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Abstract

Forty years ago, Wiesner pointed out that quantum mechanics raises the striking possibility
of money that cannot be counterfeited according to the laws of physics. We propose the first
quantum money scheme that is

(1) public-key—meaning that anyone can verify a banknote as genuine, not only the bank
that printed it, and

(2) cryptographically secure, under a “classical” hardness assumption that has nothing to do
with quantum money.

Our scheme is based on hidden subspaces, encoded as the zero-sets of random multivariate
polynomials. A main technical advance is to show that the “black-box” version of our scheme,
where the polynomials are replaced by classical oracles, is unconditionally secure. Previously,
such a result had only been known relative to a quantum oracle (and even there, the proof was
never published).

Even in Wiesner’s original setting—quantum money that can only be verified by the bank—
we are able to use our techniques to patch a major security hole in Wiesner’s scheme. We
give the first private-key quantum money scheme that allows unlimited verifications and that
remains unconditionally secure, even if the counterfeiter can interact adaptively with the bank.

Our money scheme is simpler than previous public-key quantum money schemes, including
a knot-based scheme of Farhi et al. The verifier needs to perform only two tests, one in the
standard basis and one in the Hadamard basis—matching the original intuition for quantum
money, based on the existence of complementary observables.

Our security proofs use a new variant of Ambainis’s quantum adversary method, and several
other tools that might be of independent interest.

1 Introduction

“Information wants to be free”—this slogan expresses the idea that classical bits, unlike traditional
economic goods, can be copied an unlimited number of times. The copyability of classical infor-
mation is one of the foundations of the digital economy, but it is also a nuisance to governments,
publishers, software companies, and others who wish to prevent copying. Today, essentially all
electronic commerce involves a trusted third party, such as a credit card company, to mediate trans-
actions. Without such a third party entering at some stage, it is impossible to prevent electronic
cash from being counterfeited, regardless of what cryptographic assumptions one makes.1
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1The recent Bitcoin system is an interesting illustration of this principle: it gets rid of the centralized third party,

but still uses a “third party” distributed over the community of Bitcoin users.
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Famously, though, quantum bits do not “want to be free” in the same sense that classical bits
do: in many respects, they behave more like gold, oil, or other traditional economic goods. Indeed,
the No-Cloning Theorem, which is an immediate consequence of the linearity of quantum mechanics,
says that there is no physical procedure that takes as input an unknown2 quantum pure state |ψ〉,
and that produces as output two unentangled copies of |ψ〉, or even a close approximation thereof.
The No-Cloning Theorem is closely related to the uncertainty principle, which says that there exist
“complementary” properties of a quantum state (for example, its position and momentum) that
cannot both be measured to unlimited accuracy.3

1.1 The History of Quantum Money

But can one actually exploit the No-Cloning Theorem to achieve classically-impossible crypto-
graphic tasks? This question was first asked by Wiesner [39], in a remarkable paper written
around 1970 (but only published in 1983) that arguably founded quantum information science. In
that paper, Wiesner proposed a scheme for quantum money that would be physically impossible to
clone. In Wiesner’s scheme, each “banknote” would consist of a classical serial number s, together
with a quantum state |ψs〉 consisting of n unentangled qubits, each one |0〉, |1〉, |0〉+|1〉√

2
, or |0〉−|1〉√

2
with equal probability. The issuing bank would maintain a giant database, which stored a classical
description of |ψs〉 for each serial number s. Whenever someone wanted to verify a banknote, he or
she would take it back to the bank—whereupon the bank would use its knowledge of how |ψs〉 was
prepared to measure each qubit in the appropriate basis, and check that it got the correct outcomes.
On the other hand, it can be proved [31] that someone who did not know the appropriate bases
could copy the banknote with success probability at most (3/4)n.

Though historically revolutionary, Wiesner’s money scheme suffered at least three drawbacks:

(1) The “Verifiability Problem”: The only entity that can verify a banknote is the bank that
printed it.

(2) The “Online Attack Problem”: A counterfeiter able to submit banknotes for verification,
and get them back afterward, can easily break Wiesner’s scheme ([28, 3]; see also Section 7).

(3) The “Giant Database Problem”: The bank needs to maintain a database with an entry
for every banknote in circulation.

In followup work in 1982, Bennett, Brassard, Breidbart, and Wiesner [14] (henceforth BBBW)
at least showed how to eliminate the giant database problem: namely, by generating the state
|ψs〉 =

∣∣ψfk(s)
〉
using a pseudorandom function fk, with key k known only by the bank. Unlike

Wiesner’s original scheme, the BBBW scheme is no longer information-theoretically secure: a
counterfeiter can recover k given exponential computation time. On the other hand, a counterfeiter
cannot break the scheme in polynomial time, unless it can also distinguish fk from a random
function.

2The adjective “unknown” is needed because, if we knew a classical description of a procedure to prepare |ψ〉, then
of course we could run that procedure multiple times to prepare multiple copies.

3Indeed, if we could copy |ψ〉, then we could violate the uncertainty principle by measuring one observable (such
as position) on some copies, and a complementary observable (such as momentum) on other copies. Conversely, if
we could measure all the properties of |ψ〉 to unlimited accuracy, then we could use the measurement results to create
additional copies of |ψ〉.
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These early ideas about quantum money inspired the field of quantum cryptography [13]. But
strangely, the subject of quantum money itself lay dormant for more than two decades, even as
interest in quantum computing exploded. However, the past few years have witnessed a “quantum
money renaissance.” Some recent work has offered partial solutions to the verifiability problem: for
example, Mosca and Stebila [32] suggested that the bank use a blind quantum computing protocol
to offload the verification of banknotes to local merchants, while Gavinsky [23] proposed a variant
of Wiesner’s scheme that requires only classical communication between the merchant and bank.

However, most of the focus today is on a more ambitious goal: namely, creating what Aaronson
[3] called public-key quantum money, or quantum money that anyone could authenticate, not just
the bank that printed it. As with public-key cryptography in the 1970s, it is far from obvious a
priori whether public-key quantum money is possible at all. Can a bank publish a description
of a quantum circuit that lets people feasibly recognize a state |ψ〉, but does not let them feasibly
prepare or even copy |ψ〉?

Aaronson [3] gave the first formal treatment of public-key quantum money, as well as related
notions such as copy-protected quantum software. He proved that there exists a quantum oracle
relative to which secure public-key quantum money is possible. Unfortunately, that result, though
already involved, did not lead in any obvious way to an explicit (or “real-world”) quantum money
scheme.4 He raised as an open problem whether secure public-key quantum money is possible
relative to a classical oracle. In the same paper, Aaronson also proposed an explicit scheme, based
on random stabilizer states, but could not offer any evidence for its security. And indeed, the
scheme was broken about a year afterward by Lutomirski et al. [30], using an algorithm for finding
planted cliques in random graphs due to Alon, Krivelevich, and Sudakov [7].

Recently, Farhi et al. [22] took a completely different approach to public-key quantum money.
They proposed a quantum money scheme based on knot theory, where each banknote is a super-
position over exponentially-many oriented link diagrams. Within a given banknote, all the link
diagrams L have the same Alexander polynomial p (L) (a certain knot invariant).5 This p (L), to-
gether with a digital signature of p (L), serves as the banknote’s “classical serial number.” Besides
the unusual mathematics employed, the work of Farhi et al. [22] (building on [30]) also developed
an idea that will play a major role in our work. That idea is to construct public-key quantum
money schemes by composing two “simpler” ingredients: first, objects that we call mini-schemes;
and second, classical digital signature schemes.

The main disadvantage of the knot-based scheme, which it shares with every previous scheme, is
that no one can say much about its security—other than that it has not yet been broken, and that
various known counterfeiting strategies fail. Indeed, even characterizing which quantum states
Farhi et al.’s verification procedure accepts remains a difficult open problem, on which progress
seems likely to require major advances in knot theory! In other words, there might be states that
look completely different from “legitimate banknotes,” but are still accepted with high probability.

In followup work, Lutomirski [29] proposed an “abstract” version of the knot scheme, which
gets rid of the link diagrams and Alexander polynomials, and simply uses a classical oracle to
achieve the same purposes. Lutomirski raised the challenge of proving that this oracle scheme is

4Also, the proof of Aaronson’s result never appeared—an inexcusable debt that this paper finally repays, with
interest.

5Instead of knots, Farhi et al. [22] could also have used, say, superpositions over n-vertex graphs having the same
eigenvalue spectrum. But in that case, their scheme would have been breakable, the reason being that the graph

isomorphism problem is easy for random graphs. By contrast, it is not known how to solve knot isomorphism

efficiently, even with a quantum computer and even for random knots.
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secure—in which case, it would have yielded the first public-key quantum money scheme that was
proven secure relative to a classical oracle. Unfortunately, proving the security of Lutomirski’s
scheme remains open, and seems hard.6

As alluded to earlier, there is already some research on ways to break quantum money schemes.
Besides the papers by Lutomirski [28] and Lutomirski et al. [30] mentioned before, let us mention
the beautiful work of Farhi et al. on quantum state restoration [21]. As we discuss in Section
7, quantum state restoration can be used to break many public-key quantum money schemes:
roughly speaking, any scheme where the banknotes contain only limited entanglement, and where
verification consists of a rank-1 projective measurement. This fact explains why our scheme, like
the knot-based scheme of Farhi et al. [22], will require highly-entangled banknotes.

1.2 The Challenge

Work over the past few years has revealed a surprising richness in the quantum money problem—
both in the ideas that have been used to construct public-key quantum money schemes, and in
the ideas that have been used to break them. Of course, this record also underscores the need
for caution! To whatever extent we can, we ought to hold quantum money schemes to modern
cryptographic standards, and not be satisfied with “we tried to break it and failed.”

It is easy to see that, if public-key quantum money is possible, then it must rely on some
computational assumption, in addition to the No-Cloning Theorem.7 The best case would be
to show that secure, public-key quantum money is possible, if (for example) there exist one-way
functions resistant to quantum attack. Unfortunately, we seem a long way from showing anything of
the kind. The basic problem is that uncloneability is a novel cryptographic requirement: something
that would not even make sense in a classical context. Indeed, work by Farhi et al. [21] and
Aaronson [3] has shown that it is sometimes possible to copy quantum banknotes, via attacks that
do not even measure the banknotes in an attempt to learn a classical secret! Rather, these attacks
simply perform some unitary transformation on a legitimate banknote |$〉 together with an ancilla
|0〉, the end result of which is to produce |$〉⊗2. Given such a strange attack, how can one deduce
the failure of any “standard” cryptographic assumption?

Yet despite the novelty of the quantum money problem—or perhaps because of it—it seems
reasonable to want some non-tautological evidence that a public-key quantum money scheme is
secure. A minimal wish-list might include:

(1) Security under some plausible assumption, of a sort cryptographers know how to evaluate.
Such an assumption should talk only about computing a classical output from a classical
input; it should have nothing to do with cloning of quantum states.

(2) A proof that the money scheme is secure against black-box counterfeiters: those that do not
exploit the structure of some cryptographic function f used in verifying the banknotes.

6One way to understand the difficulty is that any security proof for Lutomirski’s scheme would need to contain
Aaronson’s quantum lower bound for the collision problem [1] as a (tiny) special case. The lower bound for the
collision problem is proved using the polynomial method of Beals et al. [11]. In this work, by contrast, we will
only manage to prove the security of our oracle scheme using a specially-designed variant of Ambainis’s quantum
adversary method [8]. Despite great progress in quantum lower bounds over the past decade, it is still not known
(except implicitly) how to prove the collision lower bound using an adversary argument.

7This is because a counterfeiter with unlimited time could simply search for a state |ψ〉 that the (publicly-known)
verification procedure accepted.
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(3) A “simple” verification process, which accepts all valid banknotes |$〉 with probability 1, and
rejects all banknotes that are far from |$〉.

1.3 Our Results

Our main contribution is a new public-key quantum money scheme, which achieves all three items
in the wish-list above, and which is the first to achieve (1) or (2). Regardless of whether our
particular scheme stands or falls, we introduce at least four techniques that should be useful for
the design and analysis of any public-key quantum money scheme. These are:

• The “inner-product adversary method,” a new variant of Ambainis’s quantum adversary
method [8] that can be used to rule out black-box counterfeiting strategies.

• A notion of mini-schemes, and a proof that (together with standard cryptographic assump-
tions) these objects imply full-fledged quantum money schemes.

• A method to amplify weak counterfeiters into strong ones, so that one only needs to rule out
the latter to show security.

• A new connection between the security of quantum money schemes and direct-product as-
sumptions in cryptography.

A second contribution is to construct the first private-key quantum money schemes that remain
unconditionally secure, even if the counterfeiter can interact adaptively with the bank. This gives
the first solution to the “online attack problem,” a major security hole in the Wiesner [39] and
BBBW [14] schemes pointed out by Lutomirski [28] and Aaronson [3]. These private-key schemes
are direct adaptations of our public-key scheme.

In more detail, our quantum money scheme is based on hidden subspaces of the vector space Fn2 .
Each of our money states is a uniform superposition of the vectors in a random n/2-dimensional
subspace A ≤ F

n
2 . We denote this superposition by |A〉. Crucially, we can recognize the state

|A〉 using only membership oracles for A and for its dual subspace A⊥. To do so, we apply the
membership oracle for A, then a Fourier transform, then the membership oracle for A⊥, and then
a second Fourier transform to restore the original state. We prove that this operation computes a
rank-1 projection onto |A〉.

Underlying the security of our money schemes is the assertion that the states |A〉 are difficult to
clone, even given membership oracles for A and A⊥. Or more concretely: any quantum algorithm
that maps |A〉 to |A〉⊗2 must make 2Ω(n) queries to the A,A⊥ oracles.

In order to prove this statement, we introduce a new method for proving lower bounds on
quantum query complexity, which we call the inner-product adversary method. This technique
considers a single counterfeiting algorithm being run in parallel to clone two distinct states |A〉 and
|A′〉, with each having access to the membership oracles for A,A⊥ or A′, A′⊥, as appropriate. To
measure how much progress the algorithm has made, we consider the inner product between the
states produced by the parallel executions: because 〈A|⊗2 |A′〉⊗2 < 〈A|A′〉 for many pairs of sub-
spaces A,A′, in order to succeed a counterfeiter will have to reduce this inner product substantially.
We prove that when averaged over a suitable distribution of pairs A,A′, the expected inner product
between the two states produced by the counterfeiter cannot decrease too much with a single query
to the membership oracles. We conclude that in order to produce |A〉⊗2 given |A〉 and membership
oracles for A,A⊥, a counterfeiter must use exponentially many queries.
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Having ruled out the possibility of nearly perfect cloning, we introduce a new amplification
protocol, which allows us to transform a counterfeiter who succeeds with Ω (1/poly (n)) success
probability into a counterfeiter who succeeds with probability arbitrarily close to 1. This technique
is based on combining standard Grover search with a monotonic state amplification protocol of
Tulsi, Grover, and Patel [38], to obtain monotonic convergence with the quadratic speedup of
Grover search.8 Combining this amplification with the inner-product adversary method, and
applying a random linear transformation to convert the counterfeiter’s worst case to its average
case, we conclude that no counterfeiting algorithm can succeed with any non-negligible probability
on a non-negligible fraction of states |A〉.

Using these results, how do we produce a secure quantum money scheme? We now need to step
back, and discuss some general constructions of this paper that have nothing to do with hidden
subspaces in particular. Before constructing a quantum money scheme, we first introduce the
notion of a quantum money mini-scheme, a formalization of the setting in which the bank issues
only a single money state and maintains no secret information. Formally, a mini-scheme is a
protocol Bank for outputting pairs (s, ρs) and a verification procedure Vers for identifying ρs. We
say a mini-scheme is complete if the state ρs passes the verification Vers with high probability, and
we say the scheme is secure if furthermore no counterfeiter can take a single state ρs, and produce
two (possibly-entangled) states ρ1 and ρ2 which simultaneously pass the verification procedure with
non-negligible probability.

In the case of hidden subspace money, for example, we can use our uncloneability result to
produce a secure mini-scheme relative to a classical oracle. The algorithm Bank queries the classical
oracle to obtain a serial number s and the description of a subspace A. Using this description it
prepares |A〉, and publishes (s, |A〉). The verification procedure uses the serial number s as an
index into another classical oracle, which allows it to test membership in A and A⊥. We prove
that the uncloneability of the states |A〉 implies that this mini-scheme is secure.

Crucially, we also give a general reduction from quantum money schemes to mini-schemes, based
on combining a mini-scheme with a secure signature scheme. The bank maintains a secret key for
the signature scheme, and to issue a banknote, it runs Bank to produce a pair (s, ρs), then digitally
signs the serial number s. Special cases of this reduction appeared in [22, 30], but we provide the
first rigorous security proof.

By combining this reduction with our mini-scheme, we are able to obtain a “black-box” public
key quantum money scheme relative to a classical oracle, which is unconditionally secure:

Theorem (Security of Hidden Subspace Money). Relative to some (classical) oracle A, there exists
a secure public-key quantum money scheme.

More precisely, there is an algorithm KeyGenA which outputs pairs (kprivate, kpublic), an algo-
rithm BankA (kprivate) which generates a “quantum banknote” |$〉, and a verification algorithm
VerA (kpublic, |$〉) which tests the authenticity of a purported banknote. These algorithms have
the following properties:

Completeness: If (kprivate, kpublic) is produced by KeyGenA, then VerA
(
kpublic,Bank

A (kprivate)
)

accepts with certainty.
Soundness: Suppose a would-be counterfeiter with access to A and kpublic is given q valid

banknotes. If this counterfeiter outputs any number of (possibly-entangled) quantum states, there
is at most an exponentially-small probability that VerA will accept more than q of them.

8Although the “quadratic speedup” part is not strictly necessary for us, it improves our lower bound on the
number of queries the counterfeiter needs to make—to the tight one, in fact—and might be of independent interest.
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By adapting these ideas to the private-key setting, we are also able to provide the first private-
key quantum money scheme that is unconditionally secure, even if the counterfeiter is able to
interact adaptively with the bank. This patches a security hole in Wiesner’s original scheme which
was observed in [28, 3], but which has not previously been addressed in a provably-secure way.

Finally, we provide a candidate cryptographic protocol for obfuscating the indicator functions of
subspaces A ≤ F

n
2 . In order to obfuscate a membership oracle for A, we provide a random system

of polynomials p1, . . . , pm that vanish on A. Membership in A can be tested by evaluating the pi’s,
but given only the pi’s, we conjecture that it is difficult to recover A. Combining this protocol with
the black-box money scheme, we obtain an explicit quantum money scheme. This scheme is also
the first public-key quantum money scheme whose security can be based on a plausible “classical”
cryptographic assumption. Here is the assumption:

Conjecture (*). Suppose A is a uniformly-random n/2-dimensional subspace of F
n
2 , and that

{pi}1≤i≤2n , {qi}1≤i≤2n are systems of degree-d polynomials from F
n
2 to F2, which vanish on A and

A⊥ respectively but are otherwise uniformly-random. Then for large enough constant d, there is no
polynomial-time quantum algorithm that takes as input descriptions of the pi’s and qi’s, and that
outputs a basis for A with success probability Ω

(
2−n/2

)
.

Note that we can trivially guess a single nonzero A element with success probability 2−n/2, but

guessing a whole basis for A would succeed with probability only 2−Ω(n2). Conjecture (*) asserts
that it is harder to find many elements of A than to find just one element.

The following theorem says that, if a counterfeiter could break our quantum money scheme,
then with nontrivial success probability, it could also recover a description of A from the pi’s and
qi’s alone—even without having access to a bank that provides a valid money state |A〉.

Theorem. Assuming Conjecture (*), there exists a public-key quantum money scheme with perfect
completeness and exponentially-small soundness error. That is, the verifier always accepts valid
banknotes, and a would-be counterfeiter succeeds only with exponentially-small probability.9

The problem of recovering a subspace A, given a system of equations that vanish on A, is
closely related to algebraic cryptanalysis, and in particular to the so-called polynomial isomorphism
problem. In the latter problem, we are given as input two polynomials p, q : F

n → F related
by an unknown linear change of basis L; the challenge is to find L. When deg (p) = deg (q) =
3, the best known algorithms for the polynomial isomorphism problem require exponential time
[35, 24, 17]. An attacker might be able to use known techniques to effectively reduce the degree of
the polynomials in our scheme by 1, at the expense of an exponentially reduced success probability
[17]. Provided the degree is at least 4, however, recovering A seems to be well beyond existing
techniques.

1.4 Motivation

Unlike the closely-related task of quantum key distribution [13] (which is already practical), quan-
tum money currently seems to be a long way off. The basic difficulty is how to maintain the

9This theorem remains true even if the statement of Conjecture (*) is weakened by adding random noise to the pi’s
and qi’s, so that only a constant fraction of them vanish on A or A⊥. The presence of noise interferes substantially
with known techniques for solving systems of equations, though an attacker who was able to recover A from a single

polynomial would of course not be hindered by such noise.
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coherence of a quantum money state for an appreciable length of time. All money eventually
loses its value unless it is spent, but money that decohered on a scale of microseconds would be an
extreme example!

So one might wonder: why develop rigorous foundations for a cryptographic functionality that
seems so far from being practical? One answer is that, just as quantum key distribution uses many
of the same ideas as private-key quantum money, but without requiring long-lasting coherence, so
it is not hard to imagine protocols that would use many of the same ideas as public-key quan-
tum money without requiring long-lasting coherence. Indeed, depending on the problem, rapid
decoherence might be a feature rather than a bug!

As one example, public-key quantum money that decohered quickly could be used to create
non-interactive uncloneable signatures. These are n-qubit quantum states |ψ〉 that an agent
can efficiently prepare using a private key, then freely hand out to passersby. By feeding |ψ〉,
together with the agent’s public key, into suitable measuring equipment, anyone can verify on
the spot that the agent is who she says she is and not an impostor. Compared with classical
identification protocols, the novel feature here is that the agent does not need to respond to a
challenge—for example, digitally signing a random string—but can instead just hand out a fixed
|ψ〉 non-interactively. Furthermore, because |ψ〉 decoheres in a matter of seconds, and recovering a
classical description of |ψ〉 from measurements on it is computationally intractable, someone who
is given |ψ〉 cannot use it later to impersonate the agent.

Of course, if an attacker managed to solve the technological problem of keeping |ψ〉 coherent
for very long times, then he could break this system, by collecting one or more copies of |ψ〉 that
an agent had handed out, and using them to impersonate the agent. But in that case, whatever
method the attacker was using to keep the states coherent could also—once discovered—be used
to create a secure public-key quantum money scheme!

However, we believe the “real” reason to study quantum money is basically the same as the
“real” reason to study quantum computing as a whole—or for that matter, to study the many
interesting aspects of classical cryptography that are equally far from application. As theoretical
computer scientists, we are in the business of mapping out the inherent capabilities and limits of
information processing.

In our case, what quantum money provides is a near-ideal playground for understanding the
implications of the uncertainty principle and the No-Cloning Theorem. In the early days of
quantum mechanics, Bohr [15] and others argued that the uncertainty principle requires us to
change our conception of science itself—their basic argument being that, in physics, predictions
are only ever as good as our knowledge of a system’s initial state |ψ〉, but the uncertainty principle
might mean that the initial state is unknowable even with arbitrarily-precise measurements.

But does this argument have any “teeth”? In other words: among the properties of a quantum
state |ψ〉 that make the state impossible to learn precisely or to duplicate, can any of those properties
ever matter empirically? To us, quantum money is interesting precisely because it gives one of the
clearest examples where the answer to that question is yes.

2 Preliminaries

To begin, we fix some notation. Let [N ] = {1, . . . , N}. Given a subspace S of a vector space V ,
let S⊥ be the orthogonal complement of S (that is, the set of y ∈ V such that x · y = 0 for all
x ∈ S). We call a function δ (n) negligible if δ (n) = o (1/p (n)) for every polynomial p.
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By a classical oracle, we will mean a unitary transformation of the form |x〉 → (−1)f(x) |x〉,
for some Boolean function f : {0, 1}∗ → {0, 1}. Note that, unless specified otherwise, even a
classical oracle can be queried in quantum superposition. A quantum oracle, by contrast, is an
arbitrary n-qubit unitary transformation U (or rather, a collection of such U ’s, one for each n) that
a quantum algorithm can apply in a black-box fashion. Quantum oracles were defined and studied
by Aaronson and Kuperberg [5].

2.1 Cryptography

Before we construct quantum money schemes, it will be helpful to have some “conventional” cryp-
tographic primitives in our toolbox. Foremost among these is a digital signature scheme secure
against quantum chosen-message attacks. We now define digital signature schemes—both for
completeness, and to fix the quantum attack model that is relevant for us.

Definition 1 (Digital Signature Schemes). A (classical, public-key) digital signature scheme

D consists of three probabilistic polynomial-time classical algorithms:

• KeyGen, which takes as input a security parameter 0n, and generates a key pair (kprivate, kpublic).

• Sign, which takes as input kprivate and a message x, and generates a signature Sign (kprivate, x).
10

• Ver, which takes as input kpublic, a message x, and a claimed signature w, and either accepts
or rejects.

We say D has completeness error ε if Ver (kpublic, x,Sign (x, kprivate)) accepts with probability
at least 1 − ε for all messages x and key pairs (kprivate, kpublic). Here the probability is over the
behavior of Ver and Sign.

Let C (the counterfeiter) be a quantum circuit of size poly (n) that takes kpublic as input and
does the following:

(1) Probabilistically generates a classical list of messages x1, . . . , xm, and submits them to a sign-

ing oracle O.

(2) Gets back independently-generated signatures w1, . . . , wm, where wi := Sign (kprivate, xi).

(3) Outputs a pair (x,w).

We say C succeeds if x /∈ {x1, . . . , xm} and Ver (kpublic, x, w) accepts. We say D has sound-

ness error δ if every counterfeiter C succeeds with probability at most δ. Here the probability is
over the key pair (kprivate, kpublic) and the behavior of C, Sign, and Ver.

We call D secure against nonadaptive quantum chosen-message attacks if it has com-
pleteness error ≤ 1/3 and negligible soundness error.

Intuitively, we call a signature scheme “secure” if no quantum counterfeiter with nonadaptive,
classical access to a signing oracle O can forge a signature for any message that it did not submit
to O. Depending on the application, one might want to change Definition 1 in various ways: for

10We indulge in slight abuse of notation, since if Sign is randomized then the signature need not be a function of
kprivate and x.
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example, by giving the counterfeiter adaptive or quantum access to O, or by letting KeyGen, Sign,
and Ver be quantum algorithms themselves. For this paper, however, Definition 1 provides all we
need.

Do signature schemes secure against quantum attack exist? Naturally, signature schemes based
on RSA or other number-theoretic problems can all be broken by a quantum computer. However,
building on earlier work by Naor and Yung [33] (among many others), Rompel [37] showed that a
secure public-key signature scheme can be constructed from any one-way function—not necessarily
a trapdoor function. Furthermore, Rompel’s security reduction, from breaking the signature
scheme to inverting the one-way function, is black-box : in particular, nothing in it depends on the
assumption that the adversary is classical rather than quantum. We therefore get the following
consequence:

Theorem 2 (Quantum-Secure Signature Schemes [37]). If there exists a (classical) one-way func-
tion f secure against quantum attack, then there also exists a digital signature scheme secure against
quantum chosen-message attacks.

Recently, Boneh et al. [16] proved several results similar to Theorem 2, and they needed non-
trivial work to do so. However, a crucial difference is that Boneh et al. were (justifiably) concerned
with quantum adversaries who can make quantum queries to the signing oracle O. By contrast, as
mentioned earlier, for our application it suffices to consider adversaries who query O classically—
and in that case, the standard security reductions go through essentially without change.

Let us state another consequence of Theorem 2, which will be useful for our oracle construction
in Section 5.

Theorem 3 (Relativized Quantum-Secure Signatures). Relative to a suitable oracle A, there exists
a digital signature scheme secure against quantum chosen-message attacks.

Proof Sketch. It is easy to give an oracle A : {0, 1}∗ → {0, 1} relative to which there exists a one-

way function fn : {0, 1}n → {0, 1}p(n) secure against quantum adversaries. Indeed, we can let A
be a random oracle, and then define

fn (x) := A (x, 1) . . . A (x, p (n))

directly in terms of A. Assume p (n) ≥ n. Then the lower bound on the quantum query complexity
of function inversion, proved by Bennett et al. [12] and Ambainis [8], straightforwardly implies
that any quantum algorithm to invert fn, with success probability ε > 0, must make Ω

(
2n/2

√
ε
)

quantum queries to A.
Now, the security reduction of Rompel [37] is not only black-box but relativizing : that is, it goes

through if all legitimate and malicious parties have access to the same oracle A. So by Theorem
2, starting from {fn} one can construct a digital signature scheme relative to the same oracle A,
which is secure against quantum chosen-message attacks.

2.2 Quantum Information

Let us collect a few facts about quantum pure and mixed states that are used in the paper. We
assume basic familiarity with the formalism of bras, kets, density matrices, etc.; see Nielsen and
Chuang [34] for a good overview.
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Given two mixed states ρ and σ, their trace distance is defined as D (ρ, σ) := 1
2

∑N
i=1 |λi|, where

λ1, . . . , λN are the eigenvalues of ρ− σ. Trace distance is a metric and satisfies 0 ≤ D (ρ, σ) ≤ 1.
Also, the fidelity 0 ≤ F (ρ, σ) ≤ 1 is defined, in this paper, as the maximum of |〈ψ|ϕ〉| over all
purifications |ψ〉 of ρ and |ϕ〉 of σ.11 By extension, given a subspace S, we let F (ρ, S) be the
maximum of |〈ψ|ϕ〉| over all purifications |ψ〉 of ρ and all unit vectors |ϕ〉 ∈ S. Trace distance and
fidelity are related as follows [34]:

Proposition 4. For all mixed states ρ, σ,

D (ρ, σ) ≤
√

1− F (ρ, σ)2,

with equality if either ρ or σ is pure.

While fidelity is not a metric, it does satisfy the following inequality, which will be helpful in
Section 5.

Lemma 5 (“Triangle Inequality” for Fidelity). Suppose 〈ψ| ρ |ψ〉 ≥ 1 − ε and 〈ϕ| σ |ϕ〉 ≥ 1 − ε.
Then F (ρ, σ) ≤ |〈ψ|ϕ〉|+ 2ε1/4.

Proof. By Proposition 4,
D (ρ, |ψ〉) ≤

√
1− 〈ψ| ρ |ψ〉 ≤

√
ε,

and likewise D (σ, |ϕ〉) ≤ √
ε. Thus, since trace distance satisfies the triangle inequality,

D (ρ, σ) ≥ D (|ψ〉 , |ϕ〉)−D (ρ, |ψ〉)−D (σ, |ϕ〉)

≥
√

1− |〈ψ|ϕ〉|2 − 2
√
ε.

Then

|〈Ψ|Φ〉| ≤ F (ρ, σ)

≤
√

1−D (ρ, σ)2

≤

√

1−
(√

1− |〈ψ|ϕ〉|2 − 2
√
ε

)2

≤
√

|〈ψ|ϕ〉|2 + 4
√
ε

≤ |〈ψ|ϕ〉|+ 2ε1/4.

Finally, the following lemma of Aaronson [2] will imply that, as long as a quantum money
scheme has small completeness error (i.e., small probability of rejecting a valid banknote), the
banknotes can be reused many times.

Lemma 6 (“Almost As Good As New Lemma” [2]). Suppose a measurement on a mixed state ρ
yields a particular outcome with probability 1− ε. Then after the measurement, one can recover a
state ρ̃ such that ‖ρ̃− ρ‖tr ≤

√
ε.

11Some authors instead define “fidelity” as the maximum of |〈ψ|ϕ〉|2.
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2.3 Quantum Search

In our security proof for quantum money, a crucial step will be to amplify a counterfeiter who
copies a banknote $ with any non-negligible fidelity to a counterfeiter who copies $ almost perfectly.
Taking the contrapositive, this will imply that to rule out the former sort of counterfeiter, it suffices
to rule out the latter.

In this section, we first review two variants of Grover’s search algorithm [25] that are useful
for amplifying the fidelity of quantum states. We then introduce a new variant that combines the
advantages of both.

Assume we are given a pure initial state |Init〉, in some Hilbert space H. Our goal is to map
|Init〉 to a final state |Ψ〉 that lies in (or close to) a “good subspace” G ≤ H. We have oracle access
to two unitary transformations:

• UInit, which maps |Init〉 to − |Init〉, and acts as the identity on all |v〉 orthogonal to |Init〉.

• UG, which maps |v〉 to − |v〉 for all |v〉 ∈ G, and acts as the identity on all |v〉 orthogonal to
G.

We are promised that the fidelity of the initial state with G,

F (|Init〉 , G) = max
|ψ〉∈G

〈Init |ψ〉 ,

is at least some ε > 0.
In this scenario, provided F (|Init〉 , G) is known, the amplitude amplification framework of

Brassard, Høyer, Mosca, and Tapp [18] lets us prepare a state close to G using only Θ (1/ε)
iterations:

Lemma 7 (Amplitude Amplification [18]). Write |Init〉 as sin θ |Good〉+cos θ |Bad〉, where |Good〉
is the unit vector in G closest to |Init〉 and |Bad〉 is orthogonal to |Good〉. Then by using O (T )
oracle calls to UInit and UG, we can prepare the state

|ΦT 〉 := sin [(2T + 1) θ] |Good〉+ cos [(2T + 1) θ] |Bad〉

Note that Grover’s algorithm is simply a special case of Lemma 7, where |Init〉 is the uniform
superposition over N basis states |1〉 , . . . , |N〉, and G is the subspace spanned by “marked” states.

However, Lemma 7 has an annoying drawback, which it shares with ordinary Grover search.
Namely, the algorithm does not converge monotonically toward the target subspace G, but could
instead “wildly overshoot it,” cycling around the 2-dimensional subspace spanned by |Bad〉 and
|Good〉. If we know the fidelity F (|Init〉 , G) in advance (rather than just a lower bound on
the fidelity), or if we can prepare new copies of |Init〉 “free of charge” in case of failure, then this
overshooting is not a serious problem. Alas, neither of those conditions will hold in our application.

Fortunately, for independent reasons, in 2005 Tulsi, Grover, and Patel [38] introduced a new
quantum search algorithm that does guarantee monotonic convergence toward G, by alternating
unitary transformations with measurements. (Their algorithm was later simplified and improved
by Chakraborty, Radhakrishnan, and Raghunathan [19].)

Lemma 8 (Fixed-Point Quantum Search [38, 19]). By using T oracle calls to UInit and UG, we
can prepare a state |Ψ〉 such that F (|Ψ〉 , G) ≥ 1− exp

(
−Tε2

)
.

12



Rearranging, Lemma 8 lets us prepare a state |Ψ〉 such that F (|Ψ〉 , G) ≥ 1 − δ using T =
O
(

1
ε2

ln 1
δ

)
iterations. On the positive side, the dependence on 1/δ in this bound is logarithmic: we

get not only monotonic convergence toward G, but exponentially-fast convergence. On the negative
side, notice that the dependence on ε has worsened from 1/ε to 1/ε2—negating the quadratic
speedup that was the original point of quantum search!

In the rest of this section, we give a “hybrid” quantum search algorithm that combines the
advantages of Lemmas 7 and 8—i.e., it converges monotonically toward the target subspace G
(rather than “overshooting” G), but also achieves a quadratic speedup. In the context of our
security proof for quantum money, the hybrid algorithm will lead to a quadratically-better lower
bound on the number of queries that a counterfeiter needs to make, compared to what we would
get from using Lemma 8 by itself. While this quadratic improvement is perhaps only of moderate
interest, we include the algorithm in the hope that it will find other applications.

We first give a technical lemma needed to analyze our algorithm.

Lemma 9. For all L, β, η, γ, there are at most (L/β + 1) (2η + 1) integers T ∈ {0, . . . , L} such
that |T − (βn+ γ)| < η for some integer n.

Proof. The real interval [0, L] can intersect at most L/β+1 intervals (βn+ γ − η, βn + γ + η), and
each such interval can contain at most 2η + 1 integer points.

We now give our hybrid of Lemmas 7 and 8.

Theorem 10 (Faster Fixed-Point Search). Let δ ≥ 2ε. Then by using O
(
log 1/δ
εδ2

)
oracle calls to

UInit and UG, we can prepare a state ρ such that F (ρ,G) ≥ 1− δ.

Proof. Let ǫ := arcsin ε; note that ε ≤ ǫ ≤ π
2 ε. Also let L := ⌈100/ǫ⌉ and R := 25

δ2

(
2 + log 1

δ

)
.

Then the algorithm is as follows:

(1) Choose an integer T ∈ {0, . . . , L} uniformly at random.

(2) Apply T iterations of amplitude amplification with |Init〉 as the initial state and G as the
target subspace (as in Lemma 7), to obtain a state |ΦT 〉.

(3) Apply R iterations of fixed-point quantum search with |ΦT 〉 as the initial state and G as the
target subspace (as in Lemma 8), to obtain a state |Ψ〉 = |ΨT 〉.

The final output of the above algorithm is

ρ = E
T∈{0,...,L}

[|ΨT 〉 〈ΨT |] .

Also, the total number of oracle calls to UInit and UG is

O (TR) = O

(
log 1/δ

εδ2

)
.

(The reason this number scales like TR rather than T +R is that, in step (3), each time we reflect
about the initial state |ΦT 〉 we need to rerun step (2). Thus, we need Θ (T ) oracle calls within
each of the R iterations.) By Lemma 7, after step (2) we have a state |ΦT 〉 such that

F (|ΦT 〉 , G) = |〈ΦT |Good〉| = |sin [(2T + 1) ǫ]| .

13



So for any α ∈ (0, 1),

Pr
T∈{0,...,L}

[F (|ΦT 〉 , G) < α] = Pr
T∈{0,...,L}

[|sin [(2T + 1) ǫ]| < α]

= Pr
T∈{0,...,L}

[∃n ∈ Z : |(2T + 1) ǫ− πn| < arcsinα]

≤

(
L

π/2ǫ + 1
) (

arcsinα
ǫ + 1

)

L+ 1

≤ 2

π
arcsinα+

2ǫ

π
+

arcsinα

100
+

ǫ

100
≤ 1.02 (α+ ε) ,

where the third line uses Lemma 9. Now assume F (|ΦT 〉 , G) ≥ α. Then by Lemma 8, after step
(3) we have a state |ΨT 〉 such that

F (|ΦT 〉 , G) ≥ 1− exp
(
−Rα2

)
.

Let us now make the choice α := δ/5. Then by the union bound, the “average” output ρ =
ET [|ΨT 〉 〈ΨT |] satisfies

1− F (ρ,G) ≤ 1.02 (α+ ε) + exp
(
−Rα2

)

≤ 0.204δ + 0.51δ + exp

(
−Rδ

2

25

)

< δ.

Note that our hybrid loses the property of exponentially-fast convergence toward the target
subspace G, but that property will not be important for us anyway. We leave as an open problem
whether there exists a hybrid algorithm with exponentially-fast convergence.

3 Formalizing Quantum Money

In this section, we first give a formal cryptographic definition of public-key quantum money schemes.
Our definition is similar to that of Aaronson [3]. However, departing from [3], we next define the
new notion of a quantum money mini-scheme, which is easier to construct and analyze than a full-
blown quantum money scheme. A mini-scheme is basically a quantum money scheme where only
one banknote ever needs to printed, not many banknotes; and where the procedure for verifying
that banknote is treated as given (rather than something that itself needs to be authenticated using
the bank’s public key). We then prove two basic results: the amplification of weak counterfeiters
into strong ones (Theorem 15), and the construction of full-blown quantum money schemes from
mini-schemes together with quantumly-secure digital signature schemes (Theorem 16).

3.1 Quantum Money Schemes

Intuitively, a public-key quantum money scheme is a scheme by which

14



(1) a trusted “bank” can feasibly generate an unlimited number of quantum banknotes,

(2) anyone can feasibly verify a valid banknote as having come from the bank, but

(3) no one besides the bank can feasibly map q = poly (n) banknotes to r > q banknotes with
any non-negligible success probability.12

We now make the notion more formal.

Definition 11 (Quantum Money Schemes). A public-key quantum money scheme S consists
of three polynomial-time quantum algorithms:

• KeyGen, which takes as input a security parameter 0n, and probabilistically generates a key
pair (kprivate, kpublic).

• Bank, which takes as input kprivate, and probabilistically generates a quantum state $ called a
banknote. (Usually $ will be an ordered pair (s, ρs), consisting of a classical serial number

s and a quantum money state ρs, but this is not strictly necessary.)

• Ver, which takes as input kpublic and an alleged banknote /c, and either accepts or rejects.

We say S has completeness error ε if Ver (kpublic, $) accepts with probability at least 1− ε for
all public keys kpublic and valid banknotes $. If ε = 0 then S has perfect completeness.

Let Count (the money counter) take as input kpublic as well as a collection of (possibly-
entangled) alleged banknotes /c1, . . . , /cr, and output the number of indices i ∈ [r] such that Ver (kpublic, /ci)
accepts. Then we say S has soundness error δ if, given any quantum circuit C (kpublic, $1, . . . , $q)
of size poly (n) (called the counterfeiter), which maps q = poly (n) valid banknotes $1, . . . , $q to
r = poly (n) (possibly-entangled) alleged banknotes /c1, . . . , /cr,

Pr [Count (kpublic, C (kpublic, $1, . . . , $q)) > q] ≤ δ.

Here the probability is over the key pair (kprivate, kpublic), valid banknotes $1, . . . , $q generated by
Bank (kprivate), and the behavior of Count and C.

We call S secure if it has completeness error ≤ 1/3 and negligible soundness error.

In Appendix 10, we show that the completeness error in any quantum money scheme can be
amplified to 1/2poly(n), at the cost of only a small increase in the soundness error. Note that,
by Lemma 6 (the “Almost As Good As New Lemma”), once we make the completeness error
exponentially small, we can also give our scheme the property that any banknote $ can be verified
exponentially many times, before $ gets “worn out” by repeated measurements. This observation
is part of what justifies our use of the term “money.”13

In this paper, we will often consider relativized quantum money schemes, which simply means
that the three procedures KeyGen, Bank, Ver—as well as the counterfeiter C—all get access to

12Previously, Aaronson [3] required only that no polynomial-time counterfeiter could increase its expected number
of valid banknotes. However, the stronger condition required here is both achievable, and seemingly more natural
from the standpoint of security proofs.

13By contrast, BBBW [14] introduced the term “subway tokens” for quantum money states that get destroyed
immediately upon verification.
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exactly the same oracle A : {0, 1}∗ → {0, 1}. We will also consider relativized digital signature
schemes, etc., which are defined analogously.

A private-key quantum money scheme is the same as a public-key scheme, except that the
counterfeiter C no longer gets access to kpublic. (Thus, we might as well set k := kpublic = kprivate,
since the public and private keys no longer play separate roles.) We call a private-key scheme
query-secure—a notion “intermediate” between private-key and public-key—if the counterfeiter
C is allowed to interact repeatedly with the bank. Given any alleged banknote σ, the bank runs the
verification procedure Ver (k, σ), then returns to C both the classical result (i.e., accept or reject)
and the post-measurement quantum state σ̃.

3.2 Mini-Schemes

While Definition 11 captures our intuitive requirements for a public-key quantum money scheme,
experience has shown that it is cumbersome to work with in practice. So in this section, we
introduce a simpler primitive called mini-schemes, which require only one uncopyable banknote.
We also prove an amplification theorem for a large class of mini-schemes. Then, in Section 3.3,
we will show how mini-schemes can be generically combined with conventional digital signature
schemes to create full public-key quantum money schemes.

Definition 12 (Mini-Schemes). A (public-key) mini-scheme M consists of two polynomial-time
quantum algorithms:

• Bank, which takes as input a security parameter 0n, and probabilistically generates a banknote
$ = (s, ρs), where s is a classical serial number, and ρs is a quantum money state.

• Ver, which takes as input an alleged banknote /c, and either accepts or rejects.

We say M has completeness error ε if Ver ($) accepts with probability at least 1 − ε for all
valid banknotes $. If ε = 0 then M has perfect completeness. If, furthermore, ρs = |ψs〉 〈ψs| is
always a pure state, and Ver simply consists of a projective measurement onto the rank-1 subspace
spanned by |ψs〉, then we say M is projective.14

Let Ver2 (the double verifier) take as input a single serial number s as well as two (possibly-
entangled) states σ1 and σ2, and accept if and only Ver (s, σ1) and Ver (s, σ2) both accept. We say
M has soundness error δ if, given any quantum circuit C of size poly (n) (the counterfeiter),
Ver2 (s, C ($)) accepts with probability at most δ. Here the probability is over the banknote $ output
by Bank (0n), as well as the behavior of Ver2 and C.

We call M secure if it has completeness error ≤ 1/3 and negligible soundness error.

We observe a simple relationship between Definitions 11 and 12:

Proposition 13. If there exists a secure public-key money scheme S = (KeyGenS ,BankS ,VerS),
then there also exists a secure mini-scheme M = (BankM,VerM).

Proof. Each banknote output by BankM (0n) will have the form (kpublic,BankS (kprivate)), where
(kprivate, kpublic) is a key pair output by KeyGenS (0n). Then VerM (s, ρs) will accept if and only if
VerS (s, ρs) does. Any counterfeiter CM against M can be converted directly into a counterfeiter
CS against S.

14We similarly call a full quantum money scheme projective, if Ver ($) consists of a measurement on one part of $
in the computational basis, followed by a rank-1 projective measurement on the remaining part.
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Call a mini-schemeM = (Bank,Ver) secret-based if Bankworks by first generating a uniformly-
random classical string r, and then generating a banknote $r := (sr, ρr). Intuitively, in a secret-
based scheme, the bank can generate many identical banknotes by simply reusing r, while in a
non-secret-based scheme, not even the bank might be able to generate two identical banknotes.
Here is an interesting observation:

Proposition 14. If there exists a secure, secret-based mini-scheme, then there also exists a one-way
function secure against quantum attack.

Proof. The desired OWF is SerialNum (r) := sr. If there existed a polynomial-time quantum
algorithm to recover r given sr, then we could use that algorithm to produce an unlimited number
of additional banknotes $r.

All of the mini-schemes developed in this paper will be secret-based. By contrast, the earlier
schemes of Lutomirski et al. [30] and Farhi et al. [22] are non-secret-based, since the serial number
s is only obtained as the outcome of a quantum measurement.

The following result is one of the most useful in the paper. Intuitively, it says that in projec-
tive mini-schemes, a counterfeiter that copies a banknote with any non-negligible fidelity can be
“amplified” to a counterfeiter that copies the banknote almost perfectly—or conversely, that to rule
out the former sort of counterfeiter, it suffices to rule out the latter. The proof makes essential
use of the amplitude amplification results from Section 2.3.

Theorem 15 (Amplification of Counterfeiters). Let M = (Bank,Ver) be a projective mini-scheme,
and let $ = (s, ρ) be a valid banknote in M. Suppose there exists a counterfeiter C that copies $
with probability ε > 0: that is,

Pr [Ver2 (s, C ($)) accepts] ≥ ε.

Then for all δ > 0, there is also a modified counterfeiter C ′ (depending only on ε and δ, not $),
which makes

O

(
log 1/δ√
ε (

√
ε+ δ2)

)

queries to C, C−1, and Ver and which satisfies

Pr
[
Ver2

(
s, C ′ ($)

)
accepts

]
≥ 1− δ.

Proof. Write $ as a mixture of pure states:

$ =
∑

pi |ψi〉 〈ψi| .

By linearity, clearly it suffices to show that

Pr
[
Ver2

(
s, C ′ (|ψi〉)

)
accepts

]
≥ 1− δ

for all i such that pi > 0. We focus on |ψ〉 := |ψ1〉 without loss of generality.
By assumption, there exists a subspace S such that

Pr [Ver (ρ) accepts] = F (ρ, S)
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for all ρ. Then F ($, S) = F (|ψ〉 , S) = 1.
Now, just as Ver is simply a projector onto S, so Ver2 is a projector onto S⊗2. Thus

F
(
C (|ψ〉) , S⊗2

)
≥

√
ε.

So consider performing a fixed-point Grover search, with C (|ψ〉) as the initial state and S⊗2 as
the target subspace. By Lemma 8, this will produce a state ρ such that F

(
ρ, S⊗2

)
≥ 1− δ using

O
(
1
ε log

1
δ

)
Grover iterations. Each iteration requires a reflection about C (|ψ〉) and a reflection

about S⊗2, which can be implemented usingO (1) queries to C,C−1 and Ver respectively. Therefore
the number of queries to C,C−1 and Ver is O

(
1
ε log

1
δ

)
as well.

If δ is large compared to ε, then we can instead use Theorem 10, which produces a state ρ such

that F
(
ρ, S⊗2

)
≥ 1 − δ using O

(
1√
εδ2

log 1
δ

)
iterations. Taking the minimum of the two bounds

gives us the claimed bound on query complexity.

Theorem 15 is unlikely to hold for arbitrary (non-projective) mini-schemes, for the simple reason
that we can always create a mini-scheme where Ver accepts any state with some small nonzero
probability ε. We leave it as an open problem to find the largest class of mini-schemes for which
Theorem 15 holds.

3.3 The Standard Construction

We are now ready to define the “standard construction” of public-key quantum money schemes
from mini-schemes and digital signature schemes, and to prove this construction’s security.

Theorem 16 (Standard Construction of Public-Key Quantum Money). Let M be any secure mini-
scheme, and let D be any digital signature scheme secure against quantum chosen-message attacks.
By combining M and D, we can create a secure public-key quantum money scheme S.

Proof. Given M = (BankM,VerM) and D = (KeyGenD,SignD,VerD), our quantum money scheme
S = (KeyGenS ,BankS ,VerS) is defined as follows:

• KeyGenS is simply KeyGenD from the digital signature scheme.

• BankS first calls BankM from the mini-scheme to obtain a banknote (s, ρ). It then outputs
(s, ρ) together with a digital signature of the serial number s:

BankS (kprivate) := (s,SignD (kprivate, s) , ρ) .

• VerS accepts an alleged banknote (s,w, σ), if and only if VerM (s, σ) and VerD (kpublic, s, w)
both accept.

Now, suppose there exists a counterfeiter CS against S: that is, a polynomial-time quantum
algorithm such that

Pr [Count (kpublic, CS (kpublic, $1, . . . , $q)) > q] ≥ 1

p (n)
.

Here $i := (si, wi, ρi) is a valid banknote, Count is the money counter from Definition 11, and p is
some polynomial. Also, the probability is over the key pair (kprivate, kpublic), the valid banknotes
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$1, . . . , $q, and the behavior of Count and CS . Suppose further that D is secure. Then it suffices to
show that, by using CS , we can construct a counterfeiter CM against the underlying mini-scheme
M.

Let New (kpublic, $1, . . . , $q) be an algorithm that does the following:

(1) Records the serial numbers s1, . . . , sq of $1, . . . , $q, and lets U := {s1, . . . , sq}.

(2) Runs CS (kpublic, $1, . . . , $q), and examines the output states /c1, . . . , /cr.

(3) Returns the number of i ∈ [r] such that VerS (/ci) accepts, and /ci’s serial number s′i does not
belong to U .

Then we claim that Pr [New (kpublic, $1, . . . , $q) > 0] is negligibly small, where the probability is
over the same variables as before. The proof is simply that, if this were not so, then we could easily
create a counterfeiter CD against the digital signature scheme D. With non-negligible probability,
CD would generate a valid signature SignD (kprivate, s

′
i), for a message s′i for which CD had never

before seen a valid signature, by running CS (kpublic, $1, . . . , $q), then measuring /ci = (s′i, w
′
i, ρ

′
i)

for a uniformly random i ∈ [r]. (Note that CD can generate q money states $1, . . . , $q, without
knowledge of kprivate, by generating the si’s and ρi’s on its own, then calling the signing oracle O
to get the wi’s.)

But now we can define a counterfeiter CM against the mini-scheme M, which works as follows:

(i) Run KeyGenD (0n), to generate a new key pair
(
k′private, k

′
public

)
.

(ii) Label the banknote to copied (sℓ, ρℓ), for some ℓ ∈ [q] chosen uniformly at random.

(iii) Repeatedly call BankM (0n) to generate q − 1 serial numbers and quantum money states,
labeled (si, ρi) for all i ∈ [q] \ {ℓ}. Let U := {s1, . . . , sq}.

(iv) Generate a digital signature wi := SignD
(
k′private, si

)
for each i ∈ [q]. Let $i := (si, wi, ρi).

(v) Run the counterfeiter CS (kpublic, $1, . . . , $q), to obtain r > q alleged banknotes /c1, . . . , /cr
where /cj =

(
s′j, w

′
j , ρ

′
j

)
.

(vi) Choose j, k ∈ [r] uniformly at random without replacement, and output
(
ρ′j , ρ

′
k

)
as a candi-

date for two copies of ρℓ.

Suppose that Count > q, as happens with probability at least 1
p(n) . Also suppose that New = 0,

as happens all but a negligible fraction of the time. Then by the pigeonhole principle, there must
exist indices j 6= k such that s′j = s′k. With probability at least 1/

(
r
2

)
, the counterfeiter CM will

find such a (j, k) pair. Therefore CM succeeds with overall probability Ω (1/poly (n)).

Theorem 16 reduces the construction of a public-key quantum money scheme to two “smaller”
problems: constructing a mini-scheme, and constructing a signature scheme secure against quantum
attacks.

In practice, however, the situation is even better, since in this paper, all of our constructions of
mini-schemes will also yield signature schemes “free of charge”! The following proposition explains
why:
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Proposition 17. If there exists a secure, secret-based mini-scheme M, then there also exists a
secure public-key quantum money scheme S.

Proof. Starting from M, we can get a one-way function secure against quantum attack from Propo-
sition 14, and hence a digital signature scheme D secure against quantum chosen-message attack
from Theorem 2. Combining M and D now yields S by Theorem 16.

Finally, let us make explicit what Theorem 16 means for oracle construction.

Corollary 18. Suppose there exists a mini-scheme M that is provably secure relative to some
oracle AM (i.e., any counterfeiter CM against M must make superpolynomially many queries to
AM). Then there exists a public-key quantum money scheme S that is provably secure relative to
some other oracle AS .

Proof. By Theorem 3, relative to a suitable oracle AD (in fact, a random oracle suffices), there
exists a signature scheme D, such that any quantum chosen-message attack against D must make
superpolynomially many queries to AD.

The oracle AS will simply be a concatenation of AM with AD. Relative to AS , we claim that
the mini-scheme M and signature scheme D are both secure—and therefore, by Theorem 16, we
can construct a secure public-key quantum money scheme S.

The only worry is that a counterfeiter CM against M might gain some advantage by querying
AD; or conversely, a counterfeiter CD against D might gain some advantage by querying AM.
However, this worry is illusory, for the simple reason that the oracles AD and AM are generated
independently. Thus, if CM can break M by querying AD, then it can also break M by querying
a randomly-generated “mock-up” A′

D of AD; and conversely, if CD can break D by querying AM,
then it can also break D by querying a randomly-generated mock-up A′

M of AM. Regardless of
the computational cost of generating these mock-ups, they give us a break against D or M that
makes only poly (n) oracle queries, thereby giving the desired contradiction.

4 Inner-Product Adversary Method

At least in the black-box setting, our goal is to create quantum money (mini-)schemes that we
can prove are secure—by showing that any counterfeiter would need to make exponentially many
queries to some oracle. Proving security results of this kind turns out to require interesting quantum
lower bound machinery. In this section, we introduce the inner-product adversary method, a new
variant of Ambainis’s quantum adversary method [8] that is well-adapted to proving the security
of quantum money schemes, and that seems likely to find other applications.

Let us explain the difficulty we need to overcome. In a public-key quantum money scheme, a
counterfeiter C has two powerful resources available:

(1) One or more copies of a “legitimate” quantum money state |ψ〉.

(2) Access to a verification procedure V , which accepts |ψ〉 and rejects every state orthogonal to
|ψ〉.

Indeed, for us, the situation is even better for C (i.e., worse for us!), since C can query not only
the verification procedure V itself, but also an underlying classical oracle U that the legitimate
buyers and sellers use to implement V . But let us ignore that issue for now.
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As a first step, of course, we should understand how to rule out counterfeiting given (1) or (2)
separately. If C has a copy of |ψ〉, but no oracle access to V , then the impossibility of preparing
|ψ〉 |ψ〉 essentially amounts to the No-Cloning Theorem. Conversely, if C has oracle access to V ,
but no copy of |ψ〉, then given unlimited time, C can prepare as many copies of |ψ〉 as it wants, by
using Grover’s algorithm to search for a quantum state that V accepts. The problem is “merely”
that, if |ψ〉 has n qubits, then Grover’s algorithm requires Θ

(
2n/2

)
iterations, and the BBBV hybrid

argument [12] shows that Grover’s algorithm is optimal.
What we need, then, is a theorem showing that any counterfeiter needs exponentially many

queries to V to prepare |ψ〉 |ψ〉, even if the counterfeiter has a copy of |ψ〉 to start with. Such
a theorem would contain both the No-Cloning Theorem and the BBBV hybrid argument as spe-
cial cases. Aaronson [3] called the desired generalization the Complexity-Theoretic No-Cloning
Theorem, and sketched a proof of it using Ambainis’s adversary method. Based on that result,
Aaronson also argued that there exists a quantum oracle (i.e., a black-box unitary transformation
V ) relative to which secure public-key quantum money is possible. However, the details were never
published.

In this section, we prove a result—Theorem 20—that is much more general than Aaronson’s
previous Complexity-Theoretic No-Cloning Theorem [3]. Then, in Section 5, we apply Theorem
20 to prove the security of public-key quantum money relative to a classical oracle. In Appendix
11, we also apply Theorem 20 to prove the “original” Complexity-Theoretic No-Cloning Theorem
[3], which involves Haar-random n-qubit states |ψ〉, rather than superpositions |A〉 over subspaces
A ≤ F

n
2 .

15

4.1 Idea of Method

So, what is the inner-product adversary method? In Ambainis’s adversary method [8]—like in the
BBBV hybrid argument [12] from which it evolved—the basic idea is to upper-bound how much
“progress” a quantum algorithm Q can make at distinguishing pairs of oracles, as the result of a
single query. Let

∣∣ΨU
t

〉
be Q’s state after t queries, assuming that the oracle is U . Then normally,

before any queries have been made, we can assume that
∣∣ΨU

0

〉
=
∣∣ΨV

0

〉
for all oracles U and V .

By contrast, after the final query T , for all oracle pairs (U, V ) that Q is trying to distinguish, we
must have (say)

∣∣〈ΨU
T |ΨV

T

〉∣∣ ≤ 1/2. Thus, if we can show that the inner product
∣∣〈ΨU

t |ΨV
t

〉∣∣ can
decrease by at most ε as the result of a single query, then it follows that Q must make Ω (1/ε)
queries.

But when we try to apply the above framework to quantum money, we run into serious diffi-
culties. Most obviously, it is no longer true that

∣∣ΨU
0

〉
=
∣∣ΨV

0

〉
for all oracles U, V . Indeed, before

Q makes even a single query to its oracle V , it already has a great deal of information about V , in
the form of a legitimate money state |ψ〉 that V accepts. The task is “merely” to prepare a second
copy of a state that Q already has! Worse yet, once we fix two oracles U and V , we find that Q
generally can exploit the “head start” provided by its initial state to decrease the inner product∣∣〈ΨU

t |ΨV
t

〉∣∣ by a constant amount, by making just a single query to U or V respectively.
Our solution is as follows. We first carefully choose a distribution D over oracle pairs (U, V ).

15For whatever it is worth, we get a lower bound of Ω
(

2n/2
)

on the number of queries needed to copy a Haar-random

state, which is quadratically better than the Ω
(

2n/4
)

that we get for subspace states.

21



We then analyze how much the expected inner product

E
(U,V )∼D

[∣∣〈ΨU
t |ΨV

t

〉∣∣]

can decrease as the result of a single query to U or V . We will find that, even if Q can substantially
increase the angle between

∣∣ΨU
t

〉
and

∣∣ΨV
t

〉
for some (U, V ) pairs by making a single query, it cannot

do so for most pairs.
To illustrate, let |ψ〉 and |ϕ〉 be two possible quantum money states, which satisfy (say) 〈ψ|ϕ〉 =

1/2. Then if a counterfeiting algorithm succeeds perfectly, it must map |ψ〉 to |ψ〉⊗2, and |ϕ〉 to
|ϕ〉⊗2. Since

〈ψ|⊗2 |ϕ〉⊗2 = (〈ψ|ϕ〉)2 = 1

4
,

this means that the counterfeiter must decrease the corresponding inner product by at least 1/4.
However, we will show that the average inner product can decrease by at most 1/ exp (n) as the
result of a single query. From this it will follow that the counterfeiter needs to make 2Ω(n) queries.

Let us mention that today, there are several “sophisticated” versions of the quantum adversary
method [9, 27], which can yield lower bounds for quantum state generation tasks not unlike the
ones we consider. However, a drawback of these methods is that they are extremely hard to
apply to concrete problems: doing so typically requires eigenvalue bounds, and often the use of
representation theory. For this reason, even if one of the “sophisticated” adversary methods (or
a variant thereof) could be applied to the quantum money problem, our approach might still be
preferable.

4.2 The Method

We now introduce the inner-product adversary method. Let O be a set of quantum oracles acting
on n qubits each. For each U ∈ O, assume there exists a subspace SU ≤ C

2n such that

(i) U |ψ〉 = − |ψ〉 for all |ψ〉 ∈ SU , and

(ii) U |η〉 = |η〉 for all |η〉 ∈ S⊥
U .

Let R ⊂ O ×O be a symmetric binary relation on O, with the properties that

(i) (U,U) /∈ R for all U ∈ O, and

(ii) for every U ∈ O there exists a V ∈ O such that (U, V ) ∈ R.

Suppose that for all U ∈ O and all |η〉 ∈ S⊥
U , we have

E
V : (U,V )∈R

[
F (|η〉 , SV )2

]
≤ ε,

where F (|η〉 , SV ) = max|ψ〉∈SV |〈η|ψ〉| is the fidelity between |η〉 and SV . Let Q be a quantum

oracle algorithm, and let QU denote Q run with the oracle U ∈ O. Suppose QU begins in the state∣∣ΨU
0

〉
(possibly already dependent on U). Let

∣∣ΨU
t

〉
denote the state of QU immediately after the

tth query. Also, define a progress measure pt by

pt := E
U,V : (U,V )∈R

[∣∣〈ΨU
t |ΨV

t

〉∣∣] .

The following lemma bounds how much pt can decrease as the result of a single query.
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Lemma 19 (Bound on Progress Rate).

pt ≥ pt−1 − 4
√
ε.

Proof. Let
∣∣ΦUt

〉
denote the state of QU immediately before the tth query. Then for all t, it is

clear that
〈
ΦUt |ΦVt

〉
=
〈
ΨU
t−1|ΨV

t−1

〉
: in other words, the unitary transformations that Q performs

in between query steps have no effect on the inner products. So to prove the lemma, it suffices to
show the following inequality:

E
U,V : (U,V )∈R

[∣∣〈ΦUt |ΦVt
〉∣∣]− E

U,V : (U,V )∈R

[∣∣〈ΨU
t |ΨV

t

〉∣∣] ≤ 4
√
ε. (*)

Let {|i〉}i∈[B] be an arbitrary orthonormal basis for Q’s workspace register. Then we can write

∣∣ΦUt
〉
=
∑

i∈[B]

αUt,i |i〉
∣∣ΦUt,i

〉

=
∑

i∈[B]

|i〉
(
βUt,i
∣∣ηUt,i

〉
+ γUt,i

∣∣ψUt,i
〉)
,

where
∣∣∣ηUt,i

〉
∈ S⊥

U and
∣∣∣ψUt,i

〉
∈ SU . (By normalization,

∣∣∣βUt,i
∣∣∣
2
+
∣∣∣γUt,i

∣∣∣
2
=
∣∣∣αUt,i

∣∣∣
2
.) A query

transforms the above state to

∣∣ΨU
t

〉
=
∑

i∈[B]

|i〉
(
βUt,i
∣∣ηUt,i

〉
− γUt,i

∣∣ψUt,i
〉)
.

So for all U, V ∈ O,

〈
ΦUt |ΦVt

〉
−
〈
ΨU
t |ΨV

t

〉
=
∑

i∈[B]

(
β
U
t,i

〈
ηUt,i
∣∣+ γUt,i

〈
ψUt,i
∣∣
) (
βVt,i
∣∣ηVt,i

〉
+ γVt,i

∣∣ψVt,i
〉)

−
∑

i∈[B]

(
β
U
t,i

〈
ηUt,i
∣∣− γUt,i

〈
ψUt,i
∣∣
) (
βVt,i
∣∣ηVt,i

〉
− γVt,i

∣∣ψVt,i
〉)

= 2
∑

i∈[B]

(
β
U
t,iγ

V
t,i

〈
ηUt,i|ψVt,i

〉
+ γUt,iβ

V
t,i

〈
ψUt,i|ηVt,i

〉)
.

By Cauchy-Schwarz, the above implies that

∣∣〈ΦUt |ΦVt
〉∣∣−

∣∣〈ΨU
t |ΨV

t

〉∣∣ ≤ 2max
i∈[B]

∣∣〈ηUt,i|ψVt,i
〉∣∣+ 2max

i∈[B]

∣∣〈ψUt,i|ηVt,i
〉∣∣ .

Now fix U ∈ O and i ∈ [B]. Then again applying Cauchy-Schwarz,

E
V : (U,V )∈R

[∣∣〈ηUt,i|ψVt,i
〉∣∣] ≤

√
E

V : (U,V )∈R

[∣∣∣
〈
ηUt,i|ψVt,i

〉∣∣∣
2
]

≤
√

E
V : (U,V )∈R

[
max

|ψ〉∈SV

∣∣∣
〈
ηUt,i|ψ

〉∣∣∣
2
]

≤
√
ε.
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Hence
E

U,V : (U,V )∈R

[∣∣〈ηUt,i|ψVt,i
〉∣∣] ≤

√
ε

as well, and likewise
E

U,V : (U,V )∈R

[∣∣〈ψUt,i|ηVt,i
〉∣∣] ≤

√
ε

by symmetry. Putting everything together,

pt−1 − pt = E
U,V : (U,V )∈R

[∣∣〈ΦUt |ΦVt
〉∣∣−

∣∣〈ΨU
t |ΨV

t

〉∣∣]

≤ 2 E
U,V : (U,V )∈R

[
max
i∈[B]

∣∣〈ηUt,i|ψVt,i
〉∣∣
]
+ 2 E

U,V : (U,V )∈R

[
max
i∈[B]

∣∣〈ψUt,i|ηVt,i
〉∣∣
]

≤ 4
√
ε.

This proves inequality (*) and hence the lemma.

From Lemma 19 we immediately deduce the following.

Theorem 20 (Inner-Product Adversary Method). Suppose that initially
∣∣〈ΨU

0 |ΨV
0

〉∣∣ ≥ c for all
(U, V ) ∈ R, whereas by the end we need

∣∣〈ΨU
T |ΨV

T

〉∣∣ ≤ d for all (U, V ) ∈ R. Then Q must make

T = Ω
(
c−d√
ε

)
oracle queries.

5 Classical Oracle Scheme

In this section, we construct a mini-scheme, called the Hidden Subspace Mini-Scheme, that requires
only a classical oracle. We then use the inner-product adversary method from Section 4 to show
that our mini-scheme is secure—indeed, that any counterfeiter must make Ω

(
2n/4

)
queries to

copy a banknote. By the results of Sections 3.3 and 2.1, our mini-scheme will automatically
imply a full-blown public-key quantum money scheme, which requires only a classical oracle and is
unconditionally secure.

5.1 The Hidden Subspace Mini-Scheme

We identify n-bit strings x ∈ {0, 1}n with elements of the vector space F
n
2 in the standard way.

Then in our mini-scheme, each n-qubit money state will have the form

|A〉 := 1√
|A|

∑

x∈A
|x〉 ,

where A is some randomly-chosen subspace of Fn2 (i.e., a set of codewords of a linear code), with
dimA = n/2. Let A⊥ be the orthogonal complement of A, so that dimA⊥ = n/2 as well. Notice
that we can transform |A〉 to

∣∣A⊥〉 and vice versa by simply applying H⊗n
2 : a Hadamard gate on

each of the n qubits, or equivalently a quantum Fourier transform over Fn2 .
The basic idea of the mini-scheme is as follows: the bank can easily prepare the quantum money

state |A〉, starting from a classical description 〈A〉 of A (e.g., a list of n/2 generators). The bank
distributes the state |A〉, but keeps the classical description 〈A〉 secret. Along with |A〉 itself, the

24



bank also publishes details of how to verify |A〉 by querying two classical oracles, UA and UA⊥ .
The first oracle, UA, decides membership in A: for all n-qubit basis states |x〉,

UA |x〉 =
{

− |x〉 if x ∈ A
|x〉 otherwise

The second oracle, UA⊥ , decides membership in A⊥ in the same way.
Using UA, it is easy to implement a projector PA onto the set of basis states in A. To do so,

simply initialize a control qubit to |+〉 = |0〉+|1〉√
2

, then apply UA conditioned on the control qubit

being in state |1〉, then measure the control qubit in the {|+〉 , |−〉} basis, and postselect on getting
the outcome |−〉. Likewise, using UA⊥ , it is easy to implement a projector PA⊥ onto the set of
basis states in A⊥. Then VA, the public verification algorithm for the money state |A〉, will simply
consist of PA, then a Fourier transform, then PA⊥ , and finally a second Fourier transform to return
the legitimate money state back to |A〉:

VA := H⊗n
2 PA⊥H⊗n

2 PA.

We show in Lemma 21 that VA = |A〉 〈A| is just a projector onto |A〉. This means, in particular,
that VA |A〉 = |A〉, and that VA accepts an arbitrary state |ψ〉 with probability |〈ψ|A〉|2. Thus, our
mini-scheme is projective and has perfect completeness.

But what about security? Intuitively, a counterfeiter could query UA or UA⊥ to find a generating
set for A or A⊥—but that would require an exponentially-long Grover search, since |A| =

∣∣A⊥∣∣ =
2n/2 ≪ 2n. Alternatively, the counterfeiter could measure |A〉 in the standard or Hadamard bases—
but that would reveal just one random element of A or A⊥. Neither ability seems useful for copying
|A〉, let alone recovering a full classical description of A.16

And indeed, using the inner-product adversary method plus some other tools, we will prove the
following tight lower bound (Theorem 25): even if given a single copy of |A〉, as well as oracle access
to UA and UA⊥ , a counterfeiter still needs Ω

(
ǫ2n/4

)
queries to prepare a state that has fidelity ǫ

with |A〉⊗2. This will imply that our mini-scheme has exponentially-small soundness error.

5.2 Formal Specification

We are not quite done, since we never explained how the bank provides access to UA and UA⊥ .
Thus, in our “final” mini-scheme M = (BankM,VerM), the bank, verifier, and counterfeiter will
all have access to a single classical oracle U , which consists of four components:

• A banknote generator G (r), which takes as input a random string r ∈ {0, 1}n, and outputs
a set of linearly independent generators 〈Ar〉 =

{
x1, . . . , xn/2

}
for a subspace Ar ≤ F

n
2 , as

well as a unique 3n-bit serial number sr ∈ {0, 1}3n. The function G is chosen uniformly at
random, subject to the constraint that the serial numbers are all distinct.17

16Obviously, if the counterfeiter had Ω (n) copies of |A〉, then it could recover a generating set for A, by simply
measuring each copy independently in the standard basis. That is why, in our full quantum money scheme, the
counterfeiter will not have Ω (n) copies of |A〉. Instead, each banknote will involve a completely different subspace
As ≤ F

n
2 (parameterized by its unique serial number s), so that measuring one banknote reveals nothing about the

others.
17Note that one can implement G using an ordinary random oracle. In that case, the requirement that the serial

numbers are distinct will be satisfied with probability 1−O
(

2−n
)

.
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• A serial number checker H (s), which outputs 1 if s = sr is a valid serial number for some
〈Ar〉, and 0 otherwise.

• A primal subspace tester Tprimal, which takes an input of the form |s〉 |x〉, applies UAr to
|x〉 if s = sr is a valid serial number for some 〈Ar〉, and does nothing otherwise.

• A dual subspace tester Tdual, identical to Tprimal except that it applies UA⊥
r
instead of UAr .

Then M = (BankM,VerM) is defined as follows:

• BankM (0n) chooses r ∈ {0, 1}n uniformly at random. It then looks up G (r) = (sr, 〈Ar〉),
and outputs the banknote |$r〉 = |sr〉 |Ar〉.

• VerM (/c) first uses H to check that /c has the form (s, ρ), where s = sr is a valid serial number.
If so, then it uses Tprimal and Tdual to apply VAr = H⊗n

2 PA⊥
r
H⊗n

2 PAr , and accepts if and only
if VAr (ρ) accepts.

5.3 Analysis

We now analyze the mini-scheme defined in Sections 5.1 and 5.2. For convenience, we assume for
most of the proof that the subspace A ≤ F

n
2 is fixed, and that the counterfeiter (who does not know

A) only has access to the oracles UA and UA⊥ . Then, at the end, we will explain how to generalize
the conclusions to the “final” mini-scheme M.

It will be convenient to consider the subset A∗ ⊂ {0, 1}n+1, defined by

A∗ := (0, A) ∪ (1, A⊥).

Let SA∗ be the subspace of C2n+1

that is spanned by basis states |x〉 such that x ∈ A∗. Then we can
think of the pair of oracles (UA, UA⊥) as being a single oracle UA∗ , which satisfies UA∗ |ψ〉 = − |ψ〉
for all |ψ〉 ∈ SA∗, and UA∗ |η〉 = |η〉 for all |η〉 ∈ S⊥

A∗ .
Recall the definition of the verifier VA:

VA := H⊗n
2 PA⊥H⊗n

2 PA,

where PA and PA⊥ denote projective measurements that accept a basis state |x〉 if and only if x
belongs to A or A⊥ respectively. The following lemma shows that VA “works,” and indeed that it
gives us a projective mini-scheme.

Lemma 21. VA = |A〉 〈A| is simply a projector onto |A〉. So in particular, Pr [VA (|ψ〉) accepts] =
|〈ψ|A〉|2.

Proof. It suffices to show that VA |A〉 = |A〉 and that VA |ψ〉 = 0 for all |ψ〉 orthogonal to |A〉.
First,

VA |A〉 = H⊗n
2 PA⊥H⊗n

2 PA |A〉
= H⊗n

2 PA⊥H⊗n
2 |A〉

= H⊗n
2 PA⊥ |A⊥〉

= H⊗n
2 |A⊥〉

= |A〉 .
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Second, if 〈ψ|A〉 = 0 then we can write

|ψ〉 =
∑

x∈2n
cx |x〉

where
∑

x∈A cx = 0. Then

VA |ψ〉 = H⊗n
2 PA⊥H⊗n

2 PA

∑

x∈2n
cx |x〉

= H⊗n
2 PA⊥H⊗n

2

∑

x∈A
cx |x〉

=
1√
2n
H⊗n

2 PA⊥

∑

x∈A
cx
∑

y⊥x
|y〉

=
1√
2n
H⊗n

2

∑

y∈A⊥

|y〉
∑

x∈A
cx

= 0.

We now show that perfect counterfeiting requires exponentially many queries to UA∗ .

Theorem 22 (Lower Bound for Perfect Counterfeiting). Given one copy of |A〉, as well as oracle
access to UA∗, a counterfeiter needs Ω

(
2n/4

)
queries to prepare |A〉⊗2 with certainty (for a worst-

case |A〉).

Proof. We will apply Theorem 20. Let the set O contain UA∗ for every possible subspace A ≤ F
n
2

with dimA = n/2. Also, put (UA∗ , UB∗) ∈ R if and only if dim (A ∩B) = n/2 − 1. Then given
UA∗ ∈ O and |η〉 ∈ S⊥

A∗ , let

|η〉 =
∑

x∈{0,1}n+1\A∗

αx |x〉 .

We have

E
UB∗ : (UA∗ ,UB∗)∈R

[
F (|η〉 , SB∗)2

]
= E

B : dim(B)=n/2,dim(A∩B)=n/2−1




∑

x∈B∗\A∗

|αx|2



≤ max
x∈{0,1}n+1\A∗

(
Pr

B : dim(B)=n/2,dim(A∩B)=n/2−1
[x ∈ B∗]

)

= max
x∈{0,1}n\A

(
Pr

B : dim(B)=n/2,dim(A∩B)=n/2−1
[x ∈ B]

)

=
|B \A|

|{0, 1}n \ A| (for dim (B) = n/2, dim (A ∩B) = n/2− 1)

=
2n/2−1

2n − 2n/2

≤ 1

2n/2
.
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Here the first line uses the definition of fidelity, the second line uses the easy direction of the
minimax theorem, the third line uses the symmetry between A and A⊥, and the fourth line uses
the symmetry among all 2n − 2n/2 strings x ∈ {0, 1}n \ A. The conclusion is that we can set
ε := 2−n/2.

Fix (UA∗ , UB∗) ∈ R. Then |〈A|B〉| = 1/2. On the other hand, if the counterfeiter suc-
ceeds, it must map |A〉 to some state |fA〉 := |A〉 |A〉 |garbageA〉, and |B〉 to some state |fB〉 :=
|B〉 |B〉 |garbageB〉. Therefore |〈fA|fB〉| ≤ 1/4. So setting c = 1/2 and d = 1/4, Theorem 20 tells
us that the counterfeiter must make

Ω

(
c− d√
ε

)
= Ω

(
2n/4

)

queries to UA∗ .

A simple modification to the proof of Theorem 22 shows that even to counterfeit money almost
perfectly, one still needs exponentially many queries to UA∗ .

Corollary 23 (Lower Bound for Small-Error Counterfeiting). Given one copy of |A〉, as well
as oracle access to UA∗, a counterfeiter needs Ω

(
2n/4

)
queries to prepare a state ρ such that

〈A|⊗2 ρ |A〉⊗2 ≥ 0.9999 (for a worst-case |A〉).

Proof. Let |〈A|B〉| = c, and let ǫ = 0.00001. If the counterfeiter succeeds, it must map |A〉 to some
state ρA, and |B〉 to some state ρB , such that 〈A|⊗2 ρA |A〉⊗2 and 〈B|⊗2 ρB |B〉⊗2 are both at least
1− ǫ. So letting |fA〉 and |fB〉 be purifications of ρA and ρB respectively, we have

|〈fA|fB〉| ≤ F (ρA, ρB)

≤
∣∣∣〈A|⊗2 |B〉⊗2

∣∣∣+ 2ǫ1/4

= c2 + 2ǫ1/4

where the second line follows from Lemma 5. So setting d := c2 + 2ǫ1/4, Theorem 20 tells us that
the counterfeiter must make

Ω

(
c− c2 − 2ǫ1/4√

2−n/2

)

queries to UA∗ . Fixing c := 1/2, the above is Ω
(
2n/4

)
.

Since the verifier VA is projective, we can now combine Corollary 23 with Theorem 15 to obtain
the following “amplified” lower bound.

Corollary 24 (Lower Bound for High-Error Counterfeiting). Let 1/ε = o
(
2n/2

)
. Given one copy

of |A〉, as well as oracle access to UA∗, a counterfeiter needs Ω
(√
ε2n/4

)
queries to prepare a state

ρ such that 〈A|⊗2 ρ |A〉⊗2 ≥ ε (for a worst-case |A〉).

Proof. Suppose we have a counterfeiter C that makes o
(√
ε2n/4

)
queries to UA∗ , and prepares a

state σ such that 〈A|⊗2 σ |A〉⊗2 ≥ ε. Let δ := 0.00001. Then by Theorem 15, there exists an
amplified counterfeiter C ′ that makes

O

(
log 1/δ√
ε (

√
ε+ δ2)

)
= O

(
1√
ε

)
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calls to C and VA, and that prepares a state ρ such that 〈A|⊗2 ρ |A〉⊗2 ≥ 1− δ. Now, counting the
o
(√
ε2n/4

)
queries from each C invocation and O (1) queries from each VA invocation, the total

number of queries that C ′ makes to UA∗ is

[
o
(√

ε2n/4
)
+O (1)

]
· O
(

1√
ε

)
= o

(
2n/4

)
.

But this contradicts Corollary 23.

So far, we have only made statements about the worst case for a would-be counterfeiter. But
such guarantees are clearly not enough: it could be thatmost money states |A〉 are easy to duplicate,
without contradicting any of the results we have seen so far.

We will show that the problem faced by a counterfeiter is random self-reducible: if a counterfeiter
could duplicate a uniformly-random money state |A〉, then it could duplicate any |A〉. Thus the
bank can ensure security by creating uniformly-random money states.

In what follows, let S be the set of all subspaces A ≤ F
n
2 such that dimA = n/2. Also, let

V ⊗2
A = (|A〉 〈A|)⊗2 be the projector onto |A〉⊗2.

Theorem 25 (Lower Bound for Average-Case Counterfeiting). Let A ≤ F
n
2 be a uniformly-random

element of S. Then given one copy of |A〉, as well as oracle access to UA∗, a counterfeiter C needs
Ω
(√
ε2n/4

)
queries to prepare a 2n-qubit state ρ that V ⊗2

A accepts with probability at least ε, for all

1/ε = o
(
2n/2

)
. Here the probability is taken over the choice of A ∈ S, as well as the behavior of

C and V ⊗2
A .

Proof. Suppose we had a counterfeiter C that violated the above. Using C as a black box, we will
show how to construct a new counterfeiter C ′ that violates Corollary 24.

Given a (deterministically-chosen) money state |A〉 and oracle access to UA∗ , first choose an
invertible linear map f : Fn2 → F

n
2 uniformly at random. Then f (A), the image of A under f ,

is a uniformly-random element of S. Furthermore, the state |A〉 can be transformed into |f (A)〉
straightforwardly, and the oracle Uf(A)∗ can be simulated by composing f with UA∗ . So by using

the counterfeiter C for uniformly-random states, we can produce a state ρf that V ⊗2
f(A) accepts with

probability at least ε. By applying f−1 to both registers of ρf , we can then obtain a state ρ that
V ⊗2
A accepts with probability at least ε, thereby contradicting Corollary 24.

We are now ready to prove security for the “final” mini-scheme M defined in Section 5.2.

Theorem 26 (Security of Mini-Scheme). The mini-scheme M = (BankM,VerM), which is defined
relative to the classical oracle U , has perfect completeness and exponentially-small soundness error.

Proof. That M has perfect completeness follows from its definition and from Lemma 21. That
M has exponentially-small soundness error essentially follows from Theorem 25. We only need
to show that, given a banknote of the form |$r〉 = |sr〉 |Ar〉, a polynomial-time counterfeiter C can
gain no additional advantage by querying the “full” oracles G,H,Tprimal,Tdual, beyond what it gains

from querying UA∗
r
=
(
UAr , UA⊥

r

)
.

Let r ∈ {0, 1}n be the random string chosen by the bank, so that G (r) = (sr, 〈Ar〉). Then
observe that, even conditioned on sr and Ar, as well as complete descriptions of Tprimal,Tdual,
and H, the string r remains uniformly random. Nor can querying G (r′) for r′ 6= r reveal any
information about r, since the values of G are generated independently. So suppose we modify G
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by setting G (r) := (s′, 〈A′〉), for some new 3n-bit serial number s′ and list of generators 〈A′〉 chosen
uniformly at random. Then the BBBV hybrid argument [12] tells us that, in expectation over r,
this can alter the final state output by the counterfeiter C (|$r〉) by at most poly (n) /2n/2 in trace
distance. So in particular, if C succeeded with non-negligible probability before, then C must still
succeed with non-negligible probability after we set G (r) := (s′, 〈A′〉).

However, once we make this modification, an adversary trying to counterfeit |A〉 given UA and
UA⊥ can easily “mock up” a serial number s, as well as the oracles G,H,Tprimal and Tdual, for
itself. For s, G, and H are now drawn from a distribution completely independent of A. The
oracles Tprimal and Tdual are likewise independent of A, except that Tprimal |s〉 |v〉 = |s〉UA |v〉 and
Tdual |s〉 |v〉 = |s〉UA⊥ |v〉—behaviors that an adversary can easily simulate using UA and UA⊥ ,
together with its knowledge of s. Just like in Corollary 18, since our security guarantees are query
complexity bounds, we do not care about the computational complexity of creating the mock-ups.

By using the mock-ups, one can convert any successful attack onM into successful counterfeiting
of |A〉, given oracle access to UA and UA⊥ only. But the latter contradicts Theorem 25.

Finally, using Theorem 26 together with Corollary 18, we can obtain a secure public-key quan-
tum money scheme, relative to a classical oracle.

Theorem 27 (Security of Hidden Subspace Money). By combining the mini-scheme M with
a digital signature scheme, it is possible to construct a public-key quantum money scheme S =
(KeyGenS ,BankS ,VerS), defined relative to some classical oracle U ′, which has perfect completeness
and exponentially-small soundness error.

6 Explicit Quantum Money Scheme

We have shown how to construct a provably-secure public-key quantum money scheme, when an
appropriate classical oracle is available. In this section, we propose a way to obtain the same
functionality without an oracle. The key challenge is this:

Given a subspace A ≤ F
n
2 , how can a bank distribute an “obfuscated program” PA, which

legitimate buyers and sellers can use to decide membership in both A and A⊥, but which
does not reveal anything else about A that might facilitate counterfeiting?

Note that, aside from the detail that we need security against quantum adversaries, the above
challenge is purely “classical”; it and its variants seem interesting even apart from our quantum
money application.

We will suggest a candidate protocol to achieve the challenge, based on multivariate polynomial
cryptography. Given a collection p1, . . . , pm : Fn2 → F2 of multivariate polynomials over F2, it is
generally hard to find a point v ∈ F

n
2 on which all of the pi’s vanish. On the other hand, it is

easy to check whether a particular point v has that property. To “hide” a subspace A, we will
provide uniformly-random low-degree polynomials p1, . . . , pm that vanish on each point of A. This
information is sufficient to decide membership in A. On the other hand, there is no known efficient
algorithm to find A given the polynomials, and current techniques seem unlikely to yield even a
quantum algorithm.

We can also introduce a constant fraction of noise into our scheme without interfering with its
completeness. In other words, if only (1− ǫ)m of the polynomials p1, . . . , pm are chosen to vanish
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on A, and the remaining ǫm are random, then counting the number of pi’s that vanish at a point
v still suffices to determine whether v ∈ A. Although we know of no attack even against our
noise-free scheme, adding noise in this way might improve security.

Crucially, we will state a “classical” conjecture about the security of multivariate polynomial
cryptography, and show that the conjecture implies the security of our explicit money scheme.
For the benefit of cryptographers, let us now state an “abstract” version of our conjecture, which
implies what we need, and which might hold even if our concrete conjecture about multivariate
polynomials fails.

Conjecture 28 (Subspace-Hiding Conjecture, Sufficient for Quantum Money). There exists a
polynomial-time algorithm that takes as input a description of a uniformly-random subspace A ≤ F

n
2

with dim (A) = n/2, and that outputs circuits CA and CA⊥, such that the following holds.

(i) CA (v) decides whether v ∈ A, and CA⊥ (v) decides whether v ∈ A⊥, for all v ∈ F
n
2 .

(ii) Given descriptions of CA and CA⊥, no polynomial-time quantum algorithm can find a gener-
ating set for A with success probability Ω

(
2−n/2

)
.

Later, Conjecture 34 will specialize Conjecture 28 to the setting of multivariate polynomials.

6.1 Useful Facts About Polynomials

By viewing elements of Fn2 as n-tuples (x1, . . . , xn), we can evaluate a polynomial p (x1, . . . , xn) on
points of Fn2 .

Given a subspace A ≤ F
n
2 and a positive integer d, let Id,A be the set of degree-d polynomials

(not necessarily homogeneous) that vanish on A. Since we are working over F2, note that x2i = xi,
so it suffices to consider multilinear polynomials (in which no xi is ever raised to a higher power
than 1).

Before presenting our scheme, we need to establish some basic properties of polynomials over
F
n
2 . First, we observe that the set of polynomials does not depend on the choice of basis.

Proposition 29. Let L be any invertible linear transformation on F
n
2 . Then the map p (v) 7→

p (Lv) defines a permutation on the set of degree-d polynomials, which maps Id,A to Id,L−1A.

Implementing our scheme will require sampling uniformly from Id,A, which the next lemma
shows is possible.

Lemma 30. It is possible to sample a uniformly-random element of Id,A in time O(nd).

Proof. By Proposition 29, we can instead sample from the space of polynomials which vanish on
span

(
x1, . . . , xn/2

)
, and then apply an appropriate change of basis to obtain a sample from Id,A.

So assume without loss of generality that A = span
(
x1, . . . , xn/2

)
.

We claim that a polynomial p vanishes on A if and only if every monomial of p intersects{
xn/2+1, . . . , xn

}
. This will immediately give an O

(
nd
)
-time sampling algorithm, because we can

consider each of the O
(
nd
)
degree-d monomials in turn, and include each one independently with

probability 1/2 if it intersects
{
xn/2+1, . . . , xn

}
.

To prove the claim: first, if every monomial intersects
{
xn/2+1, . . . , xn

}
, then clearly p vanishes

on A. Otherwise, letm be a minimal monomial that does not intersect
{
xn/2+1, . . . , xn

}
. Consider
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the vector v = (v1, . . . , vn) with vi = 1 if and only if xi ∈ m. Since m does not intersect{
xn/2+1, . . . , xn

}
, clearly v ∈ A. Also, since m is minimal, every other monomial must evaluate to

0 on v. Thus p (v) = m (v) = 1, so p is not identically zero on A.

In addition to sampling polynomials that vanish on A, we would like to guarantee that a
sufficiently large system of such polynomials uniquely determines the space A, so that such a
system can be effectively used as a membership oracle.

Lemma 31. Fix A ≤ F
n
2 and β > 1, and choose βn polynomials p1, . . . , pβn uniformly and inde-

pendently from Id,A. Let Z be the set of v ∈ F
n
2 such that pi (v) = 0 for all i ∈ [βn]. Then A ⊆ Z,

and Pr [Z = A] = 1− 2−Ω(n).

Proof. A ⊆ Z is clear. For the probabilistic part, fix a point v /∈ A. Then by the union bound, it
suffices to show that Pr [v ∈ Z] < c−n for some c > 2.

There must be some w ∈ A⊥ such that w · v = 1. Then the map p (v) 7→ p (v)+w · v defines an
involution of Id,A, such that exactly one of p (v) and p (v) +w · v is zero. This means that exactly
half of the polynomials in Id,A vanish at v. Hence

Pr [p1 (v) = · · · = pβn (v) = 0] = 2−βn

and we are done.

As mentioned earlier, we would also like to allow sampling from noisy systems of equations,
defined as follows: let Rd,A,m,ǫ be the probability distribution over m-tuples (p1, . . . , pm) that sets
exactly (1− ǫ)m of the polynomials pi (chosen uniformly at random) to be uniformly-random
samples from Id,A, and that sets the remaining ǫm of the polynomials pi to be uniformly-random
samples from Id,A′ , for a uniformly-random subspace A′ ≤ F

n
2 of dimension dim (A). (Note that

a different A′ is chosen for every such pi.) Then using a Chernoff bound, it is not hard to show
that, provided m is large enough compared to n, a sample from Rd,A,m,ǫ also uniquely defines the
subspace A with overwhelming probability.

Lemma 32. Fix A ≤ F
n
2 and ǫ < 1/2, let β ≥ 3

(1−2ǫ)2
, and choose polynomials p1, . . . , pβn from

Rd,A,βn,ǫ. Let w (v) :=
∑βn

i=1 pi (v), and let Z be the set of v ∈ F
n
2 such that w (v) ≤ ǫβn. Then

A ⊆ Z, and Pr [Z = A] = 1− 2−Ω(n).

Proof. Again, A ⊆ Z is clear. For the probabilistic part, fix v /∈ A. Then by the union bound, it
suffices to show that Pr [v ∈ Z] < α−n for some α < 1/2.

Observe that v is a zero of little more than half the polynomials p1, . . . , pβn. If pi was chosen
to vanish on A, then E [pi (v)] = 1/2, by the argument of Lemma 31. If pi was chosen to vanish
on a uniformly-random A′, then

E [pi (v)] ≥
1

2
− Pr

[
v ∈ A′]

=
1

2
− 1

2n/2
.

Hence

E [p1 (v) + · · ·+ pβn (v)] ≥ βn

(
1

2
− 1

2n/2

)
.
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Furthermore, the pi’s are chosen independently, up to an irrelevant ordering. Choose δ = 1 − 2ǫ
to satisfy 1

2 (1− δ) = ǫ. Then by a Chernoff bound,

Pr [v ∈ Z] = Pr [p1 (v) + · · ·+ pβn (v) ≤ ǫβn]

≤ exp

(
−1

2

βn

2

(
1− 2

2n/2

)
δ2
)

≤ exp

(
−3n

4

(
1− 2

2n/2

))

< 0.48n

for large enough n, and we are done.

6.2 Explicit Hidden-Subspace Mini-Scheme

In our explicit mini-scheme, the bank chooses a subspace A randomly and publishes sets of polyno-
mials drawn fromRd,A,βn,ǫ andRd,A⊥,βn,ǫ, along with the quantum money state |A〉. By Lemma 32,

a user can use these polynomials to test membership in A and A⊥, and can therefore implement
the oracle mini-scheme in Section 5.1.

Formally, the mini-scheme E is defined as follows. Parameters ǫ ∈ [0, 1/2), β ≥ 3
(1−2ǫ)2

, and

d ≥ 4 are fixed. The complexity of the verification procedure will grow like O
(
βnd+1

)
, but security

might also improve for larger ǫ and d. Then:

• Bank (0n) selects an n/2-dimensional subspace A ≤ F
n
2 uniformly at random, say by selecting

n/2 random linearly-independent generators. It then sets s := (sA, sA⊥), where sA and sA⊥

are lists of polynomials drawn from Rd,A,βn,ǫ and Rd,A⊥,βn,ǫ respectively. It prepares the
money state |A〉 and outputs the banknote |$s〉 := |s〉 |A〉.

• Ver (/c) first checks that /c has the form (sA, sA⊥ , ρ) where sA = (p1, . . . , pβn) and sA⊥ =
(q1, . . . , qβn) are lists of βn polynomials over F

n
2 . If not, it rejects. If so, then it lets Z

and Z⊥ be the sets of points v ∈ F
n
2 such that

∑βn
i=1 pi (v) ≤ ǫβn and

∑βn
i=1 qi (v) ≤ ǫβn

respectively. (Recall that with overwhelming probability, Z = A and Z⊥ = A⊥.) It then
applies the operation VZ := H⊗n

2 PZ⊥H⊗n
2 PZ to ρ, and accepts /c if and only if VZ (ρ) accepts.

6.3 Analysis

We first observe that the mini-scheme E has perfect completeness.

Theorem 33. E has perfect completeness.

Proof. This follows from Lemmas 31 and 32, and particularly from the fact that A ⊆ Z and
A⊥ ⊆ Z⊥ with certainty. From this it follows that VZ := H⊗n

2 PZ⊥H⊗n
2 PZ accepts the state |A〉

with probability 1.

Let us remark that, if we want the fraction ǫ of “decoy” polynomials to be even greater than
1/2, then we can define a variant of our scheme that works for all ǫ < 1. In this variant scheme,
Ver will guess that v ∈ A (i.e., put v ∈ Z) if

p1 (v) + · · · + pβn (v) ≤
(1 + ǫ)βn

4
,
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and will guess that v /∈ A (i.e., put v /∈ Z) otherwise. By direct analogy with Lemma 32, one can
prove using a Chernoff bound that this rule will guarantee Pr [Z = A] = 1 − 2−Ω(n), and likewise
Pr
[
Z⊥ = A⊥] = 1 − 2−Ω(n), provided we set β ≥ 12

(1−ǫ)2 . However, the disadvantage is that if

ǫ ≥ 1
3 , then we lose the property that A ⊆ Z and A⊥ ⊆ Z⊥ with probability 1, since ǫ ≥ 1+ǫ

4 . This
means, in particular, that we lose perfect completeness, and can only ensure a completeness error
of 2−Ω(n).

We now wish to argue about E ’s soundness. Naturally, we can only hope to prove soundness
assuming some computational hardness conjecture. What is nice, though, is that we can base
E ’s soundness on a conjecture that talks only about the hardness of a “classical” cryptographic
problem (i.e., a problem with classical inputs and outputs). Let us now state that conjecture,
which is simply the abstract Conjecture 28 specialized to the setting of multivariate polynomials.

Conjecture 34 (Direct Product for Finding Subspace Elements). Let ǫ < 1/2 and β := 3
(1−2ǫ)2

.

Given samples from Rd,A,βn,ǫ and Rd,A⊥,βn,ǫ, no polynomial-time quantum algorithm can find a

complete list of generators for A with success probability Ω
(
2−n/2

)
.

Note that it is easy to find one nonzero element of A with success probability 2−n/2, by choosing
x ∈ F

n
2 randomly. Conjecture 34 asserts both that it is impossible to do too much better using

Rd,A,βn,ǫ and Rd,A⊥,βn,ǫ, and that finding multiple elements of A is significantly harder than finding
one element.

The security of mini-scheme E follows easily from Conjecture 34, despite the fact that a would-
be counterfeiter has access to a valid quantum banknote, whereas Conjecture 34 involves no such
assumption.

Theorem 35 (Security Reduction for Explicit Mini-Scheme). If Conjecture 34 holds, then E is
secure.

Proof. Let CE be a counterfeiter against E . Then we need to show that, using CE , we can find a
complete list of generators for A with Ω

(
2−n/2

)
success probability.

Given A ≤ F
n
2 with dim (A) = n/2, let s := (sA, sA⊥) where sA and sA⊥ are samples from

Rd,A,βn,ǫ and Rd,A⊥,βn,ǫ respectively. Recall from Lemma 32 that Pr [A = Z] = 1 − 2−Ω(n) and

Pr
[
A⊥ = Z⊥] = 1− 2−Ω(n). Provided both of these events occur, we can use s to decide member-

ship in A, and can therefore apply the projective measurement PA. So let us prepare the uniform
superposition over all 2n elements of Fn2 , and then apply PA to it. With probability 2−n/2, this
produces the state |A〉.

Once we have s and |A〉, we can then form the banknote |$〉 := |s〉 |A〉, and provide this banknote
to the counterfeiter CE . By hypothesis, CE outputs a (possibly-entangled) state ρ on two registers,
such that 〈A|⊗2 ρ |A〉⊗2 ≥ ∆ for some ∆ = Ω (1/poly (n)). But now, because the mini-scheme E
is projective, Theorem 15 applies, and we can amplify ρ to increase its fidelity with |A〉⊗2. After
O
(

1
∆2 log n

)
calls to CE , this gives us a state σ such that

〈A|⊗2 σ |A〉⊗2 ≥ 1− 1

n2
.

More generally, by alternating counterfeiting steps and amplification steps, we can produce as many
registers as we like that each have large overlap with |A〉. In particular, we can produce a state ξ
such that

〈A|⊗n ξ |A〉⊗n ≥ 1− o (1) .
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If we now run Ver on each of the registers of ξ, the probability that every invocation accepts is
1−o (1). Furthermore, supposing that happens, the state we are left with is simply |A〉⊗n. Finally,
we measure each register of |A〉⊗n in the standard basis. This gives us n elements x1, . . . , xn ∈ A,
which are independent and uniformly random. So by standard estimates, the probability that
x1, . . . , xn do not contain a complete generating set for A is 1/ exp (n).

Overall, the procedure above succeeded with probability 2−n/2 (1− o (1)), thereby giving us the
desired contradiction with Conjecture 34.

Using the standard construction of quantum money schemes, we can now produce a complete
explicit money scheme, whose security follows from Conjecture 34.

Theorem 36 (Security Reduction for Explicit Scheme). Assuming Conjecture 34, there exists a
public-key quantum money scheme with perfect completeness and soundness error 2−Ω(n).

Proof. We apply the standard construction of Theorem 16 with the mini-scheme E , whose com-
pleteness and soundness follow from Theorems 33 and 35 respectively, assuming Conjecture 34.

6.4 Justifying Our Hardness Assumption

Though our hardness assumption is new, it is closely related to standard assumptions inmultivariate
polynomial cryptography. Given a system of multivariate quadratics over F2, finding a common
zero is known to be NP-hard; moreover, it is strongly believed that the problem remains hard
even for random systems of multivariate polynomials, and cryptosystems based on this hardness
assumption are considered promising candidates for post-quantum cryptography [20]. Therefore,
if Conjecture 34 fails, it will almost certainly be because some additional structure in this problem
facilitates a new attack.

There are several ways in which Conjecture 34 is stronger than the assumption that solving
random systems of multivariate polynomials is hard. First, our systems have large, well-structured
solution spaces A and A⊥. Systems with many solutions are not normally considered in the
literature, and while there seem to be no known attacks that exploit this structure, the possibility
is not ruled out. Second, we provide two related systems, one with zeroes in A and one with zeroes
in A⊥. Again, this is a very specific structural property which has not been considered, and there
might be unexpected attacks exploiting it. Third, Conjecture 34 asserts that no adversary can
succeed with probability 2−n/2, which seems significantly easier than succeeding with non-negligible
probability.

On the other hand, Conjecture 34 is weaker than typical assumptions in multivariate polynomial
cryptography in at least one respect: a would-be counterfeiter needs to solve a system of polynomial
equations with a constant fraction of noise. Solving noisy systems of linear equations over F2 is
called the learning parity with noise problem, and is generally believed to be hard even for quantum
computers [36]. If true, this suggests that Gaussian elimination is fundamentally hard to adapt
to the presence of noise. But computing a Gröbner basis is a strict generalization of Gaussian
elimination to higher degree, and involves a nearly identical process of elimination. It therefore
seems unlikely that these approaches can be efficiently adapted to the setting with noise. The
problem of solving polynomials with noise has been studied recently, and the best-known approaches
involve performing an exponential time search to determine which equations are noisy [6].

But if solving linear systems with noise is already hard, why do we even use higher-degree
polynomials in our scheme? The reason is that, alas, the “dual” structure of our money scheme
facilitates a simple attack in the case d = 1.
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Claim 37. For all ǫ < 1/2, there exists a β such that one can recover A efficiently given samples
from Rd,A,βn,ǫ and Rd,A⊥,βn,ǫ.

18

Proof. Let p1, . . . , pm and q1, . . . , qm be homogeneous linear polynomials, of which a 1− ǫ fraction
vanish on A and A⊥ respectively. Then the key observation is that each pi vanishes on A if and
only if it has the form pi (v) = ui ·v for some ui ∈ A⊥, while each qi vanishes on A⊥ if and only if it
has the form qi (v) = wi ·v for some wi ∈ A. But by Lemma 32, if β > 3

(1−2ǫ)2
, then for each i ∈ [m],

we can efficiently decide whether ui ∈ A⊥ by counting the number of j’s for which qj (ui) = 0, and
can likewise decide whether wi ∈ A by counting the number of j’s for which pj (wi) = 0. Thus we
can learn Θ (n) random elements of A or A⊥, and thereby recover a basis for A.

There might be a more sophisticated attack for higher degrees, but this is suggested only weakly
by the existence of an attack in the linear case. Indeed, the relation between the complementary
linear subspaces A and A⊥ is precisely the sort of structure that should be preserved by linear
maps, but not by higher-degree polynomials!

For degree-2 polynomials, it is possible to obtain a similar attack which recovers A from only
a single sample. This attack relies on the observation that quadratics have an easily-computed
canonical form [17], from which a basis for A can be extracted in polynomial time. The essential
problem is that quadratic polynomials are very closely related to bilinear forms, and that powerful
methods from linear algebra can therefore be applied to them.

Fortunately, the linear structure seems to be computationally obscured when d ≥ 3. This
phenomenon is related to the sharp discontinuity in the difficulty of tensor problems with order
3 and higher. More concretely, the coefficients of a degree-d polynomial can be viewed as the
entries of an order-d tensor, and the existence of an attack in the degree d = 2 case corresponds to
the possibility of efficient operations on order-2 tensors. Basic operations on order-3 tensors are
NP-hard [26], however, and this suggests that analogous attacks might not exist against degree-3
polynomials.

This state of affairs is reflected in existing attacks on a standard cryptographic assumption
called polynomial isomorphism with one secret. Here we are given two polynomials p, q which are
related by an unknown linear change of coordinates L, and the task is to find such an L. For
degree-2 polynomials, this problem can be easily solved in polynomial time [17], but already for
degree-3 polynomials the best known attacks take exponential time [35, 24, 17]. However, if an
attacker is given n bits of partial information about the linear transformation, then even in the
d = 3 case, it becomes possible to find the linear transformation that relates the polynomials [17].
This does not directly facilitate an attack on our assumption, but it suggests that a similar attack
might be possible when d = 3, since an attacker is only required to succeed with 2−n/2 probability.
Fortunately, this attack seems to rely on the particular structure of degree 2 and 3 polynomials.
Of course it is possible that similar algorithms may be discovered for higher-degree polynomials,
but this would represent an advance in algebraic cryptanalysis.

7 Private-Key Quantum Money

Recall that a private-key quantum money scheme is one where only the bank itself is able to
verify banknotes, using an n-bit key k = kprivate = kpublic that it keeps a closely-guarded secret.

18This claim also goes through, with no essential changes, for the variant of our scheme discussed earlier with
ǫ ∈ [1/2, 1) (i.e., the variant without perfect completeness).
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Compensating for this disadvantage, private-key schemes are known with much stronger security
guarantees than seem possible for public-key schemes.

In particular, as mentioned in Section 1.1, already forty years ago Wiesner [39] described how to
create private-key quantum money that is information-theoretically secure. In Wiesner’s scheme,
each banknote consists of n unentangled qubits together with a classical serial number s. Wiesner’s
scheme also requires a giant database of serial numbers maintained by the bank, or in our setting,
access to a random oracle R. But in followup work, BBBW [14] pointed out that we can replace
R by any pseudorandom function family {fk}k, to obtain a private-key quantum money scheme
that is computationally secure, unless a polynomial-time algorithm can distinguish the fk’s from
random functions.

Strangely, we are unaware of any rigorous proof of the security of Wiesner’s scheme until recently.
However, answering a question by one of us,19 Molina, Vidick and Watrous [31] have now supplied
the key ingredient for a security proof. Specifically they show that, if a counterfeiter tries to copy
an n-qubit banknote |$〉 in Wiesner’s scheme, then the output can have squared fidelity at most
(3/4)n with |$〉⊗2. (They also show that this is tight: there exists a non-obvious counterfeiting
strategy that succeeds with (3/4)n probability.)

To complete the security proof, one needs to show that, even given q banknotes |$1〉 , . . . , |$q〉,
a counterfeiter cannot prepare an additional banknote with non-negligible probability (even with
a new serial number). In a forthcoming paper [4], we will show how to adapt the methods of
Section 3 to prove that claim. Briefly, one can first define a notion of private-key mini-schemes,
in close analogy to public-key mini-schemes. The work of Molina et al. [31] then directly implies
the security of what we call the “Wiesner mini-scheme.” Next, one can give a general reduction,
showing how to construct a full-blown private-key quantum money scheme S starting from

(1) any private-key mini -scheme M, and

(2) any random or pseudorandom function family R.

Though the details turn out to be more complicated in the private-key case, the proof of
correctness for this reduction is conceptually similar to the proof of Theorem 16. Namely, one
shows that any counterfeiter would yield either a break of the underlying mini-scheme M, or else
a way to distinguish R from a random function. Notice that the analysis is completely unified: if
R is a “true” random oracle, then we get information-theoretic security (as in Wiesner’s scheme),
while if R is pseudorandom, then we get computational security (as in the BBBW scheme).

Unfortunately, as pointed out by Lutomirski [28] and Aaronson [3], the Wiesner and BBBW
schemes both have a serious security hole. Namely, suppose a counterfeiter C can repeatedly
submit alleged banknotes to a “näıve and trusting bank” for verification. Given a quantum state
σ, such a bank not only tells C whether the verification procedure accepted or rejected, but also,
in either case, gives the post-measurement state σ̃ back to C. Then starting from a single valid
banknote |$〉, we claim that C can recover a complete classical description of |$〉, using O (n log n)
queries to the bank. Once it has such a description, C can of course prepare as many copies of |$〉
as it likes.

The attack is simple: let |$〉 = |θ1〉 · · · |θn〉 (we omit the classical serial number s, since it plays
no role here). Then for each i ∈ [n], the counterfeiter tries “swapping out” the ith qubit |θi〉

19See http://theoreticalphysics.stackexchange.com/questions
/370/rigorous-security-proof-for-wiesners-quantum-money
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and replacing it with |b〉, for each of the four possibilities |b〉 ∈ {|0〉 , |1〉 , |+〉 , |−〉}. It then uses
O (log n) queries to the bank, to estimate the probability that the state |θ1〉 · · · |θi−1〉 |b〉 |θi+1〉 · · · |θn〉
passes the verification test. By doing so, C can learn a correct value of |θi〉 with success probability
1−o (1/n). The crucial point is that none of these queries damage the qubits not being investigated
(|θj〉 for j 6= i), since the bank measures those qubits in the correct bases. Therefore C can reuse
the same banknote for each query.

More generally, recall from Section 3.1 that we call a private-key quantum money scheme query-
secure, if it remains secure even assuming the counterfeiter C can make adaptive queries to Ver (k, ·).
Then we saw that the Wiesner and BBBW schemes are not query-secure. Recently, Farhi et al. [21]
proved a much more general “no-go” theorem—which says intuitively that, if we want query-secure
quantum money, then the banknotes must hide information in the “global correlations” between
large numbers of qubits.

Theorem 38 (Adaptive Attack on Wiesner-Like Schemes [21]). No quantum money scheme can
be query-secure, if

(i) the banknotes have the form |$s〉 = |s〉 |ψs〉,

(ii) verification of (s, ρ) consists of projecting ρ onto |ψs〉 〈ψs|, and

(iii) |ψs〉 can be reconstructed uniquely from the statistics of T = poly (n) efficiently-implementable
measurements M1, . . . ,MT , each of which has at most poly (n) possible outcomes.

On the positive side, any public-key quantum money scheme—for example, our multivariate
polynomial scheme from Section 6—immediately yields a query-secure scheme with the same se-
curity guarantee. This is because a counterfeiter who knows the code of Ver can easily simulate
oracle access to Ver. But can we do any better than that, and construct a query-secure money
scheme whose security is unconditional (as in Wiesner’s scheme), or else based on a pseudorandom
function (as in the BBBW scheme)?

In the forthcoming paper [4], we will answer this question in the affirmative, by directly adapting
the hidden subspace scheme from Section 5 (i.e., the scheme based on a classical oracle). Since
the idea is an extremely simple one, let us sketch it here.

Theorem 39 (Query-Secure Variant of Wiesner’s Scheme). Relative to a random oracle R,20 there
exists a private-key quantum money scheme, with perfect completeness and 2−Ω(n) soundness error,
that is information-theoretically query-secure. One can also replace the random oracle R by a
pseudorandom function family {fk}k, to obtain a private-key quantum money scheme, with no
oracle, that is query-secure assuming that the fk’s cannot be distinguished from random in quantum
polynomial time.

Proof Sketch. For each key k and a serial number s, we will think of the random oracle R as
encoding a classical description R (k, s) of a subspace Ak,s ≤ F

n
2 , which is uniformly random subject

to dim (Ak,s) = n/2. Let |Ak,s〉 be a uniform superposition over Ak,s. Then the private-key money
scheme S = (KeyGen,Bank,Ver) is defined as follows:

• KeyGen (0n) generates an n-bit key k uniformly at random.

20Or alternatively, assuming the bank has access to a giant random number table, as in Wiesner’s original setup
[39].
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• Bank (k) outputs a banknote |$s〉 := |s〉 |Ak,s〉, for a random serial number s ∈ {0, 1}n.

• Ver (k, (s, ρ)) applies a projective measurement that accepts ρ with probability 〈Ak,s|ρ|Ak,s〉.

Now, suppose it were possible to break S (i.e., to counterfeit |Ak,s〉), using poly (n) adaptive
queries to Ver (k, ·). Then we claim that it would also be possible to break our public-key scheme
from Section 5, and thereby contradict the unconditional security proof for the latter! The reason
is simply that any query to Ver, of the form Ver (k, (s, ρ)), can easily be simulated using queries
to UAk,s and UA⊥

k,s
, the membership oracles for Ak,s and A⊥

k,s respectively that are available to a

counterfeiter against the public-key scheme.
Finally, suppose we replace R (k, s) by a pseudorandom function fk (s). Then just like with

the original BBBW scheme [14], we can argue as follows. Since we already showed that S is
information-theoretically secure when instantiated with a “true” random function, any break of S
in the pseudorandom case would thereby distinguish the function fk from random.

8 Open Problems

The “obvious” problem is to better understand the security of our explicit scheme based on poly-
nomials. Are there nontrivial attacks, for example using Gröbner-basis algorithms? Can we base
the security of our scheme—or a related scheme—on some cryptographic assumption that does not
involve exponentially-small success probabilities? What happens as we change the field size or
polynomial degree? Does “hiding” a subspace A ≤ F

n
2 in the way we suggest, as the set of common

zeroes of multivariate polynomials p1, . . . , pm : Fn2 → F2, have other cryptographic applications, for
example to program obfuscation [10]?

Of course, there is also tremendous scope for inventing new schemes, which might be based on
different assumptions and have different strengths and weaknesses.

Let us move on to some general questions about public-key quantum money. First, is there an
unconditionally-secure public-key quantum money scheme relative to a random oracle R? (Recall
that Wiesner’s original scheme [39] was unconditionally-secure and used only a random oracle, but
was private-key. Meanwhile, our scheme from Section 5 is unconditionally-secure and public-key,
but requires a non-random oracle.) Second, is there a public-key quantum money scheme where
the banknotes consist of single, unentangled qubits, as in Wiesner’s scheme? Note that the results
of Farhi et al. [21] imply that, if such a scheme exists, then it cannot be projective. Third, is there
a general way to amplify soundness error in quantum money schemes?21 (We show how to amplify
completeness error in Appendix 10.)

8.1 Quantum Copy-Protection and More

Quantum money is just one novel cryptographic use for the No-Cloning Theorem. Given essentially
any object of cryptographic interest, one can ask whether quantum mechanics lets us make the
object uncloneable. Section 1.4 already discussed one example—uncloneable signatures—but there
are many others, such as commitments and proofs.22

21Theorem 15 gives some soundness amplification for projective schemes: namely, from constant to 1/ poly (n).
Here we are asking whether one can do anything better.

22Even within complexity theory, it would be interesting to study the class QMA (Quantum Merlin-Arthur) subject
to the constraint that witnesses must be hard to clone—or alternatively, that witnesses must be easy to clone!

39



Along those lines, Aaronson [3] proposed a task that, if achievable, would arguably be an even
more dramatic application of the No-Cloning Theorem than quantum money: namely, quantum
software copy-protection. He gave explicit schemes—which have not yet been broken—for copy-
protecting a restricted class of functions, namely the point functions. In these schemes, given a
“password” s ∈ {0, 1}n, a software vendor can prepare a quantum state |ψs〉, which allows its holder
to recognize s: in other words, to decide whether x = s given x ∈ {0, 1}n as input. On the other
hand, given |ψs〉, it seems intractable not only to find s for oneself, but even to prepare a second
quantum state with which s can be recognized.

Admittedly, recognizing passwords is an extremely restricted functionality. However, relative
to a quantum oracle, Aaronson [3] also described a scheme to quantumly copy-protect arbitrary
programs, just as well as if the software vendor were able to hand out uncloneable black boxes.23

In the spirit of this paper, we can now ask: is there likewise a way to quantumly copy-protect
arbitrary programs relative to a classical oracle? We conjecture that the answer is yes, and in
fact we have plausible candidate constructions, which are directly related to the hidden-subspace
money scheme of Section 5. However, the security of those constructions seems to hinge on the
following conjecture.

Conjecture 40 (Direct Product for Finding Black-Box Subspace Elements). Let A be a uniformly-
random subspace of Fn2 satisfying dim (A) = n/2. Then given membership oracles for both A and
A⊥, any quantum algorithm needs 2Ω(n) queries to find two distinct nonzero elements x, y ∈ A,
with success probability Ω

(
2−n/2

)
.

Besides its applications for copy-protection, a proof of Conjecture 40 would be an important
piece of formal evidence for Conjecture 34, on which we based the security of our explicit money
scheme.
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10 Appendix: Reducing Completeness Error

When we defined quantum money schemes and mini-schemes in Section 3, we allowed the verifier
to reject a legitimate money state with probability up to 1/3. But of course, a money scheme with
completeness error ε = 1/3 is not very useful in practice! So in this appendix, we prove that the
completeness error ε can be made exponentially small, at the cost of only a modest increase in the
soundness error δ (i.e., the probability of successful counterfeiting).

Theorem 41 (Completeness Amplification for Mini-Schemes). Let M = (Bank,Ver) be a quantum
money mini-scheme with completeness error ε < 1/2 and soundness error δ < 1 − 2ε. Then for
all polynomials p and all δ′ > δ

1−2ε , we can construct an amplified mini-scheme M′ =
(
Bank′,Ver′

)

with completeness error 1/2p(n) and soundness error δ′.

Proof. Let k = poly (n) and η > 0 be parameters to be determined later. Our construction of M′

is the “obvious” one based on repetition:

• Bank′ (0n) outputs a composite banknote $′ := (s1 . . . sk, ρs1 . . . ρsk), where (s1, ρs1) , . . . , (sk, ρsk)
are banknotes output independently by Bank (0n).

• Ver′ (/c) runs Ver (/c1) , . . . ,Ver (/ck), where /c1, . . . , /ck are the (s, ρs) pairs in the alleged com-
posite banknote /c, and accepts if and only if at least (1− ε− η) k invocations accept.

Note that Ver′2, the amplified double verifier, then takes as input a state of the form

(s1 . . . sk, σ1 . . . σk, ξ1 . . . ξk) ,

and accepts if and only if Ver′ (s1 . . . sk, σ1 . . . σk) and Ver′ (s1 . . . sk, ξ1 . . . ξk) both accept. By
choosing k sufficiently large and applying a Chernoff bound, it is clear that we can make the
completeness error 1/2p(n) for any polynomial p. Meanwhile, suppose M′ has soundness error
δ′: in other words, there exists a counterfeiter C ′ such that Ver′2 (s1 . . . sk, C

′ ($′)) accepts with
probability δ′, given a valid composite banknote $′. Then to prove the theorem, it suffices to
construct a counterfeiter C for the original mini-scheme M, such that Ver2 (s, C ($)) accepts with
probability δ ≥ (1− 2ε− η) δ′, given a valid banknote $ = (s, ρs). This C works as follows:

(1) By calling Bank′ (0n), generate a new composite banknote $′ = ($1, . . . , $k).

(2) Let $′new be the result of starting with $′, then swapping out $i for the banknote $ to be
copied, for some i ∈ [k] chosen uniformly at random.

(3) Let (s1 . . . sk, σ1 . . . σk, ξ1 . . . ξk) := C ′ ($′new).
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(4) Output (si, σi, ξi).

By assumption,
Pr
[
Ver′2 (s1 . . . sk, σ1 . . . σk, ξ1 . . . ξk) accepts

]
≥ δ′.

Now, suppose Ver′2 does accept. Then by the definition of Ver′2, at least (1− ε− η) k of

Ver (s1, σ1) , . . . ,Ver (sk, σk)

must have accepted, along with at least (1− ε− η) k of

Ver (s1, ξ1) , . . . ,Ver (sk, ξk) .

So there must be at least (1− 2ε− 2η) k indices j ∈ [k] such that Ver (sj, σj) and Ver (sj, ξj) both
accepted. Therefore

Pr [Ver2 (si, σi, ξi) accepts] = Pr [Ver (si, σi) and Ver (si, ξi) accept]

≥ (1− 2ε− 2η) δ′.

Taking η > 0 sufficiently small now yields the theorem.

A direct counterpart of Theorem 41, with exactly the same parameters, can be proved for
public-key quantum money schemes. Once again, the main idea is to consider “composite ban-
knotes” $′ = ($1, . . . , $k)—and this time, to associate with each $i a different, independently-chosen
public/private key pair. Another counterpart of Theorem 41 can be proved for digital signature
schemes, indeed with slightly better parameters (δ′ > δ

1−ε instead of δ′ > δ
1−2ε). We omit the

details.

11 Appendix: Complexity-Theoretic No-Cloning Theorem

In Section 5, we applied the inner-product adversary method to show that a uniform superposition
|A〉 over a random subspace A ≤ F

n
2 requires Ω

(
2n/4

)
quantum queries to duplicate, even if we

are given access to an oracle that decides membership in both A and A⊥. For completeness, in
this appendix we present a simpler application of the inner-product adversary method: namely, we
show that a Haar-random n-qubit state |ψ〉 requires Ω

(
2n/2

)
queries to duplicate, if we are given

access to an oracle Uψ that accepts |ψ〉 and that rejects every state orthogonal to |ψ〉. The latter
is the original result that Aaronson [3] called the “Complexity-Theoretic No-Cloning Theorem,”
though a proof has not appeared until now.

In Section 5, we used the lower bound for copying subspace states to construct a quantum
money mini-scheme that was provably secure relative to a classical oracle. In the same way, one
can use the Complexity-Theoretic No-Cloning Theorem to construct a mini-scheme that is provably
secure relative to a quantum oracle. We omit the details of that construction, not only because it
is superseded by the classical oracle construction in Section 5, but because the two constructions
are essentially the same. The one real difference is that the quantum oracle construction benefits
from a quadratically better lower bound on the number of queries needed to counterfeit: Ω

(
2n/2

)

rather than Ω
(
2n/4

)
.

Choose an n-qubit pure state |ψ〉 uniformly from the Haar measure, and fix |ψ〉 in what follows.
Let Uψ be a unitary transformation such that Uψ |ψ〉 = − |ψ〉 and Uψ |η〉 = |η〉 for all |η〉 orthogonal
to |ψ〉. The following is the direct analogue of Theorem 22.
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Theorem 42 (Complexity-Theoretic No-Cloning). Given one copy of |ψ〉, as well as oracle access
to Uψ, a counterfeiter needs Ω

(
2n/2

)
queries to prepare |ψ〉⊗2 with certainty (for a worst-case |ψ〉).

Proof. We will apply Theorem 20. Let the set O contain Uψ for every possible n-qubit state |ψ〉.
Then SUψ is just the 1-dimensional subspace corresponding to |ψ〉. Also, put (Uψ, Uϕ) ∈ R if and

only if |〈ψ|ϕ〉| = c, for some 0 < c < 1 to be specified later. Then for all Uψ ∈ O and |η〉 ∈ S⊥
Uψ

,
we have

E
Uϕ : (Uψ,Uϕ)∈R

[
|〈η|ϕ〉|2

]
= E

|ϕ〉 : |〈ψ|ϕ〉|=c

[
|〈η|ϕ〉|2

]

= E
|v〉∈S⊥

Uψ

[∣∣∣〈η|
(
c |ψ〉+

√
1− c2 |v〉

)∣∣∣
2
]

=
(
1− c2

)
E

|v〉∈S⊥
Uψ

[
|〈η|v〉|2

]

=
1− c2

2n − 1
.

So set ε := 1−c2
2n−1 . If the counterfeiter succeeds, it must map |ψ〉 to some state |fψ〉 := |ψ〉 |ψ〉

∣∣garbageψ
〉
,

and |ϕ〉 to |fϕ〉 := |ϕ〉 |ϕ〉
∣∣garbageϕ

〉
. Note that |〈fψ|fϕ〉| ≤ c2. So setting d := c2, Theorem 20

tells us that the counterfeiter must make

Ω

(
(
c− c2

)√2n − 1

1− c2

)

queries to Uψ. Fixing (say) c = 1/2, this is Ω
(
2n/2

)
.

Like Theorem 22, Theorem 42 is easily seen to be tight, since one can use the amplitude
amplification algorithm (Lemma 7) to find |ψ〉, and thereby prepare |ψ〉⊗2, using O

(
2n/2

)
queries

to Uψ.
For completeness, we observe the following generalization of Theorem 42.

Theorem 43. Given k copies of |ψ〉, as well as oracle access to Uψ, a counterfeiter needs Ω
(
2n/2/

√
k
)

queries to prepare |ψ〉⊗k+1 with certainty (for a worst-case |ψ〉).

Proof. If the counterfeiter succeeds, it must map |ψ〉⊗k to some state |fψ〉 := |ψ〉⊗k+1
∣∣garbageψ

〉
,

and |ϕ〉⊗k to |fϕ〉 := |ϕ〉⊗k+1
∣∣garbageϕ

〉
. Note that |〈fψ|fϕ〉| ≤ ck+1. So setting d := ck+1,

Theorem 20 tells us that the counterfeiter must make

Ω

((
ck − ck+1

)√2n − 1

1− c2

)

queries to Uψ. Fixing c := 1− 1
k , the above is

Ω

((
1

e
−
(
1− 1

k

)
1

e

)√
2n

1− (1− 1/k)2

)
= Ω

(
2n/2√
k

)
.
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We end this appendix by stating, without proof, three stronger lower bounds that are the direct
analogues of Corollary 23, Corollary 24, and Theorem 25 respectively.

Corollary 44. Given one copy of |ψ〉, as well as oracle access to Uψ, a counterfeiter needs Ω
(
2n/2

)

queries to prepare a state ρ such that 〈ψ|⊗2 ρ |ψ〉⊗2 ≥ 0.9999 (for a worst-case |ψ〉).

Corollary 45. Let 1/ε = o (2n). Given one copy of |ψ〉, as well as oracle access to Uψ, a
counterfeiter needs Ω

(√
ε2n/2

)
queries to prepare a state ρ such that 〈ψ|⊗2 ρ |ψ〉⊗2 ≥ ε (for a

worst-case |ψ〉).

Theorem 46. Let |ψ〉 be an n-qubit pure state chosen uniformly from the Haar measure. Given
one copy of |ψ〉, as well as oracle access to Uψ, a counterfeiter C needs Ω

(√
ε2n/2

)
queries to

prepare a 2n-qubit state ρ that a projector V ⊗2
ψ onto |ψ〉⊗2 accepts with probability at least ε, for

all 1/ε = o (2n). Here the probability is taken over the choice of |ψ〉, as well as the behavior of C
and V ⊗2

ψ .
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