32	
   6428	
   6319	
   1.02	
   7123	
   6324	
   1.13	
  
x8-­‐PPL10 5946	
   9032	
   0.66	
   9130	
   6544	
   1.40	
   11111	
   11485	
   0.97	
   10542	
   11486	
   0.92	
  

SHA-512 

x1 2189	
   850	
   2.58	
   2357	
   548	
   4.30	
   2171	
   2282	
   0.95	
   2409	
   2313	
   1.04	
  
 



	
   14	
  

7. Results Without Padding 
 
In Table 4, we investigate the effect of padding unit on the performance of selected non-pipelined 
architectures. Based on this table, the largest decrease in the throughput to area ratio is equal to 18%. This 
decrease depends on the FPGA family, and reaches the maximum of about 10% for Virtex 5, 14% for 
Virtex 6, 18% for Stratix III, and 15% for Stratix IV. This level variations in the throughput to area ratio 
do not affect the ranking of candidates as determined in Section 6. 

In Tables 5 and 6, the complete set of results for implementations without padding is given. These 
results are important for comparison with results from other groups, as majority of results reported by 
other groups during the competition (and submitted to the ATHENa database [3]) concern designs with 
no padding unit. 

Additionally, as shown in the same tables, a folded architecture with internal state stored in memory, 
/8(v)-m, has been implemented for JH-256 and Keccak-256, in the version without padding. For JH-256, 
implemented in Virtex 5 and Virtex 6, area decreases by a factor greater than 3 and throughput by a factor 
greater than 30, compared to the basic iterative architecture. In Stratix III and Stratix IV, area decreases 
by a factor of about 1.7 and throughput by a factor of about 40. Thus, this architecture is quite inefficient 
in both Xilinx and Altera FPGAs, and should be considered only when no other architecture fits within 
the area budget. For Keccak-256, implemented in Virtex 5 and Virtex 6 using the same architecture, area 
decreases by a factor greater than 3.5 and throughput by a factor greater than 10, compared to the basic 
iterative architecture. In Stratix III and Stratix IV, area decreases by a factor of about 1.5 and throughput 
by a factor of about 20. Thus, this architecture might be acceptable in case of Xilinx FPGAs, but is quite 
inefficient in case of Altera FPGAs. 
 
Table 4: The effect of the padding unit on the performance of 5 Round 3 SHA-3 candidates in four FPGA 
families, Virtex 5 and Virtex 6 from Xilinx, and Stratix III and Stratix IV from Altera. Notation: Tp – 
throughput, A – area, Tp/A – Throughput to Area Ratio, Δ [%] – relative change in the Throughput, Area, 
and Throughput to Area ratio as a result of adding padding unit to the hash unit. The relative change in 
the throughput to area ratio has been marked in bold. 
 

Arch Virtex 5 Virtex 6 Stratix III Stratix IV 

 Tp A Tp/A Tp A Tp/A Tp A Tp/A Tp A Tp/A 

BLAKE-256 
/2(h) 2308 1771 1.30 2226 1257 1.77 2157 3553 0.61 2337 3543 0.66 
/2(h)-PAD 2266 1860 1.22 2363 1391 1.70 2206 3660 0.60 2316 3680 0.63 

Δ  [%] -­‐1.83 5.03 -­‐6.53 6.18 10.66 -­‐4.04 2.25 3.01 -­‐0.74 -­‐0.90 3.87 -­‐4.59 
Groestl-256 (P/Q) 

x1 6117	
   1795	
   3.41	
   7220	
   1870	
   3.86	
   6008	
   7386	
   0.81	
   5776	
   7404	
   0.78	
  
x1-PAD 6572	
   2020	
   3.25	
   7071	
   1884	
   3.75	
   6140	
   7564	
   0.81	
   5640	
   7464	
   0.76	
  

Δ  [%] 7.44	
   12.53	
   -­‐4.53	
   -­‐2.06	
   0.75	
   -­‐2.79	
   2.19	
   2.41	
   -­‐0.21	
   -­‐2.36	
   0.81	
   -­‐3.14	
  
JH-256 (MEM) 

x1 4955 982 5.05 5412 849 6.37 5276 3221 1.64 4759 3210 1.48 
x1-PAD 4543 1001 4.54 5086 918 5.54 5024 3383 1.49 4815 3415 1.41 

Δ  [%] -­‐8.32 1.93 -­‐10.06 -­‐6.02 8.13 -­‐13.09 -­‐4.77 5.03 -­‐9.33 1.17 6.39 -­‐4.90 
Keccak-256 

x1 13337	
   1369	
   9.74	
   11839	
   1086	
   10.90	
   15493	
   3531	
   4.39	
   14401	
   3541	
   4.07	
  
x1-PAD 12745	
   1375	
   9.27	
   12451	
   1147	
   10.86	
   14624	
   4060	
   3.60	
   14009	
   4052	
   3.46	
  

Δ  [%] -­‐4.44	
   0.44	
   -­‐4.86	
   5.16	
   5.62	
   -­‐0.43	
   -­‐5.61	
   14.98	
   -­‐17.91	
   -­‐2.72	
   14.43	
   -­‐14.99	
  
Skein-256 

x4 3023 1218 2.48 3373 1005 3.36 2475 3943 0.63 2592 3936 0.66 
x4-PAD 3127 1245 2.51 2957 1026 2.88 2495 3960 0.63 2647 3970 0.67 

Δ  [%] 3.43 2.22 1.19 -­‐12.33 2.09 -­‐14.13 0.77 0.43 0.34 2.10 0.86 1.23 
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Table 5: Results for 256-bit variants without padding unit of the Round 3 SHA-3 candidates and SHA-2, 
implemented using all investigated architectures and four FPGA families, Virtex 5 and Virtex 6 from Xilinx, and 
Stratix III and Stratix IV from Altera. Notation: Tp – throughput, A – area, Tp/A – Throughput to Area Ratio. The 
best values of the throughput to area ratios and the best architectures for each hash function are listed in bold. 

Arch Virtex 5 Virtex 6 Stratix III Stratix IV 
 Tp A Tp/A Tp A Tp/A Tp A Tp/A Tp A Tp/A 

BLAKE-256 
/4(h)/4(v)-­‐m	
   389	
   231	
   1.69	
   432	
   182	
   2.38	
   370	
   924	
   0.40	
   399	
   935	
   0.43	
  
/4(h)	
   1735	
   1437	
   1.21	
   1882	
   886	
   2.12	
   1695	
   3093	
   0.55	
   1735	
   3085	
   0.56	
  
/2(h)	
   2308	
   1771	
   1.30	
   2226	
   1257	
   1.77	
   2157	
   3553	
   0.61	
   2337	
   3543	
   0.66	
  
x1	
   2533	
   2279	
   1.11	
   2416	
   1711	
   1.41	
   2181	
   4620	
   0.47	
   2312	
   4618	
   0.50	
  
/2(h)-­‐PPL2	
   3506	
   2136	
   1.64	
   3178	
   1630	
   1.95	
   3131	
   4570	
   0.69	
   3409	
   4567	
   0.75	
  
/2(h)-­‐PPL4	
   4633	
   3226	
   1.44	
   4807	
   2407	
   2.00	
   5205	
   5039	
   1.03	
   5467	
   5042	
   1.08	
  
x1-­‐PPL2	
   4761	
   2976	
   1.60	
   4768	
   2111	
   2.26	
   4162	
   5436	
   0.77	
   4429	
   5423	
   0.82	
  
x1-­‐PPL4	
   7547	
   3495	
   2.16	
   8056	
   2530	
   3.18	
   7583	
   6267	
   1.21	
   8063	
   6271	
   1.29	
  

Groestl-256 
/8(v)	
  (P+Q)	
   1237	
   1124	
   1.10	
   1371	
   936	
   1.46	
   1240	
   3306	
   0.38	
   1173	
   3288	
   0.36	
  
/4(v)	
  (P+Q)	
   2215	
   1208	
   1.83	
   2850	
   1072	
   2.66	
   2576	
   4528	
   0.57	
   2366	
   4402	
   0.54	
  
/2(v)	
  (P+Q)	
   4254	
   1734	
   2.45	
   4850	
   1548	
   3.13	
   5028	
   7444	
   0.68	
   4387	
   6895	
   0.64	
  
x1	
  (P+Q)	
   7214	
   2906	
   2.48	
   8754	
   2395	
   3.65	
   9572	
   11193	
   0.86	
   8962	
   10961	
   0.82	
  
x1-­‐PPL2	
  (P+Q)	
   12479	
   2971	
   4.20	
   13410	
   2873	
   4.67	
   13166	
   12531	
   1.05	
   12290	
   12203	
   1.01	
  
x1-­‐PPL4	
  (P+Q)	
   16353	
   4177	
   3.91	
   16213	
   3597	
   4.51	
   16198	
   12885	
   1.26	
   16141	
   12933	
   1.25	
  
/8(v)	
  (P/Q)	
   951	
   981	
   0.97	
   1057	
   705	
   1.50	
   1009	
   2346	
   0.43	
   976	
   2342	
   0.43	
  
/4(v)	
  (P/Q)	
   1907	
   993	
   1.92	
   2381	
   859	
   2.77	
   1998	
   2919	
   0.68	
   1837	
   2902	
   0.63	
  
/2(v)	
  (P/Q)	
   3721	
   1195	
   3.11	
   4201	
   898	
   4.68	
   3818	
   3914	
   0.98	
   3701	
   3906	
   0.95	
  
x1	
  (P/Q)	
   6117	
   1795	
   3.41	
   7220	
   1870	
   3.86	
   6008	
   7386	
   0.81	
   5776	
   7404	
   0.78	
  

JH-256 
/8(v)-­‐m	
  (MEM)	
   138	
   306	
   0.45	
   157	
   226	
   0.69	
   133	
   1865	
   0.07	
   118	
   1849	
   0.06	
  
/2(v)	
  (MEM)	
   2094	
   1009	
   2.08	
   2327	
   944	
   2.46	
   2131	
   3379	
   0.63	
   2138	
   3368	
   0.63	
  
x1	
  (MEM)	
   4955	
   982	
   5.05	
   5412	
   849	
   6.37	
   5276	
   3221	
   1.64	
   4759	
   3210	
   1.48	
  
x2	
  (MEM)	
   6149	
   1489	
   4.13	
   6904	
   1335	
   5.17	
   6418	
   5584	
   1.15	
   6128	
   5542	
   1.11	
  
x1-­‐PPL2	
  (MEM)	
   4711	
   1842	
   2.56	
   5202	
   1320	
   3.94	
   5463	
   4263	
   1.28	
   5439	
   4259	
   1.28	
  
x2-­‐PPL2	
  (MEM)	
   8289	
   2312	
   3.59	
   9284	
   2050	
   4.53	
   10116	
   6294	
   1.61	
   9772	
   6259	
   1.56	
  
x2-­‐PPL4	
  (MEM)	
   8526	
   3085	
   2.76	
   8839	
   2162	
   4.09	
   9927	
   6892	
   1.44	
   9994	
   6883	
   1.45	
  
/2(v)	
  (OTF)	
   2181	
   1120	
   1.95	
   1993	
   845	
   2.36	
   2084	
   3473	
   0.60	
   2035	
   3538	
   0.58	
  
x1	
  (OTF)	
   4840	
   971	
   4.98	
   5255	
   917	
   5.73	
   5071	
   3388	
   1.50	
   4912	
   3385	
   1.45	
  
x2	
  (OTF)	
   6196	
   1640	
   3.78	
   7046	
   1493	
   4.72	
   6359	
   6121	
   1.04	
   5817	
   5993	
   0.97	
  

Keccak-256 
/8(v)-­‐m	
   855	
   354	
   2.41	
   1078	
   306	
   3.52	
   874	
   2397	
   0.36	
   813	
   2387	
   0.34	
  
x1	
   13337	
   1369	
   9.74	
   11839	
   1086	
   10.90	
   15493	
   3531	
   4.39	
   14401	
   3541	
   4.07	
  
x1-­‐PPL2	
   16121	
   1950	
   8.27	
   18803	
   1474	
   12.76	
   19971	
   4810	
   4.15	
   19415	
   4807	
   4.04	
  
x2-­‐PPL2	
   17677	
   2390	
   7.40	
   N/A	
   N/A	
   N/A	
   25283	
   7107	
   3.56	
   23660	
   7018	
   3.37	
  
x2-­‐PPL4	
   26690	
   3714	
   7.19	
   29825	
   2748	
   10.85	
   35780	
   8806	
   4.06	
   35006	
   8803	
   3.98	
  

Skein-256 
x1	
   1179	
   1025	
   1.15	
   1330	
   858	
   1.55	
   1115	
   3005	
   0.37	
   1226	
   3003	
   0.41	
  
x4	
   3023	
   1218	
   2.48	
   3373	
   1005	
   3.36	
   2475	
   3943	
   0.63	
   2592	
   3936	
   0.66	
  
x8	
   2890	
   1492	
   1.94	
   3459	
   1333	
   2.60	
   3161	
   5432	
   0.58	
   3345	
   5432	
   0.62	
  
x4-­‐PPL2	
   5338	
   1858	
   2.87	
   6212	
   1628	
   3.82	
   4273	
   4423	
   0.97	
   4709	
   4446	
   1.06	
  
x4-­‐PPL5	
   6819	
   4130	
   1.65	
   7669	
   3126	
   2.45	
   6974	
   5941	
   1.17	
   7675	
   5925	
   1.30	
  
x8-­‐PPL10	
   N/A	
   N/A	
   N/A	
   12403	
   5447	
   2.28	
   11741	
   11163	
   1.05	
   11792	
   10992	
   1.07	
  

SHA-256 

x1 1401	
   396	
   3.54	
   1634	
   239	
   6.83	
   1656	
   959	
   1.73	
   1798	
   959	
   1.87	
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Table 6: Results for 512-bit variants without padding unit of the Round 3 SHA-3 candidates and SHA-2, 
implemented using all investigated architectures and four FPGA families, Virtex 5 and Virtex 6 from Xilinx, and 
Stratix III and Stratix IV from Altera. Notation: Tp – throughput, A – area, Tp/A – Throughput to Area Ratio. The 
best values of the throughput to area ratios and the best architectures for each hash function are listed in bold. 
 

 Arch Virtex 5 Virtex 6 Stratix III Stratix IV 
 Tp A Tp/A Tp A Tp/A Tp A Tp/A Tp A Tp/A 

BLAKE-512 
/4(h)/4(v)-­‐m	
   560	
   386	
   1.45	
   613	
   309	
   1.98	
   491	
   1680	
   0.29	
   543	
   1676	
   0.32	
  
/4(h)	
   2300	
   2840	
   0.81	
   2646	
   1584	
   1.67	
   2186	
   5891	
   0.37	
   2442	
   5885	
   0.42	
  
/2(h)	
   3264	
   3435	
   0.95	
   3478	
   2610	
   1.33	
   2928	
   6977	
   0.42	
   3318	
   6971	
   0.48	
  
x1	
   N/A	
   N/A	
   N/A	
   N/A	
   N/A	
   N/A	
   2965	
   9033	
   0.33	
   3323	
   9024	
   0.37	
  
/2(h)-­‐PPL2	
   4841	
   4515	
   1.07	
   4478	
   2879	
   1.56	
   3954	
   8969	
   0.44	
   4742	
   8959	
   0.53	
  
/2(h)-­‐PPL4	
   6171	
   5794	
   1.07	
   6915	
   4575	
   1.51	
   5991	
   9684	
   0.62	
   7859	
   9694	
   0.81	
  
x1-­‐PPL2	
   6364	
   5674	
   1.12	
   6606	
   4616	
   1.43	
   5660	
   10625	
   0.53	
   6351	
   10615	
   0.60	
  
x1-­‐PPL4	
   9567	
   7497	
   1.28	
   10706	
   5267	
   2.03	
   9980	
   12074	
   0.83	
   11075	
   12082	
   0.92	
  

Groestl-512 
/8(v)	
  (P+Q)	
   1557	
   2251	
   0.69	
   1726	
   1773	
   0.97	
   1677	
   6549	
   0.26	
   1614	
   6510	
   0.25	
  
/4(v)	
  (P+Q)	
   3112	
   2393	
   1.30	
   3230	
   2113	
   1.53	
   3447	
   8727	
   0.39	
   3277	
   8750	
   0.37	
  
/2(v)	
  (P+Q)	
   5119	
   3289	
   1.56	
   5793	
   2971	
   1.95	
   6595	
   14318	
   0.46	
   6265	
   14207	
   0.44	
  
x1	
  (P+Q)	
   10020	
   5588	
   1.79	
   12262	
   5203	
   2.36	
   13061	
   22062	
   0.59	
   11936	
   21902	
   0.54	
  
x1-­‐PPL2	
  (P+Q)	
   17591	
   6568	
   2.68	
   16114	
   6290	
   2.56	
   16900	
   24292	
   0.70	
   16114	
   24241	
   0.66	
  
x1-­‐PPL4	
  (P+Q)	
   N/A	
   N/A	
   N/A	
   N/A	
   N/A	
   N/A	
   21158	
   25515	
   0.83	
   20580	
   25407	
   0.81	
  
/8(v)	
  (P/Q)	
   1211	
   1722	
   0.70	
   1326	
   1358	
   0.98	
   1335	
   4598	
   0.29	
   1307	
   4592	
   0.28	
  
/4(v)	
  (P/Q)	
   2573	
   2036	
   1.26	
   2772	
   1529	
   1.81	
   2700	
   5786	
   0.47	
   2596	
   5770	
   0.45	
  
/2(v)	
  (P/Q)	
   4816	
   2336	
   2.06	
   5319	
   1761	
   3.02	
   5262	
   7763	
   0.68	
   4989	
   7724	
   0.65	
  
x1	
  (P/Q)	
   7686	
   3853	
   1.99	
   8375	
   3630	
   2.31	
   8214	
   14291	
   0.57	
   8379	
   14620	
   0.57	
  

JH-512 
/8(v)-­‐m	
  (MEM)	
   138	
   307	
   0.45	
   154	
   228	
   0.68	
   128	
   1817	
   0.07	
   119	
   1851	
   0.06	
  
/2(v)	
  (MEM)	
   2052	
   1055	
   1.95	
   2491	
   996	
   2.50	
   2224	
   3664	
   0.61	
   2175	
   3660	
   0.59	
  
x1	
  (MEM)	
   4882	
   1037	
   4.71	
   5825	
   931	
   6.26	
   5011	
   3288	
   1.52	
   5139	
   3294	
   1.56	
  
x2	
  (MEM)	
   6203	
   1587	
   3.91	
   6859	
   1377	
   4.98	
   6630	
   5768	
   1.15	
   6305	
   5786	
   1.09	
  
x1-­‐PPL2	
  (MEM)	
   4635	
   1990	
   2.33	
   5060	
   1534	
   3.30	
   5361	
   4521	
   1.19	
   5319	
   4521	
   1.18	
  
x2-­‐PPL2	
  (MEM)	
   8183	
   2494	
   3.28	
   9439	
   2128	
   4.44	
   9881	
   6339	
   1.56	
   9665	
   6309	
   1.53	
  
x2-­‐PPL4	
  (MEM)	
   8107	
   3408	
   2.38	
   9011	
   2568	
   3.51	
   9456	
   7427	
   1.27	
   8806	
   7392	
   1.19	
  
/2(v)	
  (OTF)	
   2027	
   1127	
   1.80	
   2104	
   954	
   2.21	
   2107	
   3680	
   0.57	
   1982	
   3669	
   0.54	
  
x1	
  (OTF)	
   4686	
   992	
   4.72	
   5181	
   939	
   5.52	
   5181	
   3557	
   1.46	
   5043	
   3605	
   1.40	
  
x2	
  (OTF)	
   6413	
   1870	
   3.43	
   7128	
   1501	
   4.75	
   6268	
   6276	
   1.00	
   6032	
   6314	
   0.96	
  

Keccak-512 
/8(v)-­‐m	
   512	
   355	
   1.44	
   631	
   316	
   2.00	
   498	
   2310	
   0.22	
   471	
   2293	
   0.21	
  
x1	
   7612	
   1320	
   5.77	
   7220	
   1061	
   6.81	
   8526	
   3471	
   2.46	
   7825	
   3467	
   2.26	
  
x1-­‐PPL2	
   9306	
   1720	
   5.41	
   9619	
   1468	
   6.55	
   11215	
   4294	
   2.61	
   10816	
   4295	
   2.52	
  
x2-­‐PPL2	
   9915	
   2297	
   4.32	
   N/A	
   N/A	
   N/A	
   13389	
   6523	
   2.05	
   12984	
   6519	
   1.99	
  
x2-­‐PPL4	
   12935	
   3387	
   3.82	
   15661	
   2539	
   6.17	
   20356	
   8553	
   2.38	
   19300	
   8549	
   2.26	
  

Skein-512 
x1	
   1201	
   1069	
   1.12	
   1441	
   987	
   1.46	
   1135	
   3072	
   0.37	
   1229	
   3073	
   0.40	
  
x4	
   3084	
   1418	
   2.17	
   3462	
   1114	
   3.11	
   2438	
   4006	
   0.61	
   2736	
   4015	
   0.68	
  
x8	
   2832	
   1577	
   1.80	
   3573	
   1373	
   2.60	
   3121	
   5589	
   0.56	
   3322	
   5507	
   0.60	
  
x4-­‐PPL2	
   5378	
   2026	
   2.65	
   5943	
   1702	
   3.49	
   4271	
   4705	
   0.91	
   4682	
   4683	
   1.00	
  
x4-­‐PPL5	
   N/A	
   N/A	
   N/A	
   7071	
   3486	
   2.03	
   6670	
   6199	
   1.08	
   6972	
   6185	
   1.13	
  
x8-­‐PPL10	
   N/A	
   N/A	
   N/A	
   12176	
   6145	
   1.98	
   11063	
   11205	
   0.99	
   10802	
   11204	
   0.96	
  

SHA-512 

x1	
   2013	
   798	
   2.52	
   2384	
   513	
   4.65	
   2128	
   1995	
   1.07	
   2378	
   1996	
   1.19	
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8. Rankings Based on the Throughput to Area Ratio 
 
In order to explicitly compare SHA-3 finalists against each other across four different FPGA families, we 
use Tables 7-10, and Figs 10 and 11. 

All results presented in these comparisons concern versions of designs without padding units. This 
choice has been made in order to take into account results submitted by other groups, as majority of these 
results assume that padding is done outside of the implemented circuits. 

The rankings for each FPGA family are divided along the two criteria: 
a) 256-bit vs. 512-bit variant, and 
b) all architectures vs. single-message architectures. 

As a result, four rankings are listed for each family, as shown in Tables 7-10. 
The category “all architectures” means that we allow both single-message and multi-message 
architectures. In case two architectures offer the same Throughput to Area ratio, the priority is given to 
architecture with the smaller area. As a result, the multi-unit architectures, MUn, do not appear in our 
rankings as they offer at best the same throughput to area ratio as the basic architectures they are based 
on. Thus, the primary way of improving throughput to area ratio for multi-message architectures is 
pipelining. 
 
Table 7: Ranking of SHA-3 candidates for 256-bit variant in Xilinx Virtex 5 FPGA. Designs without 
padding, implemented using Xilinx ISE 13.1 (unless explicitly stated otherwise using *). 

Rank Algorithm Architecture Throughput/Area 
((Mbit/s)/Slices) 

Normalized 
Throughput/Area 

Throughput 
(Mbit/s)  

Area 
(Slices) Source** 

256-bit variant, all architectures 
1 Keccak x1 10.01 2.83 13,859 1,384 GMU* 
2 JH x1 (OTF) 5.17 1.46 4,725 914 GMU* 
3 Groestl x1 (P+Q) 4.37 1.24 6,200 1,419 NUST 
  SHA-2 x1 3.54 1.00 1,401 396 GMU 
4 Skein x4-PPL2 2.87 0.81 5,338 1,858 GMU 
5 BLAKE x1-PPL4 2.16 0.61 7,547 3,495 GMU 

256-bit variant, single-message architectures 
1 Keccak x1 10.01 2.83 13,859 1,384 GMU* 
2 JH x1 (OTF) 5.17 1.46 4,725 914 GMU* 
3 Groestl x1 (P+Q) 4.37 1.24 6,200 1,419 NUST 
  SHA-2 x1 3.54 1.00 1,401 396 GMU 
4 Skein x4 2.48 0.70 3,023 1,218 GMU 
5 BLAKE /4(h)/4(v)-m 1.71 0.48 382 223 GMU* 

512-bit variant, all architectures 
1 Keccak x1 5.77 2.29 7,612 1,320 GMU 
2 JH x1 (OTF) 5.17 2.05 4,725 914 GMU* 
3 Groestl x1 (P+Q) 2.93 1.16 7,400 2,523 NUST 
4 Skein x4-PPL2 2.65 1.05 5,378 2,026 GMU 
  SHA-2 x1 2.52 1.00 2,013 798 GMU 
5 BLAKE /4(h)/4(v) 1.45 0.58 560 386 GMU 

512-bit variant, single-message architectures 
1 Keccak x1 5.77 2.29 7,612 1,320 GMU 
2 JH x1 (OTF) 5.17 2.05 4,725 914 GMU* 
3 Groestl x1 (P+Q) 2.93 1.16 7,400 2,523 NUST 
  SHA-2 x1 2.52 1.00 2,013 798 GMU 
4 Skein x4 2.17 0.86 3,084 1,418 GMU 
5 BLAKE /4(h)/4(v) 1.45 0.58 560 386 GMU 

 
* Results obtained using Xilinx ISE v.12.4 
** GMU – George Mason University (the authors of this paper), NUST – National University of Sciences and 
Technology, Islamabad, Pakistan [33,3].
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As shown in Table 7, for Virtex 5, the ranking of SHA-3 finalists is identical in all categories. Three 
candidates, Keccak, JH, and Groestl consistently outperform SHA-2. The difference between Keccak and 
JH is very significant for the 256-bit variants of both functions (almost a factor of 2), and substantially 
decreases for the 512-bit variants (because of the smaller message block size in Keccak-512 vs. Keccak-
256). The advantage of Groestl over SHA-2 also decreases for the 512-bit variants of both functions. For 
the 256-bit variants of the algorithms, only Skein and BLAKE can benefit from pipelining (in terms of the 
increase in the throughput to area ratio). For the 512-bit variants of the finalists, none algorithm was 
shown to benefit from pipelining. 

As shown in Table 8, for Virtex 6, the ranking of the five SHA-3 candidates is the same as in Virtex 
5, and identical in all categories. Keccak is the only candidate that outperforms SHA-2 for the 256-bit 
variants of the compared functions. For the 512-bit variants, the performance of Keccak decreases, and 
becomes comparable to that of JH. Both Keccak and JH outperform SHA-2 in terms of the throughput to 
area ratio. Groestl, Skein, and BLAKE consistently lag behind SHA-2. 

Table 8: Ranking of SHA-3 candidates for 256-bit variant in Xilinx Virtex 6 FPGA. Designs without 
padding, implemented using Xilinx ISE v.13.1 (unless explicitly stated otherwise using *). 

Rank Algorithm Architecture Throughput/Area 
((Mbit/s)/Slices) 

Normalized 
Throughput/Area 

Throughput 
(Mbit/s)  

Area 
(Slices) Source** 

256-bit variant, all architectures 
1 Keccak x1 14.94 2.19 13,670 915 NUST 
 SHA-2 x1 6.84 1.00 1,634 239 GMU 

2 JH x1 (MEM) 6.73 0.98 5,700 847 GMU* 
3 Groestl x1 (P+Q) 6.56 0.96 9,620 1,467 NUST 
4 Skein x4-PPL2 3.82 0.56 6,212 1,628 GMU 
5 BLAKE x1-PPL4 3.18 0.47 8,056 2,530 GMU 
         

256-bit variant, single-message architectures 
1 Keccak x1 14.94 2.19 13,670 915 NUST 
 SHA-2 x1 6.84 1.00 1,634 239 GMU* 

2 JH x1 (MEM) 6.73 0.98 5,700 847 GMU* 
3 Groestl x1 (P+Q) 6.56 0.96 9,620 1,467 NUST 
4 Skein x4 3.36 0.49 3,373 1,005 GMU 
5 BLAKE Lightweight 2.86 0.42 475 166 GMU 

512-bit variant, all architectures 
1 Keccak x1 6.89 1.48 6,990 1,015 NUST 
2 JH x1 (MEM) 6.26 1.35 5,825 931 GMU 
 SHA-2 x1 4.64 1.00 2,381 513 GMU* 

3 Groestl x1 (P+Q) 3.89 0.84 9,170 2,359 NUST 
4 Skein x4-PPL2 3.49 0.75 5,943 1,702 GMU 
5 BLAKE x1-PPL4 2.03 0.44 10,706 5,267 GMU 
         

512-bit variant, single-message architectures 
1 Keccak x1 6.89 1.48 6,990 1,015 NUST 
2 JH x1 (MEM) 6.26 1.35 5,825 931 GMU 
 SHA-2 x1 4.64 1.00 2,381 513 GMU* 

3 Groestl x1 (P+Q) 3.89 0.84 9,170 2,359 NUST 
4 Skein x4 3.11 0.67 3,462 1,114 GMU 
5 BLAKE /4(h)/4(v)-m 1.98 0.43 613 309 GMU 

 
* Results obtained using Xilinx ISE v.12.4 
** GMU – George Mason University (the authors of this paper), NUST – National University of Sciences and 
Technology, Islamabad, Pakistan [33,3]. 
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Table 9: Ranking of SHA-3 candidates for 256-bit variant in Altera Stratix III FPGA. Designs without 
padding, implemented using Altera Quartus II v.11.1. 

Rank Algorithm Architecture Throughput/Area 
((Mbit/s)/Slices) 

Normalized 
Throughput/Area 

Throughput 
(Mbit/s)  

Area 
(ALUTs) Source 

256-bit variant, all architectures 
1 Keccak x1 4.39 2.54 15,493 3,531 GMU 
 SHA-2 x1 1.73 1.00 1,656 959 GMU 

2 JH x1 (MEM) 1.64 0.95 5,276 3,221 GMU 

3 Groestl x1-PPL4 
(P+Q) 1.26 0.73 16,197 12,885 GMU 

4 BLAKE x1-PPL4 1.21 0.70 7,583 6,267 GMU 
5 Skein x4-PPL5 1.17 0.68 6,974 5,941 GMU 
        

256-bit variant, single-message architectures 
1 Keccak x1 4.39 2.54 15,493 3,531 GMU 
 SHA-2 x1 1.73 1.00 1,656 959 GMU 

2 JH x1 (MEM) 1.64 0.95 5,276 3,221 GMU 
3 Groestl /2(v) (P/Q) 0.98 0.56 3,818 3,914 GMU 
4 Skein x4 0.63 0.36 2,475 3,943 GMU 
5 BLAKE /2(h) 0.61 0.35 2,158 3,553 GMU 
        

512-bit variant, all architectures 
1 Keccak x1-PPL2 2.61 2.45 11,215 4,294 GMU 
2 JH x2-PPL2 1.56 1.46 9,881 6,339 GMU 
3 Skein x4-PPL5 1.08 1.01 6,670 6,199 GMU 
 SHA-2 x1 1.07 1.00 2,128 1,995 GMU 

4 Groestl x1-PPL4 
(P+Q) 0.83 0.78 21,158 25,515 GMU 

5 BLAKE x1-PPL4 0.83 0.77 9,980 12,074 GMU 
        

512-bit variant, single-message architectures 
1 Keccak x1 2.46 2.30 8,526 3,471 GMU 
2 JH x1 (MEM) 1.52 1.43 5,011 3,288 GMU 
 SHA-2 x1 1.07 1.00 2,128 1,995 GMU 

3 Groestl /2(v) (P/Q) 0.68 0.64 5,262 7,763 GMU 
4 Skein x4 0.61 0.57 2,438 4,006 GMU 
5 BLAKE /2(h) 0.42 0.39 2,928 6,977 GMU 

 
As shown in Table 9, for Stratix III and 256-bit variants o the algorithms, the ranking remains almost the 
same as in Virtex 5 and Virtex 6. Keccak is the only candidate that outperforms SHA-2. Groestl, BLAKE, 
Skein have efficient pipelined architectures, with almost identical throughput to area ratio. For the 512-bit 
variants, Keccak and JH are the only candidates that outperform SHA-2 in both categories. In the 
category of all architectures, Skein has almost identical performance as SHA-2, and Groestl almost 
identical performance to BLAKE. For the single-message architectures, the differences between the 
algorithms increase, and the ranking of the candidates becomes the same as in case of Virtex 5 and Virtex 
6. 

The results for Stratix IV, shown in Table 10, are very similar to those for Stratix III. The primary 
difference is that for the 512-bit variants of the algorithms, and single-message architectures, Skein jumps 
ahead of Groestl. For the 512-bit variants and all architectures, Groestl lags behind BLAKE, and becomes 
least efficient algorithm. 

In Figs. 10 and 11, normalized throughput to area ratios (i.e., ratios for each algorithm, divided by the 
respective ratios for SHA-2) are summarized for all four investigated FPGA families. A logarithmic scale 
is used on the X-axis. These graphs demonstrate quite good agreement between the results for two FPGA 
families from the same vendor, and quite substantial differences between FPGA families from two 
different vendors, Xilinx and Altera. In particular, normalized results for Virtex 5 and Virtex 6 seem to be 
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quite well correlated, with normalized results for Virtex 5 consistently higher than the corresponding 
normalized values for Virtex 6. These smaller normalized values for Virtex 6 come primarily from the 
fact that SHA-2 is implemented more efficiently in Virtex 6. On the other hand, in terms of absolute 
values of the throughput to area ratios, these ratios are consistently higher, as expected, in Virtex 6 for all 
investigated algorithms (as demonstrated by Tables 7 and 8).  

The results for Altera families seem to differ from the results for Xilinx families in several important 
aspects. In particular, for the 256-bit variants and single-message architectures (see Fig. 10b), the 
performance gap between JH and Groestl widens in Altera families, while on the other hand BLAKE 
catches up with Skein. BLAKE, Skein, and Groestl, all benefit from pipelining in Altera families (see Fig. 
10a). Additionally, these three algorithms have almost the same normalized throughput to area ratio for 
both Altera families. For the 512-bit variants of the algorithms and all architectures, Stratix IV seem to be 
particularly unsuitable for Groestl, which drops from the 3rd position in Xilinx families, to the last 5th 
position in Stratix IV (see Fig. 11a). 

Table 10: Ranking of SHA-3 candidates for 256-bit variant in Altera Stratix IV FPGA. Designs without 
padding, implemented using Altera Quartus II v.11.1 (unless explicitly stated otherwise using *). 
 

Rank Algorithm Architecture Throughput/Area 
((Mbit/s)/Slices) 

Normalized 
Throughput/Area 

Throughput 
(Mbit/s)  

Area 
(ALUTs) Source 

256-bit variant, all architectures 
1 Keccak x1 4.07 2.17 14,401 3,541 GMU 
 SHA-2 x1 1.87 1.00 1,798 959 GMU 

2 JH x2-PPL2 
(MEM) 1.56 0.83 9,772 6,259 GMU 

3 Skein x4-PPL5 1.30 0.69 7,676 5,925 GMU 
4 BLAKE x1-PPL4 1.29 0.69 8,063 6,271 GMU 

5 Groestl x1-PPL4 
(P+Q) 1.25 0.67 16,141 12,933 GMU 

        
256-bit variant, single-message architectures 

1 Keccak x1 4.07 2.17 14,401 3,541 GMU 
 SHA-2 x1 1.87 1.00 1,798 959 GMU 

2 JH x1 (MEM) 1.52 0.81 4,876 3,218 GMU* 
3 Groestl /2(v) (P/Q) 0.95 0.51 3,701 3,906 GMU 
4 Skein x4 0.66 0.35 2,621 3,968 GMU* 
5 BLAKE /2(h) 0.66 0.35 2,337 3,543 GMU 
        

512-bit variant, all architectures 
1 Keccak x1-PPL2 2.52 2.11 10,816 4,295 GMU 
2 JH x1 (MEM) 1.56 1.31 5,139 3,294 GMU 
 SHA-2 x1 1.19 1.00 2,378 1,996 GMU 

3 Skein x4-PPL5 1.13 0.95 6,972 6,185 GMU 
4 BLAKE x1-PPL4 0.92 0.77 11,075 12,082 GMU 

5 Groestl x1-PPL4 
(P+Q) 0.81 0.68 20,580 25,407 GMU 

512-bit variant, single-message architectures 
1 Keccak x1 2.26 1.89 7,825 3,467 GMU 
2 JH x1 (MEM) 1.56 1.31 5,139 3,294 GMU 
 SHA-2 x1 1.19 1.00 2,378 1,996 GMU 

3 Skein x4 0.68 0.57 2,736 4,015 GMU 
4 Groestl /2(v) (P/Q) 0.65 0.54 4,989 7,724 GMU 
5 BLAKE /2(h) 0.48 0.40 3,318 6,971 GMU 

 
• Results obtained using Altera Quartus II v.10.1 
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a) 256-bit variant, all architectures 

 

b) 256-bit variant, single-message architectures 

 

Fig. 10. Rankings of SHA-3 finalists in terms of the Normalized Throughput/Area Ratio for  
a) all architectures (including single-message and multi-message architecture),  
b) single-message architectures.  
256-bit variants of algorithms. Designs without padding. Based on the best results submitted to the 
ATHENa Database of Results [3] as of June 1, 2012. 
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a) 512-bit variant, all architectures 

 

b) 512-bit variant, single-message architectures 

 

Fig. 11. Rankings of SHA-3 finalists in terms of the Normalized Throughput/Area Ratio for  
a) all architectures (including single-message and multi-message architecture),  
b) single-message architectures.  
512-bit variants of algorithms. Designs without padding. Based on the best results submitted to the 
ATHENa Database of Results [3] as of June 1, 2012. 
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9. Correlation between FPGA results and ASIC results 
 
The number of hardware architectures of SHA-3 candidates implemented in ASICs to date is very small 
compared to the number of architectures implemented in FPGAs. Typically, only the best non-pipelined 
architectures for the 256-bit variants of the SHA-3 finalists are reported [18,19,20]. At the same time, 
multiple applications use ASICs as a primary way of implementing cryptographic transformations, and 
this trend is likely to continue in the future. Therefore, it is very interesting to see, whether there exist any 
strong correlation between results obtained for the ASIC and FPGA implementations of the same 
architectures. In our experiment, performed in collaboration with the group from ETH Zurich, we have 
implemented selected architectures for all SHA-3 candidates and SHA-2 using standard-cell CMOS 65nm 
UMC ASIC technology (UMC65LL) offered through Europractice MPW services, and using a 65 nm 
high-performance Altera FPGA family Stratix III. The selected architectures included the following non-
pipelined architectures: basic iterative architectures, x1, for Keccak and SHA-2, basic iterative 
architecture with round constants computed on the fly, x1 (OTF), for JH, basic iterative parallel 
architecture of Groestl (P+Q), horizontally folded two times architecture of BLAKE, /2(h), and the 
unrolled 4 times architecture of Skein, x4.  

 
a) 65nm ASIC           b) 65nm Stratix III FPGA 

 
c)         d) 

 
Fig. 12. Correlation between results for 65nm ASIC and 65nm Altera Stratix III FPGA. Normalized 
throughput vs. normalized area for a) ASIC, b) Stratix III FPGA. Normalized throughput to area ratio for 
c) ASIC, d) Stratix III FPGA. 
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All architectures have been designed for the 256-bit variants of the functions, without padding units, and 
with wide input and output interface (512 or 1088 bits at the input and 256 bits at the output). Exactly the 
same VHDL source codes have been synthesized, mapped, placed and routed using both technologies. 
The results, normalized to the results for SHA-2, are presented in Fig. 12. A very good correlation 
between normalized throughput and normalized area in both technologies have been observed. Ranking in 
terms of throughput is identical in both technologies. In terms of area, the biggest difference is a relatively 
smaller area of BLAKE in ASIC technology. In Stratix III FPGAs, JH and BLAKE have almost the same 
area, in ASIC BLAKE is about 20% smaller than JH.  

The biggest difference appears in terms of the throughput to area ratio, where BLAKE moves from 
the 4th position in tie with Skein in Stratix III to the 3rd position, ahead of Groestl for ASIC. Overall 
correlation is however very good and indicates that evaluations using Altera FPGAs are likely to give 
similar results to the evaluations using ASICs fabricated using equivalent technology. Interestingly, 
similar comparison using Xilinx Virtex 5 FPGAs results in much worse correlation. 
 
10. Results for Implementations using Embedded Resources of FPGAs 
 
The study of the impact of embedded resources on hardware implementations of the SHA-3 candidates 
has been performed for both non-pipelined (single-message) and pipelined (multi-message) architectures, 
with padding unit.   

The influence of embedded resources on the performance of non-pipelined architectures of all 14 
Round 2 candidates has been reported first in [37]. Here, we narrow down this study to five SHA-3 
finalists, and we implement all of them using the most efficient non-pipelined and pipelined architectures 
with padding unit.  

The numerical effect of using embedded resources in Xilinx Virtex 5 and Altera Stratix III in non-
pipelined architectures is summarized in Tables 11-14. In Tables 11 and 12, we have tabulated results for 
all logic-only implementations, and the corresponding implementations with embedded resources. The 
relative improvement in terms of Throughput, Area (in CLB slices for Virtex 5, and ALUTs for Stratix 
III), and Throughput to Area ratio is reported. 

None of the final candidates can take advantage of DSP units, because none of them uses 
multiplication. An attempt to use DSP units for the implementation of a 64-bit addition in Skein, resulted 
in very inefficient implementations in both Virtex 5 and Stratix III. Similarly, an attempt to use DSP units 
for the implementation of addition in BLAKE resulted in quite inefficient implementations (not reported 
in Tables 11 and 12). 

Block memories can be used in implementations of BLAKE, Groestl, JH, and Keccak. Based on the 
results presented in Tables 11 and 12, BLAKE and Groestl benefit most from using embedded memories, 
with the improvement in the Throughput to Area ratio higher for BLAKE in Virtex 5 FPGAs, and higher 
for Groestl in Altera Stratix III FPGAs. In Fig. 13, we show the implementation of the Permute 
transformation using block memories in BLAKE. In Fig. 16, we demonstrate the use of block memories 
to implement Groestl using a T-box based architecture [36,37].  

A relatively small drop (< 15%) in throughput was observed for majority of the candidates. The three 
exceptions were JH on Virtex 5, with the drop of about 33%, and Skein on Virtex 5 and Stratix III, with 
the drop of approximately 40%. Skein specifically suffered from the lack of support for a 64-bit addition 
in DSP units of Virtex 5 and Stratix III. 

Area, measured in the number of reconfigurable logic resources (CLB slices for Virtex 5 and ALUTs 
for Stratix III), decreased the most for BLAKE and Groestl, with BLAKE benefiting more on Virtex 5, 
and Groestl benefiting more on Stratix III. In all remaining cases, the decrease was smaller than 20%, and 
in case of Keccak and Skein implemented on Stratix III FPGAs, the amount of reconfigurable logic even 
increased. 

It should be stressed that any reduction in the amount of reconfigurable logic has been accomplished 
at the expense of substantial usage of embedded memories, which was the largest in Groestl, followed by 



	
   25	
  

BLAKE, JH, and Keccak. In particular, compared to BLAKE, Groestl used about 4 times more BRAMs 
in Virtex 5, and about 50 times more memory bits in Stratix III. 

In Table 13, only relative improvements in terms of the Throughput, Area, and Throughput to Area 
ratio are presented. 

In Table 14, we summarize the effect of the use of embedded resources on the ranking of the SHA-3 
finalists in terms of the Throughput to Area ratio for non-pipelined (single-message) architectures. In 
Virtex 5 and Stratix III, the initial ranking based on the logic-only implementations is as follows: 1) 
Keccak, 2) JH, 3) Groestl, 4) Skein, 5) BLAKE. As a result of using embedded resources, Groestl jumps 
ahead of JH to the second position, and BLAKE jumps ahead of Skein to the fourth position. It should be 
stressed however, that this improvement can be taken advantage of only if in the given system-on-chip 
including hash functions, none of the other components of the system relies heavily on block memories.  

The results for the best pipelined (multi-message) architectures of all algorithms are summarized in 
Tables 15-18. The pipelined implementation of BLAKE, x1-PPL4, is presented in Figs. 14 and 15. Two 
rows of G functions are used, and pipelined registers are placed before the first row, before the second 
row, and in the middle of each G function. Embedded resources can be used only as a part of the function 
Permute, which now needs to include four sets of BRAMs, one per each stream of data. For Groestl, two 
pipelined architectures are used. The x1-PPL2(P+Q) architecture has appeared to be more efficient for 
Virtex 5, while the x1-PPL4(P+Q) architecture more efficient for Stratix III. The latter of these two 
architectures, x1-PPL4(P+Q), is shown in Fig. 17. Pipelined registers are introduced before the AddP and 
AddQ operations, after the T-boxes, after the modified network of XORs, and in the feedback loop. 
Similarly, for Skein, two different architectures have been used. The x4-PPL2 architecture is most 
efficient for Virtex-5, whereas the x4-PPL5 architecture is most efficient for Stratix III. 

As shown in Table 15, for Virtex 5, only Groestl and JH benefit significantly from using embedded 
resources, and they both reach an improvement of 17.5% in terms of the throughput to area ratio. JH 
benefits primarily from the increase in the circuit throughput, while Groestl from the decrease in the 
number of CLB slices. The improvement for BLAKE is negligible (less than 3%), and Keccak and Skein 
do not benefit at all. 

As shown in Table 16, for Stratix III, the improvement for Groestl is much higher (in the range of 
94%), and improvement for JH much smaller (less than 6%). BLAKE and Skein have the worse 
throughput to area ratio after introducing embedded resources, and Keccak shows a negligible 
improvement. Thus, only Groestl, when implemented using a pipelined architecture on Stratix III, can 
benefit from using embedded resources. 

In Table 17, only relative improvements in terms of the Throughput, Area, and Throughput to Area 
ratio are presented. 

In Table 18, we summarize the effect of the use of embedded resources on the ranking of the SHA-3 
finalists in terms of the Throughput to Area ratio for pipelined (multi-message) architectures. In Virtex 5, 
the initial ranking based on the logic-only implementations is as follows: 1) Keccak, 2) Groestl, 3) JH, 4) 
Skein, 5) BLAKE. The use of embedded resources does not change this ranking. In Stratix III, the initial 
ranking based on the logic-only implementations is as follows: 1) Keccak, 2) JH, 3) Groestl, 4) BLAKE, 
5) Skein. As a result of using embedded resources, Groestl jumps ahead of JH to the second position, and 
the remaining order remains the same. 
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Table 11: The effect of the embedded resources on the performance of 5 Round 3 SHA-3 candidates on Virtex 5 
FPGA	
   for non-pipelined architectures. Notation: Tp – throughput, Tp/Area – Throughput to Area Ratio, ∆ [%] – 
relative improvement in the Throughput, Area, and Throughput to Area ratio as a result of using embedded resources 
in the hash unit. The relative change in the throughput to area ratio has been marked in bold. Xilinx PlanAhead 13.1 
and ATHENa were used to generate optimized results after place and route for the embedded architectures. The 
better of the two results (in terms of the Throughput to Area ratio) was reported below.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 12: The effect of the embedded resources on the performance of 5 Round 3 SHA-3 in Stratix III FPGA for 
non-pipelined architectures. Notation: Tp – throughput, Tp/Area – Throughput to Area Ratio, ∆ [%] – relative 
improvement in the Throughput, Area, and Throughput to Area ratio as a result of using embedded resources in the 
hash unit. The relative change in the throughput to area ratio has been marked in bold. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Arch Tp 
Area 

Tp/Area (Slices) Slices BRAMs DSPs 
BLAKE-256 

/2(h)-PAD 2266 1860 0 0 1.22 
/2(h)-PAD-Emb 2088 802 12 0 2.60 
Δ  [%] -7.9% 56.9% N/A N/A 113.1% 

Groestl-256 (P/Q) 
x1-PAD 6572 2020 0 0 3.25 
x1-PAD-Emb 5735 1343 49 0 4.27 
Δ  [%] -12.7% 33.5% N/A N/A 31.4% 

JH-256 (MEM) 
x1-PAD 4543 1001 0 0 4.53 
x1-PAD-Emb 3099 842 5 0 3.68 
Δ  [%] -32.8% 7.6% N/A N/A -18.8% 

Keccak-256 
x1-PAD 12745 1375 0 0 9.27 
x1-PAD-Emb 11663 1254 1 0 9.30 
Δ  [%] -0.6% 1.7% N/A N/A 0.3% 

Skein-256 
x4-PAD 3127 1245 0 0 2.51 
x4-PAD-Emb 1907 1040 0 32 1.83 
Δ  [%] -39.0% 16.5% N/A N/A -27.1% 

Arch TP Area TP/Area (ALUTs) ALUTs membits DSPs 
BLAKE-256 

/2(h)-PAD 2206 3660 0 0 0.60 
/2(h)-PAD-Emb 1880 2008 12288 0 0.94 
Δ  [%] -14.8% 45.1% N/A N/A 56.7% 

Groestl-256 (P/Q) 
x1(P/Q)-PAD 6140 7564 0 0 0.81 
x1(P/Q)-PAD-Emb 6082 2862 655,360 0 2.13 
Δ  [%] -0.9% 62.2% N/A N/A 163.0% 

JH-256 (MEM) 
x1-PAD 5024 3383 0 0 1.49 
x1-PAD-Emb 4801 3108 15,744 0 1.55 
Δ  [%] -4.4% 8.1% N/A N/A 4.0% 

Keccak-256 
x1-PAD 14624 4060 0 0 3.60 
x1-PAD-Emb 13902 4111 2048 0 3.38 
Δ  [%] -4.9% -1.3% N/A N/A -6.1% 

Skein-256 
x4-PAD 2494 3960 0 0 0.63 
x4-PAD-Emb 1463 5203 0 128 0.28 
Δ  [%] -41.3% -31.4% N/A N/A -55.6% 



	
   27	
  

 
Table 13: Change in the results between the logic-only implementation (without DSP units and Block RAMs) and 
the implementation using these embedded resources for non-pipelined architectures. The respective columns 
represent: ∆Throughput [%] - Relative Improvement in Throughput, ∆Reconfigurable Logic [%] - Relative 
Reduction in the amount of Reconfigurable Logic, ∆Tp/Reconfigurable Logic [%] - Relative Improvement in 
Throughput/Reconfigurable Logic Ratio.  

 
 
Table 14: Change in the ranking based on the throughput to area ratio between the logic-only implementations 
(without DSP units and Block RAMs) and the implementations with embedded resources for non-pipelined 
architectures. Values given in bold represent the best results for a given algorithm and FPGA family, and the 
improvement column represents a relative improvement compared to the logic-only implementation achieved using 
the best of the two implementations.  

	
  

 
Fig. 13. BLAKE. Transformation of the datapath from the logic-only implementation to the implementation using 
embedded resources for non-pipelined architecture. 
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Algorithm 

Δ  Throughput [%] Δ  Reconfigurable logic [%] ΔTp/Reconfigurable logic [%] 
Virtex 5 Stratix III Virtex 5 Stratix III Virtex 5 Stratix III 

BLAKE -7.9% -14.8% 56.9% 45.1% 113.1% 56.7% 
Groestl -12.7% -0.9% 33.5% 62.2% 31.4% 163.0% 
JH -32.8% -4.4% 7.6% 8.1% -18.8% 4.0% 
Keccak -0.6% -4.9% 1.7% -1.3% 0.3% -6.1% 
Skein -39.0% -41.3% 16.5% -31.4% -27.1% -55.6% 

Algorithm & 
Architecture 

Virtex 5 Stratix III 

Logic-only With embedded 
resources Improvement Logic-only With embedded 

resources Improvement 

Keccak: x1 9.27 9.30 0.3% 3.60 3.38 0.0% 
JH: x1 (MEM) 4.53 3.68 0.0% 1.49 1.55 4.0% 
Groestl: x1 (P/Q) 3.25 4.27 31.4% 0.81 2.13 163.0% 
Skein: x4 2.51 1.83 0.0% 0.63 0.28 0.0% 
BLAKE: /2(h) 1.22 2.60 113.1% 0.60 0.94 56.7% 
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Fig. 14. BLAKE. Block diagram of the pipelined implementation of BLAKE-256, x1-PPL4. The Permute unit can 
be implemented using either logic-only approach, or using block memories. 
 

	
  
Fig. 15. BLAKE. G-function, represented as G_mod in Fig. 9b, with one inner-pipelining register. 
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Fig. 16. Groestl. Transformation of the datapath from the S-Box based logic-only implementation to the T-Box 
based implementation using embedded resources for non-pipelined architecture. 

 
 
Fig. 17. Groestl. Block diagram of the pipelined implementation of Groestl, x1-PPL4, based on the T-box 
architecture. T-box is implemented using block memories, as shown in Fig. 16. 
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Table 15: The effect of the embedded resources on the performance of 5 Round 3 SHA-3 in Virtex 5 FPGA for 
pipelined architectures. Notation: Tp – throughput, Tp/Area – Throughput to Area Ratio, ∆ [%] – relative 
improvement in the Throughput, Area, and Throughput to Area ratio as a result of using embedded resources in the 
hash unit. The relative change in the throughput to area ratio has been marked in bold. Xilinx PlanAhead 13.1 and 
ATHENa were used to generate optimized results after place and route for the embedded architectures. The better of 
the two results (in terms of the Throughput to Area ratio) was reported below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 16: The effect of the embedded resources on the performance of 5 Round 3 SHA-3 in Stratix III FPGA for 
pipelined architectures. Notation: Tp – throughput, Tp/Area – Throughput to Area Ratio, ∆ [%] – relative 
improvement in the Throughput, Area, and Throughput to Area ratio as a result of using embedded resources in the 
hash unit. The relative change in the throughput to area ratio has been marked in bold. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Arch TP Area TP/Area (Slices) Slices BRAMs DSPs 
BLAKE-256 

x1-PPL4-PAD 7510 3526 0 0 2.13 
x1-PPL4-PAD-Emb 5314 2427 50 0 2.19 
Δ  [%] -29.2% 31.2% N/A N/A 2.8% 

Groestl-256 (P+Q) 
x1-PPL2-PAD 13382 3172 0 0 4.22 
x1-PPL2-PAD-Emb 11051 2223 99 0 4.97 
Δ  [%] -17.4% 29.9% N/A N/A 17.8% 

JH-256 (MEM) 
x2-PPL2-PAD 5879 2056 0 0 2.86 
x2-PPL2-PAD-Emb 7041 2099 10 0 3.35 
Δ  [%] 19.8% -2.1% N/A N/A 17.1% 

Keccak-256 
x1-PPL2-PAD 12523 2123 0 0 5.90 
x1-PPL2-PAD-Emb 11562 2035 1 0 5.68 
Δ  [%] -7.7% -4.1% N/A N/A -3.7% 

Skein-256 
x4-PPL2-PAD 4873 2030 0 0 2.40 
x4-PPL2-PAD-Emb 2725 1910 0 48 1.43 
Δ  [%] -44.1% 5.9% N/A N/A -40.4% 

Arch TP Area TP/Area (ALUTs) ALUTs membits DSPs 
BLAKE-256 

x1-PPL4-PAD 7787 6657 0 0 1.17 
x1-PPL4-PAD-Emb 5101 5185 49152 0 0.98 
Δ  [%] -34.5% 22.1% N/A N/A -15.9% 

Groestl-256 (P+Q) 
x1-PPL4-PAD 16903 13261 0 0 1.28 
x1-PPL4-PAD-Emb 15591 6297 1310720 0 2.48 
Δ  [%] -7.8% 52.5% N/A N/A 94.2% 

JH-256 (MEM) 
x2-PPL2-PAD 9804 6339 0 0 1.55 
x2-PPL2-PAD-Emb 9270 5672 16384 0 1.63 
Δ  [%] -5.4% 10.5% N/A N/A 5.6% 

Keccak-256 
x1-PPL2-PAD 16047 5003 0 0 3.21 
x1-PPL2-PAD-Emb 16563 4984 2048 0 3.32 
Δ  [%] 3.2% 0.4% N/A N/A 3.6% 

Skein-256 
x4-PPL5-PAD 6869 6068 0 0 1.13 
x4-PPL5-PAD-Emb 1263 9912 0 384 0.13 
Δ  [%] -81.6% -63.3% N/A N/A -88.8% 
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Table 17: Change in the results between the logic-only implementation (without DSP units and Block RAMs) and 
the implementation using embedded resources for pipelined architectures. The respective columns represent: 
∆Throughput [%] - Relative Improvement in Throughput, ∆ Reconfigurable Logic [%] - Relative Reduction in the 
amount of Reconfigurable Logic, ∆Tp/Reconfigurable Logic [%] - Relative Improvement in 
Throughput/Reconfigurable Logic Ratio.  
 
 
Algorithm 

∆ Throughput [%] ∆ Reconfigurable logic [%] ∆ Tp/Reconfigurable logic [%] 
Virtex 5 Stratix III Virtex 5 Stratix III Virtex 5 Stratix III 

BLAKE -29.2% -34.5% 31.2% 22.1% 2.8% -15.9% 
Groestl -17.4% -7.8% 29.9% 52.5% 17.8% 94.2% 
JH 19.8% -5.4% -2.1% 10.5% 17.1% 5.6% 
Keccak -7.7% 3.2% -4.1% 0.4% -3.7% 3.6% 
Skein -44.1% -81.6% 5.9% -63.3% -40.4% -88.8% 
 
Table 18: Change in the ranking based on the throughput to area ratio between the logic-only implementations 
(without DSP units and Block RAMs) and the implementations with embedded resources for pipelined 
architectures. Values given in bold represent the best results for a given algorithm and FPGA family, and the 
improvement column represents a relative improvement compared to the logic-only implementation achieved using 
the best of the two implementations.  
 

Algorithm & 
Architecture 

Virtex 5 Stratix III 

Logic-only 
With 

embedded 
resources 

Improvement Logic-only 
With 

embedded 
resources 

Improvement 

Keccak: x1-PPL2-PAD 5.90 5.68 0.0% 3.21 3.32 3.6% 
Groestl: x1-PPL2-PAD/ 
x1-PPL4-PAD* 

4.22 4.97 17.8% 1.28 2.48 94.2% 

JH: x2-PPL2-PAD 2.86 3.35 17.1% 1.55 1.63 5.6% 
Skein: x4-PPL2-PAD/ 
x4-PPL5-PAD ** 

2.40 1.43 0.0% 1.13 0.13 0.0% 

BLAKE: x1-PPL4-PAD 2.13 2.19 2.8% 1.17 0.98 0.0% 

* Groestl  x1-PPL2-PAD is implemented on Virtex 5 whereas Groestl x1-PPL4-PAD is implemented on Stratix III. 
** Skein x4-PPL2-PAD is implemented on Virtex 5 whereas Skein x4-PPL5-PAD is implemented on Stratix III. 
 
11. Results for Short Messages 
 
In all previous sections, the Throughput is understood as the throughput for long messages, and does not 
take into account the time taken for reading the very first block of the message, initialization, finalization, 
and writing a hash value to the output memory. To be exact, we define Throughput for all single-message 
architectures using the following formula: 

Thr = Thrlong =
b ⋅ N

T • (Htime(N +1)−HTime(N ))
    (3) 

where b is a message block size, characteristic for each hash function (as defined in the function 
specification, and shown in Table 20), HTime(N) is a total number of clock cycles necessary to hash an N-
block message, and T is a clock period, different and characteristic for each hardware implementation of a 
specific hash function. 
All our designs follow the same interface, described in detail in []. This interface has the parameter: 

• w = the width of the input data bus, din, and the output data bus, dout. These buses are 
independent of each other, and both have the width w. In our implementations, w=64 for all 
algorithms and algorithm variants, except SHA-2-256, where w=32. 

The general formula for the time necessary to hash N blocks of the message can be written in the 
following form: 

HTime(N) = CINIT +CIN + CBLOCK⋅N + CFINAL +COUT   (4) 
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In this formula: 
• CINIT is the number of clock cycles necessary to establish communication with the source of data 

(typically, Input FIFO) and read the length of the message (in our formulas we assume that the 
length of the message is smaller than 2w-1, and CINIT=2). 

• CIN is the number of clock cycles required to load the very first block of the message.  
CIN = b/w. 

• CBLOCK is the number of clock cycles required to process one block of the message. 
• CFINAL is the number of clock cycles required for the finalization. We assume that only one 

finalization is required per entire message (if the finalization needs to be repeated for every block 
of the message, its number of clock cycles is included in CBLOCK). 

• COUT is the number of clock cycles required to write hash value to the destination circuit 
(typically Output FIFO). cOUT=output_size/w. 

Values of the constants CBLOCK and CFINAL are specific to each algorithm and the algorithm variant. Values 
of these constants for various single-message architectures are summarized in Table 19. 

The combined throughput for the pipelined architecture with n pipeline stages, derived from an 
arbitrary single-message architecture, ARCH, and processing n long messages in parallel, is given by the 
following equations: 

For Keccak, Groestl (P+Q), and Skein: 

  (5) 

For BLAKE, Groestl (P/Q), and JH: 

  (6) 

 

where TARCH and fARCH are the clock period and the clock frequency of the single-message architecture 
ARCH, TARCH-PPLn and fARCH-PPLn are the clock period and the clock frequency of the pipelined architecture, 
ARCH-PPLn, derived from the architecture ARCH, ThrARCH-long is the throughput of the architecture 
ARCH for long messages, and cycles_per_round is the number of clock cycles per round in the 
architecture ARCH. 

Thus, for Keccak, Groestl (P+Q), and Skein, the throughput increases proportionally to the increase in 
the clock frequency. For BLAKE, Groestl (P/Q), and JH, the dependence is somewhat more complicated, 
as given by Eq. (6), and as a result, the throughput increases by a slightly larger factor. 
The formulas for short messages, as a function of the message length, m, are as follows: 

     (7) 

 

N(m) = m+min_pad
b

!

""
#

$$
     (8) 

 

Relative_Effective_Throughput(m) = RET(m) =    (9) 

 

ThrARCH−PPLn−long =
TARCH

TARCH−PPLn
⋅ThrARCH−long =

fARCH−PPLn
fARCH

⋅ThrARCH−long

ThrARCH−PPLn−long =
TARCH

TARCH−PPLn
⋅ (1+ (n−1)

n ⋅cycles_ per _ round +1
) ⋅ThrARCH−long

Thrshort (m) =
m

T •HTime(N (m))

Thrshort (m)
Thrlong
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Table 19: The number of clock cycles required to process one block of data (CBLOCK), and the number of 
clock cycles required for the finalization (CFINAL) for various single-message architectures.

 

 256-bit variant 512-bit variant 
Algorithm CBLOCK CFINAL CBLOCK CFINAL 

BLAKE 
x1 15 0 17 0 
/2(h) 29 0 33 0 
/4(h) 57 0 65 0 
/4(h)/4(v)-m 240 0 272 0 

Groestl 
x1 (P+Q) 10 10 14 14 
x1 (P/Q) 21 21 29 29 
/2(v) (P+Q) 20 20 28 28 
/2(v) (P/Q) 42 42 58 58 
/4(v) (P+Q) 40 40 56 56 
/4(v) (P/Q) 84 84 116 116 
/8(v) (P+Q) 80 80 112 112 
/8(v) (P/Q) 168 168 232 232 

JH 
x1 (MEM, OTF) 43 0 43 0 
/2(v) (MEM, OTF) 85 0 85 0 
/8(v)-m (MEM) 688 0 688 0 
x2 (MEM, OTF) 22 0 22 0 

Keccak 
x1 24 0 24 0 
/8(v)-m 233 0 233 0 

Skein 
x1 73 73 73 73 
x4 19 19 19 19 
x8 10 10 10 10 

SHA-2 
x1 65 0 81 0 
 
 

Values of the constants b and min_pad are specific to each algorithm and the algorithm variant, and 
are summarized in Table 20. 

The Relative Effective Throughput, RET(m),  can be further transformed to the formula (10): 
 

RET (m) = m
m+min_pad

b
!
""

#
$$
⋅b
⋅

CBLOCK ⋅N(m)
COVR +CBLOCK ⋅N(m)

=
m

mafter−padding

⋅
CBLOCK ⋅N(m)

COVR +CBLOCK ⋅N(m)
    (10) 

 
In this formula, COVR= CINIT +CIN + CFINAL +COUT, where values of these constants are defined above. 
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As can be seen from these formulas, the slow down compared to the throughput for long messages is 
caused by two factors: 

1. The difference between the size of the message before and after padding. 
2. Overhead associated with the initialization, loading the first message block, the one-time hash 

function finalization, and writing a hash value to the output. 
The first of these two effects is inherent for processing of small messages. The latter effect can be either 
minimized or even eliminated completely in our architectures by overlapping processing of two 
subsequent messages. 

The graphs shown in Figs. 18-20, represent values of the Relative Effective Throughput, as a function 
of the message size m, under the worst case condition, where either only a single message is processed, or 
there is no overlap between processing of multiple messages of size m.  
 

a)  b)  

c)  d)  
 

e)  f)  
Fig. 18. Relative effective throughput vs. message size for short messages up to 1,600 bytes for 256 and 
512-bit variants of all SHA-3 Candidates and SHA-256 in Virtex 5. Darker lines denote 512-bit variants. 
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Fig. 19. Relative effective throughput vs. message size for short messages up to 1,600 bytes. 256-bit 
variants of all SHA-3 Candidates and SHA-256. 

 
Fig. 20. Relative effective throughput vs. message size for short messages up to 1,600 bytes. 512-bit 
variants of all SHA-3 Candidates and SHA-256. 
 
Table 20: Block size and minimum padding length (min_pad) for all SHA-3 finalists and SHA-2. 

 256-bit variant 512-bit variant 
Algorithm Block size, b min_pad Block size, b min_pad 

BLAKE 512 66 1024 130 
Groestl 512 65 1024 65 

JH 512 512 512 512 
Keccak 1088 2 576 2 
Skein 512 0 512 0 

SHA-2 512 65 1024 129 
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In Fig. 18, Relative effective throughputs, are shown individually, for each of the 5 SHA-3 finalists 
and SHA-2, for message sizes up to 1600 bytes. The interval between consecutive local maximums is 
equal to the message block size, b (in bytes). The message size corresponding to the first local maximum 
is equal to: b-min_pad (in bytes) for all functions, except JH, where it is equal to b. 

For JH and Skein, the dependence does not depend on the hash output size. For BLAKE, Groestl, and 
SHA-2, the relative effective throughput is smaller for the 512-bit variant compared to the 256-bit variant. 
In Keccak, the reverse relation is true. This is because the message block size for the 512-bit variant (576 
bits) is smaller than the message block size for the 256-bit variant (1088 bits). 

In Fig. 19, the diagrams for the 256-bit variants of all investigated hash functions are combined 
together. Based on this figure, the effect of the message size on the relative effective throughput is the 
smallest in case of SHA-2 and the largest in case of Keccak. This relation holds because Keccak has a 
significantly larger value of the block size, b (1088 bits = 136 bytes), and the difference b-min_pad (1086 
bits) than any other candidate. Additionally, SHA-2 has the smallest effective overhead, as it can start 
processing a block of message without loading it first to the hash unit. 

In Fig. 20, the equivalent combined diagram is shown for the 512-bit variants of all investigated 
functions. This time, the worst performers are BLAKE and Groestl, the algorithms with the largest values 
of the block size, b (1024 bits = 128 bytes), and the largest values of b-min_pad. SHA-2 has also a large 
block size (1024 bits), but it benefits from a small overhead associated with reading data, and a large 
number of clock cycles, which makes the influence of the overhead clock cycles negligible. 
 
12. Conclusions 
 
In this paper, we have performed a systematic investigation of high-speed hardware architectures for the 
five final SHA-3 candidates. The investigated architectures were based on the concepts of the basic 
iterative architecture, horizontal folding, vertical folding, unrolling, pipelining, and parallel processing 
using multiple independent units. Each architecture was implemented using four high-performance FPGA 
families: Virtex 5 and Virtex 6 from Xilinx, and Stratix III and Stratix IV from Altera. Based on the 
obtained results, we have identified the most efficient hardware architecture for each of the investigated 
algorithm, based on the best throughput to area ratio.  

For majority of algorithms and algorithm variants, the best architecture is specific to particular FPGA 
family, or at least to FPGAs of a particular vendor (Xilinx and Altera). Inner-round pipelining is the most 
efficient method of increasing throughput to area ratio compared to the basic iterative architecture, 
assuming the availability of multiple streams of data. In case of Skein, pipelining must be preceded by 
unrolling by a factor of 4. In case of JH, pipelining is efficient only on Altera FPGAs, and only if 
preceded by unrolling by a factor of 2. In case of Keccak, pipelining seems to improve only throughput, 
but not the throughput to area ratio. For majority of algorithms, an optimum number of pipeline stages is 
specific to both an algorithm variant and an FPGA family. 

The results for all investigated functions, and the most successful architectures have been summarized 
using the comprehensive throughput vs. area graphs. Then, the results for the best architectures in terms 
of the throughput to area ratio, have been used to determine two rankings per each FPGA family: 

a) ranking for single-message (non-pipelined) architectures, and 
b) ranking for all architectures (non-pipelined and pipelined). 

The latter case (ranking for all architectures) seems to be more realistic, as in majority of practical 
applications, the number of data streams available in parallel is substantial. 

The effect of padding units on the results of ranking was investigated, and was found to be negligible. 
The results for circuits with padding units are provided in the paper as these circuits represent the most 
complete, ready to use solution. The results for circuits without padding units are provided as well in 
order to allow comparison with results from other groups, as the majority of designs reported in the 
literature and in the database of results [3] do not include padding unit. 
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The effect of the typical message size on the ranking of candidates was also studied, and was shown 
to be highly dependent on the specific message size, and relatively small for a typical distribution of 
packet sizes used in the Internet security protocols. 

The most efficient single-message architectures1, identified using results for Altera FPGAs, were 
ported to the 65nm standard-cell UMC ASIC technology. An integrated circuit containing these 
architectures for the 5 SHA-3 finalists and SHA-2 has been fabricated. The obtained results have been 
compared with FPGA results for Xilinx and Altera families. Results for the Altera family, Stratix III, have 
been demonstrated to show a good correlation with the aforementioned ASIC results. Thus, it is quite 
likely, that even an extended study, involving a larger number of architectures, conducted using ASICs, 
would give similar results to the evaluations using Altera FPGAs fabricated using an equivalent 
fabrication process. 

Our study has revealed that Keccak is the only candidate that consistently outperforms SHA-2 for all 
considered FPGA families and two hash function variants (with 256-bit and 512-bit output). The typical 
improvement factor in terms of the throughput to area ratio is at least 2. The only drawback of this 
function appears to be its limited suitability for folding. Additionally, no pipelined architecture, 
improving the throughput to area ratio has been demonstrated in our study. 

JH performs better than SHA-2 consistently, across all investigated FPGA families, for 512-bit 
variants of both functions. For the 256-bit variants, JH shows an improvement for only one out of four 
FPGA families. Interestingly, for majority of FPGA families, JH is the most efficient in its basic iterative 
architecture, and is not very suitable for either folding or inner-round pipelining.  

Groestl outperforms SHA-2 in terms of the throughput to area ratio for only one out of four FPGA 
families, Virtex 5. Even then, this advantage is reached only for the relatively large area of about 3000 
CLB slices for Groestl-256 and about 6000 CLB slices for Groestl-512. Although Groestl appears to be 
very suitable for vertical folding, the very nature of this technique causes that the decrease in area is 
typically accompanied by an even greater decrease in speed. The only exception to this rule is the quasi-
pipelined Groestl architecture (P/Q) folded vertically by a factor of /2(v)(P/Q). If embedded resources are 
abundant, Groestl can take advantage of block memories of modern FPGAs, in order to decrease its usage 
of reconfigurable logic, and increase the throughput to area ratio (with area representing reconfigurable 
logic only). In such cases, Groestl jumps ahead of JH to the second position in ranking, at least for Altera 
FPGAs. Additionally, Groestl is the only finalist that can efficiently share resources with AES, when both 
algorithms are implemented on the same FPGA, thus reducing the cost of the respective system-on-chip. 

Skein is the only finalist that can substantially benefit from unrolling. It is also the fastest for the 
pipelined versions of the 4x unrolled architecture, and is the only algorithm that can be pipelined 
efficiently up to 10 times. Skein performs particularly well compared to other algorithms for the 512-bit 
variants of hash functions, in the category of all architectures, on Altera FPGAs. In this ranking, Skein is 
exceptionally third, and achieves performance comparable to SHA-2-512. For the 256-bit variants of hash 
functions, and for the 512-bit variant on Virtex 6, Skein lags behind SHA-2. 

BLAKE is the algorithm with the highest flexibility, and the largest number of potential architectures. 
It can be easily folded horizontally and vertically by factors of two and four. It can also be easily 
pipelined even in the folded architectures. It is also the only algorithm that has a relatively efficient 
architecture that is smaller than the basic iterative architecture of SHA-2. Finally, BLAKE, similarly to 
Groestl, can benefit substantially from using embedded block memories of both Xilinx and Altera 
FPGAs. At the same time, BLAKE ranks last or second to last in almost all FPGA rankings (concerning 
high-speed architectures) based on the throughput to area ratio. 

Our future work will include experimental testing of selected high-speed architectures of the SHA-3 
finalists, using high-performance FPGA boards based on Xilinx and Altera FPGAs, equipped with high-
speed communication interface, such as PCI Express. 

 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  the only exception was Groestl where the basic iterative architecture, x1(P+Q), was used instead of 
slightly more efficient vertically folded architecture /2(v)(P/Q).	
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