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Efficient Methods for Exploiting Faults

Induced at AES Middle Rounds
Chong Hee Kim

Abstract

Faults occurred during the operations in a hardware device cause many problems such as performance deteri-

oration, unreliable output, etc. If a fault occurs in a cryptographic hardware device, the effect can be even serious

because an adversary may exploit it to find the secret information stored in the device. More precisely, the adversary

can find the key of a block cipher using differential information between correct and faulty ciphertexts obtained by

inducing faults during the computation of ciphertexts. This kind of attack is called Differential Fault Analysis (DFA).

Among many ciphers Advanced Encryption Standard (AES) has been the main target of DFA due to its popularity.

AES is widely used in different platforms and systems including Intel and AMD microprocessors.

Normally DFA on AES exploits faults induced at the last few rounds. Hence, a general countermeasure is

to recompute the last few rounds of AES and compare it with the original output. As redundancy is a costly

countermeasure, one should ascertain exactly which rounds need to be protected. In 2006, Phan and Yen introduced a

new type of DFA, so called Square-DFA, that works even when faults are induced into some middle rounds. However,

it is impractical as it requires several hundreds of faulty ciphertexts as well as a bit fault model. In this article, we

propose new attacks that need only dozens of faulty ciphertexts in a byte fault model. Normally it is believed that

randomly corrupting a byte is easier than corrupting a specific bit. In addition, we extend the attacks to the AES-192

and AES-256, which is the first result in the literature.

Index Terms

Fault Analysis, Security, Differential Fault Analysis, AES.

I. INTRODUCTION

Reliable computation is one of the main concerns in many hardware devices. Especially faults occurred during

the operations cause many problems such as performance deterioration, unreliable output, etc. and hence a lot of

works to minimize, detect, or prevent faults have been researched. Nowadays we can easily find cryptographic

hardware devices such as smart cards everywhere in our daily lives from banking cards to SIM cards for GSM.
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These devices are believed to be tamper-resistant. However, if a fault is occurred, an adversary can find the secret

information stored in the device. Therefore, we are challenging a new type of fault problem.

More precisely, an adversary can find the key of a block cipher using differential information between correct

and faulty ciphertexts obtained by inducing faults during the computation of ciphertexts. This kind of attack is

called Differential Fault Analysis (DFA). The block cipher is widely used in many cryptographic applications and

has been studied extensively in the literature. Traditionally cryptanalysis of block cipher targets the cipher’s design

and architecture based on an abstract mathematical approach. However, in practice a cipher has to be implemented

on a real device that is exposed to physical cryptanalysis such as side-channel attacks [10], [18], [24] and fault

attacks [3], [16].

An adversary gets faulty ciphertexts by giving external impact on a device with voltage variation, glitch, laser,

etc. [3]. The first DFA presented by Biham and Shamir in 1997 [5] targeted DES [1]. Afterward many people tried

to break several cryptosystems such as Triple-DES [14], CLEFIA [8], [26], AES [4], [6], [7], [11], [13], [15], [17],

[20], [21], [23], [25], [27], [28], SMS4 and MacGuffin [19]. Among them, Advanced Encryption Standard (AES)

[2] has been the main target due to its popularity. AES has three variants according to the key size: 128, 192, and

256-bit keys (they are called AES-128, AES-192, and AES-256 respectively).

DFA on AES exploits faults induced at the last few rounds of AES. The best result of DFA on AES-128 exploits

faults induced at round r−3 [12], [23], [29] and DFA on AES-192 and AES-256 exploit faults at rounds r−4 and

r− 3 [15], where r is the number of rounds. Hence, a general countermeasure is to recompute the last few rounds

of AES and compare it with the original output. As redundancy is a costly countermeasure, one should ascertain

exactly which rounds need to be protected.

In 2006, Phan and Yen introduced a new type of DFA, so called Square-DFA, that integrated the technique of

DFA and conventional cryptanalysis of block ciphers [22]. Square-DFA can be mounted with a more flexible attack

model, where faults can be induced even in rounds where previous DFAs are inapplicable. However, Square-DFA

has two weaknesses that hinder the use of it in practice. First, it requires several hundreds of faulty ciphertexts.

Secondly it works in a bit-level fault model.

In this article, we introduce new Square-DFAs that solve the weaknesses that Phan and Yen’s Square-DFA have.

Specifically, the contributions of this article are as follows:

• We first point out several flaws in Phan and Yen’s Square-DFA in [22]. Let SDFA-Rx Phan and Yen’s Square-

DFA that exploits faults induced between rounds r − x and r − x+ 1.

– We show that SDFA-R2 and SDFA-R3 cannot be applied to recover the secret key.

– We show that SDFA-R4 needs more faults than that Phan and Yen claimed. They claimed that only 255

faults are necessary. However, SDFA-R4 cannot identify the secret key with 255 faults, but actually 216

candidates remain. Therefore, another 255 faults or an exhaustive search using a pair of plaintext and

ciphertext is necessary.

– We show that SDFA-R5 also needs more faults. Phan and Yen claimed that 255 faults are necessary. In

fact, at least 510 faults are necessary, even with a practically-sound exhaustive search at the end.
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• We introduce new Square-DFAs, NSDFA-R4 and NSDFA-R5, in the same fault model (i.e., a bit-level fault

model) that Phan and Yen used.

– NSDFA-R4 shows that 255 faults are enough to identify the key. In other words, an adversary is not

required to know the plaintext anymore as no exhaustive search is required.

– NSDFA-R5 shows that the time complexity can be reduced from 266 to 242.

• In Phan and Yen’s Square-DFAs, an adversary needs to obtain 255 faulty ciphertexts from the faults induced into

the same byte such that it would have all 256 (one correct and 255 faulty) values. Therefore, it is assumed that

the adversary could induce a bit of fault in a byte. This is very strong assumption as the bit-level modification

by faults is very difficult to achieve in practice. Hence, we relax this and introduce new attacks, NSDFA2-R4,

in a byte fault model where a byte is assumed to be randomly modified by faults.

– NSDFA2-R4 finds the secret key with only 46 faults in a byte fault model.

• We extend Square-DFAs to AES-192 and AES-256, which is the first result in the literature. This extension

is important because AES-192 and AES-256 have been deployed more and more.

The remainder of this article is organized as follows: we briefly describe AES in the next section. The Square-

DFA is presented in Section III. The analysis of Phan and Yen’s Square-DFA and our new attacks are given in

Section IV. After comparing our attacks with existing DFAs in Section V, we conclude in Section VI.

II. AES

AES [2] can encrypt and decrypt 128-bit blocks with 128, 192, or 256-bit keys. The intermediate computation

result of AES, called state, is usually represented by a 4× 4 matrix, where each cell represents a byte. We denote

the output of round i by Si. For example, Si
j,k denotes the (j + 1)th row and the (k + 1)th column byte of the

ith round output, where j, k ∈ {0, . . . 3}, and i ∈ {1, . . . r}. AES-128, AES-192, and AES-256 have 10, 12, and

14 rounds respectively. Each round function is composed of 4 transformations except the last round: SubBytes,

ShiftRows, MixColumns, and AddRoundKey. The last round is lacking MixColumns.

1) SubBytes: It is made up of the application of 16 identical 8×8 S-boxes. This is a non-linear byte substitution.

We denote the function of SubBytes by SB. That is, SB(Si) = SubBytes(Si). We denote Inverse SubBytes by SB−1.

2) ShiftRows: Each row of the state is cyclically shifted over different offsets. Row 0 is not shifted, row 1

is shifted by 1 byte, row 2 is shifted by 2 bytes, and row 3 by 3 bytes. We denote ShiftRows and its inverse,

InverseShiftRows, by SR and SR−1 respectively.

3) MixColumns: This is a linear transformation to each column of the state. Each column is considered as

polynomial over F28 and multiplied modulo x4+1 with a fixed polynomial a(x) = 03 ∗x3+01 ∗x2+01 ∗x+02.

We denote the function of MixColumns by MC and its inverse by MC−1 .

4) AddRoundKeys: It is a bitwise XOR with a round key.
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III. SQUARE-DFA

Phan and Yen proposed a new DFA, so called Square-DFA, on the AES at CARDIS 2006 [22] based on the

Square Distinguisher presented by Daemon et al. in [9]. We briefly describe them.

A. Square Distinguisher

Consider a set of 256 plaintexts that differ by one byte in which they take all the possible values (the plaintexts

are equal in the other bytes). SubBytes and AddRoundKeys are permutations so after them the data still have all the

possible values in that byte and equal in the others. Then the inputs of the third MixColumns have all 256 possible

values in each byte. So the XOR of them in each byte is 0. The MixColumns is a linear transformation so this

property holds after the MixColumns too.

B. Square-DFA

The principle of Square-DFA is as follows: the attacker encrypts the same plaintexts and induces a bit of fault

on the same byte of any state between the MixColumns of rounds r − 4 and r − 3, and repeats for 255 times,

each time inducing one or more bits of fault into that same byte such that it would have all 256 (one correct and

255 faulty) values. By the Square Distinguisher, the XOR of all these 256 ciphertexts (1 correct and 255 faulty

ciphertexts) would result in zero in all byte positions at the output of round r − 1 as shown in Fig. 1.

The adversary now guesses all possible values of any byte of Kr and partially decrypts these 256 ciphertexts by

one round up to the output of round r − 1, and checks if their XOR equals zero. A correct guess always satisfies

this property, while a wrong guess would only satisfy with a very low probability. In the same way, she can find

the remaining fifteen bytes of Kr using the same ciphertexts. The time complexity is 28 × 16 = 212.

Phan and Yen noticed that it is possible to induce the faults a bit deeper into the middle of the AES, in particular

one round before, i.e., between the MixColumns of rounds r − 5 and r − 4. We call this attack SDFA-R5 to

distinguish it from the previous attack (we also call the previous attack SDFA-R4).

In SDFA-R5, the adversary needs to apply the Square Distinguisher from round r − 4 to round r − 2. Now the

adversary should decrypt the ciphertexts by the last two rounds. To do so, she has to guess a column of Kr−1

and the corresponding four bytes of Kr. Then she partially decrypts the ciphertexts by the last two rounds up to

the output of round r − 2 and checks if the XOR is zero in any byte of the column corresponding to that column

of guessed Kr−1. Repeating this for the other tree columns, she obtains both Kr−1 and Kr. However the time

complexity is much higher than that of SDFA-R4. She has to guess 8 bytes each time and repeat it four times. So

the time complexity is (28)8 × 4 = 266.

Phan and Yen also extended their attack to the cases that faults are induced between the MixColumns of rounds

r − 3 and r − 2 and between the MixColumns of rounds r − 2 and r − 1. We call them SDFA-R3 and SDFA-R2

respectively.

In SDFA-R3, we are guaranteed that after round r− 1 we always have all 256 unique values in each byte. This

allows one to consider each byte of Kr at a time and performing an attack similar to SDFA-R4 with the same
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256 different 
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Fig. 1. SDFA-R4: faults are injected between the MixColumns of rounds r − 4 and r − 3. The XOR of all values in each byte is 0 at the

output of the MixColumns of round r − 1.

number of faulty ciphertexts, except that instead of computing the XOR value, one would further have to check if

all 256 unique values exist.

In SDFA-R2, after round r − 1 we have all 256 unique values in the column in which the fault was induced.

We guess at a time each of the four bytes of Kr that corresponds to that column, each time reusing the same

faulty ciphertexts. We repeat this four times to obtain all 4 columns of the key, and hence requiring 4 times more

ciphertexts.

IV. IMPROVED SQUARE-DFA

A. Analysis of Phan and Yen’s SDFAs

1) Probability that a wrong key passes the test:: In SDFA-R4, Phan and Yen said that they needed 255 faulty

ciphertexts to find the key because for a given byte the probability that the XOR of the 256 values of that byte at

the output of round r − 1 equals zero is very low if a wrong value is guessed for the corresponding byte of Kr

[22].

However, we found that this probability is not negligible. The probability of this event (a wrong key satisfies

that the XOR equals zero) is 1
256 . As there are 256 candidates for each byte of Kr, on average one wrong guess

is left after the test. Hence, for each byte of Kr, on average two candidates (one correct key and one wrong key)

remain1 and for sixteen bytes of Kr, on average 216 candidates remain. Therefore, we can find the correct key by

1We performed 1,000 simulations. On average 1.9917 candidates remain after the test.
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performing the test again with another set of 255 faulty ciphertexts (hence the total number of faulty ciphertexts

becomes 510) or by doing exhaustive search of 216.

2) SDFA-R3 and SDFA-R2 are impossible:: In SDFA-R3, we always have all 256 unique values in each byte

at the output of round r − 1 regardless of keys. This property holds even at the output of round r (i.e., in the

ciphertexts) since there is no MixColumns in the final round. Therefore every candidates for Kr passes the test of

SDFA-R3. The same consideration applies to SDFA-R2. All candidates for Kr pass the test. Therefore, we know

that the Square Distinguisher can be used only for three or more rounds to derive the key.

3) Required number of faulty ciphertexts for SDFA-R5:: Phan and Yen said that they could find the key with

255 faulty ciphertexts with SDFA-R5 [22]. The adversary needs to guess eight bytes (a column for Kr−1 and the

corresponding four bytes for Kr) each time and test if the XOR is equal to zero for each byte of the corresponding

column at the output of round r−2. The probability that wrong candidates are sorted out by the test for a byte (i.e.,

the XOR is equal to zero) is 2
28 = 2−7 (one correct key and one wrong key survive). The probability for a column

is (2−7)4 = 2−28. Therefore, among 264 candidates, 264 × 2−28 = 236 candidates remain. We have to perform the

same procedures for the other three columns. Finally (236)4 = 2144 candidates remain. Therefore, with 255 faulty

ciphertexts we cannot find the key.

Then how many faulty ciphertexts are required to find the key? If we have two sets of 255 faulty ciphertexts,

the probability that wrong candidates are sorted out by the test for a column is ((2−7)2)4 = 2−56. Therefore

264 × 2−56 = 28 candidates remain for a column and hence 232 candidates remain for Kr−1 and Kr. With three

sets, we have 264× ((2−7)3)4 = 264× 2−84 = 2−20. Therefore we have one correct key with 3 ∗ 255 = 765 faulty

ciphertexts.

B. Improved SDFAs

We propose two new Square-DFAs, NSDFA-R4 and NSDFA-R5, that reduce the number of required faulty

ciphertexts.

1) NSDFA-R4:: The SDFA-R4 requires two sets of faulty ciphertexts (therefore 510 faulty ciphertexts) to find

the key as shown in Section IV-A. We propose a new attack, NSDFA-R4, that can find the key with only one set

of faulty ciphertexts.

The SDFA-R4 partially decrypts 256 ciphertexts by one round up to the output of round r − 1 and checks if

their XOR equals zero. The probability that a wrong guess passes this test is 1
256 . We notice that the inputs of

MixColumns of round r− 1 should have all 256 possible values in each byte. Furthermore, we can switch between

MixColumns and AddRoundKeys of round r − 1 by using MC−1(Kr−1) as shown in Fig. 2.

The attack is composed of two steps. In the first step, the adversary uses the property that the XOR equals zero

at the output of round r− 1 and reduces the number of candidates. Then in the second step, she uses the property

that each byte has all 256 possible values at the input of MixColumns of round r−1 and find the correct key. More

precisely the adversary finds 216 candidates for Kr by SDFA-R4 in Step 1. Then for each candidate she computes

the input of MixColumns of round r − 1 by performing InvMixColumns on the output of round r − 1 as shown in
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Fig. 2. NSDFA-R4: faults are injected between the MixColumns of rounds r − 4 and r − 3. Then each byte at the input of MixColumns of

round r − 1 has all different values. The XOR of all values in each byte is 0 at the output of MixColumns of round r − 1.

Fig. 2. Finally she checks if each byte has all 256 different values. The probability that a wrong guess passes the

test is 256!
256256 ' 0. Therefore, we have only one correct key at the end.

2) NSDFA-R5:: We propose a new attack, NSDFA-R5, that reduces the time complexity and required number

of faulty ciphertexts when the faults are induced between MixColumns of rounds r − 5 and r − 4.

The adversary guesses one byte of K̂r−1 = MC−1(Kr−1) and the corresponding four bytes of Kr (for example,

K̂r−1
0,0 ,Kr

0,0,K
r
1,3,K

r
2,2, and Kr

3,1) as shown in Fig. 3. Then she partially decrypts 256 ciphertexts by the last two

rounds to the output of round r− 2. We denote the output of round r− 2 by Sr−2. She checks if the XOR of the

values for the corresponding byte, for example, Sr−2
0,0 , at Sr−2 equals zero. We do the same test with another set of

faulty ciphertexts. Then the number of remaining candidates is (28)5 × (2−7)2 = 226 as we have (28)5 candidates

for K̂r−1
0,0 ,Kr

0,0,K
r
1,3,K

r
2,2, and Kr

3,1 and two sets of faulty ciphertexts eliminate (27)2 wrong candidates.

She guesses another byte in the same column of K̂r−1, for example, K̂r−1
1,0 . The number of candidates for

K̂r−1
1,0 and the four corresponding bytes of Kr (Kr

0,0,K
r
1,3,K

r
2,2, and Kr

3,1) is 28 × 226 = 234. With two sets

of faulty ciphertexts she checks if the XOR of the values for the corresponding byte, Sr−2
1,0 , equals zero. The

number of remaining candidates for (Kr
0,0,K

r
1,3,K

r
2,2, and Kr

3,1) is 234 × 2−14 = 220. She applies the same

procedure for K̂r−1
2,0 and K̂r−1

3,0 . Finally the number of remaining candidates for (Kr
0,0,K

r
1,3,K

r
2,2, and Kr

3,1) is

(220 × 28 × 28)× (2−14)2 = 28.

After performing the same procedures for the other three columns of K̂r−1, 232 candidates for Kr and Kr−1

remain. Therefore she can find the key with an exhaustive search.
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Fig. 3. NSDFA-R5: faults are injected between MixColumns of rounds r− 5 and r− 4. The XOR of all values in each byte is 0 at the output

of MixColumns of round r − 2.

C. SDFAs on the AES-192 and AES-256

We extend SDFAs and NSDFAs to the AES-192 and AES-256. In the cases of AES-192 and AES-256, we need

two round keys, Kr−1 and Kr, to compute the master secret key.

1) Application of Phan and Yen’s attack:: With two sets of 255 faulty ciphertexts obtained with the faults injected

between the MixColumns of round r− 4 and r− 3, the adversary can find Kr. Then she gets two new sets of 255

faulty ciphertexts with the faults induced between MixColumns of rounds r − 5 and r − 4. She partially decrypts

two rounds with Kr and a guessed byte of MC−1(Kr−1) and checks if the XOR of the corresponding byte equals

zero. She repeats this search for the other fifteen bytes with the same ciphertexts. Therefore a total of 1020 faulty

ciphertexts are required.

2) Improved attack:: The adversary obtains 255 faulty ciphertexts with the faults induced between MixColumns

of rounds r− 4 and r− 3 and finds Kr with NSDFA-R4 as explained in Section IV-B. She decrypts one round up

to the output of round r − 1 with Kr. Then she can find MC−1(Kr−1) with a general DFA (for example, [23])

with any two of 255 faulty ciphertexts as shown in Fig. 4. Therefore total 255 faulty ciphertexts are required.

D. Square-DFA with a Byte Fault Model

In Square-DFA the adversary needs to obtain 255 faulty ciphertexts from the faults induced into the same byte

such that it would have all 256 (one correct and 255 faulty) values. Therefore we assumed that the adversary could
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Fig. 4. Improved attacks on the AES-192 and the AES-256: faults are injected between MixColumns of rounds r − 4 and r − 3. The Kr

is derived by Square-DFA and the Kr−1 is derived by DFA.
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Fig. 5. New Square DFA with byte faults - NSDFA2-R4: Random byte faults are injected between MixColumns of rounds r− 4 and r− 3.
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induce a bit of fault in a byte. This is very strong assumption as the bit-level modification by faults is very difficult

to achieve in practice.

What if the adversary can only induce byte-level faults instead of bit-level faults? Then how many faulty

ciphertexts do we need to have all 255 different values assuming that random byte faults are induced on a byte?

We simulated 100,000 times to figure out this and as a result, we found that on average 1560.77 faulty ciphertexts

were required. In other words, if we have about 1560 faulty ciphertexts obtained with random byte faults on the

same byte, each of 255 different values appears at least once. Therefore we can apply Square-DFA.

We introduce a new method, so called NSDFA2-R4, in a byte fault model that requires less faulty ciphertexts by

carefully observing the Square-Distinguisher. In NSDFA-R4, we first reduce the candidates by checking if the XOR

equals zero at the output of round r − 1 . Then for the remaining candidates we check if all values are different

at the input of MixColumns of round r − 1 for 255 faulty ciphertexts (see Fig. 2). The probability that a wrong

candidate passes the test is 256!
256256 , which is almost equal to 0. If we have n, (n < 255), faulty ciphertexts, the

probability that n values randomly chosen between 0 and 255 are different is pn = 255·(254)·(255−n+1)
255n . When n is

large enough, this probability goes to 0. Therefore we can find the key with less than 255 faulty ciphertexts.

The new attack works as follows (see Fig. 5): the adversary encrypts the same plaintext and induces a byte fault

on the same byte of any state between MixColumns of rounds r − 4 and r − 3, and repeats it n times. She then

guesses four bytes of Kr corresponding to the first column of the output of round r− 1 (i.e., Kr
0,0,K

r
1,3,K

r
2,2, and

Kr
3,1) and partially decrypts n ciphertexts by one round up to the input of MixColumns of round r− 1 (we switch

between MixColumns and AddRoundKeys of round r− 1. So we do not need to consider the effect of the (r− 1)th

round key). For each byte of the first column of the input of MixColumns of round r − 1, she checks if n values

are different. If it is not, she removes that candidate. She repeats this for the three remaining columns and finally

finds Kr.

The number of remaining candidates for a column of Kr is 232 × (pn)
4. Therefore the number of remaining

candidates for Kr is (232 × (pn)
4)4. We provide the theoretical values in Table I.

Table II contains the results of our attack simulated on a PC with a 3.20 GHz Intel and 8GB memory using

Visual C++ 7.1 Compiler. From Tables I and II we can conclude that we can find the master key with 46 faulty

ciphertexts obtained with random byte faults enabling exhaustive key search of 232.

1) NSDFA2-R5:: Let us consider the application of NSDFA2-R4 to one round earlier. In other words, faults are

assumed to be induced between MixColumns of rounds r − 5 and r − 4. Then, we have to check if each byte of

the input of MixColumns of round r − 2 has different values with n faulty ciphertexts. This makes us to guess all

sixteen bytes of Kr together and hence, it is impossible to realize.

2) Application to AES-192 and AES-256:: We assume that the faults are induced between MixColumns of rounds

r − 4 and r − 3. The adversary first finds k candidates of Kr with NSDFA2-R4 and finds Kr−1 with DFA as

explained in Section IV-C. The time complexity for the first step is 234 and that of the second step is k × 220.

Therefore we need around k = 50 faulty ciphertexts to make the total time complexity less than 234.
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TABLE I

NUMBER OF CIPHERTEXTS AND REMAINING WRONG CANDIDATES IN NSDFA2-R4: THEORETICAL ANALYSIS

# of ciphertexts pn
# of remaining wrong

candidates for Kr

1 1 2128

2 0.9961 2127.9

3 0.9883 2127.7

· · ·

45 0.0161 232.7

46 0.0132 228.2

47 0.0109 223.6

· · ·

49 0.0072 214.07

50 0.0058 29.14

51 0.0047 17.24

52 0.0037 0.49

53 0.0030 0.01

54 0.0024 0.0003

55 0.0019 0.000007

TABLE II

NUMBER OF CIPHERTEXTS AND REMAINING WRONG CANDIDATES IN NSDFA2-R4: SIMULATION RESULTS

# of ciphertexts
# of remaining wrong

candidates for Kr

44 237.46

45 232.92

46 228.61

47 224.04

48 219.49

49 214.98

50 210.24

51 33.18

52 27.98

53 2.86

54 2.86

55 1.45

56 2.07

57 1

58 1

59 1
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TABLE III

COMPARISON OF DFAS ON AES-128

Attack Ref. Fault Fault location # of faulty Time Remaining

model (Between MCs of) ciphertexts complexity candidates

DFA

[23]

Byte r-3 and r-2

2 220 1

[12] 1 220 232

[29] 1 232 28

SDFA-R4 [22] Bit

r-4 and r-3

510 212 1

255 212 216

NSDFA-R4 This paper Bit 255 216 1

NSDFA2-R4 This paper
Byte 57 234 1

Byte 46 234 232

SDFA-R5 [22] Bit
r-5 and r-4

765 266 1

510 266 232

NSDFA-R5 This paper Bit 510 242 232

V. COMPARISON

We summarize DFAs on AES-128 in Table III and DFAs on AES-192 and AES-256 in Table IV. Generally we

notice that Square-DFAs can exploit the faults induced one or two rounds earlier compared to general DFAs.

In the case of AES-128, our attack (NSDFA-R4) requires half of the faulty ciphertexts compared to Phan and

Yen’s (SDFA-R4) or does not require a plaintext for an exhaustive search in a bit fault model. We can further

reduce the required number of faulty ciphertexts down to 46 even in a byte fault model. If the faults are induced

between MixColumns of rounds r− 5 and r− 4, our attack (NSDFA-R5) can find the key with time complexity of

242 while Phan and Yen’s (SDFA-R5) requires time complexity of 266.

In the case of AES-192 and AES-256, our attacks require less faulty ciphertexts compared to the extension of

Phan and Yen’s. Furthermore our attacks need only one attack point (between MixColumns of rounds r − 5 and

r− 4 or between MixColumns of rounds r− 4 and r− 3). However, the extension of Phan and Yen’s and general

DFAs require two attack points that can be cumbersome for the adversary.

VI. CONCLUSION AND FUTURE WORK

Square-DFA has good advantage over general DFA in exploiting faults induced into some middle rounds. However,

the previous Square-DFA requires several hundreds of faulty ciphertexts and works in a bit-level fault model that

have hindered the use of it in practice for several years.

In this article, we introduced new Square-DFAs that solved these two problems. When faults are induced between

MixColumns of rounds r− 4 and r− 3, we can find AES-128 key with 46 faulty ciphertexts in a byte fault model.

We also extended Square-DFAs to AES-192 and AES-256 where our new attack could find the key with 50 faulty

ciphertexts, which is the first result in the literature.
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TABLE IV

COMPARISON OF DFAS ON AES-192 AND AES-256

Attack Fault Fault location # of faulty Time Remaining

model (Between MCs of) ciphertexts complexity candidates

DFA on AES-192
Byte

(r-3 and r-2) &
2 232 1

[15] (r-4 and r-3)

DFA on AES-256
Byte

(r-3 and r-2) &
3 232 1

[15] (r-4 and r-3)

App. of Phan and
Bit

(r-4 and r-3) &
1020 216 1

Yen’s to AES-192/256 (r-5 and r-4)

New Square-DFA

Bit r-4 and r-3 255 220 1

on AES-192/256 Byte r-4 and r-3 50 234 1

When faults are induced between MixColumns of rounds r − 5 and r − 4, our attack showed that the time

complexity could be reduced from 266 to 242 in a bit model. Unfortunately, we could not find a practical attack in

a byte fault model.

Therefore, we can conclude that round r − 4 should be protected against fault attacks but round r − 5 has a

marginal security. Reducing time complexity in exploiting faults induced at round r− 5 seems an interesting topic

for future research.
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