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Abstract

Verified security provides a firm foundation for cryptographic proofs by means of rigorous program-
ming language techniques and verification methods. EasyCrypt is a framework that realizes the verified
security paradigm and supports the machine-checked construction and verification of cryptographic
proofs using state-of-the-art SMT solvers, automated theorem provers and interactive proof assistants.
Previous experiments have shown that EasyCrypt is effective for a posteriori validation of cryptographic
systems. In this paper, we report on the first application of verified security to a novel cryptographic
construction, with strong security properties and interesting practical features. Specifically, we use
EasyCrypt to prove in the Random Oracle Model the IND-CCA security of a redundancy-free public-key
encryption scheme based on trapdoor one-way permutations. Somewhat surprisingly, we show that even
with a zero-length redundancy, Boneh’s SAEP scheme (an OAEP-like construction with a single-round
Feistel network rather than two) converts a trapdoor one-way permutation into an IND-CCA-secure
scheme, provided the permutation satisfies two additional properties. We then prove that the Rabin
function and RSA with short exponent enjoy these properties, and thus can be used to instantiate the
construction we propose to obtain efficient encryption schemes. The reduction that justifies the security
of our construction is tight enough to achieve practical security with reasonable key sizes.
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1 Introduction

More than three decades after its inception by Rivest, Shamir and Adleman, the RSA algorithm [39] has
become a recommendation of several international standards for public-key cryptography and is widely used
in practical cryptosystems. In order to achieve the level of security mandated by modern cryptography,
RSA is used for instantiating cryptographic systems based on trapdoor one-way functions, rather than as a
standalone primitive. The prevailing definition of security for public-key encryption schemes is the notion
of ciphertext indistinguishability against chosen-ciphertext attacks (IND-CCA) [38], which requires that no
efficient adversary with access to a decryption oracle be able to distinguish between the ciphertexts resulting
from encrypting two messages of its choice. Since IND-CCA security cannot be achieved by deterministic
encryption algorithms like RSA, encryption systems adopt the encode-then-encrypt paradigm, in which a
message is pre-processed and randomized before encryption. For instance, the PKCS standard recommends
that the RSA algorithm be used together with the Optimal Asymmetric Encryption Padding [10] scheme
(OAEP), a two-round Feistel construction due to Bellare and Rogaway. In OAEP, redundancy is added
during the encoding phase with the goal of achieving plaintext-awareness, that is, of making infeasible
for an adversary to obtain a valid ciphertext other than by encrypting a known plaintext. Although the
formalization of plaintext-awareness has unveiled subtleties (see Section [@ for a brief discussion), it is
an appealing notion satisfied by many prominent encryption schemes. Furthermore, plaintext-awareness
is achieved by cryptographic transformations [25]26][35] that convert encryption schemes that are just
semantically secure under chosen-plaintext attacks [28] into IND-CCA-secure schemes. As a consequence,
it was a widespread belief that plaintext-awareness was necessary to achieve IND-CCA security. In 2003,
Phan and Pointcheval [36] proved this intuition wrong, by proposing the first IND-CCA-secure encryption
schemes without redundancy, both in the ideal-cipher model and the random oracle model. They showed
that a trapdoor one-way permutation combined with a full-domain random permutation, in a similar way
to the FDH signature scheme [11], suffice to build a redundancy-free IND-CCA-secure scheme. In addition,
Phan and Pointcheval showed that a 3-round version of OAEP together with a partial-domain one-way
permutation would not require redundancy, as in the classical OAEP construction [10,27]. This result was
later improved when it was shown that (full-domain) one-wayness on its own is actually enough to eliminate
redundancy in a 3-round version of OAEP [37]. Abe et al. [2] construct a redundancy-free scheme based on
a 4-round Feistel network that achieves optimal ciphertext overhead (but that imposes a minimal message
size). This line of work was further developed in a series of papers, including [19,82], in the context of
identity-based encryption and DL-based cryptosystems.

In this paper, we revisit the problem of designing redundancy-free IND-CCA-secure schemes based on
trapdoor one-way functions. Our starting point is the SAEP and SAEP+ padding schemes, put forward
by Boneh [I8] in 2001. SAEP and SAEP+ are basically one-round OAEP-like paddings, that when com-
bined with the Rabin function and RSA with exponent 3, yield encryption schemes with efficient security
reductions. We generalize Boneh’s construction to an arbitrary trapdoor one-way function and we show
that SAEP padding without redundancy, which we call ZAEP (Zero-Redundancy Asymmetric Encryption
Padding), achieves IND-CCA security in the Random Oracle Model for a class of trapdoor one-way functions
that satisfy two novel properties: Common Input Extractability (CIE), and Second Input Extractability
(SIE). Informally, CIE allows us to efficiently extract the plaintexts and randomness from two different
ciphertexts that share the same randomness, whereas SIE allows us to efficiently extract the plaintext from
a ciphertext and its randomness—in both cases, without knowing the trapdoor to the underlying one-way
function. Using Coppersmith algorithm [20], we then show that the original Rabin function and RSA with
short exponent satisfy these two properties. We thus obtain two efficient encryption algorithms, that are



well-suited to encapsulate AES keys at a very low cost, with classical RSA moduli, either under the integer
factoring assumption or the RSA assumption with exponent 3.

Our result is remarkable in two respects. First, ZAEP is surprisingly simple in comparison to the
previous redundancy-free 3-round variant of OAEP that was shown to achieve IND-CCA security. Second,
it constitutes the first application of verified security to a novel cryptographic construction. Specifically,
we formally verify the security reduction (and the exact probability bound) of ZAEP using the EasyCrypt
framework [4], which aims to make machine-checkable security proofs accessible to the working cryptog-
rapher by leveraging state-of-the-art methods and tools for program verification. Quite pleasingly, the
functionalities and expressive power of EasyCrypt proved adequate for converting an incomplete and intu-
itive argument into a machine-checked proof. In less than a week, we were able to flesh out the details of
the proof, including the new security assumptions, concrete security bound, and sequence of games, and
to build a machine-checked proof. As further developed in Section [7, our work contributes to evidencing
that, as anticipated by Halevi [29], computer-aided security proofs may become commonplace in the near
future.

Organization of the paper We introduce the ZAEP redundancy-free scheme in Section 2] and present
necessary background on verified security and the EasyCrypt framework in Section Bl We give an overview
of the verified security reduction of ZAEP in Section [ and discuss possible instantiations in Section Bl We
conclude with a discussion on related work in Section [l and an analysis of the significance of our results
in Section [ The EasyCrypt input file corresponding to the proof presented in Section M| appears in the
Appendix; all the infrastructure needed to machine-check this proof can be made available on request.

2 Redundancy-Free Encryption

In 1994, Bellare and Rogaway [10] proposed the padding scheme OAEP (see Fig. , that in combination
with a trapdoor permutation (e.g. RSA) yields an efficient encryption scheme. When encrypting using
OAEP, a random value r is first expanded by a hash function G and then xor-ed with the redundancy-
padded input message. The resulting value s is then hashed under an independent function H and the result
xor-ed with r to obtain ¢. The ciphertext is computed by applying the permutation to the concatenation of
s and t. OAEP was proved IND-CCA-secure by Fujisaki et al. [27] under the assumption that the underlying
trapdoor permutation is partial-domain one-way. This is in general a stronger assumption than just one-
wayness, but fortunately both assumptions are equivalent in particular for RSA. The reduction from the
security of OAEP to the RSA problem is not tight for two reasons: (1) the generic reduction from OAEP
security to the partial-domain one-wayness of the underlying permutation is itself not tight, and (2) the
reduction from RSA partial-domain one-wayness to the RSA problem introduces an extra security gap. In
order to obtain a direct reduction to the RSA problem (or the one-wayness of the underlying permutation),
one needs to add a third round to the Feistel network used in OAEP [37]. Although this latter reduction is
still not tight, the redundancy resulting from padding the input message can be removed without breaking
the proof.

Boneh [18] showed that by exploiting Coppersmith algorithm [20], it is possible to shave off one round
of OAEP without compromising security. Encryption in the resulting scheme, SAEP (see Fig. , works
by choosing a random value r, hashing it under a function G and xor-ing it with the message padded with
a zero-bitstring of length kg. The resulting value s is then concatenated with the random value r and fed to
the RSA function. However, an efficient reduction is possible only if a small RSA public exponent is used,
or if the Rabin function is used instead. The security reduction of SAEP is quite tight, but the redundancy
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Figure 1: Asymmetric Encryption Paddings

introduced when padding the input message is essential and cannot be removed—as a by-product, SAEP
achieves plaintext-awareness. We revisit SAEP with zero-length redundancy (i.e., letting kg = 0) and
show that a reduction to the one-wayness of the underlying trapdoor permutation is still possible under
additional (but achievable) assumptions.

2.1 A Novel Redundancy-Free Scheme

We recall the SAEP construction [I8] with zero-length redundancy (see Fig. [I(d)). We use k to denote
the length of the random value used during encryption and ¢ to denote the length of input messages. Let
(KGy, f, f~1) be a family of trapdoor one-way permutations on {0,1}", where n = k + ¢. For any pair of
keys (pk,sk) output by the key generation algorithm KGy, fpi(-) and f;,;(-) are permutations on {0, 1}"
and inverses of each other. We model f,; and f' as two-input functions from {0,1}* x {0,1}’ onto
{0,1}". Let in addition G : {0,1}* — {0,1}¢ be a hash function, which we model as a random oracle in
the reduction [9]. The ZAEP encryption scheme is composed of the triple of algorithms (KG, &, D) defined
as follows:

Key Generation KG is the same as the key generation algorithm KG; of the underlying trapdoor per-
mutation;

Encryption Given a public key pk and an input message m € {0, 1}, the encryption algorithm &, (m)
chooses uniformly at random a value 7 € {0,1}* and outputs the ciphertext ¢ = Jp(r, G(r) @ m);

Decryption Given a secret key sk and a ciphertext ¢, the decryption algorithm Dy (c) computes (r, s) =

f s_kl (¢) and outputs m = s @ G(r). No additional check is required because all ciphertexts are valid.

2.2 Adaptive Security of ZAEP

We recall the usual definitions of trapdoor one-way function and IND-CCA security for public-key encryption
schemes.

Definition 1 (Trapdoor one-way function). Consider a family of trapdoor functions (KG,f,f~!) on
{0,1}™. The success probability Succ?W(I) of an algorithm I in inverting fpr on a freshly generated
public-key pk and a uniformly chosen input is defined as follows:

(pk, sk) < KG(1"); ' - /
o 0,13 of « T(f(a)) *oH®) = Iok(@)
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In an asymptotic setting, a family of trapdoor functions is one-way if this probability is negligible on the
security parameter n for any efficient (probabilistic polynomial-time) algorithm I.

Definition 2 (IND-CCA security). The advantage of an adversary A = (Aj, A2) against the IND-CCA
security of an asymmetric encryption scheme I1 = (KG, &, D), AdVﬁCA(.A), is defined as follows:

(pk, sk) < KG(1"7);

(mo,m1,0) = AT pk); |1
b {0, 1} e* < Ep(myp); 2
o A2DSk(.7éc*)(C*,O')

Pr

In both stages of the experiment the adversary has access to a decryption oracle, but in the second stage Ao
cannot query for the decryption of the challenge ciphertext c*. In an asymptotic setting, I1 is IND-CCA-
secure if all efficient adversaries have a negligible advantage.

In order to prove the IND-CCA security of ZAEP, we require that the underlying trapdoor function
satisfy the two properties defined below.

Definition 3 (Second-Input Extractability). A family of trapdoor functions (KG, f, f~!) satisfies SIE if
there exists an efficient algorithm sie that given a public key pk, c € {0,1}* and r € {0,1}*, outputs s if
c = fpr(r,s) or L otherwise.

Observe that Second-Input Extractability collapses the distinction between one-wayness and partial
one-wayness. If a family of one-way functions satisfies Second-Input Extractability, then it is also partial-
domain one-way over its first input.

Definition 4 (Common-Input Extractability). A family of trapdoor functions (KG, f, f~1) satisfies CIE
if there exists an efficient algorithm cie that given a public key pk and c1,co € {0,1}, outputs (r,s1,s3) if
c1 = fpr(r,81), c2 = fpr(r,s2) and s # sa, or L otherwise.

Since we conduct our proof in a concrete security setting rather than in an asymptotic setting, and we
prove exact probability and time bounds, we fix the security parameter and omit in the remainder. We
prove the following security result for ZAEP.

Theorem 1 (Security of ZAEP). Let (KG, f, f~') be a family of trapdoor permutations satisfying both
SIE and CIE properties. Let A be an adversary against the IND-CCA security of ZAEP instantiated with
(KG, f, f~1) that runs within time t4 and makes at most qg queries to the random oracle G and at most
gp queries to the decryption oracle. Then, there exists an algorithm T running within time t7 such that

tz <ta+296qD tsie + Q22) teie
ow CCA 4D
SU.CCf (I) 2 AdVZAEP(A) - 2_n
where tge (resp. tsie) is an upper bound on the execution time of the algorithm cie (resp. sie) for

(KG, f, 7).

In Section @ we give an overview of a machine-checked reductionist proof of the above theorem in
EasyCrypt. We observe that while ZAEP can be cast as an instance of SAEP by setting the length of the
padding kg = 0, our reduction is different from Boneh’s reduction for SAEP [I8]; in fact, Boneh’s exact
security bounds are meaningless as soon as kg is of the order of log(¢p).



3 A Primer on Verified Security

Verified security [4,[6] is an emerging approach to cryptographic proofs. While adhering to the principles
and the methods of provable security, verified security takes the view that cryptographic proofs should be
treated in a manner similar to high-integrity software, so that confidence in the design of a cryptographic
system is no lower than confidence in the software systems that use it. Thus, verified security mandates
that security proofs are built and validated using state-of-the-art technology in programming languages
and verification.

EasyCrypt [4] is a recent realization of the verified security paradigm. As its predecessor CertiCrypt [6], it
adopts a code-centric view of cryptography. Under this view, security assumptions and goals are formalized
using probabilistic programs, also called games. Each game is a probabilistic imperative program composed
of a main command and a collection of concrete procedures and adversaries. Moreover, the statements
of the language include deterministic and probabilistic assignments, conditional statements and loops, as
given by the following grammar:

C == skip nop
| V¢ deterministic assignment
| V&DE probabilistic assignment
| if £ then C else C conditional
|  while £ doC while loop
| V<« PE,....&) procedure call
| C; C sequence

where V is a set of variable identifiers, P a set of procedure names with a distinguished class of abstract
procedures used to model adversaries, £ is a set of expressions, and DE is a set of distribution expressions.
The latter are expressions that evaluate to distributions from which values can be sampled; for the purpose
of this paper, we only need to consider uniform distributions over bitstrings.

Programs in EasyCrypt are given a denotational semantics, that maps initial memories to sub-distributions
over final memories, where a memory is a (well-typed) mapping from variables to values. We let Pr [c, m : A]
denote the probability of an event A in the sub-distribution induced by executing the program ¢ on some
initial memory m, which we omit when it is not relevant. For additional details on the semantics, we refer
the reader to [6].

As envisioned by Halevi [29] and Bellare and Rogaway [12], this code-centric view of cryptographic
proofs leads to statements that are amenable to verification using programming language techniques. Easy-
Crypt captures common reasoning patterns in cryptographic proofs by means of a probabilistic relational
Hoare Logic (pRHL). Judgments in pRHL are of the form

Eeo~e: =30

where ¢; and co are probabilistic programs, and ¥ and ®, respectively called the pre-condition and the
post-condition, are relations over program states. We represent these relations as first-order formulae
defined by the grammar:

UVou=e| P | VAP |YVD |V Ve &[Tz O

where e stands for a Boolean expression over logical variables and program variables tagged with either
(1) or (2) to denote their interpretation in the left or right-hand side program, respectively. We write e(i)



for the expression e in which all program variables are tagged with (i). A relational formula is interpreted
as a relation on program memories. For example, the formula z(1) +1 < y(2) is interpreted as the relation

R = {(my,m2) | mi(z) +1 < ma(y)}

There are two complementary means to establish the validity of a pRHL judgment. Firstly, the user can
apply interactively atomic rules and semantics-preserving program transformations. Secondly, the user can
invoke an automated procedure that given a logical judgment involving loop-free closed programs, computes
a set of sufficient conditions for its validity, known as verification conditions. In the presence of loops or
adversarial code, EasyCrypt requires the user to provide the necessary annotations. The outstanding feature
of this procedure, and the key to its effectiveness, is that verification conditions are expressed as first-order
formulae, without any mention of probability, and thus can be discharged automatically using off-the-shelf
SMT solvers and theorem provers.

As security properties are typically expressed in terms of probability of events, and not as pRHL
judgments, EasyCrypt provides mechanisms to derive from a valid judgment

): Cl ~Cy: V=0
inequalities of the form
Prci,my : A] < Prlce,ma : B] (+Pr[ca, mg : F])

for events A, B and F' that are suitably related to the post-condition ®. The mechanisms are described
more precisely by the next two lemmas.

Lemma 2 (Probability Lemma). Let ¢; and co be two games and A and B be events such that
Eco~c: U= A(1l) - B(2)

For every pair of memories m1, mo such that mi1 ¥ mo, we have
Prlcy,mq : A] < Preg, mo : B]

Lemma 3 (Shoup’s Fundamental Lemma). Let ¢; and co be two games and A, B, and F be events such
that
Ec~ey: U= (F(1) < F(2))AN(—F(1) — A(1) — B(2))

Then, for every pair of memories my, mo such that m; ¥ mso, we have
Prici,my : A] < Prlce,ma : B] + Prca,mg : F]

Moreover, EasyCrypt includes support for applying probability laws (e.g. the union bound) and com-
puting the probability of events. The proof of ZAEP relies on two main rules. The first one states that
an adversary has probability % of guessing a bit b independent from its view; independence is captured by
proving that sampling the bit b after the adversary returns its guess does not change the semantics of the
game. The second rule allows to upper bound the probability that a uniformly sampled value belongs to
a list of bounded length. For instance, if L is a list of values in A of length at most ¢ and z is a value
sampled independently and uniformly over A, the probability that x belongs to L is upper bounded by

q/|Al.
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Figure 2: Overview of workflow in EasyCrypt

3.1 User Perspective

Building a cryptographic proof in EasyCrypt is a process that involves the following tasks:

e Defining a logical context, including declarations of types, constants and operators, axioms and
derived lemmas. Declarations allow users to extend the core language, while axioms allow to give the
extension a meaning. Derived lemmas are intermediary results proved from axioms, and are used to
drive SMT solvers and automated provers.

e Defining games, including the initial experiment encoding the security property to be proved, inter-
mediate games, and a number of final games, which either correspond to a security assumption or
allow to directly compute a bound on the probability of some event.

e Proving logical judgments that establish equivalences between games. This may be done fully auto-
matically, with the help of hints from the user in the form of relational invariants, or interactively
using basic tactics and automated strategies. In order to benefit from existing technology and target
multiple verification tools, verification conditions are generated in the intermediate language of the
Why3 Software Verification Platform [I7] and then translated to individual provers to check their
validity.

e Deriving inequalities between probabilities of events in games, either by using previously proven
logical judgments or by direct computation.

Although the above tasks can be carried out strictly in the order described, one can conveniently interleave
them as in informal game-based proofs. To ease this process, EasyCrypt provides an interactive user-
interface as an instance of ProofGeneral, a generic Emacs-based frontend for proof-assistants. Figure [2
gives an overview of the workflow in the framework.



(Game CCA : Oracle G(z) : Oracle D(c) :

Lg < nil; ¢ ¢ + false; g < 0; if z ¢ dom(L¢) then if @ < qp A—(clep Ac=c") then
(pk, sk) < KG(); Lgla] & {0,1}% g4+ q+1

(mo, m1,0) < Ai(pk); return Lg|[z] (r,s) « fs_k1 (c);

b&{0,1}; g < G(r);

c* < Epp(my); return g @ s

Cllof < true; else return L

b+ Az(c*,0);
return (b=1')
L

(Game OW : Oracle G(z) : Oracle D(c) : )

(pk, sk) <+ KG(); if ¢ dom(L¢) then if @ < gp A=(chjes Nc=c*) then

z & {0,1}k+¢, ¢ < find c € dom(Lp). siepr(c, ) # L;| g« q+1;

(z,y) < Z(pk, fpr(2)); if c# L then r < find r € dom(Lg). siepg(c, ) # L;

return (fpr(z,y) = for(2)) Lg[x] < Lplc] @ siepg(c, x); if 7 # L then return Lg[r] ® siep(c, )
Adversary Z(pk, z) : else , els_e

Lo, Lp « nil; ¢* . « false; g « 0; Lg[z] & {0,1}% if ¢ € dom(Lp) then return Lp|c]|

c* « z; pk (_pf;.ef return Lg[z] else

(mo m; o) « .A17(pk)- ¢« find ¢/ € dom(Lp). ciepg(c, ') # L;

. e ’ if ¢/ # 1 then
Chop < true; 5 e dienn(e. &)
b+ Az(c*, 0); (r,5,t) = ciepg(c,c');

return Lp[c'] & s B t;
else
if clop A cCiepr(c,c®) # L then

r < find r € dom(Lg). siepr(c*,7) # L;
if 7 # L then return (r,siepr(c*,7));

else ( B e oy
¢ + findcedom(Lp). ciepp(c*,c) # L; 58, Clepk (¢, €7 )5
if ¢ % L then P Lg[r] & {0,1}%; return Lg[r]®s;
. Ise
(r,5,t) + ciepg(c*,c); return (r,s) e
else return L Lplc] & {0,1}*; return Lp]c|
\_ else return L )

Figure 3: Initial IND-CCA game and reduction to the problem of inverting the underlying permutation

4 Security Proof

We overview the proof of Theorem [Ilin EasyCrypt. The proof is organized as a sequence of games starting
from game CCA, that encodes an adaptive chosen-ciphertext attack against ZAEP for an arbitrary adversary
A, and ending in game OW, that encodes the reduction to the one-wayness of the underlying trapdoor
permutation. These two games are shown in Figure B} the rest of the games are shown in Figures 4] and [0l
Games are shown alongside the oracles made available to adversary A and global variables are typeset in
boldface.

Formalizing the security proof of ZAEP in EasyCrypt required providing an appropriate axiomatization
of the underlying trapdoor permutation and the SIE and CIE properties. We extended the expression
language with the following operators corresponding to the permutation f, its inverse, and algorithms sie
and cie:

opf :(pkey,{0,1}* x {0,1}*) = {0,1}* x {0,1}*

op finv : (skey, {0,1}* x {0,1}*) — {0,1}* x {0,1}*

op sie : (pkey, {0,1}" x {0,1}%,{0,1}*) — {0,1}* option

op cie : (pkey, {0,1}" x {0,1}%,{0,1}* x {0,1}%) = ({0,1}* x {0,1}* x {0,1}%) option

We gave these operators a meaning by introducing their specifications as axioms; for instance, the operator
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(Game EGD : Oracle G(z) : Oracle D(c) : )

L¢ < nil; ¢fi ¢ < false; q + 0; if © =7r* then bad < true; if @ < qp A—(ches Nc=c") then
bad « false; »* & {0,1}%; if x ¢ dom(L¢) then g q+1;
(pk, sk) < KG(); Lg[z] & {0,1}% (r,8) « fope (0);
(mo,m1,0) « Ai(pk); b& {0,1); | return Lale] g G(r);
if * ¢ dom(Lg) then return g @ s
g* & {0,1}% I'_L_GF”:}tg_*Ti else return L
else T T TTTT
bad < true;

c’;_;_fgfay,_g*_'@ mp); Clep < true;
b+ Az(c*,0);

\_return (b =1') )
(Game Gg : Oracle G(z) : Oracle D(c) : h

Lg < nil; ¢ ¢ + false; g < 0; if z = r* then bad <« true; if @ < gp A=(cies Nc=c*) then

bad « false; »* & {0,1}%; if z ¢ dom(Lg) then g+ q+1;

(pk, sk) + KG(); Lala] & {0,1} (r,s) = fop (c);

(mo, m1,0) < Ai(pk); return Lg|[z] g+ G(r);

if »* € dom(L¢) then bad < true; return g P s

s* & {0,135 else return L

< for(r*,8%); clgp « true;
b+ Aa(c*,0);
b& {0,1};

\_return (b =10") )

Figure 4: Sequence of games in the proof of ZAEP. Fragments of code displayed inside a box appear only
in the game whose name is surrounded by the matching box.

sie is specified as follows:

axiom sie_spec:
V (pk : pkey, sk : skey), key_pair(pk,sk) =
V (c:{0,1}* x {0,1}*,r: {0,1}*,s: {0,1}%), sie(pk,c,r) = Some(s) <= c = £(pk, (r,s))

Verification conditions generated during the proof are first-order formulae over a mixture of theories: e.g.
finite maps, integer arithmetic, exclusive-or, and the above axiomatization of the SIE and CIE solvers. All
verification conditions are discharged automatically using the CVC3 and Alt-Ergo SMT solvers.

The proof itself begins by transforming the initial CCA game into game G, where we inline the en-
cryption of the challenge ciphertext and eagerly sample the random value r* used. We also introduce a
Boolean flag bad that is set to true whenever r* would be appear as a query to G in the CCA experiment.
All these changes are semantics-preserving w.r.t. to the event b = b’ and thus we have

Pr[CCA:b=0]=Pr[G;:b=10]

Game G behaves identically to game G; except that the value of G(r*) used to mask the plaintext of
the challenge ciphertext is always chosen at random, regardless of whether it has been queried by the
adversary during the first stage of the experiment. Subsequent queries to G(r*) are also answered with a
fresh random value. This only makes a difference if the flag bad is set, and applying Lemma [3, we obtain:

[Pr[Gy:b=1V] —Pr[Gy:b=10]| <Pr[G;: bad]

11



s* & {0,1}%

c* <« fpr(r™,s™);

(pk, sk) < KG();

(m07 mi, g) — A (pk)’
Cllor < true;

b+ Az(c*,0);

return true

(Game Gy : Oracle G(z) : Oracle D(c) : )
Lg, Ly, + nil; ¢} ¢ < false; q < 0; if ¢ dom(L¢) then if @ < qp A—(ches Ac=c") then
r* & {0,1}%; if © ¢ dom(L{;) then qg+—q+1;

Lg(z] & {0,1}%
else
Lg[z] + Lglzl;
return Lg|[z]

r < find r € dom(Lg). siepr(c, ) # L;
if 7 # L then return Lg[r] @ siep(c, )
else
r < find r € dom(L{,). siepr(c, 1) # L;
if 7 # L then return Li,[r] @ siepg(c,r)
else
if ¢lop A Ciepr(c,c*) # L then
(r,8,1) <= ciepr(c, c*);
Lg[r] & {0,1}%; return Lg[r] @ s
else
(r,8) ¢ fop (0);
m & {0,1}; Li[r] + m® s;

Lg, Lp < nil; ¢ ¢ + false; g < 0;
r* & {0,115

s* & {0,135

c* <+ fpr(r,s%);

(pk, sk) « KG();

(mo,m1,0) < A1(pk);

Cler < true;

b« Az(c*,0);

return true

return m;
(& else return L J
(Game Gs : Oracle G(z) : Oracle D(c) :

if z ¢ dom(L¢) then
c + find ¢ € dom(Lp). siepk(c, ) # L;
if ¢c# L then
Lg[x] < Lplc] @ siepg(c, x);
else
Lgla] & {0,1}%

return Lg[z]

if @ <qp A—(ches Nc=c") then
g<—q+1
r < find r € dom(Lg). siepr(c, ) # L;
if 7 # L then return Lg[r] ® siepk(c, )
else
if ¢ € dom(Lp) then return Lp|c]
else
¢/ «+ find ¢/ € dom(Lp). ciep(c, ') # L;
if ¢/ # L then

(7, s,t) + ciepg(c, ¢');
return Lp[c'] ® s @ t;
else
if clef A Ciepr(c,c®) # L then
(r,5,t) < ciepp(c, c*);
Lg[r] & {0,1}%; return Lg[r]®s;
else
Lplc] & {0,1}%; return Lp[d]
\_ else return L )

Figure 5: Sequence of games in the proof of ZAEP.

In game G3 we remove the dependency of the adversary’s output on the hidden bit b by applying a
semantics-preserving transformation known as optimistic sampling. Instead of of sampling g* at random
and computing the challenge ciphertext c¢* as fpr(r*,g* @ m;), we sample directly a value s* at random
and compute c* as fpr(r*,s*), defining g* as s* @ m;. Once this is done, and since g* is no longer used
elsewhere in the game, we can drop its definition as dead-code and postpone sampling b to the end of the
game, making it trivially independent of v'. We have

Pr[Gy:b=1] =Pr[Gs:b=1] = 5

Pr[Gs : bad] = Pr[G; : bad]

In game Gy, instead of always using f~! to compute the pre-image (r,s) of an input ¢ in the decryption
oracle, we use the sie and cie algorithms to compute it when possible from previous queries made by the
adversary. We can do this in two cases:

1. when r appeared before in a query to oracle (G, using algorithm sie to obtain the second input s;
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2. when r = r*, using algorithm cie to compute s from c*.
When neither of these two cases occur, we use f~! and the secret key to invert ¢ and obtain (r, s). Rather
than sampling a fresh value for G(r), we apply once more the optimistic sampling transformation to sample
a response m at random and define G(r) as m & s. We store values of G(r) computed in this fashion in
a different map Lj,. We prove the following relational invariant between Gz and Gs, which allows to
characterize the event bad of Gs in terms of the variables of Gg:

bad(l) <= (r* € dom(Lg) V r* € dom(L{;))(2)

To prove this, we have to first show that the simulation of the decryption oracle using algorithms cie and
sie in Gy is consistent with the view of the adversary in G3. We do this by establishing that the following
is a relational invariant between the implementations of D in Gz and Gg:

(17,8, Ceg> @)(1) = (17,8, Ceg, @)(2) N
(" = fpr(r™,s7))(2) A
bad(l) <= (r* € dom(Lg) V r* € dom(L{;))(2 > A

(Vo € dom(Lg(2)).x € dom(Lg(1)) A Le(1)[z] = <2>[a: ) A
(Vo € dom(Lg(1)). ¢ dom(L¢(2)) — La(l)[x] = Lg(2)[x]) A
(Vz. z € dom(Lg(1)) <> (z € dom(Lg) V x € dom(LG))<2>

We have hence that
Pr[Gs : bad] = Pr [G4 : v* € dom(L¢) V r* € dom(Ly)]

In game Gs we finally eliminate every reference to f~! from the decryption oracle. We do this by replacing
the map Ly with a map Lp in where we store ciphertexts that implicitly define values of G(r). We
reformulate the simulation of the decryption oracle using this map instead of L, by proving the following
invariant between the implementations of D in G4 and Gs:

(LGyc Cdefv )<1> (LGyc Cdefv )<2>
(Ve. (Vr € dom(L;). siepk(c, ) = L)(1) < (V¢ € dom(Lp). ciepk(c,c’) = L Ac ¢ dom(Lp))(2) A
(Vr. r ¢ dom(L(1)) <> (Ve € dom(Lp). siepk(c,) = L)(2)

(Ve. let (r,s) = f!(c) inc € dom(Lp))(2) — r € dom(L(1)) A Li(1)[r] = s © Lp(2)[d])

We then prove the following relational invariant between G4 and Gs:

(r* € dom(L¢) V r* € dom(Ly))(1) —
(r* € dom(Lg) V 3¢ € dom(Lp). cieyi(c, ) # L)(2)

From which we obtain

Pr[Gy : r* € dom(Lg) V r* € dom(Ly;)] <
Pr(Gs : 7* € dom(Lg) V 3¢ € dom(Lp). ciepi(c, ) # L]

We can finally write an inverter Z against the one-wayness of the underlying trapdoor permutation
that uses the map Lp in the previous game to perfectly simulate the decryption oracle for the IND-CCA
adversary A. However, the inverter Z only succeeds if 7* € dom(L¢):

Pr(Gs : r* € dom(Lg) V 3¢ € dom(Lp). ciepi(c, ) # L] <
Pr[OW : for(z,y) = fpr(2)] + Pr[OW : ¢* € dom(Lp)]
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We bound the second term on the right-hand side of the above inequality by ¢p/2" using a short sequence
of games that we omit. Putting all the above results together, we conclude:

Pr[CCA: b= 1] — | < PrlOW: f(e,y) = fu(2)] + 22

The execution time of ¢z can be bound by inspecting the formulation of the inverter Z in game OW:
e FEach simulated query to G requires at most ¢p evaluations of algorithm sie;

e Each simulated query to D requires at most gg evaluations of algorithm sie and at most ¢p evaluations
of algorithm cie;

e When the simulation finishes, the inverter 7 requires at most gg evaluations of algorithm sie and at
most gp + 1 evaluations of algorithm cie to find the inverse of its challenge.

Thus
tz < ta+ ZQG(]D tsie + q2D teie + 4G tsie + (QD + 1) tcie

The last two terms are negligible w.r.t. the rest and can be safely ignored.

5 Instantiations

In this section, we show that both the Rabin function and RSA with small exponent satisfy the properties
required for the security reduction of ZAEP. Moreover, we provide a practical evaluation of both instanti-
ations of ZAEP and a comparison to other redundancy-free encryption schemes. Our proofs are inspired
by [18] and rely on Coppersmith algorithm to find small integer roots of polynomials [20]:

Theorem 4 (Coppersmith method). Let p(X) be a monic integer polynomial of degree d and N a positive
integer of unknown factorization. In time polynomial in log(N) and d, using Coppersmith algorithm one
can find all integer solutions xq to p(xo) = 0 mod N with |zo| < N/4,

We denote by tc(n,q) an upper bound on the running time of the above method for finding all roots
modulo N of a polynomial of degree d.

5.1 Short Exponent RSA
For an n-bit RSA modulus N = pgq, the function
RSA[N,e] : x +— 2 mod N

is a well-known trapdoor one-way permutation on Z}; for any exponent e coprime to ¢(NN). For any
non-negative £ < n, an element x € Z}; can be uniquely represented as r X 2¢ + s, where s € {0, 1}5 and
r € {0,1}"¢. We can thus express the RSA function as a function of two arguments:

RSA[N, €] : (r,5) — (r x 2 + 5)® mod N

We denote by RSA-ZAEP the encryption scheme resulting from instantiating ZAEP with this function.
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Second-Input Extractability Given an output ¢ of RSA[N, e] and a tentative value r, the Second-Input
Extraction problem boils down to solving p(X) = 0 mod N for p(X) = ¢ — (r x 2 + X)® mod N with the
additional constraint | X| < 2¢. The Coppersmith method finds the root s (the second input to the function
when 7 is the correct first input) when 2¢ < N /e or equivalently, when ¢ < n /e. We thus have an efficient
sie algorithm that executes within time tse < to(n.e)-

Common-Input Extractability Given two different outputs ¢; and ¢z of RSA[N, €], the Common-Input
Extraction problem for RSA[N, e] consists in finding r, s; and sy such that ¢; = (r x 2¢ + 51)® mod N and
co = (1 x 2° 4 59)° mod N, if they exist. Let us consider the two polynomials

p1(X,A) =c¢; — X°mod N
p2(X,A) =co — (X + A)°mod N

These polynomials should be equal to zero for the correct values z = r x 2¢ + s; mod N for X and
d = so — sy mod N for A. Therefore, the resultant polynomial R(A) of p; and py in X, which is the
determinant of the 2e x 2e Sylvester Matrix associated to the polynomials p; and po in the variable X,
and thus with coefficients that are polynomials in A (of degree 0 for the coefficients of p;, but of degree
up to e for the coefficients of ps), is a polynomial with § = s — s1 as a root. Due to the specific form
of the matrix, R(A) is of degree at most e? modulo N, and the Coppersmith method finds the root §
provided 2¢ < N1/  or equivalently, when ¢ < n/e?. Once this root is known, we can focus on the monic
polynomials p;(X) = ¢; — X® mod N and py(X) = o — (X + 6)° mod N, for which z is a common (and
unique) root. These two polynomials are distinct, but are both divisible by X — x, which can be found by
computing their GCD. We thus have an efficient cie algorithm that executes within time e bounded by
the running time of Coppersmith method for finding 9, t¢(y2), plus the time needed to compute the GCD
of two polynomials of degree e, which we denote {gcpe)-

5.2 Rabin Function

The Rabin function is unfortunately not a permutation. However, for particular moduli we can limit
its domain and co-domain to convert it into a bijection. More precisely, if p and ¢ are Blum integers,
then —1 a non-quadratic residue modulo p and ¢, and hence is a false square modulo N = pq. Put
otherwise, Jy(—1) = +1 where Jx(-) denotes the Jacobi symbol modulo N. In addition, any square = in
Zy admits four square roots in Zjy, derived from the two pairs of square roots of x in Z; and Z; using
the Chinese Remainder Theorem. As a consequence, one and only one is also a quadratic residue modulo
N, which we denote a. Then, a and —a are the two square roots of x with Jacobi symbol +1. We
will ignore the other two square roots of x that have Jacobi symbol —1. Let Jn denote the subgroup of
the multiplicative subgroup of Zx whose elements have Jacobi symbol +1 (membership can be efficiently
decided). We additionally restrict Jy to the elements smaller than N/2, and we denote this subset Jy.
We now consider the function

SQIN]: JIx x {0,1} = In
SQ[N] : (x,b) — (—1)’2? mod N

The inverse function takes an element y € Jxn, which may be a true quadratic residue or a false one. In
the former case, one extracts the unique square root « that is also a quadratic residue and sets x to be
the smallest value in {o, N — a} that is less than N/2; the inverse of y is (x,0). In the latter case, one
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does as before to compute x, but from —y, which is a true quadratic residue; the inverse of y is (z,1). The
function SQ[N] thus defined is a bijection from Jy x {0,1} onto Jn.

One-wayness Let us assume that an algorithm A can invert SQ[N]| with non-negligible probability.
Then one can first choose a random z € Z3\Jn (instead of Jy) and a random bit b, and submit y =
(-1)® x 22mod N to A. This element y is uniformly distributed in Jy, and thus with non-negligible
probability A outputs (z,b') € Jx x {0,1} such that y = (=1)" x 22 = (=1)® x 2% mod N. Since —1 is
a false quadratic residue, necessarily ¥ = b and 2> = 22 mod N, with z € Jy and z ¢ Jy. The GCD
of x — z and N is either p or ¢, from which N can be factored. This function is thus one-way under the
integer factoring problem.

As above, in order to be used with ZAEP, we have to consider the function SQ[/N] as a function of two
bitstrings. Given an input (z,b) € Jy x {0,1}, for any 0 < ¢ < n — 1 we can uniquely write z € Z}, as
r=7rx2"4s, with s € {0,1}* and r € {0,1}""1=¢. We consider thus the function:

SQ[N] : {0,1}*¢ x {0,1}* — {0,1}"
SQ[NT] : (b]|r, s) = (=1)” x (r x 2° + 5)? mod N

Second-Input Extractability Given an output ¢ of SQ[N] and a pair of values b, r, the Second-Input
Extraction problem consists in solving the equation p(X) = 0 mod N for p(X) = ¢ — (—1)® x (r x 2 +
X)2 mod N with the additional constraint |X| < 2¢. The above Coppersmith method finds the root s
(the second input to SQ[N] used to compute c if b||r is the correct first input) provided 2¢ < N2, or
equivalently when £ < n/2. We thus have an efficient sie algorithm that runs within time t5e < oy 2)-

Common-Input Extractability The Common-Input Extraction problem can be solved as in the case
of RSA, provided ¢ < n/4. We thus have an efficient cie algorithm whose running time ¢ is bounded by

tov g +teep()-
We denote by Rabin-ZAEP the encryption scheme resulting from instantiating ZAEP with the function
SQ[N]. Since this function operates only on elements in 75, the encryption algorithm may have to iterate:

Key Generation The algorithm G generates two Blum integers p and ¢ of length n/2, and outputs
(pk, sk), where pk = N = pq and sk = (p, q);

Encryption Given a public key N and a message m € {0, 1}¢, the encryption algorithm iteratively samples
arandom value r € {0,1}*~! and a bit b and sets s = m®G(b||r), stopping when x = r x 2 +s € Jx5.
This requires on average one iteration only. The ciphertext ¢ is computed as

SQ[N](b|r, s) = (—1)” x (r x 2¢ 4+ 5)? mod N;

Decryption Given a secret key (p,q) and a ciphertext ¢, D first inverts SQ[N] using the prime factors
(p,q) of N and gets (z,b). It then parses x as r x 2' + s mod N and outputs m = s @ G(b||r).

5.3 Practical Considerations

For RSA-ZAEP, all the required properties to achieve IND-CCA-security hold as long as e < y/n/¢. For
a practical message size £, e has to be small (e.g. e = 3). But for a small exponent e, both sie and
cie algorithms are efficient operations on small polynomials, and thus the reduction is efficient: from an
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adversary that achieves an IND-CCA advantage € within time ¢, one can invert RSA with small exponent
with success probability essentially e, within time close to t. As a consequence, one can use classical RSA
moduli: for e = 3, a 1024-bit modulus allows to encrypt 112-bit messages, whereas a 1536-bit modulus
allows to securely encrypt messages of up to 170-bits.

For Rabin-ZAEP, encryption is reasonably efficient (an evaluation of J(-) on average plus one modular
square). The IND-CCA-security of the scheme can be reduced to the integer factoring problem in the random
oracle model, with an efficient reduction (even better than for RSA exponent 3). As a consequence, for
n = 1024, one can securely encrypt messages of up to 256-bits. This suffices, for instance, to encrypt AES
keys of all standard sizes.

5.4 Other Redundancy-Free Schemes

We compare our security result of Theorem [Tl to the security results for 3-round OAEP (see Fig. and
the 4-round scheme of Abe et al. [2].

The original result about the IND-CCA security of 3-round RSA-OAEP [30] relies on an intermediate
reduction to the partial-domain one-wayness of RSA. Phan and Pointcheval [37] improved on this result
by showing a direct reduction to the (full-domain) one-wayness of RSA, which avoids the additional cost
of reducing partial-domain one-wayness to one-wayness. They show that given an adversary A against the
IND-CCA-security of 3-round OAEP that executes within time ¢4 and makes at most gg queries to its 3
hash oracles and ¢p queries to its decryption oracle, it is possible to construct an inverter Z for RSA that
executes within time ¢z, such that

tr <ta+trsa x ((ap +1)g¢ + ap)
5¢p4c + ¢p + 4 + 4o

2k
The probability loss in the above reduction can be made negligibly small with an appropriate choice of k,
the length of the random value used during encryption. However, even while tgga is small, the qué factor
in the time bound makes the reduction for 3-round OAEP inefficient, because gqg > ¢p can be large. This
quadratic contribution in the number of hash queries also appears in the OAEP security bound and is the
major reason for requiring larger moduli.

The 4-round scheme of Abe et al. [2] improves on the efficiency of 3-round OAEP at the cost of one
extra Feistel round. Given an adversary A against the IND-CCA-security of the scheme that executes within
time t 4 and makes at most qg hash oracle queries and ¢p decryption queries, it is possible to construct an
inverter Z for the underlying permutation, say RSA, that executes within time t7, such that

Succ?(Z) > AdvGigpsr(A) —

t7 <ta+trsa X g2

4 2¢%  2qc(qp + 1)
ow CCA aG dp 4G 49D
Succi™(Z) = Advorepar(A) = o5 — ook — o3

In contrast to 3-round OAEP, the leading term in the probability loss is O((qg + gp)/2¥) because qg, ¢p
must be bounded by 2 to achieve semantic security. This allows to use smaller moduli and to get an
optimal ciphertext overhead for sufficiently large messages.

In comparison to the above schemes, we show the following bounds for ZAEP in Theorem [T}
tz <ta+ 2QGQD tsie + Q72) tcie

SuccW(T) > AdvShp(A) - g—f
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The probability loss in our reduction is negligible and the leading term in the time bound is linear in gg,
allowing the use of standard RSA moduli.

6 Related Work

Plaintext-awareness and Non-Redundancy Plaintext awareness is an intuitive concept, that has
proved difficult to formalize. The concept was introduced by Bellare and Rogaway for proving security
of OAEP [I0]. However, their work only dealt with a weak notion of plaintext-awareness that provides a
weaker, non-adaptive, notion of chosen-ciphertext security [33] rather than the adaptive notion of IND-CCA
security considered in this paper. Subsequently, Bellare et al. [7] enhanced the plaintext-awareness notion
to guarantee IND-CCA security. In an effort to accommodate it to the standard model, the definition
was further refined by Herzog, Liskov and Micali [30], Bellare and Palacio [§], Dent [23], and Birket and
Dent [13]. As noted in the introduction, plaintext-awareness is an appealing concept: it is satisfied by
most IND-CCA encryption schemes, and the common way to transform an IND-CPA scheme into an IND-
CCA scheme is to introduce redundancy that ensures plaintext-awareness. In fact, it has been observed
that existing schemes, such as OAEP, cease to guarantee IND-CCA security—but still retain IND-CPA
security—whenever the redundancy is omitted. Nevertheless, several works have shown that redundancy
and plaintext-awareness are not required to achieve chosen-ciphertext security. The initial results in this
direction are due to Phan and Pointcheval [36][37]; earlier work by Desai [24] achieves a similar goal,
but in the setting of symmetric encryption. Libert and Quisquater [32] build a redundancy-free identity-
based encryption scheme that achieves adaptive IND-CCA security. More recently, Boyen [19] proposes
a compact redundancy-free encryption scheme based on the Gap-Diffie-Hellman problem [34]. Whereas
Boyen’s scheme is definitely optimal from the point of view of bandwidth, with a 160-bit overhead only,
it is not really efficient because many costly full exponentiations must be computed for encryption and
decryption.

Formal proofs of cryptographic schemes The application of formal methods to cryptography has a
long and rich history. However, much of the the work in this area has focused on the formal verification of
cryptographic protocols in the symbolic model, which assumes that the underlying primitives are perfectly
secure. A seminal article by Abadi and Rogaway [I] shows, for the case of encryption, that symbolic
methods are indeed sound for the computational model (under strong but achievable assumptions on
primitives), and can thus be used to prove cryptographically meaningful guarantees. The computational
soundness result of Abadi and Rogaway has been extended in many directions; we refer the reader to [21]
for a survey on computational soundness.

In contrast, the application of formal proofs to cryptographic schemes is more recent, and less developed.
To our best knowledge, Impagliazzo and Kapron [31] were the first to propose a formal logic to reason
about indistinguishability. Using this logic, they prove that next-bit unpredictability implies pseudo-
randomness. However, the logic cannot handle adaptive adversaries with oracle access. Computational
Indistinguishability Logic [3] is a more recent logic that overcomes these limitations. Both of these works
provide logical foundations for reasoning about cryptographic systems, but lack tool support.

In an inspiring article, Halevi [29] advocates that cryptographic proofs should be computer-assisted,
and outlines the design of an automated tool to support cryptographic proofs that follow the code-based
game-playing approach. CryptoVerif [14] is among the first tools to have provided support for computer-
aided cryptographic proofs. It allows users to conduct, automatically or interactively, game-based concrete
security proofs of primitives or protocols. Games in CryptoVerif are modeled as processes in the applied
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m-calculus, and transitions are proved using a variety of methods, including process-algebraic (for instance
bisimulations) or purpose-built (for instance failure events) tools. To date, CryptoVerif has been applied to
prove the security of the Full-Domain Hash signature scheme [16] and several protocols; we refer to [15] for
a more detailed account of the examples proved with CryptoVerif. The work we report in this paper uses
EasyCrypt [4], a more recent tool that takes a programming language approach to cryptographic proofs.
EasyCrypt and its predecessor CertiCrypt have been used to verify a number of emblematic cryptographic
schemes, including OAEP [5]. As CryptoVerif, EasyCrypt and CertiCrypt aim to provide general frameworks
that capture common reasoning patterns in cryptography. An alternative is to develop specialized logics,
that are able to prove a particular property for a given class of schemes. A relevant example is the
Hoare logic of Courant et al. [22], which allows to prove automatically that an encryption scheme based
on trapdoor one-way functions, random oracles, concatenation and exclusive-or is IND-CPA or IND-CCA
secure. Their logic (or a suitable extension) uses a syntactic form of plaintext-awareness to conclude that
an encryption scheme is IND-CCA secure; hence it cannot be applied to conclude IND-CCA security of
ZAEP.

7 Conclusion

ZAEP is a surprisingly simple and efficient padding scheme that achieves adaptive chosen-ciphertext security
without introducing any redundancy. Using the EasyCrypt tool, we have built a machine-checked proof
that ZAEP yields IND-CCA security with a rather efficient reduction, whenever it is instantiated with
trapdoor permutations satisfying two intuitive algebraic properties that hold for the Rabin function and
small exponent RSA. The proof is significant beyond its intrinsic interest, as the first application of verified
security to a novel construction. Pleasingly, starting from a high-level intuition, we were able to build with
reasonable effort in less than a week and directly in EasyCrypt, the sequence of games for proving IND-CCA
security. The time needed to complete the proof stands in sharp contrast with the six man-monthes that
were reported needed to reproduce the proof of OAEP in CertiCrypt [5]. Thus, our work provides further
evidence that, as stated in [4], “EasyCrypt makes a significant step towards the adoption of computer-aided
proofs by working cryptographers”.

The ZAEP proof opens exciting perspectives for future work. On the one hand, it suggests that
automation can be significantly improved through user-defined and built-in strategies that automatically
generate a sequence of games. More speculatively, we are currently investigating whether strategies could
provide an effective means to automate IND-CPA and IND-CCA proofs for encryption schemes obtained
with methods of program synthesis. In a parallel thread of Workwe have implemented a synthesis tool that
generates encryption schemes based on trapdoor one-way permutations, random oracles, concatenation and
exclusive-or. In order to limit the set of candidate schemes to examine, we have constrained the generation
mechanism by Dolev-Yao filters that eliminate obviously insecure schemes. Thus, the synthesis algorithm
generates a list of candidates that is exhaustive up to a given number of operations. Noticeably, there
are only two candidates with a minimal number of operations (four): the (redundant-free and IND-CPA)
Bellare and Rogaway encryption scheme [9], which is known since 1993, and ZAEP, which has not been
studied before. The case of ZAEP makes us hopeful that automated synthesis of cryptographic schemes
may lead to surprising discoveries.

1 Joint work with Juan Manuel Crespo, Yassine Lakhnech, and César Kunz.
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A EasyCrypt Input File

100 cnst k : int.

100 cnst 1 : int.

102 cnst gD : int.

103

104 cnst zero_k : bitstring{k}.
105 cnst zero_l : bitstring{l}.
106

107 type pkey.

108 type skey.

109 type plaintext bitstring{1l}.

110 type ciphertext = bitstring{k} * bitstring{l}.
111

112 axiom k_pos : 0 < k.
113
114 axiom 1l_pos : 0 < 1.

115

116 axiom gD_pos : 0 < gD.

117

118 pop KG : () — pkey * skey.

119

120 op key_pair : (pkey, skey) — bool.

121

122 spec KG() : k1 = KG() ~ k2 = KG() : true = k1 = k2 A key_pair(fst(kl), snd(kl)).
123

124 op f : (pkey, bitstring{k} * bitstring{l}) — bitstring{k} * bitstring{l}.
125 op finv : (skey, bitstring{k} * bitstring{l}) — bitstring{k} * bitstring{l}.
126

127 axiom finv_1

128 V (pk:pkey, sk:skey), key_pair(pk, sk) =

129 V (xy:bitstring{k} * bitstring{l}), finv(sk, f(pk, xy)) = xy.
130

131 axiom finv_r

132 V (pk:pkey, sk:skey), key_pair(pk, sk) =

133 V (xy:bitstring{k} * bitstring{l}), f(pk, finv(sk, xy)) = xy.

134

135 (* Second-Input Eztractor *)

136 op sie : (pkey, bitstring{k} * bitstring{l}, bitstring{k}) — bitstring{l} option.
137

138 axiom sie_spec

139 V (pk:pkey, sk:skey), key_pair(pk, sk) =

140 V (y:bitstring{k} * bitstring{l}, r:bitstring{k}, s:bitstring{l}),

141 sie(pk, y, r) = Some(s) <=y = f(pk, (r, s)).

142

143 op find_sie_fst

144 (pkey, bitstring{k} * bitstring{l}, (bitstring{k}, bitstring{l}) map) —
145 bitstring{k} option.

146

147 axiom find_sie_fst_correct

148 V (pk:pkey, sk:skey), key_pair(pk, sk) =
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149 V (y:bitstring{k} * bitstring{l}, L:(bitstring{k}, bitstring{l}) map),
150 in_dom(fst (finv(sk, y)), L) =

151 find_sie_fst (pk, y, L) = Some(fst(finv(sk, y))).

152

153 axiom find_sie_fst_complete

154 V (pk:pkey, sk:skey), key_pair(pk, sk) =

155 V (y:bitstring{k} * bitstring{l}, L:(bitstring{k}, bitstring{l}) map),
156 —in_dom(fst (finv(sk, y)), L) =

157 find_sie_fst (pk, y, L) = None.

158

159 op find_sie_snd

160 (pkey, bitstring{kl}, (bitstring{k} * bitstring{l}, bitstring{l}) map) —
161 (bitstring{k} * bitstring{l}) option.

162

163 axiom find_sie_snd_correct

164 V (pk:pkey, sk:skey), key_pair(pk, sk) =

165 V (y:bitstring{k} * bitstring{l},

166 L:(bitstring{k} * bitstring{l}, bitstring{l}) map),
167 find_sie_snd (pk, fst(finv(sk, y)), L) = None =

168 —in_dom(y, L).

169

170 axiom find_sie_snd_complete
171 V (pk:pkey, sk:skey), key_pair(pk, sk) =
172 V (r:bitstring{k}, L:(bitstring{k} * bitstring{l}, bitstring{l}) map,

173 y:bitstring{k} * bitstring{ll}),
174 find_sie_snd (pk, r, L) = Some(y) =
175 in_dom(y, L) A r = fst(finv(sk, y)).

176

177 (¥ Common-Input Eztractor *)

178 op cie : (pkey, bitstring{k} * bitstring{l}, bitstring{k} * bitstring{l}) —
179 (bitstring{k} * bitstring{l} * bitstring{l}) option.

180

181 axiom cie_spec

182 V (pk:pkey, sk:skey), key_pair(pk, sk) =

183 V (y,z:bitstring{k} * bitstring{l}, r:bitstring{k}, s,t:bitstring{l}),

184 cie(pk, y, z) = Some((r, s, t)) <
185 y = £(pk, (r, 8)) Az = £(pk, (r, t)) Ay <> z.
186

187 op find_cie

188 (pkey, bitstring{k} * bitstring{l},

189 (bitstring{k} * bitstring{l},bitstring{l}) map) —
190 (bitstring{k} * bitstring{l}) option.

191

192 axiom find_cie_correct

193 V (pk:pkey, sk:skey), key_pair(pk, sk) =

194 V (y,z:bitstring{k} * bitstring{l},

195 L:(bitstring{k} * bitstring{l}, bitstring{l}) map),

196 find_cie(pk, y, L) = Some(z) =

197 in_dom(z, L) A fst(finv(sk, z)) = fst(finv(sk, y)) Ay <> z.
198

199 axiom find_cie_complete

200 V (pk:pkey, sk:skey), key_pair(pk, sk) =

201 V (y:ciphertext, L:(bitstring{k} * bitstring{l}, bitstring{l}) map),
202 find_cie(pk, y, L) = None =

203 V (y’:ciphertext),
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215

235

245

in_dom(y’, L) = fst(finv(sk, y’)) <> fst(finv(sk, y)) V y = y’.
(*¥* Derived lemmas, proved either here or in Coq (lemmas.v) *)
prover alt-ergo, cvc3.

lemma find_cie_correct’
V (pk:pkey, sk:skey), key_pair(pk, sk) =
V (y,z:bitstring{k} * bitstring{l},
L:(bitstring{k} * bitstring{1l}, bitstring{l}) map),
find_cie(pk, y, L) = Some(z) =
cie(pk, y, z) = Some((fst(finv(sk, y)), snd(finv(sk, y)), snd(finv(sk,

lemma sie_find_sie_fst
V (pk:pkey, sk:skey), key_pair(pk, sk) =
V (y:bitstring{k} * bitstring{ll}, L:(bitstring{k}, bitstring{l}) map),
find_sie_fst (pk, y, L) <> None =
sie(pk, y, proj(find_sie_fst(pk, y, L))) = Some(snd(finv(sk, y))).

axiom cie_find_cie
V (pk:pkey, sk:skey), key_pair(pk, sk) =
V (y:bitstring{k} * bitstring{l}, L:(ciphertext,bitstring{l}) map),
find_cie(pk, y, L) <> None =
cie(pk, y, proj(find_cie(pk, y, L))) =
Some ((fst(finv(sk, y)), snd(finv(sk, y)),
snd (finv (sk, proj(find_cie(pk, y,L)))))).

lemma find_sie_fst_upd
V (pk:pkey, sk:skey), key_pair(pk, sk) =
V (y:bitstring{k} * bitstring{l}, r:bitstring{kl}, g:bitstring{l},
L:(bitstring{k}, bitstring{l}) map),
find_sie_fst (pk, y, L[r <- gl]) = None <=
find_sie_fst(pk, y, L) = None A fst(finv(sk, y)) <> r.

lemma find_sie_snd_cie
V (pk:pkey, sk:skey), key_pair(pk, sk) =
V (y:bitstring{k} * bitstring{l}, L:(ciphertext, bitstring{l}) map),
find_sie_snd (pk, fst(finv(sk, y)), L) <> None =
find_cie(pk, y, L) <> None =

let r,s,t = proj(cie(pk, y, proj(find_cie(pk, y, L)))) in y = f(pk, (r,

axiom find_cie_find_sie_snd
V (pk:pkey, sk:skey), key_pair(pk, sk) =
V (y:bitstring{k} * bitstring{l}, L:(ciphertext, bitstring{l}) map),
find_cie(pk, y, L) = None =
—in_dom(y, L) =
find_sie_snd (pk, fst(finv(sk, y)), L) = None.

axiom find_sie_snd_upd
V (pk:pkey, sk:skey), key_pair(pk, sk) =
V (y:bitstring{k} * bitstring{l}, r:bitstring{k}, m:bitstring{l},
L:(ciphertext, bitstring{l}) map),
find_sie_snd (pk, r, L[y <- m]) = Nomne <—
find_sie_snd (pk, r, L) = None A fst(finv(sk, y)) <> r.
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259 axiom find_cie_upd
260 V (pk:pkey, sk:skey), key_pair(pk, sk) =
261 V (y,y’:ciphertext, m:bitstring{1l}, L:(ciphertext, bitstring{l}) map),

262 find_cie(pk, y, LIy’ <- m]) = None <—

263 find_cie(pk, y, L) = None A

264 (fst (finv(sk, y)) <> fst(finv(sk, y’)) Vy = y’).
265

266 axiom cie_spec’

267 V (pk:pkey, sk:skey), key_pair(pk, sk) =

268 V (y,z:bitstring{k} * bitstring{l}),

269 cie(pk, y, z) <> None = fst(finv(sk, y)) = fst(finv(sk, z)).

271 axiom find_cie_empty

272 V (pk:pkey, sk:skey), key_pair(pk, sk) =

273 V (y:bitstring{k} * bitstring{1l}), find_cie(pk, y, empty_map) = Nomne.
274

275 axiom find_sie_snd_empty

276 V (pk:pkey, sk:skey), key_pair(pk, sk) =

277 V(r:bitstring{k}), find_sie_snd(pk, r, empty_map) = None.

278

279 lemma xor_2 : V (x,y:bitstring{l}), x & (y & x) = y.

280

281 pred eq_except(M1, M2 : (’a, ’b) map, a : ’a) =

282 V (w: ’a), w <> a = Mi[w] = M2[w] A (in_dom(w,M1) <= in_dom(w,M2)).
283

284 lemma eqe_update_diff

285 v(Mi1, M2 : (’a, ’b) map, a, a’ : ’a, b : ’b),

286 eq_except (M1, M2, a) =

287 eq_except (M1[a’ <- b], M2[a’ <- b], a).

288

289 lemma eqe_update_same_L

290 v(Mi1, M2 : (’a, ’b) map, a : ’a, b : ’b),

291 eq_except (M1, M2, a) = eq_except (Mi[a <- b], M2, a).
292

203 lemma eqe_update_same_R

294 v(M1, M2 : (’a, ’b) map, a : ’a, b : ’b),

295 eq_except (M1, M2, a) = eq_except (M1, M2[a <- b], a).
296

297 type state.

298

200 adversary A1() : plaintext * plaintext * state

300 { bitstring{k} — bitstring{l}; ciphertext — plaintext 1I}.
301

302 adversary A2(st:state, c:ciphertext) : bool

303 { bitstring{k} — bitstring{l}; ciphertext — plaintext 1I}.
304

305 (*

306 ** Game CCA:

307 ** This 1s the standard CCA exzperiment

308 *)

300 game CCA = {

310 var pk : pkey

311 var sk : skey

312 var LG : (bitstring{k}, bitstring{l}) map
313 var cstar : ciphertext
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345

365

var cdef : bool
var q : int

fun G(x:bitstring{k}) : bitstring{l} = {
var g : bitstring{l} = {0,1}};
if (-min_dom(x, LG)) {
LG[x] = g;
}
return LG([x];

}

fun Enc(m:plaintext) : ciphertext = {
var g : bitstring{l};
var r : bitstring{k} = {0,1}%
g = G(xr);
return f(pk, (r, g ® m));
}

fun Dec(c:ciphertext) : plaintext = {
var r : bitstring{k};
var g, s, m : bitstring{l};
if (9 < gD A (mcdef V ¢ <> cstar)) {

= q + 1;

, s8) = finv(sk, c);

= G(r);

=g ® s;

r

85 0@ ~.Q

}
else {

m = zero_1l;
}

return m;

abs A1 = A1 {G, Dec}
abs A2 A2 {G, Dec}

fun Main() : bool = {
var mO, ml : plaintext;
var b, b’ : bool;
var st : state;
(pk, sk) = KGQO);
LG = empty_map;
cdef = false;
q = 0;
(m0, ml, st) = A1Q);
b = {0,1};
cstar = Enc(b ? mO : ml);
cdef = true;
b’ = A2(st, cstar);
return (b = b’);

(*
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369 ** Game G1:

370 ** — Introduce bad

371 ** - Hoist sampling of rstar
372 **% - Inline Enc(mb), G(rstar) in Main and remove Enc procedure
373 *)

374 game G1 = CCA

375 var rstar : bitstring{k}
376 var gstar : bitstring{1l}
377 var bad : bool

378

379 where G = {

380 var g : bitstring{1} = {0,1}};
381 if(x = rstar) { bad = true; }
382 if (-in_dom(x, LG)) {

383 LG[x] = g;

384 }

385 return LG[x];

386

387

388 and Main = {

389 var mO, ml : plaintext;
390 var b, b’ : bool;

391 var st : state;

392 (pk, sk) = KGQO);

393 rstar = {0,1}%;

394 bad = false;

395 LG = empty_map;

396 cdef = false;

397 q = 0;

398 (m0, ml, st) = A1Q);

399 b = {0,1};

400 if (min_dom(rstar, LG)) {
401 gstar = {0,1}}

402 LG[rstar] = gstar;

403 }

404 else {

405 bad = true;

406 gstar = LG[rstar];

407 }

408 cstar = f(pk, (rstar, gstar @& (b ? mO : ml)));
409 cdef = true;

410 b’ = A2(st, cstar);

411 return (b = b’);

412 }.

413

414 prover alt-ergo.

415 unset all.

416

417 equiv CCA_G1 : CCA.Main ~ G1.Main : true — ={res}.
418 proof.

419 inline(l) Enc, G; derandomize.

420 call (={pk,sk,LG,cstar,cdef,ql}); wp.

421 auto (={pk,sk,LG,cdef,q} A —cdef(2)).

422 swap(l) 2 1; trivial.

423 save.
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424
425 claim Pr_CCA_G1 : CCA.Main[res] = Gl1.Main[res] using CCA_G1.
426

427

428 (*

429 ** Game G2:

430 ** Replace inlined G(rstar) by a random sampling in Main

431 *)

432 game G2 = G1

433 where Main = {

434 var mO, ml : plaintext;
435 var b, b’ : bool;
436 var st : state;

437 (pk, sk) = KGQO);

438 rstar = {0,1}%;

439 bad = false;

440 LG = empty_map;

441 cdef = false;

442 q = 0;

443 (m0, ml, st) = A1Q);

444 b = {0,1};
445 gstar = {0,1}}

446 if (in_dom(rstar, LG)) { bad = true; 1}

447 cstar = f(pk, (rstar, gstar @& (b ? mO : ml1l)));
448 cdef = true;

449 b’ = A2(st, cstar);

450 return (b = b’);

451}

453 set eqe_update_diff, eqe_update_same_L, eqe_update_same_R.

455 equiv G1_G2 : Gl1.Main ~ G2.Main : true = ={bad} A (—bad(l) = ={res}).

456 proof.

457 call upto (bad) with

458 (={pk,sk,cstar ,rstar ,gstar,cdef ,q} A

459 (bad(l) <= in_dom(rstar(2), LG(2))) A eq_except (LG(1), LG(2), rstar(l))).

460 derandomize; wp.

461 call upto (bad) with

462 (={pk,sk,LG,rstar,cdef ,q} A —cdef(l) A (bad(l) <= in_dom(rstar(2), LG(2)))).
463 trivial.

464 save.

466 unset eqe_update_diff, eqe_update_same_L, eqe_update_same_R.

468 claim Pr_G1_G2 : | G1l.Main[res] - G2.Main[res] | < G2.Main[bad]
469 using G1_G2.

ar2 (*

473 ** Game G3:

474 ** Use optimistic sampling to sample sstar instead of gstar, where
475 k¥

476 ** G2: gstar ={O,1}l; sstar = gstar @ mb; cstar = f(rstar, sstar)

477 ** G3: sstar ={0,1}k; gstar = sstar @ mb; cstar = f(rstar, sstar)
478 Kk
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479
480
481
482
483

485

501

*% Remove dependency of b’ from b by eliminating
** and postponing sampling b
*)
game G3 = G2
var sstar bitstring{1}
where Main = {
var mO, mil plaintext;
var b, b’ bool;
var st state;
(pk, sk) = KGQO);
rstar = {0,1}%;
bad = false;
LG = empty_map;
cdef = false;
q = 0;
(m0, ml, st) = A1Q);
if (in_dom(rstar, LG)) { bad = true; 1}
sstar = {0,1}%
cstar = f(pk, (rstar, sstar));
cdef = true;
b’ = A2(st, cstar);
b = {0,1};
return (b = b’);
}.
set xor_1l_cancel, xor_l_zero_r, xor_l_assoc.

equiv G2_G3 G2.Main ~ G3.Main

gstar as dead-code

true —> ={bad,res}.

G3.Main[res] using G2_G3.

G3.Main [bad] using G2_G3.

proof.
swap(2) 13 -5.
call (={pk,sk,LG,rstar,cstar,cdef,q,bad}); wp.
rnd (sstar @ (b 7 mO m1)(2)); wp; rnd.
call (={pk,sk,LG,rstar,cdef,q,bad} A —cdef(l)).
derandomize; trivial.
save.
unset xor_1l_cancel, xor_1l_zero_r, xor_1l_assoc.
claim Pr_G2_G3 G2.Main[res] =
claim Pr_G2_G3’ G2.Main[bad] =
claim Pr_G3 G3.Main[res] = 1 / 2 compute.
(*
** Game G4:
#*% Introduce LG’ to store implicitly-defined values of G(r)
** Inline calls to G in Dec
** Apply optimistic-sampling to sample m rather than LG’[r] in Dec
*)
game G4 = G3
var LG’ (bitstring{k}, bitstring{l}) map
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53¢ where G = {

535 var g : bitstring{1} = {0,1}};

536 if (-in_dom(x, LG)) {

537 if (min_dom(x, LG’)) {

538 LG[x] = g;

539 }

540 else {

541 LG[x] = LG’ [x];

542 }

543 }

544 return LG[x];

545

546

547 and Dec = {

548 var r’ : bitstring{k} option;

549 var ¢’ : (bitstring{k} * bitstring{l}) option;
550 var r : bitstring{k};

551 var g, s, t, m : bitstring{l};

552 if (¢ < gD A (—cdef V ¢ <> cstar)) {

553 q=q + 1;

554 r’> = find_sie_fst (pk, c, LG);

555 if (r’ <> None) {

556 r = proj(r’);

557 s = proj(sie(pk, c, r)); (¥ ¢ = f(r, s) *)
558 g = LGI[r];

559 m =g @ s;

560 }

561 else {

562 r’> = find_sie_fst (pk, c, LG’);

563 if (r’ <> None) {

564 r = proj(r’);

565 s = proj(sie(pk, c, r)); (¥ ¢ = f(r, s) *)
566 g = LG’ [r];

567 m=god s;

568 }

569 else {

570 if (cdef A cie(pk, c, cstar) <> None) {
571 (r, s, t) = proj(cie(pk, c, cstar));
572 (¥ ¢ = f(r, s) N cstar = f(r, t) *)
573 g = {0,1}}

574 LG[r] = g;

575 m=g®d s;

576 }

577 else {

578 (r, s) = finv(sk, c);

579 m = {0,1});

580 LG’[r] = m @ s;

581 }

582 }

583 }

584 }

585 else {

586 m = zero_1l;

587 }

588 return m;
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580

590
501 and Main = {

592 var mO, ml : plaintext;

593 var b’ : bool;

594 var st : state;

595 (pk, sk) = KGQO);

596 rstar = {0,1}%

597 sstar = {0,1}}

598 cstar = f(pk, (rstar, sstar));

599 LG = empty_map;

600 LG’ = empty_map;

601 cdef = false;

602 q = 0;

603 (mO, ml, st) = A1Q);

604 cdef = true;

605 b’ = A2(st, cstar);

606 return true;

607 }.

608

609 set find_sie_fst_correct, find_sie_fst_complete, sie_find_sie_£fst,
610 xor_1l_cancel, xor_l_zero_r, xor_l_assoc,
611 cie_spec’, cie_spec, finv_1l, finv_r.

612

613 equiv G3_G4_Dec : G3.Dec ~ G4.Dec

614 (={pk,sk,rstar,sstar,cstar,cdef,q} A

615 (key_pair (pk, sk) A cstar = f(pk, (rstar,sstar)))(2) A

616 (bad(l) <=

617 (in_dom (fst (finv(sk, cstar)), LG) V in_dom(fst(finv(sk, cstar)), LG’))(2)) A
618 (V (x:bitstring{k}),

619 in_dom(x, LG(2)) = in_dom(x, LG(1)) A LG(1)[x] = LG(2)[x]) A
620 (V (x:bitstring{kl}),

621 —in_dom(x, LG(2)) = in_dom(x, LG(1)) =

622 in_dom(x, LG’(2)) A LG(1)[x] = LG’(2)[x]) A

623 (V (x:bitstring{k}),

624 —in_dom(x, LG(1)) = —in_dom(x, LG(2)) A —in_dom(x, LG’(2)))).
625 proof.

626 if; [ | triviall.

627 inline G.

628 case(2): find_sie_fst (pk,c,LG) <> Nome.
620 condf(l) at 6; [ | triviall.

630 condt(2) last; [ | trivial 1].

631 derandomize; wp; trivial.

632 condf(2) last; [ | triviall.

633 case(2): find_sie_fst (pk,c,LG’) <> Nomne.
634 condt(2) last; [ | triviall.

635 condf(l) at 6; [ | triviall.

636 derandomize; wp; trivial.

637 condf(2) last; [ | triviall.

638 condt(l) at 6; [ | triviall.

639 case(l): cdef A cie(pk,c, cstar) <> None.
640 condt(l) at 5; [ | triviall.

641 condt(2) last; [ | triviall.

642 derandomize; trivial.

643 derandomize; wp. rnd (m_0 @ snd(finv(sk,c)(2))); trivial.
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644 unset xor_1l_assoc.

645 trivial.

646 save .

647

648 equiv G3_G4_Dec : G3.Dec ~ G4.Dec

619 (={pk,sk,rstar,sstar,cdef,q} A —cdef(l) A

650 (key_pair (pk, sk)(1)) A (cstar = f(pk, (rstar,sstar)))(2) A

651 (bad(l) <

652 (in_dom (fst (finv(sk, cstar)), LG) V in_dom(fst(finv(sk, cstar)), LG’))(2)) A
653 (V (x:bitstring{k}),

654 in_dom(x, LG(2)) = in_dom(x, LG(1)) A LG(1)[x] = LG(2)[x]) A
655 (V (x:bitstring{k}),

656 —in_dom(x, LG(2)) = in_dom(x, LG(1)) =

657 in_dom(x, LG’(2)) A LG(1)[x] = LG’(2)[x]) A

658 (V (x:bitstring{k}),

659 —in_dom(x, LG(1)) = —in_dom(x, LG(2)) A —in_dom(x, LG’(2)))).
660 proof.

661 if; [ | triviall.

662 inline G.

663 case(2): find_sie_fst (pk,c,LG) <> Nome.
664 condf(l) at 6; [ | triviall.

665 condt(2) last; [ | triviall.

666 derandomize; wp; trivial.

667 condf(2) last; [ | triviall.

668 case(2): find_sie_fst (pk,c,LG’) <> Nomne.
669 condt(2) last; [ | triviall.

670 condf(l) at 6; [ | triviall.

671 derandomize; wp; trivial.

672 condf(2) last; [ | triviall.

673 condt(l) at 6; [ | triviall.

674 case(l): cdef A cie(pk,c,cstar) <> None.
675 condt(l) at 5; [ | triviall.

676 condt(2) last; [ | triviall.

677 derandomize; trivial.

678 set xor_1l_assoc.

679 derandomize; wp; rnd (m_0 @ snd(finv(sk,c)(2))); trivial.
680 unset xor_1l_assoc.

681 trivial.

682 save.

683

684 unset find_sie_fst_correct, find_sie_fst_complete, sie_find_sie_fst,
685 xor_l_cancel, xor_l_zero_r, xor_1l_assoc, cie_spec’, cie_spec.

686

687 equiv G3_G4 : G3.Main ~ G4.Main : true —

688 (bad(l) <—

689 (in_dom(fst (finv(sk, cstar)), LG) V in_dom(fst(finv(sk, cstar)), LG’))(2)).
690 app 1 1 ={pk,sk} A key_pair (pk,sk)(l).

691 derandomize; wp; apply: KG(); trivial.

692 swap(l) -11; swap(l) 9 -6.

693 call

694 (={pk,sk,rstar,sstar,cstar,cdef ,q} A

695 (key_pair (pk, sk)(1)) A (cstar = f(pk, (rstar,sstar)))(2) A

696 (bad(l) <~

697 (in_dom (fst (finv(sk, cstar)), LG) V in_dom(fst(finv(sk, cstar)), LG’))(2)) A

698 (V (x:bitstring{k}),
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699 in_dom(x, LG(2)) = in_dom(x, LG(1)) A LG(1)[x] = LG(2)[x]) A
700 (V (x:bitstring{k}),

701 —in_dom(x, LG(2)) = in_dom(x, LG(1)) =

702 in_dom(x, LG’(2)) A LG(1)[x] = LG’(2)[x]) A

703 (V (x:bitstring{kl}),

704 —in_dom(x, LG(1)) = —in_dom(x, LG(2)) A —in_dom(x, LG’(2)))).
705 Wp.

706 call

707 (={pk,sk,rstar,sstar,cdef ,q} A —cdef(l) A

708 (key_pair (pk, sk)(1)) A (cstar = f(pk, (rstar,sstar)))(2) A
709 (bad(l) <

710 (in_dom (fst (finv(sk, cstar)), LG) V in_dom(fst(finv(sk, cstar)), LG’))(2)) A
711 (V (x:bitstring{kl}),

712 in_dom(x, LG(2)) = in_dom(x, LG(1)) A LG(1)[x] = LG(2)[x]) A
713 (V (x:bitstring{k}),

714 —in_dom(x, LG(2)) = in_dom(x, LG(1)) =

715 in_dom(x, LG’(2)) A LG(1)[x] = LG’(2)[x]) A

716 (V (x:bitstring{k}),

717 —in_dom(x, LG(1)) = -in_dom(x, LG(2)) A —in_dom(x, LG’(2)))).
718 trivial.

719 save.

720

721 unset finv_1, finv_r.

722

723 claim Pr_G3_G4

724 G3.Main[bad] =

725 G4 .Main[in_dom (fst (finv(sk,cstar)), LG) V in_dom(fst(finv(sk,cstar)), LG’)]
726 using G3_G4.

727

728

720 (*

730 ** Game G5:

731 ** Introduce LD

732 ** Ciphertexts that implicitly-define values of G(r) are stored in LD
733 ** Remowe finv from Dec

734 *)

735 game G5 = G4

736 var LD : (bitstring{k} * bitstring{l}, bitstring{l}) map

737

738  where G = {

739 var ¢ : ciphertext option;

740 var g : bitstring{1} = {0,1};
741 if (-in_dom(x, LG)) {

742 ¢ = find_sie_snd (pk, x, LD);
743 if (c = None) {

744 LG[x] = g;

745 }

746 else {

747 LG[x] = LD[proj(c)] & proj(sie(pk, proj(c), x));
748 }

749 }

750 return LG[x];

751}

752

753 and Dec = {
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754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
T
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808

var r’ : bitstring{k} option;
var c’ : (bitstring{k} * bitstring{l}) option;
var r : bitstring{k};
var g, s, t, m : bitstring{l};
if (9 < gD A (mcdef V ¢ <> cstar)) {
Q=9+
r’> = find_sie_fst (pk, c, LG);
if (r’ <> Nome) {

r = proj(r’);
s = proj(sie(pk, c, r)); (* ¢ = f(r, s) *)
g = LG[r];
m =g @ s;
}
else {
if (in_dom(c, LD)) {
m = LD[c];
}
else {
¢’ = find_cie(pk, c, LD);
if (c’ <> Nomne) {
(r, s, t) = proj(cie(pk, c, proj(c’)));
(* ¢ = f(r, s) N c’ = f(r, t) *)
g = LD[proj(c’)] & s;
m=got;
}
else {
if (cdef A cie(pk, c, cstar) <> None) {
(r, s, t) = proj(cie(pk, c, cstar));
(¥ ¢ = f(r, s) N cstar = f(r, t) *)
g = {0, 1}
LG[r] = g;
m=g® s;
}
else {
m = {0,1}%
LD[c] = m;
}
}
}
}
}
else {
m = zero_1l;
}
return m;
}
and Main = {
var mO, ml : plaintext;
var b’ : bool;
var st : state;

(pk, sk) = KGQO);

rstar = {0,1}%

sstar = {0,1}%

cstar = f(pk, (rstar, sstar));
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809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830

835

bad = false;
LG = empty_map;
LD = empty_map;
cdef = false;

q = 0;

(m0, ml, st) = A1(Q);
cdef = true;

b’ = A2(st, cstar);

return true;

set find_sie_fst_correct , find_sie_fst_complete, sie_find_sie_fst, xor_2.

equiv G4_G5_Dec : G4.Dec ~ G5.Dec
(={pk,sk,LG,cstar,cdef ,q} A key_pair (pk, sk)(l) A
(V (x:ciphertext),
find_sie_fst (pk(l), x, LG’(l)) = None <—
find_cie (pk(2), x, LD(2)) = None A —in_dom(x, LD(2))) A
(V (r:bitstring{k}),
—in_dom(r,LG’(1l)) <= find_sie_snd (pk(2), r, LD(2))
(V (x:ciphertext),
let r,s = finv(sk(l), x) in
(in_dom(x, LD(2)) = in_dom(r, LG’(1)) A LG’(1)[r]
proof.
if; [ | triviall.
case(l): find_sie_fst (pk, c, LG) <> None.
condt last; trivial.
condf last; [ | trivial | triviall.
case(2): in_dom(c, LD).
condt(2) last; [ | triviall.
condt(l) last; [ | triviall.
trivial.
condf(2) last; [ | triviall.
case(l): find_sie_fst (pk, ¢, LG’) <> None.
condt(l) last; [ | triviall.
condt(2) last; [ | triviall.
trivial.
app 0 O
(={c,pk,sk,LG,cstar,cdef} A key_pair (pk,sk)(1) A
(V (x:ciphertext),
find_sie_fst (pk,x,LG’)(l) = None <—
find_cie (pk,x,LD)(2) = None A —in_dom(x, LD(2))) A
(V (x: ciphertext),
let r,s = finv(sk(l), x) in
in_dom(x,LD(2)) = in_dom(r,LG’(1)) A LG’(1)[r] = s & LD(2)[x]) A
(cdef(2) <> true V c(2) <> cstar(2)) A
—in_dom(c,LD)(2) A
let ¢’ = find_cie(pk, c, LD)(2) in
c’ <> None A in_dom(proj(c?’), LD(2))).
set find_cie_correct.
trivial.
unset find_cie_correct.
set sie_find_sie_fst, cie_find_cie, find_cie_correct’,

None) A

s @ LD(2)[x1))).

cie_spec, finv_1l, finv_r, xor_l_cancel, xor_l_zero_r, xor_l_assoc.
app 0 0 (
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864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918

={c,pk,sk,LG,cstar,cdef} A key_pair (pk(l),sk(l)) A

find_sie_fst (pk,c,LG’)(l) <> None A
(V (x_0:ciphertext),
let r,s = finv(sk(l),x_0) in

in_dom(x_0,LD(2)) = LG’(1)[r] = s & LD(2)[x_01) A

let ¢’ = find_cie(pk, c, LD){(2) in

let r’, s, t = proj(cie(pk, c, proj(c?)))(2) in

let r = proj(find_sie_fst (pk, ¢, LG’))(1) in

c’ <> None A
r =r’ A
c(l) = £(pk, (xr, s))(1) A
proj(c?’) = f(pk, (r, t))(2) A
in_dom(proj(c?’), LD(2)) A
r = fst(finv (sk(1l), proj(c’)))).
trivial.
app 0 0 (
let ¢’ = find_cie(pk, ¢, LD)(2) in

let _, s, t = proj(cie(pk, c, proj(c’)))(2) in
let r = proj(find_sie_fst (pk, ¢, LG’))(1l) in

sie(pk,c,r)(l) = Some(s) A
LG’(1)[r]l = t & LD(2)[proj(c’)I1).
trivial.
trivial.

condf(l) last; [ | triviall.

condf(2) last; [ | triviall.

case(l): cdef A cie(pk, c, cstar) <> None.
condt(l) last; [ | triviall.

condt(2) last; [ | triviall.

trivial.

condf(l) last; [ | triviall.

condf(2) last; [ | triviall.

set find_sie_fst_upd, find_sie_snd_upd, find_cie_upd.

trivial.
save.

timeout 5.

equiv G4_G5_G : G4.G ~ G5.G

(={pk,sk,LG,cstar,cdef ,q} A key_pair (pk, sk)(1) A

(V (x:ciphertext),
find_sie_fst (pk(l), x, LG’(1)) = None =

find_cie (pk(2), x, LD(2)) = Nome A —in_dom(x, LD(2))) A

(V (r:bitstring{k}),

—in_dom(r,LG’(1)) <= find_sie_snd (pk(2), r, LD(2))

(V (x:ciphertext),
let r,s = finv(sk(l), x) in

in_dom(x, LD(2)) = in_dom(r, LG’(1)) A LG’(1)[r]

proof.

case(l): —in_dom(x, LG).

condt last; [ | trivial | triviall.
case(l): —in_dom(x, LG’).

condt(l) last; [ | triviall.

condt(2) last; [ | triviall.
trivial.
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| triviall.
| triviall.

919 condf(l) last;
920 condf(2) last;
921 unset xor_2.
922 set find_sie_snd_complete, xor_l_comm.
923 trivial.
924 app 0 0 (

[
[

925 ={x,pk,sk,LG} A key_pair (pk,sk)(l) A

926 let ¢’ = find_sie_snd (pk,x,LD)(2) in

927 c’ <> None A in_dom (x,LG’)(1) A

928 LG’ (1) [fst (finv (sk(l),proj(c’)))] =

929 snd (finv (sk(l),proj(c’))) @ LD(2)[proj(c’)]); trivial.
930 condf last; trivial.

931 save.

932

933 set find_sie_snd_empty, find_cie_empty.

934

935 equiv G4_G5 : G4.Main ~ G5.Main : true —

936 (in_dom(fst(finv(sk,cstar)), LG) V in_dom(fst(finv(sk,cstar)), LG’))(1) =
937 (in_dom(fst(finv(sk,cstar)), LG) V

938 find_sie_snd (pk,fst(finv(sk,cstar)), LD) <> Nome)(2).

939 proof.

940 app 1 1 ={pk,sk} A key_pair (pk(l),sk(1)).

941 derandomize; wp; apply: KG(); trivial.

942 auto

943 (={pk,sk,LG,cstar,cdef ,q} A key_pair (pk,sk)(l) A

944 (V (x:ciphertext),

945 find_sie_fst (pk(l),x,LG’(1)) = None <

946 find_cie (pk(2),x,LD(2)) = None A —in_dom(x,LD(2))) A

947 (V (r:bitstring{k}),

948 —in_dom(r,LG’(l)) <= find_sie_snd (pk(2), r, LD(2)) = None) A

949 (V (x:ciphertext),

950 let r,s = finv(sk(l),x) in

951 in_dom(x, LD(2)) = in_dom(r, LG’(1)) A LG’(1)[r] = s @ LD(2)[x1)).
952 trivial.

953 save.

955 claim Pr_G4_G5
956 G4 .Main[in_dom (fst (finv(sk,cstar)), LG) V in_dom(fst(finv(sk,cstar)), LG’)] <
957 G5.Main[in_dom(fst (finv (sk,cstar)), LG) V

958 find_sie_snd (pk,fst(finv(sk,cstar)), LD) <> Nonel
959 using G4_G5.

960

961

962 game OW = {

963 var pk : pkey

964 var sk : skey

965 var LG : (bitstring{k}, bitstring{l}) map

966 var LD : (bitstring{k} * bitstring{l}, bitstring{l}) map
967 var cstar : ciphertext

968 var cdef : bool

969 var q : int

970

971 fun G(x:bitstring{kl}) : bitstring{l} = {

972 var ¢ : ciphertext option;

973 var g : bitstring{1} = {0,1};
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974 if (-in_dom(x, LG)) {

975 ¢ = find_sie_snd (pk, x, LD); (* t_stie * gD *)
976 if (c = None) {

977 LG[x] = g;

978 }

979 else {

980 LG[x] = LD[proj(c)] & proj(sie(pk,proj(c), x));
981 }

982 }

983 return LG[x];

984 }

985

986 fun Dec(c:ciphertext) : plaintext = {

987 var r’ : bitstring{k} option;

988 var ¢’ : (bitstring{k} * bitstring{l}) option;
989 var r : bitstring{k};

990 var g, s, t, m : bitstring{l};

991 if (¢ < gD A (—cdef V ¢ <> cstar)) {

992 q=q + 1;

993 r’> = find_sie_fst (pk, c, LG); (* t_ste * qG *)
994 if (r’ <> Nomne) {

995 r = proj(r’);

996 s = proj(sie(pk, c, r));

997 g = LG[r];

998 m=g® s;

999 }

1000 else {

1001 if (in_dom(c, LD)) {

1002 m = LD[c];

1003 }

1004 else {

1005 ¢’ = find_cie(pk, c, LD); (* t_cie * gD *)
1006 if (c’ <> Nomne) {

1007 (r, s, t) = proj(cie(pk, c, proj(c’)));
1008 g = LD[proj(c’)] & s;

1009 m=got;

1010 }

1011 else {

1012 if (cdef A cie(pk, c, cstar) <> Nomne) { (* t_cte
1013 (r, s, t) = proj(cie(pk, c, cstar));
1014 g = {0, 1}

1015 LG[r] = g;

1016 m=g® s;

1017 }

1018 else {

1019 m = {0,1}%

1020 LD[c] = m;

1021 }

1022 }

1023 }

1024 }

1025 }

1026 else {

1027 m = zero_1l;

1028 }
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1029 return m;

1030 }

1031

1032 abs A1 = A1 {G, Dec}
1033 abs A2 A2 {G, Dec}

1034

1035 fun B(z:bitstring{k} * bitstring{l}) : bitstring{k} * bitstring{l} = {
1036 var mO, ml : plaintext;

1037 var b’ : bool;

1038 var r’ : bitstring{k} option;

1039 var r : bitstring{k};

1040 var s, t : bitstring{l};

1041 var c¢c : ciphertext option;

1042 var st : state;

1043 LG = empty_map;

1044 LD = empty_map;

1045 cstar = z;

1046 cdef = false;

1047 q = 0;

1048 (m0, ml, st) = A1(Q);

1049 cdef = true;

1050 b’ = A2(st, cstar);

1051 r’> = find_sie_fst (pk, cstar, LG); (* t_ste * G *)
1052 if (r’ <> None) {

1053 r = proj(r’);

1054 s = proj(sie(pk, cstar, r));

1055 }

1056 else

1057 {

1058 c = find_cie(pk, cstar, LD); (* t_cie * gD *)
1059 if (¢ <> None) {

1060 (r, s, t) = proj(cie(pk, cstar, proj(c)));
1061 }

1062 else {

1063 r = zero_k;

1064 s = zero_1l;

1065 }

1066 }

1067 return (r, s);

1068 }

1069

1070 var xstar : bitstring{k}

1071 var ystar : bitstring{l}

1072

1073 fun Main () : bool = {

1074 var x : bitstring{k};

1075 var y : bitstring{l};

1076 (pk, sk) = KGQ);

1077 xstar = {0,1}%

1078 ystar = {0,1}%;

1079 (x,y) = B(f(pk, (xstar,ystar)));

1080 return (f(pk, (x,y)) = f(pk, (xstar,ystar)));
1081}

1082 }.

1083
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1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138

set find_cie_find_sie_snd, find_sie_snd_cie, find_cie_correct’.

equiv G5_0W : G5.Main ~ 0OW.Main : true —

in_dom (fst (finv (sk(l),cstar(l))), LG(1)) V
find_sie_snd (pk(l),fst (finv (sk(l),cstar(l))), LD(l)) <> None =
—in_dom(cstar(2), LD(2)) = res(2).

proof.

app 1 1 ={pk,sk} A key_pair (pk(l),sk(1)).

derandomize; wp; apply: KG(); trivial.

inline B; derandomize.

app 15 13 (={pk,sk,LG,LD,cstar,cdef,q} A key_pair (pk,sk)(l) A

(cstar = f(pk,(xstar,ystar)))(2) ).

auto (={pk,sk,LG,LD,cstar,cdef,q} A key_pair (pk,sk)(l)); trivial.
trivial.
save.

unset find_cie_find_sie_snd, find_sie_snd_cie, find_cie_correct’.
claim Pr_G5_0W’

G5.Main[in_dom (fst (finv(sk,cstar)), LG) V
find_sie_snd (pk,fst(finv(sk,cstar)), LD) <> Nomne] <
OW.Main[res V in_dom(cstar, LD)]
using G5_0W.

claim Pr_0OW
OW.Main[res V in_dom(cstar,LD)] < OW.Main[res] + OW.Main[in_dom(cstar ,LD)]
compute.

claim Pr_G5_0W
G5.Main[in_dom (fst (finv(sk,cstar)), LG) V
find_sie_snd (pk,fst(finv(sk,cstar)), LD) <> None] <
OW.Main[res] + OW.Main[in_dom(cstar, LD)].

claim CCA_0OW
| CCA.Main[res] - 1 / 2 | < OW.Main[res] + OW.Main[in_dom(cstar, LD)].

(*
** Follows a rather technical sequence of games to bound
** OW.Main[in_dom(cstar,LD)]

*)
game 0W1 = {
var pk : pkey
var sk : skey
var LG : (bitstring{k}, bitstring{l}) map
var LD : (bitstring{k} * bitstring{l}, bitstring{l}) map
var LC : ciphertext list
var cstar : ciphertext
var cdef : bool
var q : int

fun G(x:bitstring{k}) : bitstring{l} = {
var c¢c : ciphertext option;
var g : bitstring{l} = {0,1};
if (min_dom(x, LG)) {
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1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193

¢ = find_sie_snd (pk, x, LD); (* t_stie * gD *)

if (¢ = None) {

LG[x] = g;
}
else {
LG[x] = LD[proj(c)] & proj(sie(pk,
}
}
return LGI[x];
}
fun Decl(c:ciphertext) : plaintext = {
var r’ : bitstring{k} option;
var c’ : (bitstring{k} * bitstring{l})
var r : bitstring{k};

var g, s, t, m : bitstring{l};
if (g < gD) {
qQ =49+ 1;

r’> = find_sie_fst (pk, c, LG); (* t_sie * qG *)

if (r’> <> Nomne) {
proj(r?);
proj(sie(pk, c, r));
LG[r];

=g ® s;

80 n K
1]

}
else {
if (in_dom(c, LD)) {
m = LD[c];
}

else {

¢’ = find_cie(pk, c, LD); (* t_cie * gD *)

if (c’ <> Nomne) {

proj (c),

option;

(r, s, t) = proj(cie(pk, c, proj(c’)));

g = LD[proj(c’)] & s;
m=got;
}
else {
m = {07 1}l;
LD[c] = m;
LC = c :: LC;

}
else {

m = zero_1l;
}

return m;

fun Dec2(c:ciphertext) : plaintext = {
var r’ : bitstring{k} option;
var c’ : (bitstring{k} * bitstring{l})
var r : bitstring{k};
var g, s, t, m : bitstring{l};

option;
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1194 if (@ < gD A (—cdef V ¢ <> cstar)) {

1195 q=q + 1;

1196 r’> = find_sie_fst (pk, c, LG); (* t_ste * G *)
1197 if (r’ <> Nomne) {

1198 proj(r?’);

1199 proj(sie(pk, c, r));

1200 LG[r];

1201 g D s;

1202 }

1203 else {

1204 if (in_dom(c, LD)) {

1205 m = LD[c];

1206 }

1207 else {

1208 ¢’ = find_cie(pk, c, LD); (* t_cie * gD *)
1209 if (¢’ <> None) {

1210 (r, s, t) = proj(cie(pk, c, proj(c’)));

1211 g = LD[proj(c’)] & s;

1212 m=godt;

1213 }

1214 else {

1215 if (cdef A cie(pk, c, cstar) <> Nome) { (* t_cie *)
1216 (r, s, t) = proj(cie(pk, c, cstar));

1217 g = {0,1}

1218 LG[r] = g;

1219 m=g®d s;

1220 }

1221 else {

1222 m = {0,1}%;

1223 LD[c] = m;

1224 }

1225 }

1226 }

1227 }

1228 }

1229 else {

1230 m = zero_1l;

1231 }

1232 return m;

1233}
1234
1235 abs A1l
1236 abs A2

80 n K
1]

A1 {G, Decl}
A2 {G, Dec2}

1237

1238 var zstar : bitstring{k} * bitstring{l}
1239

1240 fun Main () : bool = {

1241 var mO, ml : plaintext;
1242 var b’ : bool;

1243 var st : state;

1244 (pk, sk) = KGQ);

1245 LG = empty_map;

1246 LD = empty_map;

1247 Lc = []1;

1248 cdef = false;
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1249 q = 0;

1250 (mO0, ml, st) = A1Q);
1251 zstar = ({0,1}%, {0,1});
1252 cstar = f(pk, zstar);
1253 cdef = true;

1254 b’ = A2(st, cstar);
1255 return true;

1256

1257 }.

1258

1259 equiv OW_0OW1 : OW.Main ~ 0OW1.Main

1260 true = in_dom(cstar, LD)(l) = mem(cstar(2), LC(2)).
1261 proof.

1262 1inline B; derandomize; wp.

1263 swap(2) [11-12] -6.

1264 call (={pk,sk,LG,LD,cstar,cdef,q} A cdef(l) A

1265 (in_dom(cstar, LD)(1) = mem(cstar(2), LC(2)))).
1266 WD .

1267 call (={pk,sk,LG,LD,cstar,cdef,q} A —cdef(l) A
1268 (in_dom(cstar, LD)(1) = mem(cstar(2), LC(2)))).
12690 trivial.

1270 save.

1271

1272 claim Pr_OW_OW1 : OW.Main[in_dom(cstar, LD)] < 0OW1.Main[mem(cstar, LC)]
1273 using OW_0W1.

1274
1275 op msb : bitstring{k+1} — bitstring{k}.
1276 op lsb : bitstring{k+1} — bitstring{l}.

1277 op [||]1 : (bitstring{k}, bitstring{l}) — bitstring{k+1} as app_kl.
1278

1279 axiom app_inj : V (z:bitstring{k+1}), (msb(z) | 1lsb(z)) = =z.

1280

1281 spec rnd_pair ()

1282 xyl = (0,1}, {0,1}) ~ xy2 = {0,1}"(k+1)

1283 true = xyl1 = (msb(xy2), 1lsb(xy2)).

1284
1285 game 0W2 = 0W1l

1286 var zstar’ : bitstring{k+1l}

1287

1288 where Main = {

1289 var mO, ml : plaintext;

1290 var b’ : bool;

1291 var st : state;

1292 (pk, sk) = KGQ);

1293 LG = empty_map;

1294 LD = empty_map;

1295 LC = [];

1296 cdef = false;

1297 q = 0;

1298 (m0O, ml, st) = A1Q);

1299 zstar’ = {0,1} " (k+1);

1300 cstar = f(pk, (msb(zstar’), lsb(zstar’)));
1301 cdef = true;

1302 b’ = A2(st, cstar);

1303 return true;
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1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358

equiv OW1_0W2

OW1l.Main ~ 0OW2.Main

,cdef ,q}).

trivial.

true — ={cstar, LC}.

proof.

app 7 7 (={pk,sk,st,LG,LD,LC,cdef,ql}).

call (={pk,sk,LG,LD,LC

derandomize; trivial.

app 2 2 (={pk,sk,st,LG,LD,LC,cdef,q,cstar}).
wp; apply: rnd_pair ();

auto (={pk,sk,LG,LD,LC,cdef,q,cstarl}).

save.

claim Pr_0wi1_0Ww2
using 0W1_0W2.

game 0W3 = 0W2

var LZ
where Decl = {
var r’
var c’
var r
var g, s, t, m
if (g < qD) {
qQ =4q + 1;
r’> = find_sie_fst (
if (r’ <> Nomne) {
= proj(r’);
proj(sie(pk,
LG[r];
=g ®d s;

bit

80 n R
]

}
else {

if (in_dom(c,
LD [c];

LD
m =
}
else {
c’ = find_cie(
if (c’ <> None
(r, s, t) =
g = LD[proj(
m=g®®t;
}
else {
m = {0,1}%
LD[c] = m;
Lz =

}
else {

m = zero_1l;

(fst (finv (sk,

0W1.Main[mem(cstar,

bitstring{k+1} 1list

bitstring{k} option;
(bitstring{k} * bitstring{ll}) option;
bitstring{k};

string{1l};

pk, c, LG);

r));

C,

) A

pk, LD);
) {
proj (cie(pk,

c’)] & s;

C,

c)) |

LC)] = 0W2.Main[mem(cstar,

(* t_sie * qG *)

(*¥ t_cie * gD *)

c, proj(c’)));

snd (finv (sk, c))) LZ;
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1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410

return m;

}
and Main = {
var mO, ml : plaintext;
var b’ : bool;
var st : state;
(pk, sk) = KGQO);

LG = empty_map;
LD = empty_map;

Lz = [1;

cdef = false;

q=0;

(m0, ml, st) = A1Q);

zstar’ = {0,1} " (k+1);

cstar = f(pk, (msb(zstar’), lsb(zstar’)));
cdef = true;

b’ = A2(st, cstar);

return true;

set gD_pos, k_pos, 1l_pos.

equiv 0W2_0W3 : 0W2.Main ~ 0W3.Main
true =
(length (LZ(2)) < gD) A
(mem (cstar(l), LC(l)) = mem(msb(zstar’(2)) | lsb(zstar’(2)), LZ(2))).
proof.
app 1 1 ={pk,sk} A key_pair (pk(l),sk(1)).
derandomize; wp; apply: KG(); trivial.
call (={pk,sk,LG,LD,cstar,cdef,q,zstar’} A key_pair (pk,sk)(l) A cdef(l) A
cstar(l) = f£(pk(l),(msb(zstar’(l)),1lsb (zstar’(1)))) A
length (LZ(2)) < q{2) A q(2) < gD A
(mem(cstar(l), LC(l)) = mem(zstar’(2), LZ(2)))).
wp; rnd.
call (={pk,sk,LG,LD,cdef,q} A key_pair (pk,sk)(l) A —cdef(l) A
length(LZ(2)) < q(2) A q(2) < gD A
(V (z:bitstring{k+1}),
mem (£ (pk(1), (msb(z), 1sb(z))), LC(1)) = mem(z, LZ(2)))).
trivial.
save.

claim Pr_0w2_0W3
0W2.Main [mem(cstar, LC)] < OW3.Main[mem(zstar’, LZ) A length(LZ) < gD]
using 0W2_0W3.

claim Pr_0w3
0W3.Main [mem(zstar’, LZ) A length(LZ) < gD] < gD / (2 =~ (k+1))

compute.

claim conclusion
| CCA.Main[res] - 1 / 2 | < OW.Main[res] + gD / (2 =~ (k+1)).
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