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Abstract. In this paper, by means of the idea proposed in [8], differ-
entially 4-uniform permutations with the best known nonlinearity over
F22m can be constructed by using quadratic APN permutations over
F22m+1 . Special emphasis is given for the Gold functions. The algebraic
degree of the constructions and their compositional inverse is also in-
vestigated. One of the constructions and its compositional inverse have
both algebraic degree m + 1 over F2m

2 .
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1 Introduction

S(ubstitution)-boxes play an important role in iterated block ciphers since they
serve as the confusion part and in most cases are the only nonlinear part of
round functions. For efficiency of implementations, S-boxes are often designed
as permutations over F22n in practice. These boxes should possess low differen-
tial uniformity and high nonlinearity to resist differential cryptanalysis [4] and
linear cryptanalysis [17] respectively. Therefore, the problem of constructing per-
mutations with low differential uniformity and high nonlinearity over F22n is of
significant importance in cryptography.

For F (x) ∈ F2n [x], u, v ∈ F2n , the Walsh transform of F (x) is defined as

λF (u, v) =
∑

x∈F2n

(−1)Tr(vF (x)+ux)

and the Walsh spectrum of F (x) is {λF (u, v) | u ∈ F2n , v ∈ F∗2n}. The nonlin-
earity of F (x), which is defined as the minimum distance of the components of
F (x) and all affine Boolean functions with n variables, is related to the Walsh
transform through the following equality

NL(F ) = 2n−1 − 1
2

max
v∈F∗2n ,u∈F2n

|λF (u, v)|.
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For odd n and F (x) ∈ F2n [x], NL(F ) ≤ 2n−1 − 2
n−1

2 [9]. The functions such
the equality holds are called almost bent (AB) functions. The Walsh spectrum
of AB function is {0,±2

n+1
2 } [9]. Gold functions are AB functions [11,18]. For

even n and F (x) ∈ F2n [x], the upper bound of the nonlinearity of F (x) is still
open. The best known nonlinearity is 2n−1 − 2

n
2 [2].

The algebraic degree of F (x) =
2n−1∑
j=0

cjx
j ∈ F2n [x], which is denoted by

d◦(F ), equals the maximum Hamming weight of the binary expansion of j with
cj 6= 0 [7]. In other words, d◦(F ) = maxj,cj 6=0{ω2(j)}. The functions with al-
gebraic degree 2 is called quadratic functions. It is demonstrated that an S-box
should has algebraic degree at least 4 to resist higher order differential attack
[12].

A function F (x) ∈ F2n [x] is called differentially δ-uniform if for any a ∈ F∗2n

and b ∈ F2n , F (x) + F (x + a) = b has at most δ solutions [18]. The functions
with differentially 2-uniform are said to be almost perfect nonlinear (APN). AB
functions are all APN functions [9]. APN functions provide the best resistance
to differential attack. Then APN permutations over F22n would be best choice
for S-boxes in cryptography. However, only one APN permutation over F22n has
been found over F26 [10] and the existence of APN permutation over F22n with
n ≥ 4 remains open.

Therefore, it is appropriate to choose differentially 4-uniform permutations
as S-boxes of block ciphers in real applications. For example, the S-box of AES
is affine equivalent to the inversion function over F28 . The construction of differ-
entially 4-uniform permutation with the highest nonlinearity over F22m is also
difficult. Only few functions are known as follows.

– Suppose k is odd, n = 2k, gcd(i, n) = 2, then x2i+1 and x22i−2i+1 are
differentially 4-uniform permutation over F2n [11,13].

– suppose n is even, then x2n−2 is a differentially 4-uniform permutation over
F2n [3,18,14].

– Suppose k is odd, n = 4k, then x22k+2k+1 is a differentially 4-uniform per-
mutation over F2n [1].

We call F1(x) is EA-equivalent to F2(x), if there exist affine permutations
A1(x), A2(x) ∈ F2n [x] and affine function A2(x) ∈ F2n [x], such that

F1(x) = A1(F2(A2)(x)) + A3(x).

Differential uniformity, nonlinearity and algebraic degree are invariant under EA-
equivalence, but permutation is not. Then it is possible to get permutations by
applying EA-equivalence to F (x), where F (x) is a function with low differential
uniformity and high nonlinearity, see [15,16,19].

Recently, Carlet give a new method for constructing differentially 4-uniform
permutations [8]. The idea is that instead of using the field structure of F2n , to
use that of F2n+1 . Suppose H is a linear hyperplane of F2n+1 with dimension n,
{α1, · · · , αn} is a basis of H over F2. F (x) is a differentially δ-uniform polynomial
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on F2n+1 and F (H) = H, where F (H) = {F (α) | α ∈ H}. Identifying an vector

of (c1, · · · , cn) ∈ Fn
2 as an element of α ∈ H through α =

n∑
i=1

ciαi, then

Fn
2 → Fn

2

(c1, · · · , cn) → (d1, · · · , dn)

is a differentially δ-uniform over Fn
2 , where α =

n∑
i=1

ciαi, F (α) =
n∑

i=1

diαi. Carlet

illustrate his idea with a construction as follows.

Theorem 1. [8] Suppose c = n mod 2, α ∈ F2n+1 and Tr(α) = 1. Identifying an
vector of F2n as an element of H = {u ∈ F2n+1 | Tr(u) = 0}, then the restriction
of x+ 1

x+α+c +( 1
x+α+c )2 to H is a differentially 4-uniform permutation over F2n

and its algebraic degree is n− 1.

The bounds of the nonlinearity of the permutations in Theorem 1 shows that
these permutations do not obtain the highest nonlinearity [8]. In the present
paper, we show that differentially 4 uniform permutation over F2n with n even
can be constructed from quadratic APN permutations over F2n+1 by using the
similar idea. We also show that permutations constructed posses the best known
nonlinearity.

The paper is organized as follows. In Sect. 2, a general construction is given
and the nonlinearity is also investigated. In Sect. 3, several constructions are
given by using Gold functions. One of our constructions and its compositional
inverse have both algebraic degree n+2

2 . The conclusion is given in Sect. 4.

2 General construction

First, for a function F (x) ∈ F2m [x] and H ⊆ F2m , F (H) means {F (h) | h ∈ H},
a + H means {a + h | h ∈ H}, where a ∈ F2m .

Throughout this paper, n is an even integer. If F (x) ∈ F2n+1 [x] is a quadratic
APN permutation with F (0) = 0, then it is easy to see that for any u ∈ F∗2n+1 ,

Lu(x) = F (x) + F (x + u) + F (u)

is a linear polynomial with kernel {0, u}. Thus the image of Lu(x) is a linear
subspace of F2n+1 with dimension n. Identify a vector of Fn

2 as an element of the
image of Lu(x). Then we have the following result.

Theorem 2. Let n be even, F (x) ∈ F2n+1 [x] be a quadratic APN permutation
with F (0) = 0, Lu(x) = F (x) + F (x + u) + F (u), Hu = {Lu(a) | a ∈ F2n+1}.
Identify the input x with an element of Hu. Let Fu(x) be the restriction of

Lu(F−1(x))

to Hu. Then Fu(x) is a differentially 4-uniform permutation over Fn
2 , where

F−1(x) is the compositional inverse of F (x).
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Proof. Notice that Fu(Hu) = Lu(F−1(Hu)) ⊆ Hu, we need only to show that
Lu(F−1(x)) is injective on Hu. Assume that there exist x1 6= x2 ∈ Hu, such that
Lu(F−1(x1)) = Lu(F−1(x2)). Then

F−1(x1) = F−1(x2) + u,

since ker(Lu) = {0, u}. Compose both sides of the above equality with F (x),
then we have

x1 = F (F−1(x2) + u),

which is equivalent to

x1 + x2 = F (F−1(x2) + u) + F (F−1(x2)).

This means x1 +x2 ∈ F (u)+Hu. On the other hand, we have x1 +x2 ∈ Hu since
x1, x2 ∈ Hu and Hu is a linear subspace of F2n+1 . Hence x1 +x2 ∈ Hu ∩ (F (u)+
Hu), this contradicts to Hu ∩ (F (u) + Hu) = ∅ for F (x) is a permutation.

The differential uniformity of Lu(F−1(x)) is easy to compute. Since | ker(Lu)| =
2 and F (x) is an APN permutation, then F−1(x) is also APN and Lu(F−1(x))
is differentially 4-uniform. ut

Remark 1. If we replace Lu(x) in Theorem 2 with any other linear polynomial
L(x) ∈ F2n+1 [x] with kernel {0, u} and image Hu, Theorem 2 also holds. No-

tice that there are
n−1∏
i=0

(2n − 2i) different linear polynomials with kernel {0, u}

and image Hu, which is also the amount of different linear permutations over
Hu. Therefore, there exists a linear permutation M over Hu such that L(x) =
M(Lu(x)). Then the restriction of L(F−1(x)) to Hu equals the restriction of
M(Lu(F−1(x))) to Hu and EA-equivalent to Fu(x). Thus, it is enough to choose
Lu(x) = F (x) + F (x + u) + F (u).

Notice that for a quadratic function, it is APN if and only if it is AB [7]. The
we can characterize the nonlinearity of the permutations constructed in Theorem
2 as follows.

Theorem 3. Let Fu(x) be a function constructed as Theorem 2. Then NL(Fu) =
2n−1 − 2

n
2 , which is the best known nonlinearity over Fn

2 .

Proof. Denote the set of all linear subspaces of F2n+1 with dimension n by LSn.

It is hold that |LSn| =

n−1∏
i=0

(2n+1−2i)

n−1∏
i=0

(2n−2i)

= 2n+1 − 1. Then we have

LSn = {{x ∈ F2n+1 | Tr(αx) = 0} | α ∈ F2n+1}.

This means for any H ∈ LSn, there exists α ∈ F∗2n , such that H = {x ∈ F2n+1 |
Trn+1(αx) = 0}.



Constructing differentially 4-uniform permutations over F22m 5

Suppose αu ∈ F∗2n+1 such that Hu = {Lu(a) | a ∈ F2n+1} = {k ∈ F2n+1 |
Trn+1(αuk) = 0}. Remember that Fu(x) is the restriction of Lu(F−1(x)) to Hu,
then

NL(Fu) = 2n−1 − 1
2

max
a∈F2n+1 ,b∈F2n+1\{0,αu}

|λFu
(a, b)|,

where λFu
(a, b) =

∑
x∈Hu

(−1)Tr(bLu(F−1(x))+ax). For a, b ∈ F2n+1 \{0, αu}, we have

λFu
(a, b) =

∑
x∈Hu

(−1)Tr(bLu(F−1(x))+ax)

=
∑

x∈Hu

(−1)Tr(L∗
u(b)F−1(x)+ax)

=
1
2
(

∑
x∈F2n+1

(−1)Tr(L∗
u(b)F−1(x)+ax)

+
∑

x∈F2n+1

(−1)Tr(L∗
u(b)F−1(x)+(a+αu)x))

=
1
2
(

∑
x∈F2n+1

(−1)Tr(L∗
u(b)x+aF (x))

+
∑

x∈F2n+1

(−1)Tr(L∗
u(b)x+(a+αu)F (x)))

=
1
2
(λF (L∗

u(b), a) + λF (L∗
u(b), a + αu)),

where L∗
u is the adjoint operator of Lu. Notice that

λFu(0, b) = λFu(αu, b) = 0

for any b ∈ F2n+1 \ {0, αu}, since Fu(x) is a permutation over Hu. Then we have

max
a∈F2n+1 ,b∈F2n+1\{0,αu}

|λFu
(a, b)|

= max
a,b∈F2n+1\{0,αu}

|λFu(a, b)|

= max
a,b∈F2n+1\{0,αu}

1
2
|λF (L∗

u(b), a) + λF (L∗
u(b), a + αu)|

≤ max
a,b∈F2n+1\{0,αu}

1
2
(|λF (L∗

u(b), a)|+ |λF (L∗
u(b), a + αu)|)

≤ λ,

where λ = max{λF (b, a) | b ∈ F2n+1 , a ∈ F∗2n+1} = 2
n+2

2 . Since F (x) is a
quadratic AB permutation over F2n+1 and its Walsh spectrum is {0,±2

n+2
2 }.

Therefore,
NLFu

≥ 2n−1 − 2
n
2 .
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We claim that the equality holds. Otherwise, as a permutation over Fn
2 , the

Walsh spectrum of Fu(x) is {0,±2
n
2 }. According to Parseval’s equality, for any

b ∈ Fn∗
2 , it holds

∑
a∈Fn

2

(
∑

x∈Fn
2

(−1)b·Fu(x)+a·x)2 = 22n. Therefore, for any a ∈ Fn
2 , it

must holds λFu(a, b) = ±2
n
2 . This contradicts with λFu(0, b) = 0, since Fu(x) is

a permutation over Fn
2 . Therefore, NL(Fu) = 2n−1 − 2

n
2 . ut

3 Constructions from Gold functions

It is well-known that x2i+1 is an AB permutation over F2n+1 when is n even and
gcd(i, n + 1) = 1. We denote its compositional inverse by x

1
2i+1 . In this section,

we give some constructions of differentially 4-uniform permutations with the
best known nonlinearity over Fn

2 by using Gold functions. It is easy to see that
for Gold functions and u ∈ F∗2n+1 ,

Lu(x) = x2i+1 + (x + u)2
i+1 + u2i+1 = ux2i

+ u2i

x.

Then according to Theorem 2 and Theorem 3, we have the following result.

Theorem 4. Suppose n is even, gcd(i, n + 1) = 1, u ∈ F∗2n+1 . Identify a vector
of Fn

2 as an element of the n-dimension linear subspace Hu = {ua2i

+ u2i

a | a ∈
F2n+1}. Let Fu(x) be the restriction of ux

2i

2i+1 + u2i

x
1

2i+1 to Hu, where x
1

2i+1

is the compositional inverse of x2i+1 over F2n+1 . Then the following statements
hold.

1. Fu(x) is a differentially 4-uniform permutation over Fn
2 .

2. The nonlinearity of Fu(x) is 2n−1 − 2
n
2 .

Next, we will investigate the algebraic degree of Fu(x) and F−1
u (x). The

following lemmas are useful.

Lemma 1. [18] Suppose gcd(i, n + 1) = 1, then the compositional inverse of

x2i+1 over F2n+1 is xd, where d = 2i(n+2)−1
22i−1 =

n
2∑

k=0

22ik mod (2n+1 − 1). Its

algebraic degree is n+2
2 .

The 2-weight of an integer t ∈ N means the number of nonzero terms in the
binary expansion of t, denoted by ω2(t). Let us recall the following Lemma.

Lemma 2. [8] Let n ≤ N , F
′ ∈ F2N [x], let F be the restriction of F

′
to an

n-dimensional affine space E, and k be a positive integer. Then F has algebraic
degree at most k if and only if for every integer i with ω2(i) at most n− k − 1,
we have

∑
x∈E

xiF (x) = 0.

The following lemma is also needed in the proof of the Proposition 1.
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Lemma 3. Let i be a positive integer, gcd(i, n + 1) = 1, and d(2i + 1) =
1 mod (2n+1 − 1). Then there do not exist 0 ≤ k1, k2 ≤ n, such that d + 2k1 =
2id + 2k2 mod (2n+1 − 1).

Proof. Assume that there are 0 ≤ k1, k2 ≤ n, such that d + 2k1 = 2id +
2k2 mod (2n+1 − 1). Multiplying both sides by 2i + 1, one obtain

1 + 2i+k1 + 2k1 = 2i + 2i+k2 + 2k2 mod (2n+1 − 1). (1)

Let c1 = 1 + 2i+k1 + 2k1 mod (2n+1 − 1), c2 = 2i + 2i+k2 + 2k2 mod (2n+1 − 1).
Then 1 ≤ ω2(c1) = ω2(c2) ≤ 3. There are three cases:

Case 1. ω2(c1) = ω2(c2) = 1. Notice that k1 6= i + k1 mod (n + 1), then
ω2(c1) = 1 if and only if k1 = 0, (i + k1) mod n + 1 = 1, or (i + k1) mod n + 1 =
0, k1 = 1, from which we get c1 = 4. By the same reasoning, ω2(c2) = 1 if and
only if (i + k2) mod n + 1 = i, k2 = i + 1, or (i + k2) mod n + 1 = i + 1, k2 = i,
from which we get c2 = 2i+2 mod (2n+1 − 1). Then (1) is equivalent to

4 = 2i4 mod (2n+1 − 1).

Therefore, i = 0 mod (n+1), which is a contradiction because gcd(i, n+1) = 1.
Case 2. ω2(c1) = ω2(c2) = 2. ω2(c1) = 2 if and only if k1 = 0, i 6= 1 or

i + k1 mod n + 1 = 0, i 6= n, from which we get c1 = 2i + 2 or c1 = 2n+1−i + 2.
Notice that 2i+k1 + 2k1 6= 2i+1 mod (2n+1 − 1), then ω2(c2) = 2 if and only if
i = k2, i 6= 1, from which we get c2 = 22i + 2i+1. Therefore (1) is equivalent to

2n+1−i + 2 = 22i + 2i+1 mod (2n+1 − 1),

since c2 = 2i(2i + 2) 6= 2i + 2 mod (2n+1 − 1). Thus 2i = 1 mod (n + 1) and
i + 1 = n + 1 − i mod (n + 1), which are equivalent to i = n

2 + 1 and i = n
2

respectively. This is a contradiction.
Case 3. ω2(c1) = ω2(c2) = 3. Then it must have k1 6= 0 and i + k2 =

0 mod (n + 1). Therefore (1) is equivalent to

1 + 2i+k1 + 2k1 = 2i + 2n+1−i + 1 mod (2n+1 − 1).

Hence k1 = i, and n+1−i = k1+i mod (n+1), which is equivalent to n+1 = 3i.
This is a contradiction since gcd(i, n + 1) = 1. ut

Proposition 1. Suppose that n ≥ 4 is even, Fu(x) is a function constructed in
Theorem 4. Then d◦(Fu) = n+2

2 .

Proof. Without loss of generality, we prove the case of u = 1. Suppose F1(x) is
the restriction of xd + x2id to

H1 = {x + x2i

| x ∈ F2n+1} = {x ∈ F2n+1 | Tr(x) = 0},

where d(2i + 1) = 1 mod (2n+1 − 1). Then according to Lemma 1,we have
d◦(F1(x)) ≤ n+2

2 . In the next, we show the equality holds.
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Since ω2(d) = n+2
2 < n, we can choose an integer k with 0 ≤ k ≤ n, such

that ω2(d + 2k) = ω2(d) + 1. Notice that for any xl, where 1 ≤ l ≤ 2n+1 − 2, we
have ∑

x∈F2n+1

xl =
2n+1−2∑

j=0

gjl =
1 + gl(2n+1−1)

1 + gl
= 0,

where g is a primitive element of F2n+1 .
Hence by the choice of k, we have∑

x∈F2n+1

x2n+1−1−(d+2k)(xd + x2id) = 0.

By Lemma 3, there does not exist any j with 0 ≤ j ≤ n, such that

(2i − 1)d + 2j − 2k = 0 mod (2n+1 − 1).

Therefore, we have∑
x∈H1

x2n+1−1−(d+2k)(xd + x2id)

=
∑

x∈F2n+1

x2n+1−1−(d+2k)(xd + x2id)(Tr(x) + 1)

=
∑

x∈F2n+1

x2n+1−1−(d+2k)(xd + x2id)Tr(x)

=
∑

x∈F2n+1

x2n+1−1 +
n∑

j=0,j 6=k

∑
x∈F2n+1

x2j−2k

+
n∑

j=0

∑
x∈F2n+1

x(2i−1)d−2k+2j

= 1.

Thus by Lemma 2,

d◦(F ) ≥ n− (
n

2
− 1) =

n + 2
2

,

since ω2(2n+1 − 1− (d + 2k)) = n + 1− (ω2(d) + 1) = n
2 − 1. Then the proof is

completed. ut

Concerning the algebraic degree of the compositional inverse of the function
constructed in Theorem 4, we have the following results.

Proposition 2. Suppose n ≥ 4 is even, Fu(x) is the function constructed in
Theorem 4, then d◦(F−1

u (x)) ≤ 3.

Proof. Without loss of generality, we prove the case of u = 1. Suppose F1(x) is

the restriction of x
1

2i+1 + x
2i

2i+1 to H1 = {x ∈ F2n+1 | Tr(x) = 0}. We have to
determine the roots of

x
1

2i+1 + x
2i

2i+1 = y. (2)
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Since gcd(i, n + 1) = 1, {i · k mod (n + 1) | 1 ≤ k ≤ n} = {k | 1 ≤ k ≤ n}.

Let L(x) =
n−2

2∑
j=0

x2(2j+1)i

, then ∀x ∈ F2n+1 ,

L(x + x2i

) =

n−2
2∑

j=0

(x2(2j+1)i

+ x2(2j+2)i

) =
n∑

j=1

x2ji

= Tr(x) + x.

This means that L(b) satisfies x + x2i

= b when Tr(b) = 0. Since ker(x + x2i

) =
{0, 1}, for every y ∈ H1, two roots of equation (2) are L(y)2

i+1 and (L(y)+1)2
i+1.

Thus the compositional inverse of F1(x) is

F−1
1 (x) =

{
L(x)2

i+1 Tr(L(x)2
i+1) = 0,

(L(x) + 1)2
i+1 Tr(L(x)2

i+1) = 1,

which equals the restriction of

L(x)2
i+1Tr(L(x)2

i+1 + 1) + (L(x) + 1)2
i+1Tr(L(x)2

i+1)
= L(x)2

i+1 + Tr(L(x)2
i+1) + (L(x)2

i

+ L(x))Tr(L(x)2
i+1)

to H1. Therefore, d◦(F−1
1 ) ≤ 3. ut

The above result shows that the compositional inverse of the functions con-
structed in Theorem 4 do not have a high algebraic degree to resist the higher
order differential attack. In order to improve this, we give its modification as
follows.

Theorem 5. Suppose n is even, gcd(i, n + 1) = 1, u ∈ F∗2n+1 , Hu = {ux2i

+

u2i

x | x ∈ F2n+1}. Let F
′

u(x) be the restriction of ux
2i

2i+1 + u2i

x
1

2i+1 + x to Hu.
Then the following statements hold.

1. F
′

u(x) is a differentially 4-uniform permutation over Fn
2 ;

2. The nonlinearity of F
′

u(x) equals 2n−1 − 2
n
2 ;

3. d◦(F
′

u) = d◦(F
′−1
u ) = n+2

2 .

Proof. Let Fu(x) be the function constructed in Theorem 4. Then Fu(x) and
F

′

u(x) are EA-equivalent since F
′

u(x) = Fu(x) + x. Therefore, F
′

u(x) is differen-
tially 4-uniform with nonlinearity 2n−1− 2

n
2 and algebraic degree n+2

2 . Thus we
need only to show that F

′

u(x) is a permutation, and d◦(F
′−1
u ) = n+2

2 .

Let F1(x) = ux
2i

2i+1 + u2i

x
1

2i+1 , F (x) = ux
2i

2i+1 + u2i

x
1

2i+1 + x. It has been
proved that F1(Hu) = Hu. Since Hu is a linear subspace of F2n+1 , then F (Hu) ⊆
Hu. On the other hand,

F (x) = ux
2i

2i+1 + u2i

x
1

2i+1 + x = (x
1

2i+1 + u)2
i+1 + u2i+1 (3)

is a permutation over F2n+1 , then |F (Hu)| = |Hu|, which shows that F (x) is a
permutation on Hu.
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By (3), the compositional inverse of F
′

u(x) equals the restriction of

((x + u2i+1)
1

2i+1 + u)2
i+1

= x + u(x + u2i+1)
2i

2i+1 + u2i

(x + u2i+1)
1

2i+1

to Hu. Therefore, its algebraic degree is also n+2
2 by applying the same reasoning

as Proposition 1. ut

It is proven that for a nonzero linear polynomial L(x) ∈ F2n [x], x2i+1 +L(x)
is a permutation over F2n if and only if n is odd and L(x) = ux2i

+u2i

x for some
u ∈ F∗2n [15]. Then there does not exist other linear polynomials are helpful for
constructing differentially 4-uniform permutations as Theorem 5 does.

At the end of this subsection, we show that differentially 4-uniform permuta-
tions over Fn

2 can also be constructed from APN permutations over F2n+1 with
algebraic degree larger than 2. Let us recall the following result:

Lemma 4. [5] Let m ≥ 9 be odd and divisible by 3, gcd(i, m) = 1, s = i mod 3.
Then

(x
1

2i+1 + Trm/3(x + x22s

))−1

is an AB permutation over F2m , which is EA-inequivalent to Gold functions and
their inverse. Its algebraic degree is 4.

Lemma 5. Let m = n+1 be odd and divisible by 3, gcd(i, m) = 1, s = i mod 3,
F (x) = x

1
2i+1 + Trm/3(x + x22s

). Then Tr(F−1(x) + F−1(x + 1)) = 1, where
F−1(x) is the compositional inverse of F (x).

Proof. First, we notice that in order to prove

Tr(F−1(a) + F−1(a + 1)) = 1

for all a ∈ F2n+1 , we only need to prove the above equality holds for all a ∈ {α ∈
F2n+1 | Tr(α) = 1} = Tr(1). This is because if Tr(a) = 0, let b = a + 1, then we
have Tr(b) = 1 and

Tr(F−1(a) + F−1(a + 1)) = Tr(F−1(b + 1) + F−1(b)).

It is proven in [5] that

F−1(x) = x2i+1 + (Trm/3(x2i+1))6 + (Trm/3(x2i+1))5

+(Trm/3(x2i+1))3 + (Trm/3(x2i+1))4

+x2i

Tr(x)Trm/3(x2i+1 + x22s(2i+1)) + xTr(x)Trm/3(x2i+1 + x2s(2i+1))
+x2i

Trm/3(x2(2i+1) + x22s+1(2i+1)) + xTrm/3(x2(2i+1) + x2s+1(2i+1))
+Tr(x)Trm/3(x2i+1 + x4(2i+1)).

Notice that Tr(Trm/3(x)3) = Tr(Trm/3(x)5), then for a ∈ Tr(1), we have

Tr(F−1(a)) = Tr(Trm/3(a2i+1)2
s+1 + a2i

Trm/3(a2i+1 + a2s(2i+1))
+a2i

Trm/3(a2(2i+1) + a2s+1(2i+1))),
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and
Tr(F−1(a + 1)) = Tr(Trm/3((a + 1)2

i+1)2
s+1

+(a2i

+ 1)Trm/3((a + 1)2(2
i+1) + (a + 1)2

s+1(2i+1))).

By a long but easy computation, we have

Tr(F−1(a) + F−1(a + 1)) = 1 + Tr(Trm/3(a2i+1)2
s

Trm/3(a2s

+ a22s

)
+Trm/3(a)2

2s+1 + Trm/3(a)2
s+1

+a2i

Trm/3(a2i+1 + a2s(2i+1)) + a2i

Trm/3(a2 + a22s+1
))

= Tr3(Trm/3(a)2
2s+1 + Trm/3(a)2

s+2 + Trm/3(a)2
s+22s+1

)
= Tr3(Trm/3(a)) = 1,

since

{22s + 1 mod 7, 2s + 2 mod 7, 2s + 22s+1 mod 7} =
{
{5, 4, 3}, s = 1;
{3, 6, 1}, s = 2.

Then we complete the proof. ut

Theorem 6. Let m = n + 1 be odd and divisible by 3, gcd(i,m) = 1, s =
i mod 3. F (x) = x

1
2i+1 +Trm/3(x+x22s

) is an AB permutation over F2m . Identify
a vector of F2n as an element of the linear subspace Tr(0) = {a ∈ F2m | Trm(a) =
0}. Let F

′
(x) be the restriction of F (x) + F (x)2

i

to Tr(0). Then the following
statements hold.

1. F
′
(x) is a differentially 4-uniform permutation over Fn

2 ;
2. Its nonlinearity is 2n−1 − 2

n
2 and its algebraic degree is n+2

2 ;
3. d◦(F

′−1) ≤ 7.

Proof. As in the proof of Theorem 5, we have F
′
(x) is EA-equivalent to the

functions constructed in Theorem 4. Thus we need only to prove F
′
(x) is a

permutation over Fn
2 and d◦(F

′−1) ≤ 7.
First, F

′
(Tr(0)) ⊆ Tr(0). Then we need only to show that F

′
(x) is injective

on Tr(0). Assume that there exist x1 6= x2 ∈ Tr(0), such that F (x1) + F (x1)2
i

=
F (x2) + F (x2)2

i

. Since F (x) is a permutation and y + y2i

= 0 has only two
solutions {0, 1}, it must have

x
1

2i+1
1 + Trm/3(x1 + x22s

1 ) = x
1

2i+1
2 + Trm/3(x2 + x22s

2 ) + 1.

By applying F−1 to two sides of the above equation, we have

x1 = F−1(F (x2) + 1).

Therefore,
x1 + x2 = F−1(F (x2) + 1) + F−1(F (x2)).

By Lemma 5, we get

Tr(x1 + x2) = Tr(F−1(F (x2) + 1) + F−1(F (x2))) = 1.
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However, since x1, x2 ∈ Tr(0), x1 +x2 ∈ Tr(0), that is Tr(x1 +x2) = 0. Hence
we obtain a contradiction. Thus F

′
(x) is a permutation on Tr(0).

Let L(x) =
m−3

2∑
j=0

x2(2j+1)i

. By Lemma 5, by a similar argument as Proposition

2, we have

F
′−1(x) =

{
F−1(L(x)) Tr(F−1(L(x))) = 0,
F−1(L(x) + 1) Tr(F−1(L(x))) = 1,

which is equivalent to the restriction of

F−1(L(x))(Tr(F−1(L(x))) + 1) + F−1(L(x) + 1)Tr(F−1(L(x)))
= Tr(F−1(L(x)))(F−1(L(x)) + F−1(L(x) + 1)) + F−1(L(x))

to Tr(0). By Lemma 4, d◦(F−1) = 4, algebraic degree of F−1(L(x))+F−1(L(x)+
1) is less than or equal to 3. Hence, d◦(F

′−1) ≤ 7. ut

Remark 2. With the help of Magma, we have d◦(F
′−1) = 5 when m = 9, 15.

Then it is reasonable to believe that d◦(F
′−1) = 5 is true for every odd m

divisible by 3. The inverse of the permutations constructed in Theorem 5 and
Theorem 6 are EA-inequivalent when n ≥ 14, since their algebraic degree are
not equal.

When n = 8, we have d◦(F
′−1
u ) = 5, where F

′

u(x) is the permutation con-
structed in Theorem 5. Define

RDF (a, 4) = |{b ∈ F2n | F (x) + F (x + a) = b has 4 roots}|.

Then it is easy to verify that RDF (4) = {RDF (a, 4) | a ∈ F∗2n} is invariant
under EA-equivalence. Let i = 1, with the help of Magma, we have

RD
F
′−1
u

(4) = {13, 14, 15, 16, 17, 18, 19, 20, 23}

and
RDF ′−1(4) = {11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 28}.

Then F
′−1
u (x) and F

′−1(x) are EA-inequivalent on F28 either.

4 Conclusion

In this paper, we give a method for constructing differentially 4-uniform permu-
tations with the best known nonlinearity over F22m from quadratic AB permuta-
tions over F22m+1 . We give also some constructions by using the Gold functions.
Besides inverse functions, it is first time that differentially 4-uniform permu-
tations over F22n with the highest nonlinearity are constructed. Besides Gold
functions, there are other AB permutations over F22m+1 [6]. Then one can ob-
tain other differentially 4-uniform permutations by applying the same method
in the paper. It is our hope that the results presented in this paper will motivate
new progress in related areas.
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