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Abstract

Let G be a group of prime order q, and let g1, . . . , gn be random elements of G. We say
that a vector x = (x1, . . . , xn) ∈ Zn

q is a discrete log representation of some some element
y ∈ G (with respect to g1, . . . , gn) if gx1

1 · · · gxn
n = y. Any element y has many discrete log

representations, forming an affine subspace of Zn
q . We show that these representations have a

nice continuous leakage-resilience property as follows. Assume some attacker A(g1, . . . , gn, y)
can repeatedly learn L bits of information on arbitrarily many random representations of y.
That is, A adaptively chooses polynomially many leakage functions fi : Zn

q → {0, 1}L, and
learns the value fi(xi), where xi is a fresh and random discrete log representation of y. A wins
the game if it eventually outputs a valid discrete log representation x∗ of y. We show that if
the discrete log assumption holds in G, then no polynomially bounded A can win this game
with non-negligible probability, as long as the leakage on each representation is bounded by
L ≈ (n− 2) log q = (1− 2

n ) · |x|.
As direct extensions of this property, we design very simple continuous leakage-resilient

(CLR) one-way function (OWF) and public-key encryption (PKE) schemes in the so called
“invisible key update” model introduced by Alwen et al. at CRYPTO’09. Our CLR-OWF is
based on the standard Discrete Log assumption and our CLR-PKE is based on the standard
Decisional Diffie-Hellman assumption. Prior to our work, such schemes could only be constructed
in groups with a bilinear pairing.

As another surprising application, we show how to design the first leakage-resilient traitor
tracing scheme, where no attacker, getting the secret keys of a small subset of decoders (called
“traitors”) and bounded leakage on the secret keys of all other decoders, can create a valid
decryption key which will not be traced back to at least one of the traitors.
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1 Introduction

Let G be a group of prime order q, and let g1, . . . , gn be random elements of G. We say that a
vector x = (x1, . . . , xn) ∈ Znq is a discrete log representation of some some element y ∈ G with re-
spect to g1, . . . , gn if

∏n
i=1 g

xi
i = y. A basic and well-known property of discrete log representations

says that, given one such discrete log representation, it is hard to find any other one, assuming the
standard Discrete Log (DL) problem is hard. In various disguises, this simple property (and its
elegant generalizations) has found a huge number of applications in building various cryptographic
primitives, from collision-resistant hash functions and commitment schemes [Ped91], to actively se-
cure identification schemes [Oka92], to chosen-ciphertext secure encryption [CS02], to key-insulated
cryptography [DKXY02], to broadcast encryption [DF03], to traitor tracing schemes [BF99], just
to name a few.

More recently, discrete log representations have found interesting applications in leakage-resilient
cryptography [NS09, ADW09, KV09], where the secret key of some system is a discrete log repre-
sentation x of some public y, and one argues that the system remains secure even if the attacker
can learn some arbitrary (adversarially specified!) “leakage function” z = f(x), as long as the
output size L of f is just slightly shorter than the length of the secret |x| = n log q. Intuitively,
these results utilize the fact that the actual secret key x still has some entropy even conditioned
on the L-bit leakage z and the public key y, since the set of valid discrete log representations of y
has more than L bits of entropy. On the other hand, the given scheme is designed in a way that in
order to break it — with or without leakage — the attacker must “know” some valid discrete log
representation x∗ of y. Since the real key x still has some entropy even given z and y, this means
that the attacker will likely know a different discrete log representation x∗ 6= x, which immediately
contradicts the discrete log assumption.1

Although very elegant, this simple argument only applies when the overall leakage given to
the attacker is a-priori upper bounded by L bits, where L is somewhat less than the secret key
length n log q. Of course, this is inevitable without some change to the model, since we clearly
cannot allow the attacker to learn the entire secret x. Thus, when applied to leakage-resilient
cryptography, so far we could only get bounded-leakage-resilient (BLR) schemes, where the bound
L is fixed throughout the lifetime of the system. In contrast, in most applications we would like
to withstand more powerful continual leakage, where one only assumes that the rate of leakage is
somehow bounded, but the overall leakage is no longer bounded. To withstand continual leakage,
the secret key must be continually refreshed in a way that: (a) the functionality of the cryptosystem
is preserved even after refreshing the keys an arbitrary number of times, and yet, (b) one cannot
combine the various leaked values obtained from different versions of the key to break the system.
Such model of invisible key updates was formalized by Alwen et al. [ADW09]. In that model,
one assumes the existence of a trusted, “leak-free” server, who uses some “master key” MSK to
continually refresh the secret key in a way that it still satisfies the conflicting properties (a) and
(b) above. We stress that the server is only present during the key updates, but not during the
normal day-to-day operations (like signing or decrypting when the leakage actually happens). We
will informally refer to this continual-leakage-resilient (CLR) model of “invisible key updates” as
the floppy model, to concisely emphasize the fact that we assume an external leak-free storage (the

1This argument works for unpredictability applications, such as one-way functions. For indistinguishability ap-
plications, such as encryption, a similar, but slightly more subtle argument is needed. It uses the Decicional Diffie-
Hellman (DDH) assumption in place of the DL assumption, as well as the fact that the inner product function is a
good “randomness extractor” [CG88, NZ96].
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“floppy” disk) which is only required for rare refreshing operations.2

We notice that all bounded leakage schemes based on discrete log representations naturally
permit the following key refreshing procedure. The master key MSK consists of a vector of the
discrete logarithms α = (α1, . . . , αn) of the generators g1, . . . , gn with respect to some fixed gen-
erator g. The refresh simply samples a random vector β = (β1, . . . , βn) orthogonal to α, so that∏
gβii = g〈α,β〉 = 1. The new DL representation x′ of y is set to be x′ := x + β. It is easy

to verify that x′ is simply a fresh, random representation of y independent of the original DL
representation x. However, it is not obvious to see if this natural key refreshing procedure is
continual-leakage-resilient. For the most basic question of key recovery,3 this means that no effi-
cient attacker A(g1, . . . , gn, y) can compute a valid DL representation x∗ of y despite (adaptively)
repeating the following “L-bounded-leakage” step any polynomial number times. At period i, A
chooses a leakage function fi : Znq → {0, 1}L, and learns the value fi(xi), where xi is a fresh and
random discrete log representation of y, as explained above.

Our Main Result. As our main conceptual result, we show that the above intuition is correct: the
elegant invisible key update procedure above for refreshing DL representations is indeed continual-
leakage-resilient. In other words, one can continually leak fresh discrete log representations of the
public key, without affecting the security of the system. Moreover, the leakage bound L can be
made very close to the length of our secret x, as n grows: L ≈ (n− 2) log q = (1− 2

n) · |x|.
Our proof crucially uses a variant of the subspace-hiding with leakage lemma from Brakerski et

al. [BKKV10] (for which we also find an alternative and much simpler proof than that of [BKKV10]).
In its basic form, this information-theoretic lemma states that, for a random (affine) subspace S of
some fixed larger space U , it is hard to distinguish the output of a bounded-length leakage function
Leak(s) applied to random sample s ← S, from the output of Leak(u) applied to random sample
u ← U , even if the distinguisher can later learn the description of S after selecting the leakage
function Leak. Given this Lemma, the overall high-level structure of our proof is as follows. Let U
be the full (n − 1)-dimensional affine space of valid discrete-log representations of y, and let S be
a random (n− 2)-dimensional affine subspace of U . Assume the attacker A leaks information on t
different representations of y. In the original Game 0, all of the representations are sampled from
the entire space U , as expected. In this case, the probability that A would output a representation
x∗ ∈ S is negligible since it gets no information about S during the course of the game and S takes
up a negligible fraction U . We then switch to Game 1 where we give the attacker leakage on random
representations from S rather than U . We do so in a series of hybrids where the last i = 0, 1, . . . , t
representations are chosen from S and the first t − i from U . We claim that, the probability of
the attacker outputting a representation x∗ ∈ S remains negligible between successive hybrids,
which follows directly from the subspace-hiding with leakage lemma. Therefore, in Game 1, the
attacker only sees (leakage on) representations in the small affine space S, but is likely to output
a representation x∗ 6∈ S. This contradicts the standard DL assumption, as shown by an elegant
lemma of Boneh and Franklin [BF99], which was proven in the context of traitor tracing schemes.

Applications. By extending and generalizing the basic CLR property of discrete log representa-
tions described above, we obtain the following applications.

First, we immediately get that the natural multi-exponentiation function hg1...gn(x1 . . . xn) =

2Another reason is to separate the floppy model from a more demanding CLR model of invisible updates subse-
quently introduced by [BKKV10, DHLW10], discussed in the Related Work paragraph below.

3For more powerful CLR goals (such as encryption and traitor tracing we discuss below), A’s task could be more
ambitious and/or A could get more information in addition to the public key and the leakage.
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gx11 . . . gxnn is a CLR one-way function (OWF) in the floppy model, under the standard DL assump-
tion, with “leakage fraction” L/|x| roughly 1− 2

n . This result elegantly extends the basic fact from
[ADW09, KV09] that h is a bounded-leakage OWF with “leakage fraction” roughly to 1− 1

n .
Second, we show that the Naor-Segev [NS09] bounded-leakage encryption scheme is also CLR-

secure in the floppy model. The scheme is a very natural generalization of the ElGamal encryption
scheme to multiple generators g1, . . . , gn. The secret key is x, the public key is y = gx11 . . . gxnn , and
the encryption of m is (gr1, . . . , g

r
n, y

r · m) (with the obvious decryption given x). The scheme is
known to be secure against bounded-leakage under the standard Decisional Diffie-Hellman (DDH)
assumption. In this work, we examine the security of the scheme against continual leakage in the
“floppy” model, with the same style of updates we described above for the one-way function. By
carefully generalizing our one-wayness argument from DL to an indistinguishability argument from
DDH, we show that this natural scheme is also CLR-secure in the floppy model.

As our final, and more surprising application, we apply our techniques to design the first leakage-
resilient (public-key) traitor tracing (TT) scheme [CFN94, BF99]. Recall, in an N -user public-key
traitor tracing scheme, the content owner publishes a public-key PK, generates N individual secret
keys SK1, . . . ,SKN , and keeps a special tracing key UK. The knowledge of PK allows anybody to
encrypt the content, which can be decrypted by each user i using his secret key SKi. As usual,
the system is semantically secure given PK only. More interestingly, assume some T parties (so
called “traitors”) try to combine their (valid) secret keys in some malicious way to produce another
secret key SK∗ which can decrypt the content with noticeable probability. Then, given such a key
SK∗ and using the master tracing key UK, the content owner should be able to correctly identify
at least one of the traitors contributing to the creation of SK∗. This non-trivial property is called
(non-black-box) traitor tracing.

Boneh and Franklin [BF99] constructed a very elegant traitor tracing scheme which is seman-
tically secure under the DDH assumption and traceable under the DL assumption. Using our new
technique, we can considerably strengthen the tracing guarantee for a natural generalization of the
Boneh-Franklin scheme. In our model, in addition to getting T keys of the traitors in full, we
allow the attacker to obtain L bits of leakage on the keys of each of the (N −T ) remaining parties.
Still, even with this knowledge, we argue the attacker cannot create a good secret key without
the content owner tracing it to one of the traitors. We notice that, although our TT scheme is
described in the bounded leakage model, where each user only gets one key and leaks L bits to the
attacker, we can view the availability of N different looking keys as continual leakage “in space”
rather than “time”. Indeed, on a technical level we critically use our result regarding the continual
leakage-resilience of DL representations, and our final analysis is considerably more involved than
the analysis of our CLR-OWF in the floppy model.4

Related Work. As we mentioned, the floppy model was introduced by Alwen et al. [ADW09]
as the extension of the BLR model considered by [AGV09, ADW09, NS09, KV09]. They observed
that bounded-leakage signatures (and one-way relations) can be easily converted to the floppy model
using any (standard) signature scheme. The idea is to have the floppy store the signing key sk
for the signature scheme, and use it to authenticate the public key pki for the BLR signature
scheme used in the i-th period. This certificate, along with the value of pki, is now sent with each
BLR signature. Upon update, a completely fresh copy of the BLR scheme is chosen and certified.
Unfortunately, this approach does not work for encryption schemes, since the encrypting party

4We believe that our TT scheme can also be extended to the floppy model; i.e., become continual both in “space”
and “time”. For simplicity of exposition, we do not explore this direction here.
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needs to know which public key to use. In fact, it even does not work for maintaining a valid
pre-image of a one-way function (as opposed to a one-way relation). In contrast, our work directly
gives efficient and direct CLR one-way functions and encryption schemes.

Following [ADW09], Brakerski et al. [BKKV10] and Dodis et al. [DHLW10] considered an even
more ambitious model for continual leakage resilience, where no leak-free device (e.g., “floppy”) is
available for updates, and the user has to be able to update his secret key “in place”, using only
fresh local randomness. Abstractly, this could be viewed as a “floppy” which does not store any
long-term secrets, but only contributes fresh randomness to the system during the key update.
In particular, [BKKV10, DHLW10] managed to construct signature and encryption schemes in
this model. These works were further extended to the identity-based setting by [LRW11]. More
recently, [LLW11, DLWW11] even constructed remarkable (but much less efficient) CLR encryption
schemes where the attacker can even leak a constant fraction of the randomness used for each
local key update. While the above encryption schemes do not require a “floppy”, all of them
require a bi-linear group, are based on the less standard/understood assumptions in bi-linear groups
than the classical DL/DDH assumptions used here, and are generally quite less efficient than
the simple schemes presented here. Thus, in settings where the existence of the “floppy” can
be justified, our schemes would be much preferable to the theoretically more powerful schemes
of [DHLW10, BKKV10, LRW11, LLW11, DLWW11].

More surprisingly, we point out that in some applications, such as traitor tracing considered in
our work, the existence of local key updates is actually an impediment to the security (e.g., tracing)
of the scheme. For example, the key updates used in prior bi-linear group CLR constructions had
the (seemingly desirable) property that a locally updated key looks completely independent from
the prior version of the same key. This held even if the prior version of this key is subsequently
revealed, and irrespective of whatever trapdoor information the content owner might try to store
a-priori. Thus, a single user can simply re-randomize his key without the fear of being traced
later. In contrast, when a “floppy” is available, one may design schemes where it is infeasible
for the user to locally update his secret key to a very “different” key, without the help of the
“floppy”. Indeed, our generalization of the Boneh-Franklin TT scheme has precisely this property,
which enables efficient tracing, and which seems impossible to achieve in all the prior pairing-based
schemes [DHLW10, BKKV10, LRW11, LLW11, DLWW11].

We also point out that the floppy model is similar in spirit to the key-insulated model of Dodis
et al. [DKXY02], except in our model the “outside” does not know about the scheduling (or even
the existence!) of key updates, so one cannot change the functionality (or the effective public key)
of the system depending on which secret key is currently used.

Finally, although we mentioned much of the prior work with the most direct relation to our
work, many other models for leakage-resilient cryptography have been considered in the last few
years (see e.g., [ISW03, MR04, DP08] etc.). We refer the reader to [Wic11] and the references
therein for a detailed discussion of such models.

2 Preliminaries

Below we present the definitions and lemmata that we will need. We begin with some standard
notation.
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2.1 Notation.

We will denote vectors by bold lower case letters (e.g., u) and matrices by bold upper case
letters (e.g., X). For integers d, n,m with 1 ≤ d ≤ min(n,m), we use the notation Rkd(Fn×mq )
to denote the set of all n ×m matrices over Fq with rank d. If A ∈ Fn×mq is a n ×m matrix of
scalars, we let colspan(A), rowspan(A) denote the subspaces spanned by the columns and rows of
A respectively. If V ⊆ Fnq is a subspace, we let V⊥ denote the orthogonal space of V, defined by

V⊥ def
= { ~w ∈ Fnq | 〈~w,~v〉 = 0 ∀~v ∈ V }. We write (~v1, . . . , ~vm)⊥ as shorthand for span(~v1, . . . , ~vm)⊥.

We let ker(A)
def
= colspan(A)⊥. Similarly, we let ker(α) denote the set of all vectors in Fnq that are

orthogonal to α.
If X is a probability distribution or a random variable then x ← X denotes the process of

sampling a value x at random according to X. If S is a set then s
$← S denotes sampling s

according to the uniformly random distribution over the set S. For a bit string s ∈ {0, 1}∗, we let
|s| denote the bit length of s. We let [d] denote the set {1, . . . , d} for any d ∈ Z+.

Throughout the paper, we let λ denote the security parameter. A function ν(λ) is called
negligible, denoted ν(λ) = negl(λ), if for every integer c there exists some integer Nc such that for
all integers λ ≥ Nc we have ν(λ) ≤ 1/λc (equivalently, ν(λ) = 1/λω(1)).

Computational Indistinguishability. Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be two ensembles
of random variables. We say that X,Y are (t, ε)-indistinguishable if for every distinguisher D that
runs in time t(λ) we have

|Pr[D(Xλ) = 1]− Pr[D(Yλ) = 1]| ≤ 1

2
+ ε(λ).

We say that X,Y are computationally indistinguishable, denoted X
c
≈ Y , if for every polynomial

t(·) there exists a negligible ε(·) such that X,Y are (t, ε)-indistinguishable.

Statistical Indistinguishability. The statistical distance between two random variables X,Y
is defined by

SD(X,Y ) =
1

2

∑
x

|Pr[X = x]− Pr[Y = x]| .

We write X
s
≈ε Y to denote SD(X,Y ) ≤ ε and just plain X

s
≈ Y if the statistical distance is

negligible in the security parameter. In the latter case, we say that X,Y are statistically indistin-
guishable.

Matrix-in-the-Exponent Notation: Let G be a group of prime order q generated by an element
g ∈ G. Let A ∈ Fn×mq be a matrix. Then we use the notation gA ∈ Gn×m to denote the matrix(
gA
)
i,j

def
= g(A)i,j of group elements. We will use a similar notational shorthand for vectors.

2.2 Computational Hardness Assumptions

We will rely on discrete-log type hardness assumptions in prime-order groups. We let such

groups be defined via an abstract group generation algorithm (G, g, q) $← G(1λ), where G is a
(description of a) cyclic group of prime order q with generator g. We assume that the group
operation, denoted by multiplication, can be computed efficiently.

5



Discrete Log Assumption. We say that the discrete log assumption holds for the group genera-
tion algorithm G if for every probabilistic polynomial time (PPT) adversary A, there is a negligible
function µ : N→ [0, 1] such that the following holds:

Pr[(G, q, g)
$← G(1λ); α

$← Zq; h← gα; α′ ← A(g, h) : α′ = α (mod q)] ≤ µ(λ)

Decisional Diffie-Hellman (DDH). The DDH assumption on the group generation algorithm
G states that:{

(G, q, g, g0, g1, gr0, gr1) : (G, q, g)
$← G(1λ); x0, x1

$← Zq; g0 ← gx0 ; g1 ← gx1 ; r
$← Zq

}
c
≈{

(G, q, g, g0, g1, gr00 , g
r1
1 ) : (G, q, g)

$← G(1λ); x0, x1
$← Zq; g0 ← gx0 ; g1 ← gx1 ; r0, r1

$← Zq
}

Rank Hiding in the Exponent. The DDH assumption can be shown equivalent to the assump-
tion that it is hard to distinguish between an n-by-m matrix X with rank i ≥ 1 and one with rank
j > i in the exponent of a generator g of a prime order group G [NS09]. We call this the rank
hiding assumption, defined formally below.

Let Rki(Fn×mq ) denote the uniform distibution on all n-by-m matrices over Zq of rank i.

Definition 1 (Rank Hiding Assumption). The rank hiding assumption for a group generator G
states that for any integers i, j ∈ N and n,m ∈ N satisfying i, j ≥ 1, the following two distributions
are computationally indistinguishable:{(

G, q, g, gX
)

: (G, q, g)← G(1λ),X
$← Rki(Fn×mq )

}
c
≈{(

G, q, g, gX
)

: (G, q, g)← G(1λ),X
$← Rkj(Fn×mq )

}
We now postulate an apparent strengthening of the rank hiding assumption by requiring that

a uniformly random rank-i matrix Xi ∈ Zn×mq and a uniformly random rank-j matrix, for j > i,
Xj ∈ Zn×mq in the exponent are indistinguishable even given a number of vectors in the (left or
right) kernel of Xi, Xj in the clear (for i, j ≥ 1). Clearly, the kernel of Xi (resp. Xj) is a subspace
of dimension min{n,m}− i (resp. min{n,m}− j). Thus, if we are given t > min{n,m}−max{i, j}
(linearly independent) vectors v from the kernel, it is easy to distinguish whether the exponent
contains a rank-i matrix or a rank-j matrix (note that it is easy to test whether a vector v given
in the clear is in the kernel of the matrix X given in the exponent).

Surprisingly it turns out that for the case where t ≤ min{n,m} − max{i, j}, the additional
vectors do not contribute any information about the rank of matrix in the exponent. This is
captured formally in the extended rank hiding assumption which requires that one cannot distinguish
between matrices of rank i and j in the exponent, even given t ≤ min{n,m} − max{i, j} vectors
in the kernel of the matrix. Although apparently rather strong, this assumption in fact turns out
to be equivalent to DDH (and thus, also equivalent to the rank hiding assumption), as shown in
[BKKV10].
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Definition 2 (Extended Rank Hiding Assumption). The extended rank hiding assumption for
a group generator G states that for any integer constants j > i ∈ N and n,m ∈ N and t ≤
min{n,m} −max{i, j}, the following two ensembles are computationally indistinguishable:{(

G, q, g, gX,v1, . . . ,vt
)

: (G, q, g)← G(1λ); X
$← Rki(Fn×mq ); {v`}t`=1

$← ker(X)

}
c
≈{(

G, q, g, gX,v1, . . . ,vt
)

: (G, q, g)← G(1λ); X
$← Rkj(Fn×mq ); {v`}t`=1

$← ker(X)

}
Lemma 3. The Extended Rank Hiding assumption is equivalent to the DDH assumption.

Proof is implicit in [BKKV10].

Hardness of finding DL representation outside known span. We will also extensively
use the following lemma of Boneh and Franklin, which states that given a number of discrete log
representations of a group element h, an adversary cannot generate any other representation that
is not in their span.

Lemma 4 ([BF99], Lemma 1). Let λ be the security parameter and let (G, q, g)
$← G(1λ). Under

the discrete log assumption on the group generator G, for every PPT adversary A and all integers
d = d(λ), n = n(λ) such that d < n− 1, there is a negligible function µ such that

Pr[(G, q, g)← G(1λ); α
$← Znq ; β

$← Zq; s1, . . . , sd
$← Znq subject to 〈α, si〉 = β;

s∗ ← A(G, q, g, gα, gβ, s1, . . . , sd) : s∗ /∈ span(s1, . . . , sd) and 〈α, s∗〉 = β] ≤ µ(λ)

where the probability is over the coins of G and the adversary A and all the random choices made
in the experiment.

The above implies that any valid representation s∗ that A(G, q, g, gα, gβ, s1, . . . , sd) produces must
lie in span(s1, . . . , sd). In particualr, this means that s∗ must be a convex combination of s1, . . . , sd
(with coefficients summing up to 1) since only such combinations give valid representations.

2.3 Hiding Subspaces in the Presence of Leakage

In this section we prove various indistinguishability lemmas about (statistically) hiding sub-
spaces given leakage on some of their vectors.

Hiding Subspaces. The following lemma says that, given some sufficiently small leakage on
a random matrix A, it is hard to distinguish random vectors from colspan(A) from uniformly
random and independent vectors. A similar lemma was shown in [BKKV10, LLW11]. Here we give
a significantly simpler proof using a variant of the leftover-hash lemma from [DORS08].

Lemma 5 (Subspace Hiding with Leakage). Let n ≥ d ≥ u, s be integers, S ∈ Zd×sq be an arbitrary

(fixed and public) matrix and Leak : {0, 1}∗ → {0, 1}L be an arbitrary function with L-bit output.

For randomly sampled A
$← Zn×dq , V

$← Zd×uq ,U
$← Zn×uq , we have:

(Leak(A),AS,V,AV)
s
≈ ( Leak(A),AS,V,U)

as long as (d− s− u) log(q)− L = ω(log(λ)) and n = poly(λ).
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Proof. The lemma follows by applying a variant of the leftover-hash lemma from [DORS08] to each
row of A independently. In particular, take any row ai of A and think of it as a random source
(while all the other rows of A are arbitrarily fixed) whose conditional min-entropy is

H̃∞(ai | AS, Leak(A)) ≥ d log(q)− (s log(q) + L).

Think of V as the seed of the universal hash function hV(ai) = ai ·V whose output size is u log(q)
bits. The leftover-hash lemma tells us that the ith row of AV looks uniform. By using the hybrid
argument over all n rows, the first part of the lemma follows.

We also show a dual version of Lemma 5, where a random matrix A is chosen and the attacker
either leaks on random vectors in colspan(A) or uniformly random vectors. Even if the attacker is
later given A in full, it cannot distinguish which case occurred. This version of “subspace hiding”
was first formulated by [BKKV10], but here we present a significantly simplified proof and improved
parameters.

Corollary 6 (Dual Subspace Hiding). Let n ≥ d ≥ u be integers, and let Leak : {0, 1}∗ → {0, 1}L

be some arbitrary function. For randomly sampled A
$← Zn×dq , V

$← Zd×uq ,U
$← Zn×uq , we have:

(Leak(AV),A)
s
≈ ( Leak(U),A)

as long as (d− u) log(q)− L = ω(log(λ)), n = poly(λ), and q = λω(1).

Proof. We will actually prove the above assuming that A,V,U are random full-rank matrices,
which is statistically close to the given statement since q is super-polynomial. We then “reduce”
to Lemma 5.

Given A and C such that C = AV or C = U, we can probabilistically choose a n× d′ matrix
A′ depending only on C and a n×u′ matrix C′ depending only on A such that the following holds:

• If C = AV for a random (full rank) d×u matrix V, then C′ = A′V′ for a random (full rank)
d′ × u′ matrix V′.

• If C = U is random (full rank) and independent of A, then C′ = U′ is random (full rank)
and independent of A′.

and where d′ = n− u, u′ = n− d. To do so, simply choose A′ to be a random n× d′ matrix whose
columns form a basis of colspan(C)⊥ and choose C′ to be a random n× u′ matrix whose columns
form a basis of colspan(A)⊥. If C = U is independent of A, then C′ = U′ is a random full-rank
matrix independent of A′. On the other hand, if C = AV, then colspan(A)⊥ ⊆ colspan(C)⊥ is a
random subspace. Therefore C′ = A′V′ for some uniformly random V′.

Now assume that our lemma does not hold and that there is some function Leak and an (un-
bounded) distinguisher D that has a non-negligible distinguishing advantage for our problem. Then
we can define a function Leak′ and a distinguishedD′ which breaks the problem of Lemma 5 (without
even looking at AS, V ). The function Leak′(A) samples C ′ as above and outputs Leak = Leak(C ′).
The distinguisher D′, given (Leak,C) samples A′ using C as above and outputs D(Leak,A′). The
distinguisher D′ has the same advantage as D. Therefore, by Lemma 5, indistinguishability holds
as long as

(d′ − u′) log(q)− L = ω(log(λ))⇔ (d− u) log(q)− L = ω(log(λ))
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It is also easy to extend the above corollary to the case where (the column space of) A is a
subspace of some larger public space W.

Corollary 7. Let n ≥ m ≥ d ≥ u. Let W ⊆ Znq be a fixed subspace of dimension m and let

Leak : {0, 1}∗ → {0, 1}L be some arbitrary function. For randomly sampled A
$←Wd (interpreted

as an n× d matrix), V
$← Zd×uq ,U

$←Wu (interpreted as an n× u matrix), we have:

(Leak(AV),A)
s
≈ ( Leak(U),A)

as long as (d− u) log(q)− L = ω(log(λ)), n = poly(λ), and q = λω(1).

Proof. Let W be some n×mmatrix whose columns spanW. Then we can uniquely write A = WA′,
where A′ ∈ Zm×dq is uniformly random. Now we just apply Lemma 6 to A′.

A variant of the corollary holds also for affine subspaces. Namely:

Corollary 8. Let n ≥ m ≥ d ≥ u. Let W ⊆ Znq be a fixed subspace of dimension m and let

Leak : {0, 1}∗ → {0, 1}L be some arbitrary function and let B ∈ Zn×uq be an arbitrary matrix. For

randomly sampled A
$←Wd (interpreted as an n× d matrix), V

$← Zd×uq ,U
$←Wu (interpreted as

an n× u matrix), we have:

(Leak(AV + B),A)
s
≈ ( Leak(U),A)

as long as (d− u) log(q)− L = ω(log(λ)), n = poly(λ), and q = λω(1).

3 One-Wayness of Discrete Log Representations under
Continual Leakage

In this section, we show the one-wayness of discrete log representations under continual leak-

age. Namely, we show that for random g1, . . . , gn
$← G and h

$← G, obtaining leakage on many
representations x = (x1, ..., xn) such that

∏n
i=1 g

xi
i = h does not help an efficient PPT adversary

output any representation of h in terms of g1, . . . , gn in full (except with negligible probability) as-
suming that the discrete log assumption is true. Thus, in succinct terms, we show that discrete log
representations are one-way under continual leakage, based on the (plain) discrete log assumption.

We first define the notion of a continual leakage resilient one-way function in the floppy model.

3.1 Defining One-Way Functions in Floppy Model

A continuous leakage resilient (CLR) one-way function in the Floppy Model (OWFF) consists
of consists of the following PPT algorithms (Gen,Sample,Eval,Update):

1. KeyGen(1λ) is a PPT algorithm that takes as input the security parameter λ and outputs
the public parameters PP, the update key UK. The parameters PP are implicit inputs to all
other algorithms and we will not write them explicitly for cleaner notation.

2. Sample(PP): Takes as input the public parameters PP and samples a random value x.

3. Eval(PP,x) : This is a deterministic algorithm that takes as input x and outputs y ∈ {0, 1}∗.

4. Update(UK,x) is a PPT algorithm that takes as input the update key UK and a string
x ∈ {0, 1}∗ and outputs x′ ∈ {0, 1}∗.
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Correctness. We require that for any (PP,UK)← KeyGen(1λ), and any x ∈ {0, 1}∗, we have

Eval(Update(UK,x)) = Eval(x).

Security. Let L = L(λ) be a function of the security parameter. We say that a tuple of algorithms
(KeyGen,Eval,Update) is an L-CLR secure one-way function in the floppy model, if for any PPT
attacker A, there is a negligible function µ such that Pr[A wins] ≤ µ(λ) in the following game:

• The challenger chooses (PP,UK) ← KeyGen(1λ). Next, it chooses a random element x1 ←
Sample(PP) and sets y← Eval(x1). The challenger gives PP,y to A.

• A may adaptively ask for leakage queries on arbitrarily many pre-images. Each such query
consists of a function (described by a circuit) Leak : {0, 1}∗ → {0, 1}L with L bit output.
On the ith such query Leaki, the challenger gives the value Leaki(xi) to A and computes the
next pre-image xi+1 ← Update(UK,xi).

• A eventually outputs a vector x∗ and wins if Eval(x∗) = y.

3.2 Constructing One-Way Function in the Floppy Model

We construct a one-way function F = (KeyGen, Sample,Eval,Update) as follows for some pa-
rameter n = n(λ) which determined the amount of leakage that can be tolerated.

1. KeyGen(1λ): Choose a group G of prime order q with generator g by running the group

generation algorithm G(1λ). Choose a vector α = (α1, . . . , αn)
$← Znq , and let gi = gαi for

i ∈ [n]. Output the parameters PP = (G, g, g1, . . . , gn) and the update key UK = α.

2. Sample(PP): Sample a random vector x
$← Znq .

3. Eval(PP,x): Parse x = (x1, . . . , xn) and output y :=
∏n
i=1 g

xi
i .

4. Update(UK,x): Choose a uniformly random vector β
$← ker(α), and output x + β.

Correctness follows from the fact that the inner product 〈x + β,α〉 = 〈x,α〉+ 〈β,α〉 = 〈x,α〉,
since α and β are orthogonal (mod q).

Theorem 9. Let L = L(λ) and n = n(λ) be functions of the security parameter λ satisfying

L < (n− 2) log(q)− ω(log(λ))

Then, F is an L-CLR secure one-way function in the floppy model (see definition 3.1) under the
discrete log assumption for G.

Proof. Suppose that the attacker has a non-negligible chance of winning the L-CLR-OWF game.
Then, assuming that the DL assumption holds, we will arrive at a contradiction.

The proof proceeds by a sequence of games. Without loss of generality, assume that the attacker
makes exactly T leakage queries.
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Game 0: This is the security game in the definition of a CLR-one way function in the floppy model.
Namely, the adversary is given the public parameters PP and y = Eval(PP,x1), and asks a
polynomial number of queries adaptively. Each query is a function Leaki : Znq → {0, 1}L, in
response to which the challenger returns Leaki(xi) where, for i > 1, the ith preimage xi is

computed as xi = xi−1 + βi where βi
$← ker(α).

By assumption, we have Pr[A wins ] ≥ ε(λ) for some non-negligible ε.

Game 1: Game 1 is defined as a sequence of T + 1 sub-games denoted by Games 1.0, . . . , 1.T . For
i = 1, . . . , T , we have:

Game 1.i: In this game, the challenger chooses a random (n − 2)-dimensional subspace
S ⊆ ker(α) in the beginning and answers the first T − i queries differently from the last
i queries as follows:

• For every 1 < j ≤ T − i, compute xj = x + βj where βj
$← ker(α).

• For every T − i < j ≤ T , compute xj = x + sj where sj
$← S.

In the above, we define x := x1 to be the initial pre-image output by Sample.

Game 2: In Game 2, the challenger chooses all the vectors from the affine subspace x+ S, i.e. it

sets xj = x + sj where sj
$← S, j ∈ [T ].

Game 1.0 is identical to Game 0 since, in both games, all of the values xi are just uniformly
random over the affine space {xi : g〈xi,α〉 = y}. By definition, Game 1.T is identical to Game 2.

In each of the games 1.i, i = 0, . . . , T , define the event Ei to be true if the adversary wins and
returns a vector x∗ such that x∗ − x 6∈ S. Then, first we claim that in game 1.0, the probability of
the event E0 happening is negligibly close to ε.

Claim 10. There is a negligible function µ : N→ [0, 1] such that

Pr[E0] ≥ ε(λ)− µ(λ).

Proof. we have Pr[E0] ≤ ε(λ)−Pr[x∗−x ∈ S] ≤ 1/q over a random choice of S (since the adversary
has no information about S in game 1.0).

Next, we show that this probability does not change much across games:

Claim 11. There is a negligible function µ : N→ [0, 1] such that for every 1 ≤ i ≤ T ,

|Pr[Ei]− Pr[Ei−1]| ≤ µ(λ).

Proof. We have by Corollary 8, that as long as L < (n − 2) log(q) − ω(log(λ)) an attacker cannot

distinguish leakage on βi
$← ker(α) from leakage on si

$← S, even if α is public and known in
the beginning and S becomes public after the leakage occurs. Therefore, knowing only α, we can
simulate the first i−1 leakage queries for the attacker and then use leakage on the challenge vector
(βi or si) to answer the ith query. We can then use knowledge of S (after the ith leakage query) to
simulate the rest of the leakage queries and test if eventually the event (Ei−1 or Ei) occurs. This
proves the claim.
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Combining the above two claims and the observation that Game 2 is identical to Game 1.T , we
have that there is a negligible function µ : N→ [0, 1] such that in Game 2,

Pr[A wins and x∗ − x 6∈ S] ≥ ε(λ)− µ(λ)

.
Finally we show that the above contradicts the DL assumption.

Claim 12. If the Discrete Log assumption holds, then there is a negligible function µ : N → [0, 1]
such that in Game 2,

Pr[A wins and x∗ − x /∈ S] ≤ µ(λ)

Proof. Note that in Game 2, all the leakage queries of the adversary are answered using a randomly
chosen (n− 2)-dimensional subspace S ⊆ ker(α), hence by Lemma 4 an adversary who outputs x∗

such that x∗ − x /∈ S can be transformed into one that solves the discrete log problem.

Thus we arrive at a contradiction, which shows that under the Discrete Log assumption, the
attacker could not have output x∗ such that f(x∗) = y. Thus, F is an L − CLR secure one way
function for L < (n− 2) log(q)− ω(log(λ)).

4 Public-key Encryption in the Continuous Leakage Model

In this section, we show the semantic security of the cryptosystems of Boneh et al. [BHHO08]
and Naor and Segev [NS09] with continual leakage on the secret keys in the floppy model (i.e., with
invisible updates) under the DDH assumption. We first define semantic security under continual
leakage.

4.1 Defining Encryption in the Floppy Model

A CLR public key encryption scheme (CLR-PKE) in the Floppy Model consists of the following
algorithms:

1. KeyGen(1λ): Takes as input the security parameter λ and outputs the public key PK, the
secret key SK and the update key UK.

2. Update(UK, SK): Outputs an updated secret key SK′.

3. Encrypt(PK,M): Outputs the ciphertext CT.

4. Decrypt(SK,CT): Outputs the decrypted message M .

For convenience, we define the algorithm Updatei that performs i ≥ 0 consecutive updates as:

Updatei(UK,SK)→ SK′ : Let SK0 = SK, SK1 ← Update(UK,SK0), . . .SKi ← Update(UK,SKi−1).
Output SK′ = SKi
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Security. Let L = L(λ) be a function of the security parameter. We say that a CLR PKE is
L-CLR secure in the floppy model, if, for any PPT adversary A, there is a negligible function µ
such that |Pr[A wins ]− 1

2 | ≤ µ(λ) in the following game:

• Challenger chooses (PK,UK,SK1)← KeyGen(1λ).

• A may adaptively ask for leakage queries on arbitrarily many secret keys. Each such query
consists of a function (described by a circuit) Leak : {0, 1}∗ → {0, 1}L with L bit output.
On the ith such query Leaki, the challenger gives the value Leaki(SKi) to A and computes
the next updated key SKi+1 ← Update(UK,SKi).

• At some point A gives the challenger two messages M0,M1. The challenger chooses a bit

b
$← {0, 1} and sets CT← Encrypt(PK,Mb).

• The attacker A gets CT and outputs a bit b̃. We say A wins if b̃ = b with non-negligible
probability.

4.2 Constructing Encryption in the Floppy Model

We define our scheme as follows for some parameter n = n(λ) which determined the amount of
leakage that can be tolerated.

1. KeyGen(1λ): Let (G, q, g)
$← G(1λ). Choose vectors α

$← Znq and x
$← Znq , and let f = g〈α,x0〉.

The public parameters PK consists of (g, f, gα).

The update key UK = α and the secret key is set to SK = x + β where β
$← ker(α).

2. Update(UK, SK): Choose β
$← ker(α), and output SK + β as the updated secret key.

3. Encrypt(PK,M): To encrypt M ∈ G, pick a random scalar r
$← Zq. Output the ciphertext

CT← (grα,M · f r).

4. Decrypt(SK,CT): Parse the ciphertext CT as (gc, h) and output h · g−〈c,SK〉 as the message.

A correctly formed ciphertext CT looks like (gc, h) = (grα,M · gr〈α,x〉). The secret key (after
arbitrarily many updates) is SK = x + β where β ∈ ker(α). The decryption computes

h · g−〈c,x+β〉 = M · gr〈α,x〉 · g−〈rα,x+β〉 = M · gr〈α,x〉 · g−r〈α,x〉 = M

since 〈α,β〉 = 0 (mod q).

Theorem 13. Let L = L(λ) and n = n(λ) be functions of the security parameter λ satisfying

L < (n− 2) log(q)− ω(log(λ))

Then, the public key encryption scheme (KeyGen,Update,Encrypt,Decrypt) is L-CLR secure secure
in the Floppy Model (see definition in Section 4.1) under the DDH assumption for G.

Proof. The proof proceeds by a sequence of games. Without loss of generality, assume that the
attacker makes exactly T ∈ poly(λ) leakage queries, and consider the following games:
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Game 0: This is the semantic security game as in the definition in Section 4.1. In this game the
secret keys {SKi}i∈{1,...,T} are chosen uniformly and independently at random from an affine
subspace x + ker(α) of dimension n− 1. The challenge ciphertext CT := (gc, h) encrypting a

message M is computed by choosing r
$← Zq and setting

gc := grα , h := M · f r

The attacker is given (PK,CT, {Leaki(SKi)}Ti=1) where the leakage functions Leaki can be
chosen adaptively by the adversary.

Game 1: This is the same as Game 0 except for the following changes: the challenger first chooses
a random (n − 2)-dimensional subspace S ⊂ ker(α) and chooses all the secret keys {SKi}
from the affine subspace x + S. Game 0 and Game 1 are statistically indistinguishable by
Corollary 8 as long as L < (n− 2) log(q)− ω(log(λ)).

Game 2: In this game, the challenge ciphertext CT is computed using the secret key x by choosing

r
$← Zq, setting

gc := grα , h := g〈c,x〉 ·M

This retains the exact same distributions as in Game 0, since

f r = gr〈α,x〉 = g〈rα,x〉 = g〈c,x〉

Therefore, this change is purely syntactical.

Game 3: In this game, during key generation, the challenger C chooses α and x as before, but

also a vector c
$← Znq and sets the space S to be the (n− 2)-dimensional space S = ker(α, c)

defined as
ker(α, c) = {β ∈ Znq : 〈β,α〉 = 0 mod q and 〈β, c〉 = 0 mod q}

The secret keys {SKi} are chosen as in the previous game from the space x+S. The ciphertext
is chosen as:

CT = (gc , h := g〈c,x〉 ·M).

using the same vector c that was chosen in the beginning and used to define S.

Note that the challenge ciphertext as produced in Game 3 has the wrong distribution since
it is unlikely that c ∈ span(α). However, it is still correctly decrypted to M by every version
of the updated secret key, since the update vectors β ∈ S = ker(α, c) are always orthogonal
to c and hence do not affect decryption.

Games 2 and 3 are computationally indistinguishable by the extended rank-hiding assumption
(which is equivalent to DDH by Lemma 3). To see this, think of the matrix X ∈ Z2×n

q whose
rows are α and c. Let v1, . . . ,vn−2 be random vectors chosen via vi ← ker(X) = ker(α, c)
and define S = span(v1, . . . ,vn−2). Now, given gX and v1, . . . ,vn−2 we can simulate the
public key and all of the secret keys that the attacker sees during the game, as well as the
challenge ciphertext as defined in Game 3.

If X
$← Rk1(F2×n

q ) then c = rα for a uniformly random r ∈ Fq and S is a random n − 2 di-

mensional subspace of ker(α) as in game Game 2. On the other hand, if X
$← Rk2(F2×n

q ) then
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α and c are (statistically close to) random and independent and hence we get (statistically
close to) the distribution of Game 3. Therefore, the two games are indistinguishable by the
rank hiding assumption.

Game 4: In this game, we revert back to the original way that the secret keys were chosen. Namely,
each of the secret keys SKi that the attacker leaks on is chosen independently from the full
n− 1 dimensional space x+ ker(α).

Games 3 and 4 are statistically indistinguishable using affine subspace hiding (Corollary 8),
using a proof technique similar to that in Theorem 9.

Game 5: In this game, the challenge ciphertext is completely independent of the message. For-

mally, C changes the second ciphertext component from g〈c,x〉 ·M to gv for some v
$← Zq.

Thus the challenge ciphertext
CT∗ = (gc , h := gv).

This is statistically indistinguishable from the previous game since Game 4 does not reveal
anything about x beyond the inner product 〈x,α〉, and hence the inner product 〈c,x〉 is
statistically close to uniform.

We showed that the game where the adversary is given the encryption of a message M0 (resp. M1)
is computationally indistinguishable from one where the adversary is given a uniformly random
sequence of group elements. This suffice to prove semantic security with leakage in the floppy
model.

5 Traitor Tracing in the Bounded Leakage Model

In this section, we generalize the constructions in Section 3 and Section 4 to obtain “leaky”
traitor tracing in the bounded leakage model, which could be viewed as continual leakage-resilience
in “space” rather than “time”, but with strong traitor tracing properties. First, we define traitor
tracing and associated security notions.

5.1 Definition of Traitor Tracing

The traitor tracing scheme is given by the following algorithms:

1. KeyGen(1λ; 1N , 1T )→ PK,SK1, . . . ,SKN : Takes as input the security parameter λ, number of
parties N , and number of traitors T . Outputs the public key PK, and secret keys {SKi}Ni=1

for each party i ∈ [N ].

2. Encrypt(PK,M) → CT: Takes as input the public key PK, a message M and outputs the
ciphertext CT.

3. Decrypt(PK,CT, SK) → M : Takes as input the public key PK, a ciphertext CT and a secret
key SK and outputs a message M .

4. Trace(PK,SK∗)→ i: Takes as input the public key PK, and some secret key SK∗ and outputs
an index i ∈ [N ] corresponding to an accused traitor.
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Note that the tracing algorithm takes a valid secret key SK∗ as input, and this is what makes the
scheme non black box. This assumes that if the traitors collude and construct a “pirate decoder”
that decrypts the encrypted content, then one can always extract the decryption key from this
decoder. The stronger notion of black box traitor tracing only assumes that one can test whether
the pirate decoder plays the encrypted content or not.

Correctness: For any integers N,T, U, i ∈ [N ] any PK,TK, SK1, . . . ,SKN ← KeyGen(1λ; 1N , 1T ),
CT← Encrypt(M,PK) and M ′ ← Decrypt(CT,SKi): we have M ′ = M .

We define security in terms of two properties: semantic security and tracing security.

Semantic Security: The standard notion of semantic security requires that, for any PPT A, we
have |Pr[A wins ]− 1

2 | ≤ µ(λ) in the following game:

• Attacker A chooses the values 1N , 1T to the challenger.

• Challenger chooses (PK,SK1, . . . ,SKN ) and gives PK to A.

• At some point A gives the challenger C two messages M0,M1.

• The challenger chooses a bit b← {0, 1} at random and set CT← Encrypt(PK,Mb).

• The attacker A gets CT and outputs a bit b̃. We say A wins if b̃ = b.

Tracing Security: To define non-black-box tracing, we first define the predicate GOOD(PK,SK)
which holds iff there exists some message M in message-domain such that

Pr[M ′ = M : CT← Encrypt(M,PK),M ′ ← Decrypt(CT,SK)] ≥ 1

2
.

In other words, a key SK is good if it succeeds in decryping at least some message M with probability
at least a 1

2 . We say that leakage-resilient traitor tracing security holds if, for any PPT A, we have
Pr[A wins ] ≤ µ(λ) in the following game:

• Attacker A chooses the values 1N , 1T .

• Challenger C chooses (PK, SK1, . . . ,SKN ) and gives PK to A.

• A may adaptively ask C for the following type of queries:

– Leakage queries: Attacker gives a user index i ∈ [N ] and a function (defined by a
circuit) Leak : {0, 1}∗ → {0, 1}L with L bit output. If no leakage query for user i was
made before, then the challenger outputs Leak(SKi) and otherwise it ignores the query.

– Corrupt Queries: Attacker asks for user index i and gets SKi.

• At some point A outputs some SK∗ and the challenger runs i ← Trace(PK, SK∗). We say
that A wins if all of the following conditions hold: (1) A made at most T corrupt queries
throughout the game, (2) the predicate GOOD(PK,SK∗) holds, (3) the traced index i was not
part of any corrupt query.

Before presenting the encryption scheme, we review some necessary notions from the theory of
error correcting codes.
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Error Correcting Code. For traitor tracing with N parties and T traitors, we will rely on an
[N,K, 2T + 1]q-linear-ECC over Fq, where K is chosen as large as possible. For the Reed-Solomon
code, we can set K = N − 2T , which we will assume from now on. Therefore, we will also assume
that N > 2T (this is without loss of generality as we can always increase N by introducing “dummy
users” if necessary). Let A be a generation matrix and B be a parity check matrix so that BA = 0.
Note that B is a 2T × N matrix. Lastly, we will assume efficient syndrome-decoding so that we
can efficiently recover a vector e ∈ ZNq from B · e as long as the hamming-weight of e is less than
T . This holds for the Reed-Solomon code.

The Scheme. We now present our Traitor-Tracing scheme which is a natural generalization of
the Boneh-Franklin scheme [BF99]. The scheme is defined as follows for some parameter n = n(λ).

1. KeyGen(1λ, 1N , 1T )→ PK,SK1, . . . ,SKN :

Choose (G, q, g)
$← G(1λ). Choose α

$← Znq and β
$← Zq.

Let B be the parity-check matrix of an [N,K, 2T + 1]q-ECC as described above and let us
label its columns by b1, . . . ,bN where bi ∈ Z2T

q for i ∈ [N ].
For i ∈ [N ], choose SKi = (bi||x) ∈ Znq where x = (x1, . . . , xn−2T ) and is constructed
choosing x2, . . . , xn−2T uniformly random and uniquely fixing x1 so that 〈α, SKi〉 = β. Set
PK := [ g, gα = (g1, . . . , gn), f = gβ,B].

2. Encrypt(PK,M)→ CT: Choose a random r
$← Zq. Output CT← (grα, f r ·M)

3. Decrypt(PK,CT,SK)→M : Let CT = (gc, h). Output hg−〈c,SK〉.

4. Trace(PK,SK∗)→ i: Check that the input is a valid key SK∗ satisfying g〈α,SK
∗〉 = f . To trace,

do the following: (1) Write SK∗ = (b∗||x∗). (2) Use syndrome decoding on b∗ to recover a
low-weight “error vector” (e1, . . . , eN ) ∈ ZNq . Output ⊥ if this fails. (3) Output some index i
such that ei 6= 0.

Semantic security follows from [BF99] (under the DDH assumption). The reason is that given
the public key values (gα, f = gβ) it is hard to distinguish the ciphertext values grα, f r for some
r ∈ Zq from a uniformly random and independent vector of n+ 1 group elements. Since this part
does not involve leakage, we omit the formal proof and instead concentrate on the novel tracing
part. The theorem below states the leakage resilient tracing security achieved by our scheme.

Theorem 14. Assuming we choose n ≥ 3T + 2 and L ≤ (n− 3T − 2) log(q)− ω(log(λ)) the above
scheme satisfies L-leakage resilient tracing security under the DL assumption.

Before giving the proof of Theorem 14, we define the “extended DL representation problem”.
Essentially, the attacker gets to fix some of the components of the representations. It also gets to see
some representations in full and gets to leak on arbitrarily many others. The only representation
that it can come up with should be in the convex span of the ones it saw in full. We formalize this
as follows.

Definition 15 (Extended DL Representation Problem). Let G be a prime order group generation
algorithm. We define the (n,m, T, L)-extended DL representation problem for n > m as a game
between an attacker A and a challenger as follows:
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• The challenger chooses (G, q, g)
$← G(1λ) and random generators g1, . . . , gn, f ← G. It gives

these values to the attacker A.

• The attacker A may adaptively ask for two types of queries: leakage and corrupt. In both
cases A specifies some prefix x1, . . . , xm ∈ Zq and the challenger chooses a uniformly random
suffix xm+1, . . . , xn ∈ Zq subject to

∏n
i=1 g

xi
i = f . Define x = (x1, . . . , xm).

– Leakage Query: A also specifies an L-bit leakage function (given as a circuit) Leak :
Znq → {0, 1}L and gets back Leak(x).

– Corrupt Query: A gets the vector x in full.

• The attacker outputs a vector x∗ = (x∗1, . . . , x
∗
n) and wins iff all of the following hold: (1) it

made at most T corrupt queries throughout the game, (2) x∗ is not in the span of the vectors

given as responses to the corrupt queries, (3) x∗ is a valid representation with
∏n
i=1 g

x∗i
i = f .

We say that the (n,m, T, L)-extended DL representation problem is hard if for all PPT A there
exists some negligible function µ(·) such that Pr[A wins ] ≤ µ(λ) in the above game.

Lemma 16. Under the Discrete Log assumption in G, the (n,m, T, L)- extended DL representation
problem is hard as long as n ≥ T +m+ 2 and L ≤ (n−m− T − 2) log(q)− ω(log(λ)).

Proof. The proof proceeds via a sequence of games. Let us assume w.l.o.g. that the attacker makes
exactly T corruption queries.

Game 0. The original extended DL representation game. Let ε(λ) = Pr[A wins in Game 0].

Game 1. Game 1 proceeds exactly the same way as Game 0, but we redefine the winning condition.
At the beginning of the game, the challenger also chooses random subspace V ⊆ Znq of
dimension n − T − 1 which it keeps secret (and does not use anywhere in the game). We

can think of this as choosing uniformly random vectors v1, . . . ,vn−T−1
$← Znq at random

ad defining V = span(v1, . . . ,vn−T−1).
5 At the end of the game, let x1, . . . ,xT be the T

representation that the attacker sees in full as a result of the T corruption queries. Let x∗ be
the representation output by the attacker. In Game 1, the attacker only wins if, in addition
to satisfying all of the required winning conditions from Game 0, the vector x∗ satisfies

x∗ 6∈ span(x1, . . . ,xT ,v1, . . . ,vn−T−1) (1)

Since the attacker always loses in Games 0 and 1 if x∗ ∈ span(x1, . . . ,xT ) we have:

Pr[A wins in Game 1] ≥ Pr[A wins in Game 0]

−Pr[x∗ ∈ span(x1, . . . ,xT ,v1, . . . ,vn−T−1) \ span(x1, . . . ,xT )]

Let us denote the event in the second line above by E. We claim that, over a random choice of
v1, . . . ,vn−T−1, the probability of E occuring is negligible. Wenever E occurs, there must be
some coefficients a = (a1, . . . , aT , a

′
1, . . . , a

′
n−T−1) such that x∗ =

∑T
i=1 aixi +

∑n−T−1
j=1 a′jvj

and a′j 6= 0 for some j ∈ [n − T − 1]. For any particular a, the probability of this occurring
is simply q−n over the random choice of vj . Taking a union bound over all such coefficient
vectors a, of which there are < qn−1, we get that Pr[E] ≤ 1/q is negligible. Therefore, there
is some negligible µ such that Pr[A wins in Game 1] ≥ ε(λ)− µ(λ).

5The vectors are independent with overwhelming probability and so this is statistically close to choosing a random
subspace of the given dimension.

18



Game 2. In this game, as in Game 1, the challenger also initially chooses the random subspace
V ⊆ Znq of dimension n−T −1 and the winning condition is defined as in Game 1 with respect
to the subspace V. However, we now modify how the challenger answers leakage queries, by
ensuring that all of the leaked-on representations x satisfy x ∈ V. It will be convenient
to consider a (statically close) way of choosing the subspace V by selecting random vectors

w1, . . . ,wT+1
$← Znq and setting V = ker(w1, . . . ,w(T+1)). Recall that in any leakage query

the first m components xpre = (x1, . . . , xm) of the representation are chosen by the attacker.
In Game 2, the challenger chooses xsuf = (xm+1, . . . , xn) subject to x = (xpre,xsuf) satisfying:

〈x,α〉 = β, 〈x,w1〉 = 0, . . . , 〈x,wT+1〉 = 0.

which is equivalent to choosing xsuf uniformly at random from the affine space

〈xsuf ,αsuf〉 = β − 〈xpre,αpre〉 , { 〈xsuf ,wsuf
j 〉 = −〈xpre,wpre

j 〉 }
T+1
j=1

where we use pre and suf denote the the firstm and last n−m components of the corresponding
vector respectively.

In other words, in Game 2, each vector xsuf is chosen from a random (n − m − T − 2)-
dimensional affine subspace of the (n−m−1) dimensional affine space given by the left-most
linear equation above. In Game 1, it is chosen from the full n−m−1 dimensional affine space.
Therefore, by the subspace hiding lemma (Lemma 6), we can argue that the attacker cannot
distinguish Game 1 from Game 2 even if it were given V at the end of the game (allowing it
to evaluate the winning condition). Therefore, there is some negligible function µ such that

Pr[A wins in Game 2] ≥ ε(λ)− µ(λ).

Contradiction. In Game 2, the attacker only wins if its representation x∗ that it outputs at the
end is a valid DL representation of f and satisfies x∗ 6∈ span(x1, . . . ,xT ,v1, . . . ,vn−T−1) where
the vectors vj span V. But all of the vectors that the attacker observes (through corrupt and
leakage queries) are in the space span(x1, . . . ,xT ,v1, . . . ,vn−T−1) and therefore by the Boneh-
Franklin representation lemma (Lemma 4) this can occur with at most negligible probability.
Therefore, Pr[A wins in Game 2] is negligible and hence ε(λ) = Pr[A wins in Game 0] is also
negligible.

Given this lemma, we can now easily prove that our traitor tracing scheme satisfies leakage
resilient tracing security under the discrete log assumption.

Proof of Theorem 14. Recall that to win the game, the attacker A has to output a vector SK∗

subject to the following conditions (1) It made at most T corrupt queries. (2) The predicate
GOOD(PK, SK∗) holds. (3) The traced index i was not a corrupt query.

It’s easy to see that the predicate GOOD(PK,SK∗) holds iff 〈α,SK∗〉 = β. Thus, the attacker

A must output a DL representation of f , namely SK∗, where
∏
i∈[n] g

SK∗i
i = f = gβ after seing

T corruption queries and arbitrarily many leakage queries where the first m = N − K = 2T
components of each representation are fixed/known to the attacker (determined by the ECC).
Given the above, we may apply Lemma 16 which shows that the key SK∗ = (b∗||x∗) output by the
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attacker must be in the span of the T keys corresponding to the “traitors”. Therefore we can write
b∗ = Be where e has hamming weight at most T and is non-zero only for indices corresponding to
the traitors. By the correctness and efficiency of syndrome decoding, the traitor tracing algorithm
therefore correctly outputs the index of a traitor.

References
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