
	
 1	

Comprehensive Evaluation of High-Speed and Medium-Speed
Implementations of Five SHA-3 Finalists

Using Xilinx and Altera FPGAs

Kris Gaj, Ekawat Homsirikamol, Marcin Rogawski, Rabia Shahid, and Malik Umar Sharif
George Mason University

{kgaj, ehomsiri, mrogawsk, rshahid, msharif2}@gmu.edu

Abstract. In this paper we present a comprehensive comparison of all Round 3 SHA-3
candidates and the current standard SHA-2 from the point of view of hardware performance in
modern FPGAs. Each algorithm is implemented using multiple architectures based on the
concepts of iteration, folding, unrolling, pipelining, and circuit replication. Trade-offs between
speed and area are investigated, and the best architecture from the point of view of the
throughput to area ratio is identified. Finally, all algorithms are ranked based on their overall
performance in FPGAs. The characteristic features of each algorithm important from the point
of view of its implementation in hardware are identified.

Keywords: benchmarking, hash functions, SHA-3, hardware, FPGA.

1. Introduction

Performance in hardware is one of the major criteria used in the SHA-3 competition [1]. Typically, this
performance is evaluated using two major technologies: Field Programmable Gate Arrays (FPGAs) and
Application Specific Integrated Circuits (ASICs). Comparison using FPGAs offers several important
advantages, such as short development time, accurate post place & route results, existence of tools for
optimum choice of program options and automated collection of a large number of results [2,16], and
relatively small number of vendors and device families that dominate the market. As a result, our FPGA
performance evaluation covers significantly broader design space than any ASIC comparison we are
aware of. In particular, in this paper, each of the SHA-3 finalists is implemented in both basic variants,
with a 256-bit and a 512-bit output, and each variant is implemented using from 5 to 10 different
hardware architectures based on the concepts of iteration, folding, unrolling, pipelining, and circuit
replication. Each architecture is equipped with a realistic FIFO-based interface with a modest pin
requirement, and the capability for simultaneous processing of the current message block, reading the
next message block, and writing the previously computed hash value to the output FIFO [15,23,24].
Unlike any ASIC implementations, and majority of earlier reported FPGA implementations, our SHA-3
candidate cores are equipped with full padding units, capable of processing any messages ending on a
boundary of a byte. All VHDL source codes have been developed by two primary designers, closely
collaborating with each other, which substantially minimizes the potential influence of different designer
skills. Majority of source codes and the corresponding block diagrams have been published on the web
and made available for public scrutiny [5]. All cores have been implemented and characterized using four
modern high-performance FPGA families from two major vendors, Xilinx and Altera. All implementation
results have been optimized and generated using ATHENa (Automated Tool for Hardware Evaluation)
[2,16]. The details of all 600+ results are available in the ATHENa database [3], where they can be
interactively accessed, reviewed, ranked, searched for, and compared to one another. For each set of
results, ATHENa database holds also a set of replication scripts and configuration files that can be used
by a third party to efficiently reproduce all results without using ATHENa. Finally, we also demonstrate
in this paper that selected FPGA results show very good correlation with the corresponding ASIC results
[20] obtained using a typical standard-cell library based on the similar 65nm CMOS technology.

	
 2	

2. Previous Work

Previous results on comparison of Round 2 SHA-3 candidates in hardware are summarized in [7,3,4].
These results are classified into four major categories, based on the technology (FPGA vs. ASIC), and the
optimization target (High-Speed vs. Low-Area). The previous results most relevant to the subject of this
paper belong to the category of High-Speed Implementations in FPGAs. The most comprehensive results
belonging to this category were reported by Baldwin et al. [10,11], Gaj et al. [15], Homsirikamol et al.
[23], Matsuo et al. [34], and Knežević et al. [32]. All these groups have published results for all 14 Round
2 candidates. Majority of published results concern 256-bit variants of the candidates, implemented using
Xilinx Virtex 5 FPGAs. In [23], results for 256-bit and 512-bit variants of all algorithms, implemented
using 10 FPGA families from Xilinx and Altera are discussed. Additionally, pipelined implementations of
three Round 2 SHA-3 candidates have been investigated in [8]. In our earlier paper, published at CHES
2011 [24], we investigated the throughput vs. area trade-offs in implementations of SHA-2 and five SHA-
3 finalists. In this paper, we present results obtained by extending each architecture with a padding unit,
and optimizing selected pipelined implementations of the SHA-3 candidates. A similar study, limited to
most efficient high-speed single-message architectures has been reported in [33]. Additionally, two
unified high-speed hardware architectures of AES and Groestl have been reported in [25,36]. The
influence of system parameters on the performance of selected SHA-3 candidates have been investigated
in [14].

Several comprehensive comparisons of low-area implementations of Round 3 SHA-3 candidates in
FPGAs have been presented in [26,27,29,30,31]. Additional results for BLAKE and Skein have been
discussed in [13,9]. The most comprehensive studies of ASIC implementations of the Round 3 SHA-3
candidates have been described in [18,19,20] and documented in [4]. These studies follow previous
investigation of Round 2 SHA-3 candidates described in [17,21,22,38].

All results obtained based on the Round 2 specifications of SHA-3 candidates carry without any
changes for Keccak and Skein. The specifications of BLAKE, Groestl, and JH have been tweaked at the
start of Round 3, in January 2011. The throughput of the Round 3 BLAKE and JH can be calculated
based on the results from Round 2 by decreasing it by a factor proportional to the increase in the number
of rounds. The area of these implementations will remain practically the same. The change in the
throughput and area of Groestl is much more difficult to approximate, as demonstrated in [35].

3. Performance Metrics

Three major performance metrics used in our study are throughput, area, and throughput to area ratio.
Throughput presented in all tables and graphs in this paper (except Section 11) is calculated as the
throughput for long messages. The formulas describing the adjustments to the values of the throughput
required when processing short messages are presented in Section 11.
The resource utilization in FPGAs is a vector, with coordinates specific to the given FPGA family, e.g.

Resource UtilizationVirtex 5 = (#CLB slices, #BRAMs, #DSPs) (1)

Resource UtilizationStratix III = (#ALUTs, #memory_bits, #DSPs). (2)

In these formulas: #CLB_slices is the number of Configurable Logic Block slices, BRAM stands for
Block RAM, DSP is a Digital Signal Processing unit, #ALUTs represents the number of Adaptive Look-
Up Tables, and #mem-bits is the number of bits stored in dedicated Altera FPGA memories.

Taking into account that vectors cannot be easily compared to one another, we have decided to opt out
of using any dedicated resources in the hash function implementations used for our comparison. Thus, all
coordinates of our vectors, other than the first one have been forced (by choosing appropriate options of
the synthesis and implementation tools) to be zero. This way, our resource utilization (further referred to
as Area) is characterized using a single number, specific to the given family of FPGAs, namely
#CLB_slices for Xilinx Virtex 5 and Virtex 6, #ALUTs in Stratix III and Stratix IV.

	
 3	

4. Investigated Hardware Architectures

Investigated architectures are described in more detail in our earlier paper presented at CHES 2011 [24].
Additionally, full VHDL source codes and corresponding hierarchical block diagrams of majority of these
architectures have been published at [5]. Below, we present only a short summary of major features of the
known-to-date high-speed and medium-speed hardware architectures of SHA-3 finalists.

A starting point for our exploration is the basic iterative architecture, shown in Fig. 1a. This
architecture is the most efficient (in terms of the throughput to area ratio) non-pipelined architecture of
SHA-2, Groestl, JH, and Keccak.

In order to reduce area necessary to implement a given hash algorithm, at the cost of decreasing its
throughput, folded architectures can be used. These architectures can be employed only if a round of a
hash function has a symmetric structure with respect to either horizontal or vertical axis (with input to a
round shown at the top and output shown at the bottom of the round block), as illustrated in Fig. 1.

In Fig. 1b, horizontal folding by a factor of two is demonstrated. We will denote this architecture by
/2(h). In this architecture, a half of a round is implemented as combinational logic, and the entire round is
executed using two clock cycles. As a result, the block processing time (and thus also throughput) stays
approximately the same, and area decreases. These dependencies lead to the overall increase of the
Throughput to Area ratio. In general, folding by a factor of k might be possible, and the corresponding
architecture will be denoted by /k(h). Among the five finalists, the only candidate that can benefit
substantially from horizontal folding is BLAKE. The round of BLAKE consists of two horizontal layers
of identical G functions, separated only by a permutation. By implementing only one layer in
combinational logic, horizontal folding by a factor of two can be easily achieved. Additionally, each G
function has a very symmetric structure along the horizontal axis, and can be easily folded horizontally by
a factor of 2. As a result, a folding factor of 4 can be achieved for the entire round. Other SHA-3 finalists
do not demonstrate any similar symmetry.

In Fig. 1c, we demonstrate vertical folding by a factor of 2. We will denote this folding by /2(v). In
this architecture, the datapath width is reduced by a factor of two. As a result two clock cycles are
required to complete a round. In the first clock cycle, only bits of the internal state affecting the first half
of the round output are provided to the input of R/2. In the second clock cycle, the remaining bits of the
internal state are processed. The first output is stored in an auxiliary register of the size of s/2 bits. This
output is concatenated with the output from the second iteration to form a new internal state. The clock
period of this architecture is approximately equal to the clock period of the basic iterative architecture. As
a result, the block processing time increases approximately by a factor of two compared to the basic
iterative architecture. The area reduction is also smaller than in case of horizontal folding, because of the
need for an extra s/2-bit register and a multiplexer. As a result the throughput to area ratio is likely to go

Fig. 1. Three hardware architectures of a hash function: a) basic iterative, x1, b) folded horizontally by a

factor of 2, /2(h), c) folded vertically by a factor of 2, /2(v).
Notation: R – round, R/2 – half-round, S1, S2 – selection functions, s – state size in bits.

	
 4	

down. In general, vertical folding by a factor of k might be possible, and the corresponding
architecture will be denoted by /k(v). Out of five final SHA-3 candidates, BLAKE and Groestl are most
suitable for vertical folding. JH can be folded, but the gain in area is not expected to be substantial,
because the round of JH is very simple, and does not dominate the total area of the circuit. For Skein and
Keccak, the internal round symmetry, necessary for implementation of vertical folding, is limited.

For vertical folding with the factor k≥4 it is beneficial to store the internal state in memory, rather
than in registers. The obtained throughput to area ratio can be substantially increased as a result of this
change in the storage element. We will denote the obtained architectures as /k(v)-m.

In order to increase circuit throughput for processing of a single message, unrolling can be used. In
Fig. 2a, architecture with unrolling by a factor of two is demonstrated. The combinational logic of a round
is replicated, so now two rounds are performed per clock cycle. Since the total number of clock cycles is
reduced approximately by a factor of two, and the clock period increases by a factor less than two (due to
optimizations on the boundaries of two rounds, and the smaller relative contributions of the multiplexer
delay, the register delay, and the register setup time), the total throughput increases. Unfortunately, at the
same time, the area of the circuit is likely to increase by a factor close to the unrolling factor. As a result,
in most cases, the throughput to area ratio decreases substantially compared to the basic iterative
architecture. As such, architectures with unrolling are typically used only when throughput for a single
long message is of the utmost concern, and area is abundant.

Nevertheless, there are exceptions to this rule. Unrolling can improve the throughput to area ratio
when rounds used by an algorithm in subsequent iterations are not the same, or there is a potential for
substantial delay reductions on the boundary between consecutive rounds. Among the five final SHA-3
finalists, this situation happens only for Skein. As a result, the throughput to area ratio of Skein becomes
optimum for one of the unrolled architectures.

Further increase in the throughput and the throughput to area ratio of SHA-3 candidates is possible by
using pipelined architectures. In order to take full advantage of the pipelined architectures multiple
messages must be processed at the same time. Luckily, this is exactly the situation that appears most often
in practical applications of hash functions. For example, in the most widespread Internet security
protocols, such as IPSec, SSL, and WLAN (802.11), the inputs to a hash unit are packets. The maximum
size of a packet for Internet is limited by so called Maximum Transmission Unit (MTU). The typical size
of MTU for Ethernet based networks is 1500 bytes. The Maximum Transmission Unit for the Internet
IPv4 path is even smaller, and set to 576 bytes. As a result, in a typical internet node, up to 80% of
packets processed have the size of 576 bytes or less, and 100% of packets have sizes equal or smaller than
1500 bytes. Such small sizes of packets mean that hundreds of packets could be easily buffered in the
processing nodes, in the form of packet queues, without introducing any significant latency to the total
packet travel time from the source to destination. Therefore, the capabilities for parallel processing
(including pipelining) seem to be primarily limited by the total area of the hash unit, and not by the
number of messages available in parallel. In this paper, we will assume that the number of messages
available in parallel is large (at least 10), and we will look at the combined throughput for all available
streams of data.

The easiest way to implement pipelining in hash functions is to first unroll, and then introduce
pipeline registers between adjacent rounds. The simplest case is the architecture that is two times
unrolled, and has two pipeline stages, as shown in Fig. 2b. We will denote this architecture as x2-PPL2.
The throughput to area ratio remains roughly the same, and may be either larger or smaller than in the
basic iterative architecture, depending on a particular algorithm. The more challenging way of using
pipelining is to introduce pipeline registers inside of a hash function round, as shown in Fig. 2c. The
improvement in throughput compared to the basic iterative architecture is then equal (either exactly or at
least approximately) to the ratio of the new clock frequency to the original clock frequency. Since the
critical path is reduced, the increase in throughput is guaranteed, but its level depends on how well the
critical path has been divided by pipeline registers into shorter paths with approximately equal delays. At
the same time, the area of the circuit increases by the area of pipeline registers, plus any logic required for

	
 5	

Fig. 2. Three hardware architectures of a hash function a) unrolled by a factor of 2, x2, b) unrolled by a
factor of 2 with 2 pipeline stages, x2-PPL2, c) basic iterative with 2 pipeline stages, x1-PPL2.

Notation: R – round, R/2 – half-round, s – state size in bits.

simultaneous processing of multiple streams of data. The throughput to area ratio may increase, but the
improvement is not guaranteed for all algorithms, and all FPGA families, and may be small or
negative in case the basic iterative architecture operates already at the clock frequency close to the
maximum clock frequency supported by a given FPGA family.

The final alternative is architecture obtained by replicating the entire circuit multiple number of times.
We call this architecture a multi-unit architecture, and we denote it by MUn, where n denotes the number
of repetitions of the hash core. Obviously, in this architecture, throughput and area increase
proportionally, and n messages are required to be present concurrently in order to take full advantage of
the potential increase in throughput. A typical design approach would be to first find an architecture with
the best throughput to area ratio, and then replicate it as many times as necessary in order to reach the
desired throughput.

The formulas for the throughput of all aforementioned architectures, assuming processing of long
messages, are summarized in Table 1.

Table 1: Formulas for the Throughput, Tp, of all investigated architectures. Notation: b – block size, r –
number of rounds, f – number of clock cycles required to finalize computations for a block (f = 0 for
Keccak and Groestl (P+Q), f=1 for all remaining algorithms), k – folding factor or unrolling factor, n –
number of pipeline stages, T – clock period.

Notation Architecture Throughput
x1 Basic iterative Tp = b/((r + f) ⋅ T)
/k Folded by a factor of k Tp = b/((k⋅r + f) ⋅ T)
xk Unrolled by a factor of k Tp = b/((r/k + f) ⋅ T)
x1-PPLn Basic iterative

with n pipeline stages
Tp = n⋅b/((n⋅r + f) ⋅ T)

/k-PPLn Folded by a factor of k
with n pipeline stages

Tp = n⋅b/((n⋅k⋅r + f) ⋅ T)

xk-PPLn Unrolled by a factor of k
with n pipeline stages

Tp* = n⋅b/((n⋅r/k + f) ⋅ T)

MUn Multi-unit architecture based
on n repetitions of the basic
iterative architecture

Tp = n⋅b/((r + f) ⋅ T)

• for Skein a modified formula, Tp = n⋅b/n⋅(r/k + f)⋅T, applies

	
 6	

5. Design Methodology and Design Environment

Our designs for the basic iterative, folded, and unrolled architectures use the interface and the
communication protocol proposed in [15,23]. Our designs for the pipelined architectures, use the interface
and surrounding logic shown in Fig. 3. Input FIFOs serve as packet queues. Each FIFO communicates
with the corresponding Padding Unit and the associated Finite State Machine 1 (FSM1). FSM1 is
responsible for loading the next block of data and padding the last block of a message, if needed (possibly
in parallel with the Datapath processing the previous block under the control of FSM2). Outputs
corresponding to four independent packets are first stored in the corresponding Parallel-In Serial-Out
Units, and then multiplexed to the output FIFO.

All architectures have been modeled in VHDL-93. All VHDL codes have been thoroughly verified
using a universal testbench, capable of testing an arbitrary hash function core. A special padding script
was developed in Perl in order to pad messages included in the Known Answer Test (KAT) files
distributed as a part of each candidate’s submission package.

For synthesis and implementation, we have used tools developed by FPGA vendors themselves:
• for Xilinx: Xilinx ISE Design Suite v. 13.1, including Xilinx XST,
• for Altera: Quartus II v. 11.1 Subscription Edition Software.

The generation of a large number of results and optimization of tool options was facilitated by an open
source benchmarking environment, called ATHENa (Automated Tool for Hardware EvaluatioN) [2,16].

All result graphs included in this paper use color codes introduced by Bernstein and Lange in [6,12].

Fig. 3: The interface, high-level block diagram, and surrounding logic of the Hash Unit for the pipelined
architecture with four pipeline stages. Notation: Padding – Padding Unit, including SIPO (Serial-In
Parallel-Out unit), PISO – Parallel-In Serial-Out unit, w – input/output bus width, w=64 for all
investigated algorithms, except SHA-2-256, where w=32.

6. Results with Padding

The results of our implementations with padding units are summarized in Figs. 4-9, and in Tables 2 and 3.
In Figs. 4 and 5, we present the detailed throughput vs. area graphs for all implemented architectures of
the 256-bit variants of six investigated algorithms in Xilinx Virtex 5 and Altera Stratix III, respectively.

For BLAKE (see Figs. 4a and 5a), the best architecture overall is x1-PPL4, i.e., basic architecture with
four pipeline stages. The good performance of this architecture is associated with the symmetric
structures of the basic round and each individual G function, which make it easy to divide the datapath
into four well-balanced pipeline stages (see Figs. 14 and 15). The best non-pipelined architectures are:

	
 7	

• for Virtex 5: /4(h)/4(v)-m, i.e., architecture with horizontal folding by a factor of 4, combined
with vertical folding by a factor of 4, and internal state stored in memory;

• for Stratix III: /2(h), i.e., architecture with horizontal folding by a factor of 2.
The good performance of the former of these two architectures is associated with the significant reduction
of the complexity of the input permutation module as a result of vertical folding by a factor of 4. The two
less successful architectures include x1 and /2(h)-PPL4 for Virtex 5, and x1 and x1-PPL2 for Stratix III.
These architectures are not included in our combined graphs shown in Figs. 6-9.

For Groestl (see Figs. 4b and 5b), we consider two major architecture types: a) parallel architectures,
denoted (P+Q), in which Groestl permutations P and Q are implemented using two independent units,
working in parallel, and b) quasi-pipeline architectures, denoted (P/Q), in which, the same unit is used to
implement both P and Q, and the computations belonging to these two permutations are interleaved [38].
The details of the basic quasi-pipelined architecture of Groestl are described in [38, Section 9] and [23,
Section 3.8]. In this study, we apply vertical folding and pipelining to both architectures. The best
architectures overall appear to be: x1-PPL2 (P+Q) for Virtex 5, and x1-PPL4 (P+Q) for Stratix III. The
best non-pipelined architectures are: x1 (P/Q) for Virtex 5, and /2(v) (P/Q) for Stratix III. Folded parallel
architectures, /k(v) (P+Q), are slower than the quasi-pipelined architectures (P/Q) using comparable area.
The same is true for the basic iterative parallel architecture, x1 (P+Q). An attempt to pipeline Groestl
using 7 pipeline stages (x1-PPL7), using logic-only implementation of S-boxes, appeared to be rather
unsuccessful.

For JH (see Figs. 4c and 5c), we consider two major types of architectures: a) with round constants
stored in memory, JH (MEM), and b) with round constants calculated on the fly, JH (OTF). Both
approaches seem to result in a very similar performance for the basic iterative architectures, x1. Neither
vertical folding nor pipelining seem to be efficient when applied directly to the basic architecture. Vertical
folding by two, somewhat unexpectedly, increases area, and the basic architecture with two pipeline
stages does not improve throughput. Both undesired effects can be tracked back to the simplicity of the
main round. Folding does not reduce area, because of extra registers and multiplexers introduced to a very
simple round. Pipelining does not increase throughput, because a simple basic round has already very
short delay, and is hard to divide into two well balanced pipeline stages. Overall, the best architectures
are: x1 (MEM) for Virtex 5 and x2-PPL2 (MEM) for Stratix III.

For Keccak (see Figs. 4d and 5d), the best architecture overall is the basic iterative architecture.
Pipelining appears to be quite unsuccessful in Virtex 5, and somewhat more successful in Stratix III,
where three different pipelined architectures (x1-PPL2, x2-PPL2, and x2-PPL4) give similar throughput
to area ratio as the basic iterative architecture, x1. Vertical folding has been attempted only for a version
without padding, and therefore the corresponding results are not shown in Figs. 4-9. As shown in Table 5,
vertical folding by a factor of 8, with internal state stored in memory, leads to the reduction in area by a
factor of about 4 for Virtex 5 and about 1.5 for Stratix III, at the cost of a significant reduction in
throughput, by a factor of about 16 in Virtex 5 and by a factor of about 18 in Stratix III. Thus, the
throughput to area ratio decreases by a factor of 4 for Virtex 5, and a factor of 12 for Stratix III.

For Skein (see Figs. 4e and 5e), the unrolled by 4 architecture, x4, is significantly more efficient than
the basic architecture, x1. At the same time, unrolling by 8 does not give any additional improvement in
the throughput to area ratio. The best pipelined architectures are obtained by first unrolling basic
architecture by a factor of four, and then pipelining the obtained circuit using two stages in Virtex 5, and
five stages in Stratix III. Five pipeline stages are efficient in Stratix III because of an extra addition
executed every fourth round, but they do not improve the overall throughput to area ratio in Virtex 5.

For SHA-2 (see Figs. 4f and 5f), none of the discussed techniques applies. The implementation of this
function is already small, so reducing area is not necessary. The best way to speed up this function is by
using multiple independent units of SHA-2 working in parallel. We denote this architecture by MUn,
where n denotes the number of hash units.
The combined graphs for the 256-bit variants and the 512-bit variants of all algorithms, implemented
using Xilinx Virtex 5 FPGAs, are presented in Figs. 6 and 7. Individual dots placed in regular intervals on
the dashed lines represent multi-unit architectures. Algorithms can be ranked first in terms of the

	
 8	

throughput to area ratio of their best architecture, as identified above. This is because this architecture can
be easily replicated, allowing for processing n streams of data in parallel. Both throughput and area will
increase by a factor of n. The secondary criterion is the area of the best architecture. The smaller the area,
the denser is the graph representing possible locations of a given function on the throughput vs. area
graph.

a) b)

c) d)

e) f)

Fig. 4. Throughput vs. Area graphs for multiple architectures of a) BLAKE-256, b) Groestl-256, c) JH-256,
d) Keccak-256, e) Skein-256, and f) SHA-256, implemented in Xilinx Virtex 5 FPGAs. Notation: x1 – basic iterative
architecture, /k(h) – horizontally folded by a factor of k, /k(v) - vertically folded by a factor of k, /k(v)-m - vertically
folded by a factor of k with internal state stored in memory, xk – unrolled by a factor of k, PPLn – pipelined with n
pipeline stages, (P+Q) – parallel architecture of Groestl, P/Q – quasi-pipelined architecture of Groestl, MEM –
architecture of JH with round constants stored in memory, OTF – architecture of JH with round constants calculated on
the fly.

	
 9	

a) b)

c) d)

e) f)

Fig. 5. Throughput vs. Area graphs for multiple architectures of a) BLAKE-256, b) Groestl-256, c) JH-256,
d) Keccak-256, e) Skein-256, and f) SHA-256, implemented in Altera Stratix III FPGAs. Notation: x1 – basic iterative
architecture, /k(h) – horizontally folded by a factor of k, /k(v) - vertically folded by a factor of k, /k(v)-m - vertically
folded by a factor of k with internal state stored in memory, xk – unrolled by a factor of k, PPLn – pipelined with n
pipeline stages, (P+Q) – parallel architecture of Groestl, P/Q – quasi-pipelined architecture of Groestl, MEM –
architecture of JH with round constants stored in memory, OTF – architecture of JH with round constants calculated on
the fly.

The results for the 256-bit variants of hash functions are shown in Fig. 6. Keccak is the only function that significantly
outperforms SHA-2 in terms of the throughput to area ratio. Keccak is also significantly faster than SHA-2, for any area
greater than 1400 CLB slices. Groestl and JH demonstrate performance similar to SHA-2, with JH implementations
slightly faster than SHA-2 consistently starting from around 1000 CLB slices, and Groestl implementations exceeding the
speed of SHA-2 (and JH) only for one implementation shown in the diagram, taking around 3000 CLB slices. Skein and
BLAKE trail significantly behind SHA-2, independently of the area. The results for the 512-bit variants of hash functions,
shown in Fig. 7, are quite similar, with the exception that, JH performs almost equally well as Keccak (because of the
decrease in the Keccak message block size from 1088 to 576 bits), Groestl outperforms SHA-2 and Skein only for area
around 6000 CLB slices, Skein has a performance close to SHA-2, and BLAKE is a distant fifth.

	
 10	

Fig. 6. Combined Throughput vs. Area graph for multiple hardware architectures of the 256-bit variants of

BLAKE, Groestl, JH, Keccak, Skein, and SHA-2 implemented in Xilinx Virtex 5 FPGAs.

Fig. 7. Combined Throughput vs. Area graph for multiple hardware architectures of the 512-bit variants of

BLAKE, Groestl, JH, Keccak, Skein, and SHA-2 implemented in Xilinx Virtex 5 FPGAs.

	
 11	

Fig. 8. Combined Throughput vs. Area graph for multiple hardware architectures of the 256-bit variants of

BLAKE, Groestl, JH, Keccak, Skein, and SHA-2 implemented in Altera Stratix III FPGAs.

Fig. 9. Combined Throughput vs. Area graph for multiple hardware architectures of the 512-bit variants of

BLAKE, Groestl, JH, Keccak, Skein, and SHA-2 implemented in Altera Stratix III FPGAs.

The performance for Altera devices, shown in Figs. 8 and 9, is somewhat different. For the 256-bit
versions of the algorithms, Keccak by far outperforms all remaining candidates and SHA-2. Best
implementations of JH work as fast as the similar-size implementations of SHA-2, but SHA-2 offers finer
granularity, as its size can be increased in much smaller increments, and the throughput changes
proportionally. Groestl, BLAKE, and Skein are in tie with each, with performance consistently worse than
SHA-2. For the 512-bit versions of the algorithms (see Fig. 9), Keccak and JH outperform SHA-2, Skein
is in tie with SHA-2, Groestl and BLAKE fall behind the current standard. The numerical results for all
our implementations are summarized in Tables 2 and 3. The best values of the throughput to area ratios
and the best architectures for each hash function are listed in bold in these tables.

	
 12	

Table 2: Results for 256-bit variants with padding unit of the Round 3 SHA-3 candidates and SHA-2, implemented
using all investigated architectures and four FPGA families, Virtex 5 and Virtex 6 from Xilinx, and Stratix III and
Stratix IV from Altera. Notation: Tp – throughput, A – area, Tp/A – Throughput to Area Ratio. The best values of
the throughput to area ratios and the best architectures for each hash function are listed in bold.

Arch Virtex 5 Virtex 6 Stratix III Stratix IV
 Tp A Tp/A Tp A Tp/A Tp A Tp/A Tp A Tp/A

BLAKE-256
/4(h)/4(v)-­‐m	
 379	
 230	
 1.65	
 428	
 200	
 2.14	
 379	
 992	
 0.38	
 395	
 1022	
 0.39	

/4(h)	
 1713	
 1493	
 1.15	
 1957	
 891	
 2.20	
 1665	
 3238	
 0.51	
 1691	
 3234	
 0.52	

/2(h)	
 2266	
 1860	
 1.22	
 2363	
 1391	
 1.70	
 2206	
 3660	
 0.60	
 2316	
 3680	
 0.63	

x1	
 2156	
 2032	
 1.06	
 2174	
 1505	
 1.44	
 2244	
 4807	
 0.47	
 2322	
 4802	
 0.48	

/2(h)-­‐PPL2	
 3510	
 2107	
 1.67	
 3260	
 1690	
 1.93	
 3118	
 4765	
 0.65	
 3421	
 4765	
 0.72	

/2(h)-­‐PPL4	
 4675	
 3228	
 1.45	
 4332	
 2268	
 1.91	
 5238	
 5442	
 0.96	
 5443	
 5449	
 1.00	

x1-­‐PPL2	
 4943	
 3099	
 1.59	
 4542	
 2040	
 2.23	
 4193	
 5619	
 0.75	
 4483	
 5642	
 0.79	

x1-­‐PPL4	
 7510	
 3526	
 2.13	
 8246	
 2609	
 3.16	
 7787	
 6657	
 1.17	
 7898	
 6657	
 1.19	

Groestl-256
/8(v)	
 (P+Q)	
 1211	
 1191	
 1.02	
 1353	
 958	
 1.41	
 1248	
 3526	
 0.35	
 1172	
 3472	
 0.34	

/4(v)	
 (P+Q)	
 2486	
 1362	
 1.83	
 2901	
 1200	
 2.42	
 2533	
 4608	
 0.55	
 2391	
 4585	
 0.52	

/2(v)	
 (P+Q)	
 4508	
 1836	
 2.46	
 4915	
 1565	
 3.14	
 4685	
 7128	
 0.66	
 4597	
 7343	
 0.63	

x1	
 (P+Q)	
 7081	
 2689	
 2.63	
 9187	
 2441	
 3.76	
 9760	
 11538	
 0.85	
 9181	
 11294	
 0.81	

x1-­‐PPL2	
 (P+Q)	
 13382	
 3172	
 4.22	
 11746	
 2968	
 3.96	
 13213	
 12572	
 1.05	
 12586	
 12570	
 1.00	

x1-­‐PPL4	
 (P+Q)	
 15015	
 4587	
 3.27	
 15624	
 4172	
 3.74	
 16903	
 13261	
 1.27	
 16126	
 13258	
 1.22	

/8(v)	
 (P/Q)	
 918	
 990	
 0.93	
 1105	
 750	
 1.47	
 1005	
 2526	
 0.40	
 966	
 2504	
 0.39	

/4(v)	
 (P/Q)	
 1920	
 1074	
 1.79	
 2099	
 811	
 2.59	
 1964	
 3061	
 0.64	
 1829	
 3059	
 0.60	

/2(v)	
 (P/Q)	
 3784	
 1302	
 2.91	
 4407	
 944	
 4.67	
 3925	
 4086	
 0.96	
 3644	
 4069	
 0.90	

x1	
 (P/Q)	
 6572	
 2020	
 3.25	
 7071	
 1884	
 3.75	
 6140	
 7564	
 0.81	
 5640	
 7464	
 0.76	

JH-256
/2(v)	
 (MEM)	
 2176	
 1139	
 1.91	
 1978	
 879	
 2.25	
 2124	
 3636	
 0.58	
 2086	
 3629	
 0.57	

x1	
 (MEM)	
 4543	
 1001	
 4.54	
 5086	
 918	
 5.54	
 5024	
 3383	
 1.49	
 4815	
 3415	
 1.41	

x2	
 (MEM)	
 5972	
 1473	
 4.05	
 6883	
 1381	
 4.98	
 6532	
 5830	
 1.12	
 6099	
 5793	
 1.05	

x1-­‐PPL2	
 (MEM)	
 3838	
 2147	
 1.79	
 4840	
 1486	
 3.26	
 5177	
 4280	
 1.21	
 5233	
 4278	
 1.22	

x2-­‐PPL2	
 (MEM)	
 7041	
 2099	
 3.35	
 8409	
 1781	
 4.72	
 9804	
 6339	
 1.55	
 9526	
 6331	
 1.50	

x2-­‐PPL4	
 (MEM)	
 8526	
 3085	
 2.76	
 7928	
 2424	
 3.27	
 9342	
 7962	
 1.17	
 9207	
 7960	
 1.16	

/2(v)	
 (OTF) 2054	
 1194	
 1.72	
 2206	
 1094	
 2.02	
 2114	
 3766	
 0.56	
 1981	
 3798	
 0.52	

x1	
 (OTF) 4392	
 1080	
 4.07	
 5177	
 920	
 5.63	
 5091	
 3569	
 1.43	
 4807	
 3656	
 1.31	

x2	
 (OTF) 6094	
 1695	
 3.60	
 7198	
 1604	
 4.49	
 6401	
 6372	
 1.00	
 5878	
 6360	
 0.92	

Keccak-256
x1 12745	
 1375	
 9.27	
 12451	
 1147	
 10.86	
 14624	
 4060	
 3.60	
 14009	
 4052	
 3.46	

x1-­‐PPL2 12523	
 2123	
 5.90	
 14942	
 1456	
 10.26	
 16047	
 5003	
 3.21	
 16878	
 5004	
 3.37	

x2-­‐PPL2 9610	
 2036	
 4.72	
 14444	
 2338	
 6.18	
 24242	
 7103	
 3.41	
 24942	
 7869	
 3.17	

x2-­‐PPL4 21717	
 3764	
 5.77	
 24644	
 2900	
 8.50	
 31296	
 9201	
 3.40	
 31691	
 9203	
 3.44	

Skein-256
x1 1372	
 1145	
 1.20	
 1343	
 889	
 1.51	
 1152	
 3032	
 0.38	
 1269	
 3031	
 0.42	

x4 3127	
 1245	
 2.51	
 2957	
 1026	
 2.88	
 2494	
 3960	
 0.63	
 2647	
 3970	
 0.67	

x8 3168	
 1627	
 1.95	
 3548	
 1326	
 2.68	
 3193	
 5455	
 0.59	
 3336	
 5451	
 0.61	

x4-­‐PPL2 4873	
 2030	
 2.40	
 5679	
 1485	
 3.82	
 4280	
 4482	
 0.95	
 4688	
 4496	
 1.04	

x4-­‐PPL5 7077	
 3840	
 1.84	
 7325	
 2720	
 2.69	
 6869	
 6068	
 1.13	
 7824	
 6070	
 1.29	

x8-­‐PPL10 N/A	
 N/A	
 N/A	
 11118	
 5928	
 1.88	
 11390	
 11267	
 1.01	
 11485	
 11267	
 1.02	

SHA-256

x1 1692	
 462	
 3.66	
 1665	
 305	
 5.46	
 1690	
 1122	
 1.51	
 1764	
 1114	
 1.58	

	
 13	

Table 3: Results for 512-bit variants with padding unit of the Round 3 SHA-3 candidates and SHA-2, implemented
using all investigated architectures and four FPGA families, Virtex 5 and Virtex 6 from Xilinx, and Stratix III and
Stratix IV from Altera. Notation: Tp – throughput, A – area, Tp/A – Throughput to Area Ratio. The best values of
the throughput to area ratios and the best architectures for each hash function are listed in bold.

 Arch Virtex 5 Virtex 6 Stratix III Stratix IV
 Tp A Tp/A Tp A Tp/A Tp A Tp/A Tp A Tp/A

BLAKE-512
/4(h)/4(v)-­‐m	
 575	
 449	
 1.28	
 625	
 350	
 1.79	
 495	
 1797	
 0.28	
 537	
 1791	
 0.30	

/4(h)	
 2278	
 2805	
 0.81	
 2675	
 1639	
 1.63	
 2206	
 6124	
 0.36	
 2492	
 6399	
 0.39	

/2(h)	
 3156	
 3569	
 0.88	
 3333	
 2608	
 1.28	
 3003	
 7115	
 0.42	
 3320	
 7114	
 0.47	

x1	
 3046	
 3384	
 0.90	
 N/A	
 N/A	
 N/A	
 3010	
 9343	
 0.32	
 3387	
 9334	
 0.36	

/2(h)-­‐PPL2	
 4853	
 4123	
 1.18	
 4452	
 2882	
 1.54	
 3963	
 9188	
 0.43	
 4799	
 9177	
 0.52	

/2(h)-­‐PPL4	
 6225	
 6104	
 1.02	
 5412	
 3951	
 1.37	
 5938	
 10137	
 0.59	
 7668	
 10144	
 0.76	

x1-­‐PPL2	
 6296	
 5534	
 1.14	
 6430	
 4171	
 1.54	
 5705	
 10828	
 0.53	
 6356	
 10831	
 0.59	

x1-­‐PPL4	
 8882	
 7600	
 1.17	
 11030	
 5080	
 2.17	
 9908	
 12537	
 0.79	
 11048	
 12530	
 0.88	

Groestl-512
/8(v)	
 (P+Q)	
 1602	
 2233	
 0.72	
 1683	
 1726	
 0.98	
 1697	
 6768	
 0.25	
 1589	
 6723	
 0.24	

/4(v)	
 (P+Q)	
 3147	
 2570	
 1.22	
 3078	
 1952	
 1.58	
 3562	
 9089	
 0.39	
 3323	
 8916	
 0.37	

/2(v)	
 (P+Q)	
 5413	
 3364	
 1.61	
 6051	
 3078	
 1.97	
 6642	
 14597	
 0.46	
 6175	
 14263	
 0.43	

x1	
 (P+Q)	
 8781	
 5448	
 1.61	
 11608	
 5112	
 2.27	
 12976	
 22239	
 0.58	
 11903	
 21807	
 0.55	

x1-­‐PPL2	
 (P+Q)	
 17655	
 6525	
 2.71	
 16218	
 5740	
 2.83	
 17826	
 24518	
 0.73	
 16363	
 24612	
 0.66	

x1-­‐PPL4	
 (P+Q)	
 17918	
 8453	
 2.12	
 16033	
 7391	
 2.17	
 21595	
 25529	
 0.85	
 20357	
 25530	
 0.80	

/8(v)	
 (P/Q)	
 1238	
 1890	
 0.65	
 1271	
 1358	
 0.94	
 1317	
 4780	
 0.28	
 1296	
 4774	
 0.27	

/4(v)	
 (P/Q)	
 2602	
 2107	
 1.24	
 2684	
 1459	
 1.84	
 2710	
 5961	
 0.45	
 2586	
 5887	
 0.44	

/2(v)	
 (P/Q)	
 4750	
 2449	
 1.94	
 5040	
 1797	
 2.80	
 5352	
 7995	
 0.67	
 5023	
 7896	
 0.64	

x1	
 (P/Q)	
 7462	
 3895	
 1.92	
 6843	
 3285	
 2.08	
 8310	
 14578	
 0.57	
 7882	
 14542	
 0.54	

JH-512
/2(v)	
 (MEM) 2044	
 1145	
 1.79	
 2052	
 925	
 2.22	
 2124	
 3636	
 0.58	
 2086	
 3629	
 0.57	

x1	
 (MEM) 4533	
 1125	
 4.03	
 4834	
 901	
 5.37	
 4309	
 3930	
 1.10	
 4201	
 3919	
 1.07	

x2	
 (MEM) 6067	
 1561	
 3.89	
 6701	
 1417	
 4.73	
 6532	
 5830	
 1.12	
 6099	
 5793	
 1.05	

x1-­‐PPL2	
 (MEM) 3897	
 2244	
 1.74	
 4541	
 1589	
 2.86	
 5157	
 4537	
 1.14	
 5319	
 4536	
 1.17	

x2-­‐PPL2	
 (MEM) 8266	
 2223	
 3.72	
 8514	
 1977	
 4.31	
 9514	
 6297	
 1.51	
 9484	
 6303	
 1.50	

x2-­‐PPL4	
 (MEM) 6186	
 3645	
 1.70	
 8047	
 2744	
 2.93	
 9328	
 8084	
 1.15	
 9512	
 8079	
 1.18	

/2(v)	
 (OTF) 1985	
 1228	
 1.62	
 2131	
 1077	
 1.98	
 2114	
 3766	
 0.56	
 1981	
 3798	
 0.52	

x1	
 (OTF) 4443	
 1114	
 3.99	
 4914	
 965	
 5.09	
 5091	
 3569	
 1.43	
 4807	
 3656	
 1.31	

x2	
 (OTF) 5940	
 1664	
 3.57	
 6732	
 1546	
 4.35	
 6401	
 6372	
 1.00	
 5878	
 6360	
 0.92	

Keccak-512
x1 7179	
 1283	
 5.60	
 7465	
 1052	
 7.10	
 8029	
 3734	
 2.15	
 7607	
 3723	
 2.04	

x1-­‐PPL2 7380	
 1774	
 4.16	
 8114	
 1263	
 6.42	
 8550	
 4484	
 1.91	
 8962	
 4481	
 2.00	

x2-­‐PPL2 7126	
 1996	
 3.57	
 N/A	
 N/A	
 N/A	
 13090	
 6617	
 1.98	
 12490	
 6580	
 1.90	

x2-­‐PPL4 13552	
 3428	
 3.95	
 13640	
 2550	
 5.35	
 17058	
 8934	
 1.91	
 17335	
 8934	
 1.94	

Skein-512
x1 1258	
 1267	
 0.99	
 1446	
 987	
 1.47	
 1103	
 3086	
 0.36	
 1216	
 3088	
 0.39	

x4 2972	
 1348	
 2.20	
 3141	
 1186	
 2.65	
 2493	
 4035	
 0.62	
 2597	
 4026	
 0.65	

x8 2870	
 1556	
 1.84	
 3690	
 1454	
 2.54	
 3137	
 5527	
 0.57	
 3357	
 5536	
 0.61	

x4-­‐PPL2 4916	
 2157	
 2.28	
 5713	
 1567	
 3.65	
 4292	
 4756	
 0.90	
 4758	
 4767	
 1.00	

x4-­‐PPL5 5829	
 4377	
 1.33	
 7337	
 3160	
 2.32	
 6428	
 6319	
 1.02	
 7123	
 6324	
 1.13	

x8-­‐PPL10 5946	
 9032	
 0.66	
 9130	
 6544	
 1.40	
 11111	
 11485	
 0.97	
 10542	
 11486	
 0.92	

SHA-512

x1 2189	
 850	
 2.58	
 2357	
 548	
 4.30	
 2171	
 2282	
 0.95	
 2409	
 2313	
 1.04	

	
 14	

7. Results Without Padding

In Table 4, we investigate the effect of padding unit on the performance of selected non-pipelined
architectures. Based on this table, the largest decrease in the throughput to area ratio is equal to 18%. This
decrease depends on the FPGA family, and reaches the maximum of about 10% for Virtex 5, 14% for
Virtex 6, 18% for Stratix III, and 15% for Stratix IV. This level variations in the throughput to area ratio
do not affect the ranking of candidates as determined in Section 6.

In Tables 5 and 6, the complete set of results for implementations without padding is given. These
results are important for comparison with results from other groups, as majority of results reported by
other groups during the competition (and submitted to the ATHENa database [3]) concern designs with
no padding unit.

Additionally, as shown in the same tables, a folded architecture with internal state stored in memory,
/8(v)-m, has been implemented for JH-256 and Keccak-256, in the version without padding. For JH-256,
implemented in Virtex 5 and Virtex 6, area decreases by a factor greater than 3 and throughput by a factor
greater than 30, compared to the basic iterative architecture. In Stratix III and Stratix IV, area decreases
by a factor of about 1.7 and throughput by a factor of about 40. Thus, this architecture is quite inefficient
in both Xilinx and Altera FPGAs, and should be considered only when no other architecture fits within
the area budget. For Keccak-256, implemented in Virtex 5 and Virtex 6 using the same architecture, area
decreases by a factor greater than 3.5 and throughput by a factor greater than 10, compared to the basic
iterative architecture. In Stratix III and Stratix IV, area decreases by a factor of about 1.5 and throughput
by a factor of about 20. Thus, this architecture might be acceptable in case of Xilinx FPGAs, but is quite
inefficient in case of Altera FPGAs.

Table 4: The effect of the padding unit on the performance of 5 Round 3 SHA-3 candidates in four FPGA
families, Virtex 5 and Virtex 6 from Xilinx, and Stratix III and Stratix IV from Altera. Notation: Tp –
throughput, A – area, Tp/A – Throughput to Area Ratio, Δ [%] – relative change in the Throughput, Area,
and Throughput to Area ratio as a result of adding padding unit to the hash unit. The relative change in
the throughput to area ratio has been marked in bold.

Arch Virtex 5 Virtex 6 Stratix III Stratix IV

 Tp A Tp/A Tp A Tp/A Tp A Tp/A Tp A Tp/A

BLAKE-256
/2(h) 2308 1771 1.30 2226 1257 1.77 2157 3553 0.61 2337 3543 0.66
/2(h)-PAD 2266 1860 1.22 2363 1391 1.70 2206 3660 0.60 2316 3680 0.63

Δ [%] -­‐1.83 5.03 -­‐6.53 6.18 10.66 -­‐4.04 2.25 3.01 -­‐0.74 -­‐0.90 3.87 -­‐4.59
Groestl-256 (P/Q)

x1 6117	
 1795	
 3.41	
 7220	
 1870	
 3.86	
 6008	
 7386	
 0.81	
 5776	
 7404	
 0.78	

x1-PAD 6572	
 2020	
 3.25	
 7071	
 1884	
 3.75	
 6140	
 7564	
 0.81	
 5640	
 7464	
 0.76	

Δ [%] 7.44	
 12.53	
 -­‐4.53	
 -­‐2.06	
 0.75	
 -­‐2.79	
 2.19	
 2.41	
 -­‐0.21	
 -­‐2.36	
 0.81	
 -­‐3.14	

JH-256 (MEM)

x1 4955 982 5.05 5412 849 6.37 5276 3221 1.64 4759 3210 1.48
x1-PAD 4543 1001 4.54 5086 918 5.54 5024 3383 1.49 4815 3415 1.41

Δ [%] -­‐8.32 1.93 -­‐10.06 -­‐6.02 8.13 -­‐13.09 -­‐4.77 5.03 -­‐9.33 1.17 6.39 -­‐4.90
Keccak-256

x1 13337	
 1369	
 9.74	
 11839	
 1086	
 10.90	
 15493	
 3531	
 4.39	
 14401	
 3541	
 4.07	

x1-PAD 12745	
 1375	
 9.27	
 12451	
 1147	
 10.86	
 14624	
 4060	
 3.60	
 14009	
 4052	
 3.46	

Δ [%] -­‐4.44	
 0.44	
 -­‐4.86	
 5.16	
 5.62	
 -­‐0.43	
 -­‐5.61	
 14.98	
 -­‐17.91	
 -­‐2.72	
 14.43	
 -­‐14.99	

Skein-256

x4 3023 1218 2.48 3373 1005 3.36 2475 3943 0.63 2592 3936 0.66
x4-PAD 3127 1245 2.51 2957 1026 2.88 2495 3960 0.63 2647 3970 0.67

Δ [%] 3.43 2.22 1.19 -­‐12.33 2.09 -­‐14.13 0.77 0.43 0.34 2.10 0.86 1.23

	
 15	

Table 5: Results for 256-bit variants without padding unit of the Round 3 SHA-3 candidates and SHA-2,
implemented using all investigated architectures and four FPGA families, Virtex 5 and Virtex 6 from Xilinx, and
Stratix III and Stratix IV from Altera. Notation: Tp – throughput, A – area, Tp/A – Throughput to Area Ratio. The
best values of the throughput to area ratios and the best architectures for each hash function are listed in bold.

Arch Virtex 5 Virtex 6 Stratix III Stratix IV
 Tp A Tp/A Tp A Tp/A Tp A Tp/A Tp A Tp/A

BLAKE-256
/4(h)/4(v)-­‐m	
 389	
 231	
 1.69	
 432	
 182	
 2.38	
 370	
 924	
 0.40	
 399	
 935	
 0.43	

/4(h)	
 1735	
 1437	
 1.21	
 1882	
 886	
 2.12	
 1695	
 3093	
 0.55	
 1735	
 3085	
 0.56	

/2(h)	
 2308	
 1771	
 1.30	
 2226	
 1257	
 1.77	
 2157	
 3553	
 0.61	
 2337	
 3543	
 0.66	

x1	
 2533	
 2279	
 1.11	
 2416	
 1711	
 1.41	
 2181	
 4620	
 0.47	
 2312	
 4618	
 0.50	

/2(h)-­‐PPL2	
 3506	
 2136	
 1.64	
 3178	
 1630	
 1.95	
 3131	
 4570	
 0.69	
 3409	
 4567	
 0.75	

/2(h)-­‐PPL4	
 4633	
 3226	
 1.44	
 4807	
 2407	
 2.00	
 5205	
 5039	
 1.03	
 5467	
 5042	
 1.08	

x1-­‐PPL2	
 4761	
 2976	
 1.60	
 4768	
 2111	
 2.26	
 4162	
 5436	
 0.77	
 4429	
 5423	
 0.82	

x1-­‐PPL4	
 7547	
 3495	
 2.16	
 8056	
 2530	
 3.18	
 7583	
 6267	
 1.21	
 8063	
 6271	
 1.29	

Groestl-256
/8(v)	
 (P+Q)	
 1237	
 1124	
 1.10	
 1371	
 936	
 1.46	
 1240	
 3306	
 0.38	
 1173	
 3288	
 0.36	

/4(v)	
 (P+Q)	
 2215	
 1208	
 1.83	
 2850	
 1072	
 2.66	
 2576	
 4528	
 0.57	
 2366	
 4402	
 0.54	

/2(v)	
 (P+Q)	
 4254	
 1734	
 2.45	
 4850	
 1548	
 3.13	
 5028	
 7444	
 0.68	
 4387	
 6895	
 0.64	

x1	
 (P+Q)	
 7214	
 2906	
 2.48	
 8754	
 2395	
 3.65	
 9572	
 11193	
 0.86	
 8962	
 10961	
 0.82	

x1-­‐PPL2	
 (P+Q)	
 12479	
 2971	
 4.20	
 13410	
 2873	
 4.67	
 13166	
 12531	
 1.05	
 12290	
 12203	
 1.01	

x1-­‐PPL4	
 (P+Q)	
 16353	
 4177	
 3.91	
 16213	
 3597	
 4.51	
 16198	
 12885	
 1.26	
 16141	
 12933	
 1.25	

/8(v)	
 (P/Q)	
 951	
 981	
 0.97	
 1057	
 705	
 1.50	
 1009	
 2346	
 0.43	
 976	
 2342	
 0.43	

/4(v)	
 (P/Q)	
 1907	
 993	
 1.92	
 2381	
 859	
 2.77	
 1998	
 2919	
 0.68	
 1837	
 2902	
 0.63	

/2(v)	
 (P/Q)	
 3721	
 1195	
 3.11	
 4201	
 898	
 4.68	
 3818	
 3914	
 0.98	
 3701	
 3906	
 0.95	

x1	
 (P/Q)	
 6117	
 1795	
 3.41	
 7220	
 1870	
 3.86	
 6008	
 7386	
 0.81	
 5776	
 7404	
 0.78	

JH-256
/8(v)-­‐m	
 (MEM)	
 138	
 306	
 0.45	
 157	
 226	
 0.69	
 133	
 1865	
 0.07	
 118	
 1849	
 0.06	

/2(v)	
 (MEM)	
 2094	
 1009	
 2.08	
 2327	
 944	
 2.46	
 2131	
 3379	
 0.63	
 2138	
 3368	
 0.63	

x1	
 (MEM)	
 4955	
 982	
 5.05	
 5412	
 849	
 6.37	
 5276	
 3221	
 1.64	
 4759	
 3210	
 1.48	

x2	
 (MEM)	
 6149	
 1489	
 4.13	
 6904	
 1335	
 5.17	
 6418	
 5584	
 1.15	
 6128	
 5542	
 1.11	

x1-­‐PPL2	
 (MEM)	
 4711	
 1842	
 2.56	
 5202	
 1320	
 3.94	
 5463	
 4263	
 1.28	
 5439	
 4259	
 1.28	

x2-­‐PPL2	
 (MEM)	
 8289	
 2312	
 3.59	
 9284	
 2050	
 4.53	
 10116	
 6294	
 1.61	
 9772	
 6259	
 1.56	

x2-­‐PPL4	
 (MEM)	
 8526	
 3085	
 2.76	
 8839	
 2162	
 4.09	
 9927	
 6892	
 1.44	
 9994	
 6883	
 1.45	

/2(v)	
 (OTF)	
 2181	
 1120	
 1.95	
 1993	
 845	
 2.36	
 2084	
 3473	
 0.60	
 2035	
 3538	
 0.58	

x1	
 (OTF)	
 4840	
 971	
 4.98	
 5255	
 917	
 5.73	
 5071	
 3388	
 1.50	
 4912	
 3385	
 1.45	

x2	
 (OTF)	
 6196	
 1640	
 3.78	
 7046	
 1493	
 4.72	
 6359	
 6121	
 1.04	
 5817	
 5993	
 0.97	

Keccak-256
/8(v)-­‐m	
 855	
 354	
 2.41	
 1078	
 306	
 3.52	
 874	
 2397	
 0.36	
 813	
 2387	
 0.34	

x1	
 13337	
 1369	
 9.74	
 11839	
 1086	
 10.90	
 15493	
 3531	
 4.39	
 14401	
 3541	
 4.07	

x1-­‐PPL2	
 16121	
 1950	
 8.27	
 18803	
 1474	
 12.76	
 19971	
 4810	
 4.15	
 19415	
 4807	
 4.04	

x2-­‐PPL2	
 17677	
 2390	
 7.40	
 N/A	
 N/A	
 N/A	
 25283	
 7107	
 3.56	
 23660	
 7018	
 3.37	

x2-­‐PPL4	
 26690	
 3714	
 7.19	
 29825	
 2748	
 10.85	
 35780	
 8806	
 4.06	
 35006	
 8803	
 3.98	

Skein-256
x1	
 1179	
 1025	
 1.15	
 1330	
 858	
 1.55	
 1115	
 3005	
 0.37	
 1226	
 3003	
 0.41	

x4	
 3023	
 1218	
 2.48	
 3373	
 1005	
 3.36	
 2475	
 3943	
 0.63	
 2592	
 3936	
 0.66	

x8	
 2890	
 1492	
 1.94	
 3459	
 1333	
 2.60	
 3161	
 5432	
 0.58	
 3345	
 5432	
 0.62	

x4-­‐PPL2	
 5338	
 1858	
 2.87	
 6212	
 1628	
 3.82	
 4273	
 4423	
 0.97	
 4709	
 4446	
 1.06	

x4-­‐PPL5	
 6819	
 4130	
 1.65	
 7669	
 3126	
 2.45	
 6974	
 5941	
 1.17	
 7675	
 5925	
 1.30	

x8-­‐PPL10	
 N/A	
 N/A	
 N/A	
 12403	
 5447	
 2.28	
 11741	
 11163	
 1.05	
 11792	
 10992	
 1.07	

SHA-256

x1 1401	
 396	
 3.54	
 1634	
 239	
 6.83	
 1656	
 959	
 1.73	
 1798	
 959	
 1.87	

	
 16	

Table 6: Results for 512-bit variants without padding unit of the Round 3 SHA-3 candidates and SHA-2,
implemented using all investigated architectures and four FPGA families, Virtex 5 and Virtex 6 from Xilinx, and
Stratix III and Stratix IV from Altera. Notation: Tp – throughput, A – area, Tp/A – Throughput to Area Ratio. The
best values of the throughput to area ratios and the best architectures for each hash function are listed in bold.

 Arch Virtex 5 Virtex 6 Stratix III Stratix IV
 Tp A Tp/A Tp A Tp/A Tp A Tp/A Tp A Tp/A

BLAKE-512
/4(h)/4(v)-­‐m	
 560	
 386	
 1.45	
 613	
 309	
 1.98	
 491	
 1680	
 0.29	
 543	
 1676	
 0.32	

/4(h)	
 2300	
 2840	
 0.81	
 2646	
 1584	
 1.67	
 2186	
 5891	
 0.37	
 2442	
 5885	
 0.42	

/2(h)	
 3264	
 3435	
 0.95	
 3478	
 2610	
 1.33	
 2928	
 6977	
 0.42	
 3318	
 6971	
 0.48	

x1	
 N/A	
 N/A	
 N/A	
 N/A	
 N/A	
 N/A	
 2965	
 9033	
 0.33	
 3323	
 9024	
 0.37	

/2(h)-­‐PPL2	
 4841	
 4515	
 1.07	
 4478	
 2879	
 1.56	
 3954	
 8969	
 0.44	
 4742	
 8959	
 0.53	

/2(h)-­‐PPL4	
 6171	
 5794	
 1.07	
 6915	
 4575	
 1.51	
 5991	
 9684	
 0.62	
 7859	
 9694	
 0.81	

x1-­‐PPL2	
 6364	
 5674	
 1.12	
 6606	
 4616	
 1.43	
 5660	
 10625	
 0.53	
 6351	
 10615	
 0.60	

x1-­‐PPL4	
 9567	
 7497	
 1.28	
 10706	
 5267	
 2.03	
 9980	
 12074	
 0.83	
 11075	
 12082	
 0.92	

Groestl-512
/8(v)	
 (P+Q)	
 1557	
 2251	
 0.69	
 1726	
 1773	
 0.97	
 1677	
 6549	
 0.26	
 1614	
 6510	
 0.25	

/4(v)	
 (P+Q)	
 3112	
 2393	
 1.30	
 3230	
 2113	
 1.53	
 3447	
 8727	
 0.39	
 3277	
 8750	
 0.37	

/2(v)	
 (P+Q)	
 5119	
 3289	
 1.56	
 5793	
 2971	
 1.95	
 6595	
 14318	
 0.46	
 6265	
 14207	
 0.44	

x1	
 (P+Q)	
 10020	
 5588	
 1.79	
 12262	
 5203	
 2.36	
 13061	
 22062	
 0.59	
 11936	
 21902	
 0.54	

x1-­‐PPL2	
 (P+Q)	
 17591	
 6568	
 2.68	
 16114	
 6290	
 2.56	
 16900	
 24292	
 0.70	
 16114	
 24241	
 0.66	

x1-­‐PPL4	
 (P+Q)	
 N/A	
 N/A	
 N/A	
 N/A	
 N/A	
 N/A	
 21158	
 25515	
 0.83	
 20580	
 25407	
 0.81	

/8(v)	
 (P/Q)	
 1211	
 1722	
 0.70	
 1326	
 1358	
 0.98	
 1335	
 4598	
 0.29	
 1307	
 4592	
 0.28	

/4(v)	
 (P/Q)	
 2573	
 2036	
 1.26	
 2772	
 1529	
 1.81	
 2700	
 5786	
 0.47	
 2596	
 5770	
 0.45	

/2(v)	
 (P/Q)	
 4816	
 2336	
 2.06	
 5319	
 1761	
 3.02	
 5262	
 7763	
 0.68	
 4989	
 7724	
 0.65	

x1	
 (P/Q)	
 7686	
 3853	
 1.99	
 8375	
 3630	
 2.31	
 8214	
 14291	
 0.57	
 8379	
 14620	
 0.57	

JH-512
/8(v)-­‐m	
 (MEM)	
 138	
 307	
 0.45	
 154	
 228	
 0.68	
 128	
 1817	
 0.07	
 119	
 1851	
 0.06	

/2(v)	
 (MEM)	
 2052	
 1055	
 1.95	
 2491	
 996	
 2.50	
 2224	
 3664	
 0.61	
 2175	
 3660	
 0.59	

x1	
 (MEM)	
 4882	
 1037	
 4.71	
 5825	
 931	
 6.26	
 5011	
 3288	
 1.52	
 5139	
 3294	
 1.56	

x2	
 (MEM)	
 6203	
 1587	
 3.91	
 6859	
 1377	
 4.98	
 6630	
 5768	
 1.15	
 6305	
 5786	
 1.09	

x1-­‐PPL2	
 (MEM)	
 4635	
 1990	
 2.33	
 5060	
 1534	
 3.30	
 5361	
 4521	
 1.19	
 5319	
 4521	
 1.18	

x2-­‐PPL2	
 (MEM)	
 8183	
 2494	
 3.28	
 9439	
 2128	
 4.44	
 9881	
 6339	
 1.56	
 9665	
 6309	
 1.53	

x2-­‐PPL4	
 (MEM)	
 8107	
 3408	
 2.38	
 9011	
 2568	
 3.51	
 9456	
 7427	
 1.27	
 8806	
 7392	
 1.19	

/2(v)	
 (OTF)	
 2027	
 1127	
 1.80	
 2104	
 954	
 2.21	
 2107	
 3680	
 0.57	
 1982	
 3669	
 0.54	

x1	
 (OTF)	
 4686	
 992	
 4.72	
 5181	
 939	
 5.52	
 5181	
 3557	
 1.46	
 5043	
 3605	
 1.40	

x2	
 (OTF)	
 6413	
 1870	
 3.43	
 7128	
 1501	
 4.75	
 6268	
 6276	
 1.00	
 6032	
 6314	
 0.96	

Keccak-512
/8(v)-­‐m	
 512	
 355	
 1.44	
 631	
 316	
 2.00	
 498	
 2310	
 0.22	
 471	
 2293	
 0.21	

x1	
 7612	
 1320	
 5.77	
 7220	
 1061	
 6.81	
 8526	
 3471	
 2.46	
 7825	
 3467	
 2.26	

x1-­‐PPL2	
 9306	
 1720	
 5.41	
 9619	
 1468	
 6.55	
 11215	
 4294	
 2.61	
 10816	
 4295	
 2.52	

x2-­‐PPL2	
 9915	
 2297	
 4.32	
 N/A	
 N/A	
 N/A	
 13389	
 6523	
 2.05	
 12984	
 6519	
 1.99	

x2-­‐PPL4	
 12935	
 3387	
 3.82	
 15661	
 2539	
 6.17	
 20356	
 8553	
 2.38	
 19300	
 8549	
 2.26	

Skein-512
x1	
 1201	
 1069	
 1.12	
 1441	
 987	
 1.46	
 1135	
 3072	
 0.37	
 1229	
 3073	
 0.40	

x4	
 3084	
 1418	
 2.17	
 3462	
 1114	
 3.11	
 2438	
 4006	
 0.61	
 2736	
 4015	
 0.68	

x8	
 2832	
 1577	
 1.80	
 3573	
 1373	
 2.60	
 3121	
 5589	
 0.56	
 3322	
 5507	
 0.60	

x4-­‐PPL2	
 5378	
 2026	
 2.65	
 5943	
 1702	
 3.49	
 4271	
 4705	
 0.91	
 4682	
 4683	
 1.00	

x4-­‐PPL5	
 N/A	
 N/A	
 N/A	
 7071	
 3486	
 2.03	
 6670	
 6199	
 1.08	
 6972	
 6185	
 1.13	

x8-­‐PPL10	
 N/A	
 N/A	
 N/A	
 12176	
 6145	
 1.98	
 11063	
 11205	
 0.99	
 10802	
 11204	
 0.96	

SHA-512

x1	
 2013	
 798	
 2.52	
 2384	
 513	
 4.65	
 2128	
 1995	
 1.07	
 2378	
 1996	
 1.19	

	
 17	

8. Rankings Based on the Throughput to Area Ratio

In order to explicitly compare SHA-3 finalists against each other across four different FPGA families, we
use Tables 7-10, and Figs 10 and 11.

All results presented in these comparisons concern versions of designs without padding units. This
choice has been made in order to take into account results submitted by other groups, as majority of these
results assume that padding is done outside of the implemented circuits.

The rankings for each FPGA family are divided along the two criteria:
a) 256-bit vs. 512-bit variant, and
b) all architectures vs. single-message architectures.

As a result, four rankings are listed for each family, as shown in Tables 7-10.
The category “all architectures” means that we allow both single-message and multi-message
architectures. In case two architectures offer the same Throughput to Area ratio, the priority is given to
architecture with the smaller area. As a result, the multi-unit architectures, MUn, do not appear in our
rankings as they offer at best the same throughput to area ratio as the basic architectures they are based
on. Thus, the primary way of improving throughput to area ratio for multi-message architectures is
pipelining.

Table 7: Ranking of SHA-3 candidates for 256-bit variant in Xilinx Virtex 5 FPGA. Designs without
padding, implemented using Xilinx ISE 13.1 (unless explicitly stated otherwise using *).

Rank Algorithm Architecture Throughput/Area
((Mbit/s)/Slices)

Normalized
Throughput/Area

Throughput
(Mbit/s)

Area
(Slices) Source**

256-bit variant, all architectures
1 Keccak x1 10.01 2.83 13,859 1,384 GMU*
2 JH x1 (OTF) 5.17 1.46 4,725 914 GMU*
3 Groestl x1 (P+Q) 4.37 1.24 6,200 1,419 NUST
 SHA-2 x1 3.54 1.00 1,401 396 GMU
4 Skein x4-PPL2 2.87 0.81 5,338 1,858 GMU
5 BLAKE x1-PPL4 2.16 0.61 7,547 3,495 GMU

256-bit variant, single-message architectures
1 Keccak x1 10.01 2.83 13,859 1,384 GMU*
2 JH x1 (OTF) 5.17 1.46 4,725 914 GMU*
3 Groestl x1 (P+Q) 4.37 1.24 6,200 1,419 NUST
 SHA-2 x1 3.54 1.00 1,401 396 GMU
4 Skein x4 2.48 0.70 3,023 1,218 GMU
5 BLAKE /4(h)/4(v)-m 1.71 0.48 382 223 GMU*

512-bit variant, all architectures
1 Keccak x1 5.77 2.29 7,612 1,320 GMU
2 JH x1 (OTF) 5.17 2.05 4,725 914 GMU*
3 Groestl x1 (P+Q) 2.93 1.16 7,400 2,523 NUST
4 Skein x4-PPL2 2.65 1.05 5,378 2,026 GMU
 SHA-2 x1 2.52 1.00 2,013 798 GMU
5 BLAKE /4(h)/4(v) 1.45 0.58 560 386 GMU

512-bit variant, single-message architectures
1 Keccak x1 5.77 2.29 7,612 1,320 GMU
2 JH x1 (OTF) 5.17 2.05 4,725 914 GMU*
3 Groestl x1 (P+Q) 2.93 1.16 7,400 2,523 NUST
 SHA-2 x1 2.52 1.00 2,013 798 GMU
4 Skein x4 2.17 0.86 3,084 1,418 GMU
5 BLAKE /4(h)/4(v) 1.45 0.58 560 386 GMU

* Results obtained using Xilinx ISE v.12.4
** GMU – George Mason University (the authors of this paper), NUST – National University of Sciences and
Technology, Islamabad, Pakistan [33,3].

	
 18	

As shown in Table 7, for Virtex 5, the ranking of SHA-3 finalists is identical in all categories. Three
candidates, Keccak, JH, and Groestl consistently outperform SHA-2. The difference between Keccak and
JH is very significant for the 256-bit variants of both functions (almost a factor of 2), and substantially
decreases for the 512-bit variants (because of the smaller message block size in Keccak-512 vs. Keccak-
256). The advantage of Groestl over SHA-2 also decreases for the 512-bit variants of both functions. For
the 256-bit variants of the algorithms, only Skein and BLAKE can benefit from pipelining (in terms of the
increase in the throughput to area ratio). For the 512-bit variants of the finalists, none algorithm was
shown to benefit from pipelining.

As shown in Table 8, for Virtex 6, the ranking of the five SHA-3 candidates is the same as in Virtex
5, and identical in all categories. Keccak is the only candidate that outperforms SHA-2 for the 256-bit
variants of the compared functions. For the 512-bit variants, the performance of Keccak decreases, and
becomes comparable to that of JH. Both Keccak and JH outperform SHA-2 in terms of the throughput to
area ratio. Groestl, Skein, and BLAKE consistently lag behind SHA-2.

Table 8: Ranking of SHA-3 candidates for 256-bit variant in Xilinx Virtex 6 FPGA. Designs without
padding, implemented using Xilinx ISE v.13.1 (unless explicitly stated otherwise using *).

Rank Algorithm Architecture Throughput/Area
((Mbit/s)/Slices)

Normalized
Throughput/Area

Throughput
(Mbit/s)

Area
(Slices) Source**

256-bit variant, all architectures
1 Keccak x1 14.94 2.19 13,670 915 NUST
 SHA-2 x1 6.84 1.00 1,634 239 GMU

2 JH x1 (MEM) 6.73 0.98 5,700 847 GMU*
3 Groestl x1 (P+Q) 6.56 0.96 9,620 1,467 NUST
4 Skein x4-PPL2 3.82 0.56 6,212 1,628 GMU
5 BLAKE x1-PPL4 3.18 0.47 8,056 2,530 GMU

256-bit variant, single-message architectures
1 Keccak x1 14.94 2.19 13,670 915 NUST
 SHA-2 x1 6.84 1.00 1,634 239 GMU*

2 JH x1 (MEM) 6.73 0.98 5,700 847 GMU*
3 Groestl x1 (P+Q) 6.56 0.96 9,620 1,467 NUST
4 Skein x4 3.36 0.49 3,373 1,005 GMU
5 BLAKE Lightweight 2.86 0.42 475 166 GMU

512-bit variant, all architectures
1 Keccak x1 6.89 1.48 6,990 1,015 NUST
2 JH x1 (MEM) 6.26 1.35 5,825 931 GMU
 SHA-2 x1 4.64 1.00 2,381 513 GMU*

3 Groestl x1 (P+Q) 3.89 0.84 9,170 2,359 NUST
4 Skein x4-PPL2 3.49 0.75 5,943 1,702 GMU
5 BLAKE x1-PPL4 2.03 0.44 10,706 5,267 GMU

512-bit variant, single-message architectures
1 Keccak x1 6.89 1.48 6,990 1,015 NUST
2 JH x1 (MEM) 6.26 1.35 5,825 931 GMU
 SHA-2 x1 4.64 1.00 2,381 513 GMU*

3 Groestl x1 (P+Q) 3.89 0.84 9,170 2,359 NUST
4 Skein x4 3.11 0.67 3,462 1,114 GMU
5 BLAKE /4(h)/4(v)-m 1.98 0.43 613 309 GMU

* Results obtained using Xilinx ISE v.12.4
** GMU – George Mason University (the authors of this paper), NUST – National University of Sciences and
Technology, Islamabad, Pakistan [33,3].

	
 19	

Table 9: Ranking of SHA-3 candidates for 256-bit variant in Altera Stratix III FPGA. Designs without
padding, implemented using Altera Quartus II v.11.1.

Rank Algorithm Architecture Throughput/Area
((Mbit/s)/Slices)

Normalized
Throughput/Area

Throughput
(Mbit/s)

Area
(ALUTs) Source

256-bit variant, all architectures
1 Keccak x1 4.39 2.54 15,493 3,531 GMU
 SHA-2 x1 1.73 1.00 1,656 959 GMU

2 JH x1 (MEM) 1.64 0.95 5,276 3,221 GMU

3 Groestl x1-PPL4
(P+Q) 1.26 0.73 16,197 12,885 GMU

4 BLAKE x1-PPL4 1.21 0.70 7,583 6,267 GMU
5 Skein x4-PPL5 1.17 0.68 6,974 5,941 GMU

256-bit variant, single-message architectures
1 Keccak x1 4.39 2.54 15,493 3,531 GMU
 SHA-2 x1 1.73 1.00 1,656 959 GMU

2 JH x1 (MEM) 1.64 0.95 5,276 3,221 GMU
3 Groestl /2(v) (P/Q) 0.98 0.56 3,818 3,914 GMU
4 Skein x4 0.63 0.36 2,475 3,943 GMU
5 BLAKE /2(h) 0.61 0.35 2,158 3,553 GMU

512-bit variant, all architectures
1 Keccak x1-PPL2 2.61 2.45 11,215 4,294 GMU
2 JH x2-PPL2 1.56 1.46 9,881 6,339 GMU
3 Skein x4-PPL5 1.08 1.01 6,670 6,199 GMU
 SHA-2 x1 1.07 1.00 2,128 1,995 GMU

4 Groestl x1-PPL4
(P+Q) 0.83 0.78 21,158 25,515 GMU

5 BLAKE x1-PPL4 0.83 0.77 9,980 12,074 GMU

512-bit variant, single-message architectures
1 Keccak x1 2.46 2.30 8,526 3,471 GMU
2 JH x1 (MEM) 1.52 1.43 5,011 3,288 GMU
 SHA-2 x1 1.07 1.00 2,128 1,995 GMU

3 Groestl /2(v) (P/Q) 0.68 0.64 5,262 7,763 GMU
4 Skein x4 0.61 0.57 2,438 4,006 GMU
5 BLAKE /2(h) 0.42 0.39 2,928 6,977 GMU

As shown in Table 9, for Stratix III and 256-bit variants o the algorithms, the ranking remains almost the
same as in Virtex 5 and Virtex 6. Keccak is the only candidate that outperforms SHA-2. Groestl, BLAKE,
Skein have efficient pipelined architectures, with almost identical throughput to area ratio. For the 512-bit
variants, Keccak and JH are the only candidates that outperform SHA-2 in both categories. In the
category of all architectures, Skein has almost identical performance as SHA-2, and Groestl almost
identical performance to BLAKE. For the single-message architectures, the differences between the
algorithms increase, and the ranking of the candidates becomes the same as in case of Virtex 5 and Virtex
6.

The results for Stratix IV, shown in Table 10, are very similar to those for Stratix III. The primary
difference is that for the 512-bit variants of the algorithms, and single-message architectures, Skein jumps
ahead of Groestl. For the 512-bit variants and all architectures, Groestl lags behind BLAKE, and becomes
least efficient algorithm.

In Figs. 10 and 11, normalized throughput to area ratios (i.e., ratios for each algorithm, divided by the
respective ratios for SHA-2) are summarized for all four investigated FPGA families. A logarithmic scale
is used on the X-axis. These graphs demonstrate quite good agreement between the results for two FPGA
families from the same vendor, and quite substantial differences between FPGA families from two
different vendors, Xilinx and Altera. In particular, normalized results for Virtex 5 and Virtex 6 seem to be

	
 20	

quite well correlated, with normalized results for Virtex 5 consistently higher than the corresponding
normalized values for Virtex 6. These smaller normalized values for Virtex 6 come primarily from the
fact that SHA-2 is implemented more efficiently in Virtex 6. On the other hand, in terms of absolute
values of the throughput to area ratios, these ratios are consistently higher, as expected, in Virtex 6 for all
investigated algorithms (as demonstrated by Tables 7 and 8).

The results for Altera families seem to differ from the results for Xilinx families in several important
aspects. In particular, for the 256-bit variants and single-message architectures (see Fig. 10b), the
performance gap between JH and Groestl widens in Altera families, while on the other hand BLAKE
catches up with Skein. BLAKE, Skein, and Groestl, all benefit from pipelining in Altera families (see Fig.
10a). Additionally, these three algorithms have almost the same normalized throughput to area ratio for
both Altera families. For the 512-bit variants of the algorithms and all architectures, Stratix IV seem to be
particularly unsuitable for Groestl, which drops from the 3rd position in Xilinx families, to the last 5th
position in Stratix IV (see Fig. 11a).

Table 10: Ranking of SHA-3 candidates for 256-bit variant in Altera Stratix IV FPGA. Designs without
padding, implemented using Altera Quartus II v.11.1 (unless explicitly stated otherwise using *).

Rank Algorithm Architecture Throughput/Area
((Mbit/s)/Slices)

Normalized
Throughput/Area

Throughput
(Mbit/s)

Area
(ALUTs) Source

256-bit variant, all architectures
1 Keccak x1 4.07 2.17 14,401 3,541 GMU
 SHA-2 x1 1.87 1.00 1,798 959 GMU

2 JH x2-PPL2
(MEM) 1.56 0.83 9,772 6,259 GMU

3 Skein x4-PPL5 1.30 0.69 7,676 5,925 GMU
4 BLAKE x1-PPL4 1.29 0.69 8,063 6,271 GMU

5 Groestl x1-PPL4
(P+Q) 1.25 0.67 16,141 12,933 GMU

256-bit variant, single-message architectures

1 Keccak x1 4.07 2.17 14,401 3,541 GMU
 SHA-2 x1 1.87 1.00 1,798 959 GMU

2 JH x1 (MEM) 1.52 0.81 4,876 3,218 GMU*
3 Groestl /2(v) (P/Q) 0.95 0.51 3,701 3,906 GMU
4 Skein x4 0.66 0.35 2,621 3,968 GMU*
5 BLAKE /2(h) 0.66 0.35 2,337 3,543 GMU

512-bit variant, all architectures
1 Keccak x1-PPL2 2.52 2.11 10,816 4,295 GMU
2 JH x1 (MEM) 1.56 1.31 5,139 3,294 GMU
 SHA-2 x1 1.19 1.00 2,378 1,996 GMU

3 Skein x4-PPL5 1.13 0.95 6,972 6,185 GMU
4 BLAKE x1-PPL4 0.92 0.77 11,075 12,082 GMU

5 Groestl x1-PPL4
(P+Q) 0.81 0.68 20,580 25,407 GMU

512-bit variant, single-message architectures
1 Keccak x1 2.26 1.89 7,825 3,467 GMU
2 JH x1 (MEM) 1.56 1.31 5,139 3,294 GMU
 SHA-2 x1 1.19 1.00 2,378 1,996 GMU

3 Skein x4 0.68 0.57 2,736 4,015 GMU
4 Groestl /2(v) (P/Q) 0.65 0.54 4,989 7,724 GMU
5 BLAKE /2(h) 0.48 0.40 3,318 6,971 GMU

• Results obtained using Altera Quartus II v.10.1

	
 21	

a) 256-bit variant, all architectures

b) 256-bit variant, single-message architectures

Fig. 10. Rankings of SHA-3 finalists in terms of the Normalized Throughput/Area Ratio for
a) all architectures (including single-message and multi-message architecture),
b) single-message architectures.
256-bit variants of algorithms. Designs without padding. Based on the best results submitted to the
ATHENa Database of Results [3] as of June 1, 2012.

	
 22	

a) 512-bit variant, all architectures

b) 512-bit variant, single-message architectures

Fig. 11. Rankings of SHA-3 finalists in terms of the Normalized Throughput/Area Ratio for
a) all architectures (including single-message and multi-message architecture),
b) single-message architectures.
512-bit variants of algorithms. Designs without padding. Based on the best results submitted to the
ATHENa Database of Results [3] as of June 1, 2012.

	
 23	

9. Correlation between FPGA results and ASIC results

The number of hardware architectures of SHA-3 candidates implemented in ASICs to date is very small
compared to the number of architectures implemented in FPGAs. Typically, only the best non-pipelined
architectures for the 256-bit variants of the SHA-3 finalists are reported [18,19,20]. At the same time,
multiple applications use ASICs as a primary way of implementing cryptographic transformations, and
this trend is likely to continue in the future. Therefore, it is very interesting to see, whether there exist any
strong correlation between results obtained for the ASIC and FPGA implementations of the same
architectures. In our experiment, performed in collaboration with the group from ETH Zurich, we have
implemented selected architectures for all SHA-3 candidates and SHA-2 using standard-cell CMOS 65nm
UMC ASIC technology (UMC65LL) offered through Europractice MPW services, and using a 65 nm
high-performance Altera FPGA family Stratix III. The selected architectures included the following non-
pipelined architectures: basic iterative architectures, x1, for Keccak and SHA-2, basic iterative
architecture with round constants computed on the fly, x1 (OTF), for JH, basic iterative parallel
architecture of Groestl (P+Q), horizontally folded two times architecture of BLAKE, /2(h), and the
unrolled 4 times architecture of Skein, x4.

a) 65nm ASIC b) 65nm Stratix III FPGA

c) d)

Fig. 12. Correlation between results for 65nm ASIC and 65nm Altera Stratix III FPGA. Normalized
throughput vs. normalized area for a) ASIC, b) Stratix III FPGA. Normalized throughput to area ratio for
c) ASIC, d) Stratix III FPGA.

	
 24	

All architectures have been designed for the 256-bit variants of the functions, without padding units, and
with wide input and output interface (512 or 1088 bits at the input and 256 bits at the output). Exactly the
same VHDL source codes have been synthesized, mapped, placed and routed using both technologies.
The results, normalized to the results for SHA-2, are presented in Fig. 12. A very good correlation
between normalized throughput and normalized area in both technologies have been observed. Ranking in
terms of throughput is identical in both technologies. In terms of area, the biggest difference is a relatively
smaller area of BLAKE in ASIC technology. In Stratix III FPGAs, JH and BLAKE have almost the same
area, in ASIC BLAKE is about 20% smaller than JH.

The biggest difference appears in terms of the throughput to area ratio, where BLAKE moves from
the 4th position in tie with Skein in Stratix III to the 3rd position, ahead of Groestl for ASIC. Overall
correlation is however very good and indicates that evaluations using Altera FPGAs are likely to give
similar results to the evaluations using ASICs fabricated using equivalent technology. Interestingly,
similar comparison using Xilinx Virtex 5 FPGAs results in much worse correlation.

10. Results for Implementations using Embedded Resources of FPGAs

The study of the impact of embedded resources on hardware implementations of the SHA-3 candidates
has been performed for both non-pipelined (single-message) and pipelined (multi-message) architectures,
with padding unit.

The influence of embedded resources on the performance of non-pipelined architectures of all 14
Round 2 candidates has been reported first in [37]. Here, we narrow down this study to five SHA-3
finalists, and we implement all of them using the most efficient non-pipelined and pipelined architectures
with padding unit.

The numerical effect of using embedded resources in Xilinx Virtex 5 and Altera Stratix III in non-
pipelined architectures is summarized in Tables 11-14. In Tables 11 and 12, we have tabulated results for
all logic-only implementations, and the corresponding implementations with embedded resources. The
relative improvement in terms of Throughput, Area (in CLB slices for Virtex 5, and ALUTs for Stratix
III), and Throughput to Area ratio is reported.

None of the final candidates can take advantage of DSP units, because none of them uses
multiplication. An attempt to use DSP units for the implementation of a 64-bit addition in Skein, resulted
in very inefficient implementations in both Virtex 5 and Stratix III. Similarly, an attempt to use DSP units
for the implementation of addition in BLAKE resulted in quite inefficient implementations (not reported
in Tables 11 and 12).

Block memories can be used in implementations of BLAKE, Groestl, JH, and Keccak. Based on the
results presented in Tables 11 and 12, BLAKE and Groestl benefit most from using embedded memories,
with the improvement in the Throughput to Area ratio higher for BLAKE in Virtex 5 FPGAs, and higher
for Groestl in Altera Stratix III FPGAs. In Fig. 13, we show the implementation of the Permute
transformation using block memories in BLAKE. In Fig. 16, we demonstrate the use of block memories
to implement Groestl using a T-box based architecture [36,37].

A relatively small drop (< 15%) in throughput was observed for majority of the candidates. The three
exceptions were JH on Virtex 5, with the drop of about 33%, and Skein on Virtex 5 and Stratix III, with
the drop of approximately 40%. Skein specifically suffered from the lack of support for a 64-bit addition
in DSP units of Virtex 5 and Stratix III.

Area, measured in the number of reconfigurable logic resources (CLB slices for Virtex 5 and ALUTs
for Stratix III), decreased the most for BLAKE and Groestl, with BLAKE benefiting more on Virtex 5,
and Groestl benefiting more on Stratix III. In all remaining cases, the decrease was smaller than 20%, and
in case of Keccak and Skein implemented on Stratix III FPGAs, the amount of reconfigurable logic even
increased.

It should be stressed that any reduction in the amount of reconfigurable logic has been accomplished
at the expense of substantial usage of embedded memories, which was the largest in Groestl, followed by

	
 25	

BLAKE, JH, and Keccak. In particular, compared to BLAKE, Groestl used about 4 times more BRAMs
in Virtex 5, and about 50 times more memory bits in Stratix III.

In Table 13, only relative improvements in terms of the Throughput, Area, and Throughput to Area
ratio are presented.

In Table 14, we summarize the effect of the use of embedded resources on the ranking of the SHA-3
finalists in terms of the Throughput to Area ratio for non-pipelined (single-message) architectures. In
Virtex 5 and Stratix III, the initial ranking based on the logic-only implementations is as follows: 1)
Keccak, 2) JH, 3) Groestl, 4) Skein, 5) BLAKE. As a result of using embedded resources, Groestl jumps
ahead of JH to the second position, and BLAKE jumps ahead of Skein to the fourth position. It should be
stressed however, that this improvement can be taken advantage of only if in the given system-on-chip
including hash functions, none of the other components of the system relies heavily on block memories.

The results for the best pipelined (multi-message) architectures of all algorithms are summarized in
Tables 15-18. The pipelined implementation of BLAKE, x1-PPL4, is presented in Figs. 14 and 15. Two
rows of G functions are used, and pipelined registers are placed before the first row, before the second
row, and in the middle of each G function. Embedded resources can be used only as a part of the function
Permute, which now needs to include four sets of BRAMs, one per each stream of data. For Groestl, two
pipelined architectures are used. The x1-PPL2(P+Q) architecture has appeared to be more efficient for
Virtex 5, while the x1-PPL4(P+Q) architecture more efficient for Stratix III. The latter of these two
architectures, x1-PPL4(P+Q), is shown in Fig. 17. Pipelined registers are introduced before the AddP and
AddQ operations, after the T-boxes, after the modified network of XORs, and in the feedback loop.
Similarly, for Skein, two different architectures have been used. The x4-PPL2 architecture is most
efficient for Virtex-5, whereas the x4-PPL5 architecture is most efficient for Stratix III.

As shown in Table 15, for Virtex 5, only Groestl and JH benefit significantly from using embedded
resources, and they both reach an improvement of 17.5% in terms of the throughput to area ratio. JH
benefits primarily from the increase in the circuit throughput, while Groestl from the decrease in the
number of CLB slices. The improvement for BLAKE is negligible (less than 3%), and Keccak and Skein
do not benefit at all.

As shown in Table 16, for Stratix III, the improvement for Groestl is much higher (in the range of
94%), and improvement for JH much smaller (less than 6%). BLAKE and Skein have the worse
throughput to area ratio after introducing embedded resources, and Keccak shows a negligible
improvement. Thus, only Groestl, when implemented using a pipelined architecture on Stratix III, can
benefit from using embedded resources.

In Table 17, only relative improvements in terms of the Throughput, Area, and Throughput to Area
ratio are presented.

In Table 18, we summarize the effect of the use of embedded resources on the ranking of the SHA-3
finalists in terms of the Throughput to Area ratio for pipelined (multi-message) architectures. In Virtex 5,
the initial ranking based on the logic-only implementations is as follows: 1) Keccak, 2) Groestl, 3) JH, 4)
Skein, 5) BLAKE. The use of embedded resources does not change this ranking. In Stratix III, the initial
ranking based on the logic-only implementations is as follows: 1) Keccak, 2) JH, 3) Groestl, 4) BLAKE,
5) Skein. As a result of using embedded resources, Groestl jumps ahead of JH to the second position, and
the remaining order remains the same.

	
 26	

Table 11: The effect of the embedded resources on the performance of 5 Round 3 SHA-3 candidates on Virtex 5
FPGA	
 for non-pipelined architectures. Notation: Tp – throughput, Tp/Area – Throughput to Area Ratio, ∆ [%] –
relative improvement in the Throughput, Area, and Throughput to Area ratio as a result of using embedded resources
in the hash unit. The relative change in the throughput to area ratio has been marked in bold. Xilinx PlanAhead 13.1
and ATHENa were used to generate optimized results after place and route for the embedded architectures. The
better of the two results (in terms of the Throughput to Area ratio) was reported below.

Table 12: The effect of the embedded resources on the performance of 5 Round 3 SHA-3 in Stratix III FPGA for
non-pipelined architectures. Notation: Tp – throughput, Tp/Area – Throughput to Area Ratio, ∆ [%] – relative
improvement in the Throughput, Area, and Throughput to Area ratio as a result of using embedded resources in the
hash unit. The relative change in the throughput to area ratio has been marked in bold.

Arch Tp
Area

Tp/Area (Slices) Slices BRAMs DSPs
BLAKE-256

/2(h)-PAD 2266 1860 0 0 1.22
/2(h)-PAD-Emb 2088 802 12 0 2.60
Δ [%] -7.9% 56.9% N/A N/A 113.1%

Groestl-256 (P/Q)
x1-PAD 6572 2020 0 0 3.25
x1-PAD-Emb 5735 1343 49 0 4.27
Δ [%] -12.7% 33.5% N/A N/A 31.4%

JH-256 (MEM)
x1-PAD 4543 1001 0 0 4.53
x1-PAD-Emb 3099 842 5 0 3.68
Δ [%] -32.8% 7.6% N/A N/A -18.8%

Keccak-256
x1-PAD 12745 1375 0 0 9.27
x1-PAD-Emb 11663 1254 1 0 9.30
Δ [%] -0.6% 1.7% N/A N/A 0.3%

Skein-256
x4-PAD 3127 1245 0 0 2.51
x4-PAD-Emb 1907 1040 0 32 1.83
Δ [%] -39.0% 16.5% N/A N/A -27.1%

Arch TP Area TP/Area (ALUTs) ALUTs membits DSPs
BLAKE-256

/2(h)-PAD 2206 3660 0 0 0.60
/2(h)-PAD-Emb 1880 2008 12288 0 0.94
Δ [%] -14.8% 45.1% N/A N/A 56.7%

Groestl-256 (P/Q)
x1(P/Q)-PAD 6140 7564 0 0 0.81
x1(P/Q)-PAD-Emb 6082 2862 655,360 0 2.13
Δ [%] -0.9% 62.2% N/A N/A 163.0%

JH-256 (MEM)
x1-PAD 5024 3383 0 0 1.49
x1-PAD-Emb 4801 3108 15,744 0 1.55
Δ [%] -4.4% 8.1% N/A N/A 4.0%

Keccak-256
x1-PAD 14624 4060 0 0 3.60
x1-PAD-Emb 13902 4111 2048 0 3.38
Δ [%] -4.9% -1.3% N/A N/A -6.1%

Skein-256
x4-PAD 2494 3960 0 0 0.63
x4-PAD-Emb 1463 5203 0 128 0.28
Δ [%] -41.3% -31.4% N/A N/A -55.6%

	
 27	

Table 13: Change in the results between the logic-only implementation (without DSP units and Block RAMs) and
the implementation using these embedded resources for non-pipelined architectures. The respective columns
represent: ∆Throughput [%] - Relative Improvement in Throughput, ∆Reconfigurable Logic [%] - Relative
Reduction in the amount of Reconfigurable Logic, ∆Tp/Reconfigurable Logic [%] - Relative Improvement in
Throughput/Reconfigurable Logic Ratio.

Table 14: Change in the ranking based on the throughput to area ratio between the logic-only implementations
(without DSP units and Block RAMs) and the implementations with embedded resources for non-pipelined
architectures. Values given in bold represent the best results for a given algorithm and FPGA family, and the
improvement column represents a relative improvement compared to the logic-only implementation achieved using
the best of the two implementations.

	

Fig. 13. BLAKE. Transformation of the datapath from the logic-only implementation to the implementation using
embedded resources for non-pipelined architecture.

Permute

Initialization

reg

Core

IV

reg

CV

Finalization

PISO

Padding

din

msg

ct

dout

CM

64

64

msg

P0

0 ...1 2 17 19...

Small
Permute

xor

i

msg

xor

i

512

256

256

256

512

256256

256

CM

CM

P1

P10

P9

P18 P19

18

5

reg

5

Big
Permute

BRAM

Small
Permute

BRAM

Algorithm

Δ Throughput [%] Δ Reconfigurable logic [%] ΔTp/Reconfigurable logic [%]
Virtex 5 Stratix III Virtex 5 Stratix III Virtex 5 Stratix III

BLAKE -7.9% -14.8% 56.9% 45.1% 113.1% 56.7%
Groestl -12.7% -0.9% 33.5% 62.2% 31.4% 163.0%
JH -32.8% -4.4% 7.6% 8.1% -18.8% 4.0%
Keccak -0.6% -4.9% 1.7% -1.3% 0.3% -6.1%
Skein -39.0% -41.3% 16.5% -31.4% -27.1% -55.6%

Algorithm &
Architecture

Virtex 5 Stratix III

Logic-only With embedded
resources Improvement Logic-only With embedded

resources Improvement

Keccak: x1 9.27 9.30 0.3% 3.60 3.38 0.0%
JH: x1 (MEM) 4.53 3.68 0.0% 1.49 1.55 4.0%
Groestl: x1 (P/Q) 3.25 4.27 31.4% 0.81 2.13 163.0%
Skein: x4 2.51 1.83 0.0% 0.63 0.28 0.0%
BLAKE: /2(h) 1.22 2.60 113.1% 0.60 0.94 56.7%

	
 28	

Fig. 14. BLAKE. Block diagram of the pipelined implementation of BLAKE-256, x1-PPL4. The Permute unit can
be implemented using either logic-only approach, or using block memories.

	

Fig. 15. BLAKE. G-function, represented as G_mod in Fig. 9b, with one inner-pipelining register.

A / B / C/ D/

A B C D
G_mod

CM[0,1]

A / B / C/ D

A B C D
G_mod

CM[2,3]

A / B / C/ D/

A B C D
G_mod

CM[4,5]

A / B / C/ D

A B C D
G_mod

CM[6,7]

A / B / C/ D/

A B C D
G_mod

CM
[8,9]

A / B / C/ D

A B C D
G_mod

CM
[10,11]

A / B / C/ D/

A B C D
G_mod

CM
[12,13]

A / B / C/ D

A B C D
G_mod

CM
[14,15]

128128128128

512

Pipeline
Stage 2

Pipeline
Stage 4

Pipeline
Stage 3

RegPipeline
Stage 1

128 128 128 128

512

0 1

Core

Reg

dout

0

cv

1

Finalization

PISO

Initialization

0 1

Permute

Padding

din

IV

CM2i

CM

/

<<<R1

<<<R2

<<<R3

<<<R4

ABCD

ABCD
///

2i+1

Inner
pipelining
(Gfunc)

	
 29	

	

Fig. 16. Groestl. Transformation of the datapath from the S-Box based logic-only implementation to the T-Box
based implementation using embedded resources for non-pipelined architecture.

Fig. 17. Groestl. Block diagram of the pipelined implementation of Groestl, x1-PPL4, based on the T-box
architecture. T-box is implemented using block memories, as shown in Fig. 16.

Add Constant
Sub Bytes

(Implemented
in Logic)

Shift Bytes
Mix Bytes

PISO

IV

64

Add Constant

Sub Bytes

Shift Bytes

Multiplication by
constants in

GF(28)

Network of XORs

Add Constant

Sub Bytes

Shift Bytes

Multiplication by
constants in

GF(28)

Network of XORs

Add Constant

Groestl TBox

Modified Network of
XORs

BRAM

Padding

64
din

512

Padding 1 Padding 2 Padding 3 Padding 4

din

Add Q

BRAM

Groestl Tbox Groestl Tbox

Modified Network
of XORS

Modified Network
of XORS

Add P

Pipeline Stage 1

Pipeline Stage 2

Pipeline Stage 3

Pipeline Stage 4

h

256

512 512 512 512

64 64 64 64

512

512 512

512

512

BRAM

	
 30	

Table 15: The effect of the embedded resources on the performance of 5 Round 3 SHA-3 in Virtex 5 FPGA for
pipelined architectures. Notation: Tp – throughput, Tp/Area – Throughput to Area Ratio, ∆ [%] – relative
improvement in the Throughput, Area, and Throughput to Area ratio as a result of using embedded resources in the
hash unit. The relative change in the throughput to area ratio has been marked in bold. Xilinx PlanAhead 13.1 and
ATHENa were used to generate optimized results after place and route for the embedded architectures. The better of
the two results (in terms of the Throughput to Area ratio) was reported below.

Table 16: The effect of the embedded resources on the performance of 5 Round 3 SHA-3 in Stratix III FPGA for
pipelined architectures. Notation: Tp – throughput, Tp/Area – Throughput to Area Ratio, ∆ [%] – relative
improvement in the Throughput, Area, and Throughput to Area ratio as a result of using embedded resources in the
hash unit. The relative change in the throughput to area ratio has been marked in bold.

Arch TP Area TP/Area (Slices) Slices BRAMs DSPs
BLAKE-256

x1-PPL4-PAD 7510 3526 0 0 2.13
x1-PPL4-PAD-Emb 5314 2427 50 0 2.19
Δ [%] -29.2% 31.2% N/A N/A 2.8%

Groestl-256 (P+Q)
x1-PPL2-PAD 13382 3172 0 0 4.22
x1-PPL2-PAD-Emb 11051 2223 99 0 4.97
Δ [%] -17.4% 29.9% N/A N/A 17.8%

JH-256 (MEM)
x2-PPL2-PAD 5879 2056 0 0 2.86
x2-PPL2-PAD-Emb 7041 2099 10 0 3.35
Δ [%] 19.8% -2.1% N/A N/A 17.1%

Keccak-256
x1-PPL2-PAD 12523 2123 0 0 5.90
x1-PPL2-PAD-Emb 11562 2035 1 0 5.68
Δ [%] -7.7% -4.1% N/A N/A -3.7%

Skein-256
x4-PPL2-PAD 4873 2030 0 0 2.40
x4-PPL2-PAD-Emb 2725 1910 0 48 1.43
Δ [%] -44.1% 5.9% N/A N/A -40.4%

Arch TP Area TP/Area (ALUTs) ALUTs membits DSPs
BLAKE-256

x1-PPL4-PAD 7787 6657 0 0 1.17
x1-PPL4-PAD-Emb 5101 5185 49152 0 0.98
Δ [%] -34.5% 22.1% N/A N/A -15.9%

Groestl-256 (P+Q)
x1-PPL4-PAD 16903 13261 0 0 1.28
x1-PPL4-PAD-Emb 15591 6297 1310720 0 2.48
Δ [%] -7.8% 52.5% N/A N/A 94.2%

JH-256 (MEM)
x2-PPL2-PAD 9804 6339 0 0 1.55
x2-PPL2-PAD-Emb 9270 5672 16384 0 1.63
Δ [%] -5.4% 10.5% N/A N/A 5.6%

Keccak-256
x1-PPL2-PAD 16047 5003 0 0 3.21
x1-PPL2-PAD-Emb 16563 4984 2048 0 3.32
Δ [%] 3.2% 0.4% N/A N/A 3.6%

Skein-256
x4-PPL5-PAD 6869 6068 0 0 1.13
x4-PPL5-PAD-Emb 1263 9912 0 384 0.13
Δ [%] -81.6% -63.3% N/A N/A -88.8%

	
 31	

Table 17: Change in the results between the logic-only implementation (without DSP units and Block RAMs) and
the implementation using embedded resources for pipelined architectures. The respective columns represent:
∆Throughput [%] - Relative Improvement in Throughput, ∆ Reconfigurable Logic [%] - Relative Reduction in the
amount of Reconfigurable Logic, ∆Tp/Reconfigurable Logic [%] - Relative Improvement in
Throughput/Reconfigurable Logic Ratio.

Algorithm

∆ Throughput [%] ∆ Reconfigurable logic [%] ∆ Tp/Reconfigurable logic [%]
Virtex 5 Stratix III Virtex 5 Stratix III Virtex 5 Stratix III

BLAKE -29.2% -34.5% 31.2% 22.1% 2.8% -15.9%
Groestl -17.4% -7.8% 29.9% 52.5% 17.8% 94.2%
JH 19.8% -5.4% -2.1% 10.5% 17.1% 5.6%
Keccak -7.7% 3.2% -4.1% 0.4% -3.7% 3.6%
Skein -44.1% -81.6% 5.9% -63.3% -40.4% -88.8%

Table 18: Change in the ranking based on the throughput to area ratio between the logic-only implementations
(without DSP units and Block RAMs) and the implementations with embedded resources for pipelined
architectures. Values given in bold represent the best results for a given algorithm and FPGA family, and the
improvement column represents a relative improvement compared to the logic-only implementation achieved using
the best of the two implementations.

Algorithm &
Architecture

Virtex 5 Stratix III

Logic-only
With

embedded
resources

Improvement Logic-only
With

embedded
resources

Improvement

Keccak: x1-PPL2-PAD 5.90 5.68 0.0% 3.21 3.32 3.6%
Groestl: x1-PPL2-PAD/
x1-PPL4-PAD*

4.22 4.97 17.8% 1.28 2.48 94.2%

JH: x2-PPL2-PAD 2.86 3.35 17.1% 1.55 1.63 5.6%
Skein: x4-PPL2-PAD/
x4-PPL5-PAD **

2.40 1.43 0.0% 1.13 0.13 0.0%

BLAKE: x1-PPL4-PAD 2.13 2.19 2.8% 1.17 0.98 0.0%

* Groestl x1-PPL2-PAD is implemented on Virtex 5 whereas Groestl x1-PPL4-PAD is implemented on Stratix III.
** Skein x4-PPL2-PAD is implemented on Virtex 5 whereas Skein x4-PPL5-PAD is implemented on Stratix III.

11. Results for Short Messages

In all previous sections, the Throughput is understood as the throughput for long messages, and does not
take into account the time taken for reading the very first block of the message, initialization, finalization,
and writing a hash value to the output memory. To be exact, we define Throughput for all single-message
architectures using the following formula:

Thr = Thrlong =
b ⋅ N

T • (Htime(N +1)−HTime(N))
 (3)

where b is a message block size, characteristic for each hash function (as defined in the function
specification, and shown in Table 20), HTime(N) is a total number of clock cycles necessary to hash an N-
block message, and T is a clock period, different and characteristic for each hardware implementation of a
specific hash function.
All our designs follow the same interface, described in detail in []. This interface has the parameter:

• w = the width of the input data bus, din, and the output data bus, dout. These buses are
independent of each other, and both have the width w. In our implementations, w=64 for all
algorithms and algorithm variants, except SHA-2-256, where w=32.

The general formula for the time necessary to hash N blocks of the message can be written in the
following form:

HTime(N) = CINIT +CIN + CBLOCK⋅N + CFINAL +COUT (4)

	
 32	

In this formula:
• CINIT is the number of clock cycles necessary to establish communication with the source of data

(typically, Input FIFO) and read the length of the message (in our formulas we assume that the
length of the message is smaller than 2w-1, and CINIT=2).

• CIN is the number of clock cycles required to load the very first block of the message.
CIN = b/w.

• CBLOCK is the number of clock cycles required to process one block of the message.
• CFINAL is the number of clock cycles required for the finalization. We assume that only one

finalization is required per entire message (if the finalization needs to be repeated for every block
of the message, its number of clock cycles is included in CBLOCK).

• COUT is the number of clock cycles required to write hash value to the destination circuit
(typically Output FIFO). cOUT=output_size/w.

Values of the constants CBLOCK and CFINAL are specific to each algorithm and the algorithm variant. Values
of these constants for various single-message architectures are summarized in Table 19.

The combined throughput for the pipelined architecture with n pipeline stages, derived from an
arbitrary single-message architecture, ARCH, and processing n long messages in parallel, is given by the
following equations:

For Keccak, Groestl (P+Q), and Skein:

 (5)

For BLAKE, Groestl (P/Q), and JH:

 (6)

where TARCH and fARCH are the clock period and the clock frequency of the single-message architecture
ARCH, TARCH-PPLn and fARCH-PPLn are the clock period and the clock frequency of the pipelined architecture,
ARCH-PPLn, derived from the architecture ARCH, ThrARCH-long is the throughput of the architecture
ARCH for long messages, and cycles_per_round is the number of clock cycles per round in the
architecture ARCH.

Thus, for Keccak, Groestl (P+Q), and Skein, the throughput increases proportionally to the increase in
the clock frequency. For BLAKE, Groestl (P/Q), and JH, the dependence is somewhat more complicated,
as given by Eq. (6), and as a result, the throughput increases by a slightly larger factor.
The formulas for short messages, as a function of the message length, m, are as follows:

 (7)

N(m) = m+min_pad
b

!

""
#

$$
 (8)

Relative_Effective_Throughput(m) = RET(m) = (9)

ThrARCH−PPLn−long =
TARCH

TARCH−PPLn
⋅ThrARCH−long =

fARCH−PPLn
fARCH

⋅ThrARCH−long

ThrARCH−PPLn−long =
TARCH

TARCH−PPLn
⋅ (1+ (n−1)

n ⋅cycles_ per _ round +1
) ⋅ThrARCH−long

Thrshort (m) =
m

T •HTime(N (m))

Thrshort (m)
Thrlong

	
 33	

Table 19: The number of clock cycles required to process one block of data (CBLOCK), and the number of
clock cycles required for the finalization (CFINAL) for various single-message architectures.

 256-bit variant 512-bit variant
Algorithm CBLOCK CFINAL CBLOCK CFINAL

BLAKE
x1 15 0 17 0
/2(h) 29 0 33 0
/4(h) 57 0 65 0
/4(h)/4(v)-m 240 0 272 0

Groestl
x1 (P+Q) 10 10 14 14
x1 (P/Q) 21 21 29 29
/2(v) (P+Q) 20 20 28 28
/2(v) (P/Q) 42 42 58 58
/4(v) (P+Q) 40 40 56 56
/4(v) (P/Q) 84 84 116 116
/8(v) (P+Q) 80 80 112 112
/8(v) (P/Q) 168 168 232 232

JH
x1 (MEM, OTF) 43 0 43 0
/2(v) (MEM, OTF) 85 0 85 0
/8(v)-m (MEM) 688 0 688 0
x2 (MEM, OTF) 22 0 22 0

Keccak
x1 24 0 24 0
/8(v)-m 233 0 233 0

Skein
x1 73 73 73 73
x4 19 19 19 19
x8 10 10 10 10

SHA-2
x1 65 0 81 0

Values of the constants b and min_pad are specific to each algorithm and the algorithm variant, and
are summarized in Table 20.

The Relative Effective Throughput, RET(m), can be further transformed to the formula (10):

RET (m) = m
m+min_pad

b
!
""

#
$$
⋅b
⋅

CBLOCK ⋅N(m)
COVR +CBLOCK ⋅N(m)

=
m

mafter−padding

⋅
CBLOCK ⋅N(m)

COVR +CBLOCK ⋅N(m)
 (10)

In this formula, COVR= CINIT +CIN + CFINAL +COUT, where values of these constants are defined above.

	
 34	

As can be seen from these formulas, the slow down compared to the throughput for long messages is
caused by two factors:

1. The difference between the size of the message before and after padding.
2. Overhead associated with the initialization, loading the first message block, the one-time hash

function finalization, and writing a hash value to the output.
The first of these two effects is inherent for processing of small messages. The latter effect can be either
minimized or even eliminated completely in our architectures by overlapping processing of two
subsequent messages.

The graphs shown in Figs. 18-20, represent values of the Relative Effective Throughput, as a function
of the message size m, under the worst case condition, where either only a single message is processed, or
there is no overlap between processing of multiple messages of size m.

a) b)

c) d)

e) f)
Fig. 18. Relative effective throughput vs. message size for short messages up to 1,600 bytes for 256 and
512-bit variants of all SHA-3 Candidates and SHA-256 in Virtex 5. Darker lines denote 512-bit variants.

	
 35	

Fig. 19. Relative effective throughput vs. message size for short messages up to 1,600 bytes. 256-bit
variants of all SHA-3 Candidates and SHA-256.

Fig. 20. Relative effective throughput vs. message size for short messages up to 1,600 bytes. 512-bit
variants of all SHA-3 Candidates and SHA-256.

Table 20: Block size and minimum padding length (min_pad) for all SHA-3 finalists and SHA-2.

 256-bit variant 512-bit variant
Algorithm Block size, b min_pad Block size, b min_pad

BLAKE 512 66 1024 130
Groestl 512 65 1024 65

JH 512 512 512 512
Keccak 1088 2 576 2
Skein 512 0 512 0

SHA-2 512 65 1024 129

	
 36	

In Fig. 18, Relative effective throughputs, are shown individually, for each of the 5 SHA-3 finalists
and SHA-2, for message sizes up to 1600 bytes. The interval between consecutive local maximums is
equal to the message block size, b (in bytes). The message size corresponding to the first local maximum
is equal to: b-min_pad (in bytes) for all functions, except JH, where it is equal to b.

For JH and Skein, the dependence does not depend on the hash output size. For BLAKE, Groestl, and
SHA-2, the relative effective throughput is smaller for the 512-bit variant compared to the 256-bit variant.
In Keccak, the reverse relation is true. This is because the message block size for the 512-bit variant (576
bits) is smaller than the message block size for the 256-bit variant (1088 bits).

In Fig. 19, the diagrams for the 256-bit variants of all investigated hash functions are combined
together. Based on this figure, the effect of the message size on the relative effective throughput is the
smallest in case of SHA-2 and the largest in case of Keccak. This relation holds because Keccak has a
significantly larger value of the block size, b (1088 bits = 136 bytes), and the difference b-min_pad (1086
bits) than any other candidate. Additionally, SHA-2 has the smallest effective overhead, as it can start
processing a block of message without loading it first to the hash unit.

In Fig. 20, the equivalent combined diagram is shown for the 512-bit variants of all investigated
functions. This time, the worst performers are BLAKE and Groestl, the algorithms with the largest values
of the block size, b (1024 bits = 128 bytes), and the largest values of b-min_pad. SHA-2 has also a large
block size (1024 bits), but it benefits from a small overhead associated with reading data, and a large
number of clock cycles, which makes the influence of the overhead clock cycles negligible.

12. Conclusions

In this paper, we have performed a systematic investigation of high-speed hardware architectures for the
five final SHA-3 candidates. The investigated architectures were based on the concepts of the basic
iterative architecture, horizontal folding, vertical folding, unrolling, pipelining, and parallel processing
using multiple independent units. Each architecture was implemented using four high-performance FPGA
families: Virtex 5 and Virtex 6 from Xilinx, and Stratix III and Stratix IV from Altera. Based on the
obtained results, we have identified the most efficient hardware architecture for each of the investigated
algorithm, based on the best throughput to area ratio.

For majority of algorithms and algorithm variants, the best architecture is specific to particular FPGA
family, or at least to FPGAs of a particular vendor (Xilinx and Altera). Inner-round pipelining is the most
efficient method of increasing throughput to area ratio compared to the basic iterative architecture,
assuming the availability of multiple streams of data. In case of Skein, pipelining must be preceded by
unrolling by a factor of 4. In case of JH, pipelining is efficient only on Altera FPGAs, and only if
preceded by unrolling by a factor of 2. In case of Keccak, pipelining seems to improve only throughput,
but not the throughput to area ratio. For majority of algorithms, an optimum number of pipeline stages is
specific to both an algorithm variant and an FPGA family.

The results for all investigated functions, and the most successful architectures have been summarized
using the comprehensive throughput vs. area graphs. Then, the results for the best architectures in terms
of the throughput to area ratio, have been used to determine two rankings per each FPGA family:

a) ranking for single-message (non-pipelined) architectures, and
b) ranking for all architectures (non-pipelined and pipelined).

The latter case (ranking for all architectures) seems to be more realistic, as in majority of practical
applications, the number of data streams available in parallel is substantial.

The effect of padding units on the results of ranking was investigated, and was found to be negligible.
The results for circuits with padding units are provided in the paper as these circuits represent the most
complete, ready to use solution. The results for circuits without padding units are provided as well in
order to allow comparison with results from other groups, as the majority of designs reported in the
literature and in the database of results [3] do not include padding unit.

	
 37	

The effect of the typical message size on the ranking of candidates was also studied, and was shown
to be highly dependent on the specific message size, and relatively small for a typical distribution of
packet sizes used in the Internet security protocols.

The most efficient single-message architectures1, identified using results for Altera FPGAs, were
ported to the 65nm standard-cell UMC ASIC technology. An integrated circuit containing these
architectures for the 5 SHA-3 finalists and SHA-2 has been fabricated. The obtained results have been
compared with FPGA results for Xilinx and Altera families. Results for the Altera family, Stratix III, have
been demonstrated to show a good correlation with the aforementioned ASIC results. Thus, it is quite
likely, that even an extended study, involving a larger number of architectures, conducted using ASICs,
would give similar results to the evaluations using Altera FPGAs fabricated using an equivalent
fabrication process.

Our study has revealed that Keccak is the only candidate that consistently outperforms SHA-2 for all
considered FPGA families and two hash function variants (with 256-bit and 512-bit output). The typical
improvement factor in terms of the throughput to area ratio is at least 2. The only drawback of this
function appears to be its limited suitability for folding. Additionally, no pipelined architecture,
improving the throughput to area ratio has been demonstrated in our study.

JH performs better than SHA-2 consistently, across all investigated FPGA families, for 512-bit
variants of both functions. For the 256-bit variants, JH shows an improvement for only one out of four
FPGA families. Interestingly, for majority of FPGA families, JH is the most efficient in its basic iterative
architecture, and is not very suitable for either folding or inner-round pipelining.

Groestl outperforms SHA-2 in terms of the throughput to area ratio for only one out of four FPGA
families, Virtex 5. Even then, this advantage is reached only for the relatively large area of about 3000
CLB slices for Groestl-256 and about 6000 CLB slices for Groestl-512. Although Groestl appears to be
very suitable for vertical folding, the very nature of this technique causes that the decrease in area is
typically accompanied by an even greater decrease in speed. The only exception to this rule is the quasi-
pipelined Groestl architecture (P/Q) folded vertically by a factor of /2(v)(P/Q). If embedded resources are
abundant, Groestl can take advantage of block memories of modern FPGAs, in order to decrease its usage
of reconfigurable logic, and increase the throughput to area ratio (with area representing reconfigurable
logic only). In such cases, Groestl jumps ahead of JH to the second position in ranking, at least for Altera
FPGAs. Additionally, Groestl is the only finalist that can efficiently share resources with AES, when both
algorithms are implemented on the same FPGA, thus reducing the cost of the respective system-on-chip.

Skein is the only finalist that can substantially benefit from unrolling. It is also the fastest for the
pipelined versions of the 4x unrolled architecture, and is the only algorithm that can be pipelined
efficiently up to 10 times. Skein performs particularly well compared to other algorithms for the 512-bit
variants of hash functions, in the category of all architectures, on Altera FPGAs. In this ranking, Skein is
exceptionally third, and achieves performance comparable to SHA-2-512. For the 256-bit variants of hash
functions, and for the 512-bit variant on Virtex 6, Skein lags behind SHA-2.

BLAKE is the algorithm with the highest flexibility, and the largest number of potential architectures.
It can be easily folded horizontally and vertically by factors of two and four. It can also be easily
pipelined even in the folded architectures. It is also the only algorithm that has a relatively efficient
architecture that is smaller than the basic iterative architecture of SHA-2. Finally, BLAKE, similarly to
Groestl, can benefit substantially from using embedded block memories of both Xilinx and Altera
FPGAs. At the same time, BLAKE ranks last or second to last in almost all FPGA rankings (concerning
high-speed architectures) based on the throughput to area ratio.

Our future work will include experimental testing of selected high-speed architectures of the SHA-3
finalists, using high-performance FPGA boards based on Xilinx and Altera FPGAs, equipped with high-
speed communication interface, such as PCI Express.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1	
 the only exception was Groestl where the basic iterative architecture, x1(P+Q), was used instead of
slightly more efficient vertically folded architecture /2(v)(P/Q).	

	
 38	

Acknowledgments
The authors would like to thank Frank Gürkaynak and other members of the Microelectronics Designs
Center at ETH Zurich for providing us with the post-layout results of ASIC implementations of GMU
cores. We also thank Ambarish Vyas for preliminary results regarding hash cores with padding units [39],
and Rajesh Velegalati for extensive help with multiple ATHENa runs.

References:
[1] SHA-3 Contest, http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
[2] ATHENa Project Website, http://cryptography.gmu.edu/athena/.
[3] ATHENa Database of FPGA Results, available at http://cryptography.gmu.edu/athenadb/fpga_hash
[4] ATHENa Database of ASIC Results, available at http://cryptography.gmu.edu/athenadb/asic_hash
[5] GMU Source Codes of SHA-3 Candidates, http://cryptography.gmu.edu/athena/index.php?id=source_codes
[6] eBASH Website, http://bench.cr.yp.to/results-sha3.html
[7] SHA-3 Hardware Implementations, http://ehash.iaik.tugraz.at/wiki/SHA-3_Hardware_Implementations
[8] A. Akin, A. Aysu, O.C. Ulusel, and E. Savas, “Efficient Hardware Implementation of High Throughput SHA-3

Candidates Keccak, Luffa and Blue Midnight Wish for Single- and Multi-Message Hashing,” The Second SHA-
3 Candidate Conference, Santa Barbara, CA, Aug. 23-24, 2010.

[9] N. At, J.-L. Beuchat, and I. San, “Compact Implementation of Threefish and Skein on FPGA,” 5th IFIP
International Conference on New Technologies, Mobility and Security, IEEE Press, 2012, available at

 http://www.cipher.risk.tsukuba.ac.jp/~beuchat/Publications/
[10] B. Baldwin, N. Hanley, M. Hamilton, L. Lu, A. Byrne, M. O’Neill, and W.P. Marnane, “FPGA

Implementations of the Round Two SHA-3 Candidates,” The Second SHA-3 Candidate Conference, Santa
Barbara, CA, Aug. 23-24, 2010.

[11] B. Baldwin, A. Byrne, L. Lu, M. Hamilton, N. Hanley, M. O'Neill, and W.P. Marnane, “FPGA
Implementations of the Round Two SHA-3 Candidates,” 20th International Conference on Field Programmable
Logic and Applications, Milano, Italy, Aug. 31st - Sep. 2nd, 2010, available at

 http://www.ucc.ie/en/crypto/SHA-3Hardware/NISTSHA-3/BaldwinHashFPL2010paperUpdate.pdf
[12] D.J. Bernstein and T. Lange, “The New SHA-3 Software Shootout,” The Third SHA-3 Candidate Conference,

Washington, D.C., March 22-23, 2012.
[13] J.-L. Beuchat, E. Okamoto, T. Yamazaki, “Compact Implementations of BLAKE-32 and BLAKE-64 on

FPGA,” International Conference on Field-Programmable Technology, FPT 2010, Beijing, China, Dec. 2010,
pp. 170-177, available at http://www.cipher.risk.tsukuba.ac.jp/~beuchat/Publications/

[14] Z. Chen, X. Guo, A. Sinha, and P. Schaumont, "Data-Oriented Performance Analysis of SHA-3 Candidates on
FPGA Accelerated Computers," Design, Automation and Test in Europe, DATE 2011, Grenoble, France,
March 2011, pp. 1650-1655.

[15] K. Gaj, E. Homsirikamol, and M. Rogawski, “Fair and Comprehensive Methodology for Comparing Hardware
Performance of Fourteen Round Two SHA-3 Candidates Using FPGAs,” Proc. Cryptographic Hardware and
Embedded Systems workshop, CHES 2010, Santa Barbara, Aug. 2010, pp. 264-278.

[16] K. Gaj, J.P. Kaps, V. Amirineni, M. Rogawski, E. Homsirikamol, B.Y. Brewster, “ATHENa – Automated Tool
for Hardware EvaluatioN: Toward Fair and Comprehensive Benchmarking of Cryptographic Hardware Using
FPGAs,” 20th International Conference on Field Programmable Logic and Applications, Milano, Italy, Aug.
31st - Sep. 2nd, 2010.

[17] X. Guo, S. Huang, L. Nazhandali, and P. Schaumont, “Fair and Comprehensive Performance Evaluation of 14
Second Round SHA-3 ASIC Implementations,” The Second SHA-3 Candidate Conference, Santa Barbara, CA,
Aug. 23-24, 2010.

[18] X. Guo, M. Srivistav, S. Huang, D. Ganta, M. Henry, L. Nazhandali, and P. Schaumont, "Pre-silicon
Characterization of NIST SHA-3 Final Round Candidates", 14th Euromicro Conference on Digital System
Design Architectures, Methods and Tools, DSD 2011, Oulu, Finland, Aug. 31-Sep. 2, 2011.

[19] X. Guo, M. Srivistav, S. Huang, D. Ganta, M.B. Henry, L. Nazhandali, and P. Schaumont, "ASIC
Implementations of Five SHA-3 Finalists," Proc. Design, Automation and Test in Europe, DATE 2012,
Dresden, Germany, March 2012, pp. 1006-1011.

[20] F. K. Gürkaynak, K. Gaj, B. Muheim, E. Homsirikamol, C. Keller, M. Rogawski, H. Kaeslin, and J.-P. Kaps,
“Lessons Learned from Designing a 65nm ASIC for Evaluating Third Round SHA-3 Candidates,” The Third
SHA-3 Candidate Conference, Washington D.C., March 2012.

	
 39	

[21] L. Henzen, P. Gendotti, P. Guillet, E. Pargaetzi, M. Zoller and F.K. Gurkaynak, “Developing a Hardware
Evaluation Method for SHA-3 Candidates,” Proc. Cryptographic Hardware and Embedded Systems workshop,
CHES 2010, Santa Barbara, Aug. 2010, pp. 248-263.

[22] L. Henzen, J.-P. Aumasson, W. Meier, and R.C.-W. Phan, “VLSI Characterization of the Cryptographic Hash
Function BLAKE,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 19 , issue 10, Oct.
2011, pp. 1746 - 1754, available at http://131002.net/data/papers/HAMP10.pdf

[23] E. Homsirikamol, M. Rogawski, and K. Gaj, "Comparing Hardware Performance of Fourteen Round Two
SHA-3 Candidates Using FPGAs," Cryptology ePrint Archive: Report 2010/445.

[24] E. Homsirikamol, M. Rogawski, and K. Gaj, "Throughput vs. Area Trade-offs in High-Speed Architectures of
Five Round 3 SHA-3 Candidates Implemented Using Xilinx and Altera FPGAs," LNCS 6917, Cryptographic
Hardware and Embedded Systems workshop, CHES 2011, Nara, Japan, Sep. 28-Oct. 1, pp. 491-506.

[25] K. Järvinen, “Sharing Resources Between AES and the SHA-3 Second Round Candidates Fugue and Grøstl,”
The Second SHA-3 Candidate Conference, Aug. 23-24, 2010.

[26] B. Jungk and J. Apfelbeck, "Area-Efficient FPGA Implementations of the SHA-3 Finalists," 2011 International
Conference on ReConFigurable Computing and FPGAs, ReConFig 2011, Cancun, Mexico, Nov. 30-Dec. 2,
2011.

[27] B. Jungk, “Evaluation Of Compact FPGA Implementations For All SHA-3 Finalists,” The Third SHA-3
Candidate Conference, Washington, D.C., March 22-23, 2012.

[28] E. B. Kavun and T. Yalcin, “On the Suitability of SHA-3 Finalists for Lightweight Applications,” The Third
SHA-3 Candidate Conference, Washington, D.C., March 22-23, 2012.

[29] J.-P. Kaps, P. Yalla, K.K. Surapathi, B. Habib, S. Vadlamudi, S. Gurung, and J. Pham, "Lightweight
Implementations of SHA-3 Candidates on FPGAs," 12th International Conference on Cryptology, Indocrypt
2011, Chennai, Dec. 11-14, 2011.

[30] J.-P. Kaps, P. Yalla, K.K. Surapathi, B. Habib, S. Vadlamudi, S. Gurung, “Lightweight Implementations of
SHA-3 Finalists on FPGAs,” The Third SHA-3 Candidate Conference, Washington, D.C., March 22-23, 2012.

[31] S. Kerckhof, F. Durvaux, N. Veyrat-Charvillon, F. Regazzoni, G. Meurice de Dormale, F.-X. Standaert,
"Compact FPGA Implementations of the Five SHA-3 Finalists," 10th Smart Card Research and Advanced
Application Conference, CARDIS 2011, Leuven, Belgium, Sep. 14-16, 2011.

[32] M. Knežević, K. Kobayashi, J. Ikegami, S. Matsuo, A. Satoh, U. Kocabaş, J. Fan, T. Katashita, T. Sugawara, K.
Sakiyama, I. Verbauwhede, K. Ohta, N. Homma and T. Aoki, “Fair and Consistent Hardware Evaluation of
Fourteen Round Two SHA-3 Candidates,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 20, issue 5, May 2012, pp. 827–840.

[33] K. Latif, M.M. Rao, A. Aziz, and A. Mahboob, “Efficient Hardware Implementations and Hardware
Performance Evaluation of SHA-3 Finalists,” The Third SHA-3 Candidate Conference, Washington, D.C.,
March 22-23, 2012.

[34] S. Matsuo, M. Knezevic, P. Schaumont, I. Verbauwhede, A. Satoh, K. Sakiyama, and K. Ota, “How Can We
Conduct "Fair and Consistent" Hardware Evaluation for SHA-3 Candidate?” The Second SHA-3 Candidate
Conference, 2010, Santa Barbara, CA, Aug. 23-24, 2010.

[35] M. Rogawski and K. Gaj, “Groestl Tweaks and their Effect on FPGA Results,” Cryptology ePrint Archive:
Report 2011/635.

[36] M. Rogawski and K. Gaj, “A High-Speed Unified Hardware Architecture for the AES and SHA-3 Candidate
Grøstl,” Proc. 15th Euromicro Conference on Digital System Design, Sep. 5-8, 2012, Cesme, Izmir, Turkey.

[37] R. Shahid, M.U. Sharif, M. Rogawski, and K. Gaj, "Use of Embedded FPGA Resources in Implementations of
SHA-3 Candidates," The 2011 International Conference on Field-Programmable Technology, FPT 2011, New
Delhi, India, Dec. 12-14, 2011.

[38] S. Tillich, et al. “High-Speed Hardware Implementations of Blake, Blue Midnight Wish, Cubehash, ECHO,
Fugue, Grøstl, Hamsi, JH, Keccak, Luffa, Shabal, Shavite-3, SIMD, and Skein. Cryptology ePrint Archive,
Report 2009/510.

[39] A. Vyas, “Implementing and Benchmarking of Padding Units and HMAC for SHA-3 Candidates in FPGAs and
ASICs,” Master’s Thesis, George Mason University, Fall 2011.

