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Abstract

We study the probability distribution of user accusations in the q-ary Tardos fingerprinting
system under the Marking Assumption, in the restricted digit model. In particular, we look
at the applicability of the so-called Gaussian approximation, which states that accusation
probabilities tend to the normal distribution when the fingerprinting code is long. We intro-
duce a novel parametrization of the attack strategy which enables a significant speedup of
numerical evaluations. We set up a method, based on power series expansions, to systemati-
cally compute the probability of accusing innocent users. The ‘small parameter’ in the power
series is 1/m, where m is the code length. We use our method to semi-analytically study the
performance of the Tardos code against majority voting and interleaving attacks. The bias
function ‘shape’ parameter κ strongly influences the distance between the actual probabilities
and the asymptotic Gaussian curve. The impact on the collusion-reslilience of the code is
shown. For some realistic parameter values, the false accusation probability is even lower
than the Gaussian approximation predicts.

1 Introduction

1.1 Collusion attacks against forensic watermarking

Fingerprinting provides a means for tracing the origin and distribution of digital data. Before
distribution of digital content, the content is modified by applying an imperceptible fingerprint,
which plays the role of a personalized serial number. The fingerprint is usually embedded through
a watermarking algorithm. Once an unauthorized copy of the content is found, the identity can
be determined of those users who participated in the creation of the unauthorized copy. This can
be done using a tracing algorithm, which outputs a list of allegedly guilty users. This process is
also known as ‘forensic watermarking’.
Reliable tracing of content requires security against attacks that aim to remove the embedded
information from a copy. Collusion attacks, where a group of pirates collude to compare their
copies, are a particular threat. As any differences between the copies have to arise from the
watermarks and not the content, such a comparison gives information which can be used to remove
the watermark. To counter this threat, coding theory has produced a number of collusion-resistant
codes. In any practical implementation, they must be combined with some kind of embedding
scheme. The resulting system has two layers [7, 15]: The coding layer determines which message to
embed and protects against collusion attacks. The underlying watermarking layer hides symbols of
the message in segments of the content. The symbols are either binary or from a larger alphabet.
The interface between the fingerprinting code and the watermarking system is usually specified in
terms of the marking assumption plus additional assumptions that are referred to as a ‘model’.
The marking assumption states that the colluders are able to perform modifications only in those
content segments where the colluders received differently marked content. These segments are
called detectable positions. The ‘model’ specifies the kind of symbol manipulations that the
attackers are able to perform in detectable positions. The commonly used restricted digit model
only allows them to choose pieces from their copies of the content, i.e. each segment of the
unauthorized copy carries exactly one symbol that the attackers have available. The unreadable
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digit model allows for slightly stronger attacks. The attackers are also able to erase the fingerprint
at detectable positions. Under the arbitrary digit model the attackers can put arbitrary symbols
in detectable positions, while the general digit model additionally allows erasures at detectable
positions.

1.2 Tardos codes

Many collusion resistant codes have been proposed in the literature. Most notable are the Boneh-
Shaw construction [3] and the by now famous Tardos code [17]. The former construction uses a
concatenation of an inner code with a random outer code, while the latter one is a fully randomized
binary code. We briefly summarize some of the most important developments regarding Tardos
codes.
In Tardos’ original paper [17] a binary code was given achieving length m = 100c20dln 1

ε1
e, along

with a proof that m ∝ c20 is asympotically optimal1 for large coalitions, for all alphabet sizes.
Here c0 denotes the number of colluders that can be resisted, and ε1 is the maximum allowed
probability of accusing a fixed innocent user.
The original Tardos code construction contained two unfortunate design choices which caused the
proportionality constant ‘100’ to be so high. First, the false negative probability ε2 (not accusing
any of the guilty users) was coupled to ε1 according to ε2 = ε

c0/4
1 . This gives ε2 � ε1 which

is highly unusual in the context of content distribution; a deterring effect is achieved already at
ε2 ≈ 1

2 , while the false positive probability (≈ nε1, with n the number of users) needs to be
very small. In the subsequent literature (e.g. [19, 2]) the ε2 was decoupled from ε1, leading to a
substantial improvement of the code length.
Second, the symbols 0 and 1 were not treated on an equal footing. Only segments where the
attackers produce a 1 were taken into account. This procedure ignores 50% of all the available
information. A fully symbol-symmetric version of the Tardos code was given in [18], leading to a
further improvement of the code length by a factor 4.
A further improvement was achieved in [13]. The Tardos code construction consists of two proba-
bilistic steps. In the first step, a bias parameter is generated for each segment. In Tardos’ original
construction the probability density function (pdf) for the bias is a continuous function, suitable
for arbitrary coalition size. In [13] a class of discrete distributions was given that performs better
against finite coalition sizes than the original pdf.
All the above mentioned work followed the so-called ‘simple decoder’ approach, i.e. an accusation
value is computed for each user independently, and if it exceeds a certain threshold, the user is
considered suspicious. In contrast, one can also use a ‘joint decoder’ which considers sets of users.
Amiri and Tardos [1] have given a capacity-achieving joint decoder construction for the binary
code. (Capacity refers to the information-theoretic treatment [16, 12, 8] of the colluder attack as a
communication channel.) However, the construction is rather impractical, requiring computations
for many candidate coalitions.
In [18] the binary construction was generalized to alphabets of arbitrary size q, in the simple de-
coder approach. It was shown that, in the restricted digit model, the transition to a larger alphabet
size has benefits beyond the mere fact that a q-ary symbol carries log2 q bits of information.

1.3 Main topic of this paper: the Gaussian approximation

The so-called ‘Gaussian approximation’ or ‘Gaussian assumption’, introduced in [19], has been a
useful tool in the analysis of Tardos codes. The assumption is that the pdf of a user’s accusation
value has a normal distribution. When this is the case, the statistical analysis of the code’s
performance can be drastically simplified; the performance is almost completely determined by a
single parameter, namely the average accusation µ̃ of the coalition.

1The proportionality m ∝ c20 was already known in the context of spread-spectrum watermarking. Kilian et

al. [10] show that, if the watermarks have a component-wise normal distribution, then Ω(
p
m/ln n) differently

marked copies are required to successfully erase any mark with non-negligible probability.
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The Gaussian assumption is motivated by the Central Limit Theorem (CLT): A user accusation
consists of a sum of per-segment contributions, which are independent and identically distributed
(i.i.d.). When many of these get added together, the result is close to normal-distributed, i.e. the
pdf is very close to a Gaussian in a certain region around the average, and deviates in the tails.
The longer the code becomes (i.e. the larger the coalition size c0), the wider this central region. In
[19] and [18] theoretical results were provided arguing that the central region is sufficiently wide
to allow for application of the Gaussian approximation for realistic parameter choices. However,
these arguments are not very precise in nature and have not been sufficiently corroborated.
In this paper we provide an in-depth analytical and numerical investigation of the Gaussian ap-
proximation. Our approach is based on the addition rule for generating functions, and a method
to re-write the false accusation probability as a power series expansion with increasing powers
of 1/m.

1.4 Related work

Kuribayashi et al. [11] numerically studied the error probabilities of the binary Tardos code in
the case of the majority voting attack. They used a fixed code length m = 104 and used a false
accusation probability of around 10−8. They found that the Gaussian approximation is valid under
these circumstances.
Furon et al. [5] did a simulation-based numerical analysis of error probabilities for the binary
Tardos code in the case of small coalitions and coupled false positive and false negative, ε2 = ε

c0/4
1 .

The used a rate-minimizing attack, yet combined it with the simple decoder. Their method was
based on a type of rare event analysis where a rare event is split up into a chain of less rare events,
each one conditioned on the previous. They found that the Tardos code performs better than
expected.
In our work we decouple ε2 from ε1 and take ε2 ≈ 0.5. We stay within the simple decoder
approach. Our method to compute probabilities is general, and can be applied to all alphabet
sizes and parameter settings.

1.5 Contributions and outline

This paper discusses the case of the simple decoder, in the restricted digit model.

• We introduce a new parametrization of the colluder strategy in the restricted digit model.
As usual in the literature, their strategy is allowed to be probabilistic. In a given content
segment, they receive symbol α a number of times equal to σα. Under the usual symmetry
assumptions, the strategy can be completely fixed by setting parameters which we denote as
Ψb(~x); this is the probability that the attackers choose a symbol y that occurs σy = b times,
given that the rest of the symbols occur ~x times. The quantity Ψb(~x) does not depend on
an actual symbol index, and is invariant under permutation of ~x. This new parametrization
allows us to obtain more compact expressions for e.g. the average accusation of the coalition
(µ̃), and the probability distribution of the accusation of innocent users.

• For nonbinary alphabets and realistic parameter choices, we show that the statistical param-
eter µ̃ is minimized when the colluders employ a majority voting attack. In the Gaussian
approximation, the code length scales asm ∝ c20µ̃−2; hence, the colluders want to minimize µ̃.

• We determine the pdf ϕ of an innocent user’s accusation at a single content segment. We
show that the tails of the pdf follow a power law which depends on the colluder strategy.
Independent of the strategy, the right tail falls off faster than the left tail. This is an advanta-
geous property, since positive accusation of innocent users is undesirable. The ‘interleaving’
colluder strategy, which has been conjectured [9] to be asymptotically optimal in the binary
case, turns out to have special properties: the pdf and µ̃ do not depend on the coalition size;
both tails are maximally heavy.
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• We compute the Fourier transform ϕ̃ (generating function) of ϕ. In the Fourier domain, the
pdf of a sum of two variables is simply the product of their pdfs. Using this fact, we obtain
an analytic result for the false accusation probability expressed in terms of ϕ̃m, containing
only a single integration.

• The integration mentioned in the previous point turns out to be rather difficult to compute
numerically. In order to deal with this problem, we use a series expansion of ϕ̃m in powers of
1/m. This yields an expression for the false accusation probability consisting of the Gaussian
result plus correction terms of decreasing magnitude. The larger m is, the fewer terms are
required. In the limit m→∞ the tail of a Gaussian is all that remains.

• We introduce a fast algorithm for computing strategy-dependent coefficients in the case
of majority voting. We present numerical results for the majority voting and interleaving
attacks. It turns out that the ‘shape’ parameter κ (which appears in the bias function, see
Section 2) plays a major role in the speed of convergence to the Gaussian limit. The larger
κ, the faster the convergence and the better the defense against the interleaving attack.

In Section 2 we briefly review the q-ary Tardos code and the Gaussian approximation, introduce
some notation (including the new strategy parametrization), and give some lemmas that are
needed for the computations in later sections. After these long preliminaries, we show in Section 3
that the majority voting attack minimizes the parameter µ̃. In Section 4 we develop our method
of systematically computing corrections to the Gaussian limit. Numerical results are shown in
Sections 5 and 6.

2 Preliminaries

2.1 The q-ary Tardos code

The setting in this paper is the q-ary Tardos code in the restricted digit model. We briefly
summarize the most important concepts and introduce the notation.
The length of a codeword (number of symbols) is denoted as m. The number of users who receive
a codeword is n. The alphabet is Q, with size q. Sometimes the alphabet will be referred to as
{0, · · · , q − 1} for simplicity. The notation Xji ∈ Q stands for the i’th symbol in the codeword of
user j. The whole matrix of embedded codewords is X.
Code generation
The code is generated by a two-step probabilistic algorithm. First, m vectors p(i) ∈ [0, 1]q are
independently drawn (i ∈ [m]) according to a distribution F , with

F (p) = δ(1−
∑
β∈Q

pβ) · 1
B(κ1q)

∏
α∈Q

p−1+κ
α . (1)

Here 1q stands for the vector (1, · · · , 1) of length q, δ(·) is the Dirac delta function ensuring that
the components pα add up to 1, and B is the generalized Beta function (also known as the Dirichlet
integral). κ is a positive constant. In the case of the binary alphabet it is optimal to set κ = 1/2.
For parameters v1, · · · , vn > 0 the n-dimensional Beta function is defined as2

B(v) :=
∫ 1

0

dxn δ(1−
n∑
a=1

xa)
n∏
b=1

x−1+vb
b =

∏n
a=1 Γ(va)

Γ(
∑n
b=1 vb)

. (2)

In the second step of the code generation, all matrix elements Xji are drawn independently
according to the following distribution,

Pr[Xji = α|p(i)] = p(i)
α . (3)

2This is also known as a Dirichlet integral. The ordinary Beta function (n = 2) is B(x, y) = Γ(x)Γ(y)/Γ(x+ y).
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Notice that the probabilities do not depend on the row index j, i.e. p(i) determines the probabilities
for a whole column of X.
The attack
The coalition of attackers is C, with size |C| = c. The part of X observed by the coalition is XC . In
the restricted digit model, the attackers create a pirated version of the content such that segment i
contains a symbol yi ∈ Q. (In contrast to other attack models, e.g. the combined digit model,
where erasures and combinations of multiple symbols are allowed.) We define vectors σ(i) ∈ Nq as

σ(i)
α := |{j ∈ C : Xji = α}| (4)

i.e. the number of occurrences of the symbol α that the attackers see in column i. Obviously∑
α∈C σ

(i)
α = c. The attackers have a (probabilistic) strategy for choosing their output symbols.

As usual in the literature on this subject, it is assumed that this strategy is fully column-symmetric,
symbol-symmetric and attacker-symmetric. The assumption of column and symbol symmetry of
the attack is motivated by the fact that these symmetries are present in the code generation and
accusation algorithms, and that all columns and symbols are handled completely independently.
The assumption of attacker-symmetry is motivated by (i) the row symmetry and independence of
the rows in the code generation and accusation; (ii) the fact that any departure from attacker-
symmetry will endanger one attacker more than the others.
The strategy is expressed as a set of probabilities θy|σ that apply independently for each segment.
Omitting the column index i, we have for each i

Pr[output y, given σ] = θy|σ. (5)

Due to the marking condition some of these probabilities are fixed. Let eα denote the vector
(0, · · · , 0, 1, 0, · · · , 0) with the ‘1’ in position α. Then

θy|ceα = δyα, (6)

where δ is the Kronecker delta.
Accusation
The watermark detector sees the symbol yi embedded in segment i of the attacked content. Users
are classified as suspicious (‘accused’) or not suspicious according to the following algorithm. For
each user j, the so-called accusation sum Sj is computed,

Sj =
m∑
i=1

S
(i)
j where S

(i)
j = g[Xji==yi](p

(i)
yi ), (7)

where the expression [Xji == yi] evaluates to 1 if Xji = yi and to 0 otherwise, and the functions
g0 and g1 are defined as

g1(p) =
√

1− p
p

; g0(p) = −
√

p

1− p . (8)

In words: Having the same symbol as the attacked content induces a positive contribution g1(pyi)
to the accusation sum, which becomes worse when yi is unlikely to occur. Having a symbol
different from yi induces a negative amount g0(pyi), which becomes more negative when yi is
likely to occur. The total accusation of the coalition is defined as S :=

∑
j∈C Sj .

The choice (8) of g0, g1 is the unique combination of functions that satisfies

pg1(p) + (1− p)g0(p) = 0 ; p[g1(p)]2 + (1− p)[g0(p)]2 = 1. (9)

This choice has been shown to have optimal properties for the binary alphabet [4, 19]. Its unique
properties (9) also hold for q ≥ 3; that is the main motivation for using (8).
A user is ‘accused’ if his accusation sum exceeds a threshold Z. A list L is made of accused users,

L = {j : Sj > Z}. (10)
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Performance
The ‘performance’ of the scheme involves four important parameters: the number of attackers
that has to be resisted (c0), the maximum tolerable false negative probability ε2 (prob. of not
catching any of the attackers),

Pr[L ∩ C = ∅] ≤ ε2, (11)

the maximum tolerable false positive probability ε1

for fixed innocent j : Pr[j ∈ L] ≤ ε1, (12)

and the length m of the code. (Note that the total probability of false positives occurring is
approximately nε1.) One way of measuring how well the scheme works is to look at how big m
has to be as a function of c0, ε1 and ε2. The smaller m, the better the scheme. It is important
to note that in forensic watermarking of AV content, a small false positive probability is the
primary requirement. The false negative is far less important, since the deterring effect of forensic
watermarking is preserved even for large ε2, of the order of 1/2. Hence m essentially becomes a
function of c0 and ε1. In [18] an asymptotic result was obtained for large c0,

m =
2
µ̃2
c20 ln

1
ε1
√

2π
. (13)

Here µ̃ is the expectation value of the collective accusation sum of the coalition, scaled in such
a way that the dependence on m is removed: µ̃ = E[S]/m. In the case of the binary scheme
(with κ = 1/2), µ̃ = 2/π ≈ 0.64. For larger alphabets the µ̃ depends on the parameter κ in a
complicated way; for optimal κ, the µ̃ takes values from approximately 0.8 to 1.4 as q goes from
3 to 10.

2.2 The Gaussian approximation

We briefly review the analysis of error probabilities performed in [18], which leads to the result (13).

to note that in forensic watermarking of AV content, a small false positive probability is the
primary requirement. The false negative is far less important, since the deterring effect of forensic
watermarking is preserved even for large ε2, of the order of 1/2. Hence m essentially becomes a
function of c0 and ε1. In [1] an asymptotic result was obtained for large c0,

m =
2
µ̃2

c2
0 ln

1
ε1

√
2π

. (13)

Here µ̃ is the expectation value of the collective accusation sum of the coalition, scaled in such a
way that the dependence on m is removed: µ̃ = m−1E[

∑
j∈C Sj ].

2.2 Analysis of error probabilities

We briefly review the analysis of error probabilities performed in [1], which leads to the result (13).
Analysis along the same lines will be applied in Section @??.

0 Z√
m

µ̃
√

m
c → accusation/

√
m

1innocent

guilty

FN
FP

Figure 1: .

3

Figure 1: Sketch of the probability distributions of Sj/
√
m for some fixed innocent j, and of

S/(c
√
m). The horizontal axis is scaled by a factor

√
m so that the variance of the innocent curve

is exactly 1.

Consider, for some innocent user j, the probability distribution function (pdf) ρm of the quantity
Sj/
√
m. (Note that the pdf itself depends on m.) From (9) it follows that ρm has zero mean and
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unit variance. For brevity we mow introduce the notation Z̃ = Z/
√
m. The probability of falsely

accusing j is given by ∫ ∞
Z̃

dx ρm(x) =: Rm(Z̃). (14)

This is depicted as the shaded area ‘FP’ in Fig. 1. We require

Rm(Z̃) ≤ ε1. (15)

Similarly, consider the probability distribution τm of the quantity S/(c
√
m), but normalized in

such a way that the mean is zero and the variance is 1. The cumulative distribution function is

Tm(x) :=
∫ x

−∞
dx′ τm(x′). (16)

It was shown in [17] that Pr[FN] ≤ Pr[S < cZ]. Hence if Pr[S < cZ] ≤ ε2 then automatically
Pr[FN] ≤ ε2. The shaded area in Fig. 1 labeled as ‘FN’ is actually Pr[S < cZ], which acts as a
handy bound on the FN. This area is given by T ([Z̃ − µ̃

√
m
c ]/ σ̃c ) = T ( cZ̃−µ̃

√
m

σ̃ ), where σ̃ is the
(scaled) standard deviation of the collective accusation, mσ̃2 := E[S2]− (E[S])2. The requirement
on the FN probability in case of c0 attackers is then formulated as

Tm(
c0Z̃ − µ̃

√
m

σ̃
) ≤ ε2. (17)

The two equations (15) and (17) for given c0, ε1, ε2 can be thought of as constraints in the
(Z,m)-plane . It was shown that these constraints can be satisfied only if

m ≥ 1
µ̃2
c20

[
Rinv
m (ε1)− σ̃

c0
T inv
m (ε2)

]2
(18)

where Rinv
m and T inv

m are the inverse functions of Rm and Tm respectively. Note that T inv
m (ε2) < 0

for ε2 smaller3 than approximately 1/2; decreasing ε2 leads to a longer code. It was shown that
the T inv

m term is negligible with respect to the Rinv
m term if c0 is large and/or ε2 ≈ 1/2. Hence,

(18) in practice reduces to

m ≥ mmin ; mmin ≈ 1
µ̃2
c20
[
Rinv
m (ε1)

]2
. (19)

Eq. (19) in itself is not immediately useful, because Rm depends on m. In the limit of large m,
however, ρm simply becomes a Gaussian independent of m, and Rm is the area under a Gaussian
tail, which we denote as Ω(Z̃) = 1

2Erfc Z̃√
2
. (Here Erfc is the complementary error function.) The

result (13) follows by applying the bound [Ωinv(ε1)]2 = [
√

2 Erfcinv(2ε1)]2 < 2 ln(ε1
√

2π)−1.
To the best of our knowledge, the above reasoning is the simplest argument available that yields
the asymptotic relation m ∝ c20.
It was argued in [19] and [18] that m is so large that ρm is Gaussian even a sufficient number of
standard deviations away from 0. (‘Sufficient’ here means that the area under the Gaussian part
is at least 1 − 2ε1 so that the area under the right tail is estimated accurately.) The argument
was based on the moments of the innocent accusation. However, a full analysis of the tails of ρ
has never been done. Such a full analysis is important for the following reason. As (19) shows, it
is advantageous for the attackers not only to decrease µ̃, but also to modify the shape of Rm such
that Rinv

m (ε1) increases, i.e. such that the right-hand tail of the innocent’s accusation probability
becomes longer. How much influence their strategy has on the shape of Rm will be studied in
Sections 5 and 6. If there is hardly any influence, then the value of µ̃ uniquely determines mmin,
and the optimal strategy is to minimize µ̃; if there is a significant influence, then the attackers’
aim is to maximize the quotient Rinv

m (ε1)/µ̃.

3If one is willing to set ε2 > 1/2, the contribution from T inv
m (ε2) may even reduce the code length.
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Notation Meaning

Q the alphabet

q alphabet size |Q|
n number of users

C set of colluding users

c number of colluders |C|
c0 coalition size that the code can resist

m code length (number of q-ary symbols)

Xji embedded symbol in segment i for user j

p(i) bias vector for column i

F distribution function of the bias vector, p(i) ∼ F
f(pα) marginal distribution of F for one component

κ shape parameter contained in F

σ
(i)
α number of occurrences of symbol α in attackers’ segment i

P probability distribution for σ

P1 marginal distribution for one component of σ

Pq−1 marginal distribution for q − 1 components of σ

yi symbol in segment i of attacked content

θy|σ prob. that attackers output symbol y, given σ

Sj accusation sum of user j

S coalition accusation sum, S =
∑
j∈C Sj

Z accusation threshold

Z̃ Z/
√
m

L list of accused users

ε1 max. tolerable prob. of fixed innocent user getting accused

ε2 max. tolerable prob. of not catching any attacker

FP false positive

FN false negative

µ̃ E[S]/m; does not depend on m

ρm prob. distribution of Sj/
√
m for innocent j

Rm area function for the right-hand tail of ρm
τm prob. distribution of S/(c

√
m), normalized to zero mean and variance 1

Tm cumulative distribution function for τm
ϕ prob. distribution of one-segment contribution to innocent’s accusation

Ψb(x) θy|σ when σy = b and the rest of σ is equal to x

Kb quantity derived from Ψb(x)

Ω(x) probability mass in the right tail of a Gaussian, beyond x
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2.3 Probabilities and expectation values

For given p, the probability that the colluders receive symbol occurrences σ is the multinomial
distribution. We use the following notation,

P(σ|p) :=
(
c

σ

) ∏
α∈Q

pσαα , (20)

where
(
c
σ

)
= c!/(

∏
α σα!). It is always implicitly understood that

∑
α σα = c. The marginal

distribution for a single component σα is the binomial. We use the notation

P1(b|p) := Pr[σα = b|pα = p] =
(
c

b

)
pb(1− p)c−b. (21)

Lemma 1 The overall probability that the colluders receive symbol occurrences σ is given by

P(σ) :=
(
c

σ

)
B(κ1q + σ)
B(κ1q)

.

Proof: We have Pr[σ] = EpP(σ|p), with P(σ|p) given by (20). The expectation Ep stands for
Ep[· · · ] =

∫ 1

0
dqp F (p)(· · · ), with F defined in (1). The lemma follows by applying the Dirichlet

integration rule (2). �

Lemma 2 The marginal probability distribution f(pα) for a single component of the vector p is

f(pα) =
1

B(κ, κ[q − 1])
p−1+κ
α (1− pα)−1+κ[q−1].

Proof: We have
∫ 1

0
dpα f(pα) =

∫ 1

0
dqp F (p). In the latter integral, we write for all β 6= α:

pβ = (1 − pα)sβ , with sβ ∈ [0, 1]. This gives dqp = dpα(1 − pα)q−1dq−1s, and
∏
γ p
−1+κ
γ =

p−1+κ
α (1 − pα)(q−1)(−1+κ)

∏
β∈Q\α s

−1+κ
β , and δ(1 −∑γ∈Q pγ) = δ([1 − pα][1 −∑β∈Q\α sβ ]) =

(1− pα)−1δ(1−∑β∈Q\{α} sβ). Combining all these ingredients, we find∫ 1

0

dpα f(pα) =
∫ 1

0

dpα p−1+κ
α (1− pα)−1+κ[q−1] 1

B(κ1q)

∫ 1

0

dq−1s δ(1−
∑

γ∈Q\α
sγ)

∏
β∈Q\α

s−1+κ
β . (22)

The lemma follows after evaluation of the
∫

dq−1s integral using (2). �

Lemma 3 The overall marginal probability distribution for one component of σ is

P1(b) := Pr[σα = b] =
(
c

b

)
B(κ+ b, κ[q − 1] + c− b)

B(κ, κ[q − 1])
.

Proof: We have Pr[σα = b] =
∫ 1

0
dpαf(pα)P1(b|pα) with P1(b|pα) and f(pα) given by (21) and

Lemma 2 respectively. The integral is evaluated using (2). �

Corollary 1 Let σ\α denote the vector σ without the component σα. The probability distribution
of σ\α conditioned on σα is given by

Pq−1(x|b) := Pr[σ\α = x|σα = b] =
(
c− b
x

)
B(κ1q−1 + x)
B(κ1q−1)

.

Proof: Follows directly from Lemmas 1 and 3 by taking Pr[σ\α = x|σα = b] = P(σ = (x, b))/P1(b)
and simplifying the Beta functions. �
We introduce a new parametrization of the colluder strategy. For b ∈ {1, · · · , c} and x ∈ Nq−1,
with

∑
a xa = c− b, we define

Ψb(x) := θα|(σα=b,σ\α=x). (23)
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The vector σ has σα = b, and the other q − 1 components are given by x. The probability for
outputting α given such a σ does not depend on the actual value of α, but only on b and x.
(In fact, it is even insensitive to permutations of x.) This follows from the symbol-symmetry
and attacker-symmetry of the attack strategy. In words: Ψb(x) is the coalition’s probability of
outputting a symbol which for them occurs b times, with the other symbol frequencies being x.
In the case of the binary alphabet, x has only one component equal to c− b. We will then use the
notation Ψb, with Ψ0 = 0 and Ψc = 1 due to the marking condition.
Next we define

Kb := Ex|bΨb(x) =
∑
x

Pq−1(x|b)Ψb(x). (24)

It is implicit that
∑
β∈Q\{α} xβ = c− b. For q = 2 we define Kb = Ψb. (In some of the literature

the notation θx := Pr[y = 1| #received 1s = x] is used for the binary case. The relation with our
notation is: θb = Ψb.)
For any pirate strategy we have

K0 = 0 ; Kc = 1 (25)

due to the marking assumption.

Lemma 4 The numbers Kb satisfy

q

c∑
b=1

KbP1(b) = 1.

Proof: The factor q can be replaced by
∑
y∈Q. Using the definition (24) we get

∑
y

∑
bKbP1(b) =∑

b

∑
x P(x, b) ·∑y Ψb(x) =

∑
b

∑
x P(x, b) ·∑y θy|σy=b,σ\y=x =

∑
b

∑
x P(x, b) = 1. �

Lemma 5 If the colluder strategy is the interleaving attack, θy|σ = σy
c , then Kb = b/c.

Proof: This strategy implies Ψb(~x) = b/c independent of x. Substitute this into (24) and use the
fact that the probabilities add up to 1. �

2.4 Integrals and Gamma function equalities

Lemma 6 For d > 0, v > 0, the following holds∫ ∞
0

du
u2d−1

(1 + u2)d+v
= 1

2B(d, v).

Proof: Apply a change of variables u =
√
p/(1− p), with p ∈ [0, 1]. This gives 1 + u2 = 1/(1− p)

and du = 1
2p
−1/2(1 − p)−3/2dp. The integral becomes 1

2

∫ 1

0
dp p−1+d(1 − p)−1+v which has the

Dirichlet form (2). �

Lemma 7 For x� 1, and a1, a2 such that |a1| � x and |a2| � x, it holds that

Γ(x+ a1)
Γ(x+ a2)

= xa1−a2 [1 +O(
1
x

)].

Proof: Follows directly from Stirling’s approximation Γ(z + 1) ≈ √2πz(z/e)z. �

Lemma 8 Let c� 1 and 1� b ≤ c. Let α1, α2, β1, β2 � b. Then

B(b+ α1, c− b+ β1)
B(b+ α2, c− b+ β2)

= (
b

c
)α1−α2(1− b

c
)β1−β2 [1 +O(

1
b

)].

Proof: Follows directly from writing out the Beta functions in terms of Gamma functions and then
applying Lemma 7. �
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Definition 1 We define Ω(z) as the probability mass in the right tail of the normal distribution
beyond point z,

Ω(z) =
1√
2π

∫ ∞
z

dx e−x
2/2.

Lemma 9 (See e.g. Eq. 9.254.1 in [6]) For x ∈ R

1
2πi

∫ ∞
−∞

dk
eikx

k
e−k

2/2 = 1
2 − Ω(x).

Lemma 10 (See e.g. Eq. 3.462.1 in [6]) For ν > 0 and x ∈ R∫ ∞
0

dk kν−1e−
1
2k

2
eikx = Γ(ν)2ν/2H−ν(

−ix√
2

). (26)

Here H is the Hermite function.

Corollary 2 For x ∈ R and ν > 0∫ ∞
−∞

dk
2π

(i sgn k)α−1|k|ν−1e−k
2/2eikx =

1
π

Γ(ν)2ν/2 Im
[
i−αH−ν(

ix√
2

)
]

=
2−(ν−1)/2

(sin νπ)
√

2π
e−

1
2x

2
[
Hν−1(

x√
2

) sin
π

2
(ν − α)−Hν−1(

−x√
2

) sin
π

2
(ν + α)

]
. (27)

Proof: The first equality follows by applying Lemma 10 twice (once for the positive part of the
integral, once for the negative). The second equality follows from the properties of the Hermite
function (see e.g. page 1094 of [6]). �
Remark: In the case α = ν, the first term of the last line vanishes, yielding−2−

ν
2 /
√
πe−

1
2x

2
Hν−1(−x√

2
).

For integer ν, the Hermite function reduces to a Hermite polynomial.

2.5 Fourier transforms

Definition 2 Let χ : R → C be a function. The Fourier transform of χ is denoted as χ̃ and
defined as

χ̃(k) =
∫ ∞
−∞

dx e−ikxχ(x) with k ∈ R.

Lemma 11 If χ is a real-valued function, then χ̃(−k) = [χ̃(k)]∗.

Proof: [
∫

dx e−ikxχ(x)]∗ =
∫

dx [e−ikxχ(x)]∗ =
∫

dx eikxχ(x) = χ̃(−k). �

Corollary 3 If χ is a real-valued function, then the even part of χ̃(k) is Re χ̃(k), and the odd
part is i · Im χ̃(k).

Proof: By Lemma 11, the even part is 1
2 [χ̃(k) + χ̃(−k)] = 1

2 χ̃(k) + 1
2 [χ̃(k)]∗ = Re χ̃(k). The odd

part is 1
2 [χ̃(k)− χ̃(−k)] = 1

2 χ̃(k)− 1
2 [χ̃(k)]∗ = iIm χ̃(k). �

Lemma 12 Let χ(x) be a probability distribution function, and X a random variable with X ∼ χ.
Then

∂nχ̃(k)
∂kn

∣∣∣∣
k=0

= (−i)nE[Xn].

Proof: ∂nχ̃(k)
∂kn =

∫
dx [ ∂

n

∂kn e
−ikx]χ(x) = (−in)

∫
dx xne−ikxχ(x). Setting k = 0 gives the result. �
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Corollary 4 Let ϕ be the probability distribution function of the one-symbol accusation S
(i)
j for

an innocent user j. Then its Fourier transform ϕ̃ has the following power series expansion,

ϕ̃(k) = 1− 1
2k

2 + higher powers of k,

where the higher powers of k are allowed to be irrational.

Proof: We denote u = S
(i)
j for brevity. Trivially E[u0] = 1. From (9) we know that E[u] = 0 and

E[u2] = 1. Hence by Lemma 12 we have ϕ̃(0) = 1, ϕ̃′(0) = 0 and ϕ̃′′(0) = −1. The expansion in
the corollary is consistent with these values. �
Higher orders of k do not have to be integer. In fact, if E[u3] 6= 0, E[u3] < ∞ and E[u4] = ∞
(as we will see is the case in Section 4.2) then there is a k3 term in the expansion, and the lowest
power of k higher than 3 lies somewhere between 3 and 4.

3 Strategy for minimizing µ̃

Definition 3 When we use the term ‘majority voting’ it will mean the following:

• If ∃α : σα > σβ for all β 6= α, then output α. (If one symbol occurs more often than all the
others, output this symbol.)

• If the most frequently occurring symbol is not unique, i.e. there are multiple such symbols,
then output one of them uniformly at random.

Similarly, by ‘minority voting’ we mean:

• If ∃α : 1 ≤ σα < σβ for all β 6= α, then output α. (If one symbol occurs less often than all
the others, output this symbol.)

• If the least frequently occurring symbol is not unique, i.e. there are multiple such symbols,
then output one of them uniformly at random.

3.1 Binary alphabet

The case q = 2 is simple. It was shown in [18] that for κ > 1/2 minority voting is optimal (in the
sense of minimizing µ̃), while for κ < 1/2 it is majority voting. For κ = 1/2 the strategy has no
effect on µ̃, whose value is then 2/π.

3.2 Non-binary alphabet

In [18] the following expression was obtained for µ̃ (for the case q ≥ 3),

µ̃ =
∑
σ

P(σ)
∑
y∈Q

θy|σW (σy)
{

1
2 − κ+

σy
c

(κq − 1)
}

(28)

W (b) := c
Γ(b+ κ− 1

2 )
Γ(b+ κ)

Γ(c− b+ κ[q − 1]− 1
2 )

Γ(c− b+ κ[q − 1])
.

The colluders want to minimize µ̃, while the content owner wants to maximize it.

Theorem 1 For q ≥ 3 and κ ≈ 1/q, the majority voting strategy minimizes µ̃.

Proof: The ‘optimal’ colluder strategy (in the sense of making µ̃ as small as possible) is, for
given σ, to choose y such that the expression W (σy){ 1

2 − κ + σy
c (κq − 1)} is minimized. It was

found numerically in [18] that the optimal choice of the parameter κ against this attack is slightly
larger than 1/q. Putting κ ≈ 1/q in (28), we see that the optimal attack strategy is effectively

12



3.2 Non-binary alphabet

In [17] the following expression was obtained for µ̃ (for the case q ≥ 3),

µ̃ =
∑
σ

P(σ)
∑
y∈Q

θy|σW (σy)
{

1
2 − κ +

σy

c
(κq − 1)

}
(28)

W (b) := c
Γ(b + κ− 1

2 )
Γ(b + κ)

Γ(c− b + κ[q − 1]− 1
2 )

Γ(c− b + κ[q − 1])
.

The colluders want to minimize µ̃, while the content owner wants to maximize it.

Theorem 1 For q ≥ 3 and κ ≈ 1/q, the majority voting strategy minimizes µ̃.

Proof: The ‘optimal’ colluder strategy (in the sense of making µ̃ as small as possible) is, for
given σ, to choose y such that the expression W (σy){ 1

2 − κ + σy

c (κq − 1)} is minimized. It was
found numerically in [17] that the optimal choice of the parameter κ against this attack is slightly
larger than 1/q. Putting κ ≈ 1/q in (28), we see that the optimal attack strategy is effectively
to minimize W , i.e. the coalition chooses y = arg min{W (σα)}α∈Q. Numerical inspection shows
that the function W (b) has a minimum at b = $c/2%.

0.2 0.4 0.6 0.8 1.0

3

4

5

6

b/c

W (b)
q = 3
κ = 0.34c = 20

c = 7

For large c this is easily understood: application of Lemma 7 for large b and c − b gives W (b) ≈
[ b
c (1 − b

c )]−1/2, a function with its minimum at b = c/2 and symmetric around this minimum.
Hence the optimal strategy consists of choosing the symbol α whose σα is closest to c/2. It turns
out that this is precisely the same as majority voting. This can be seen as follows. First consider
the case where the ‘closest to c/2’ strategy results in σy > c/2. Because of the sum rule

∑
α σα = c,

there can be no α &= y with σα > c/2; hence the strategy has resulted in selecting the majority
symbol. Second, consider the ‘closest to c/2’ strategy yielding σy = c/2− δ, with δ > 0. If there is
any α &= y with σα > σy, it will have to satisfy σα ≥ c/2+ δ = c−σy. Only the equality is allowed
(σα = c− σy) by the sum rule; it gives rise to almost the same amount of accusation as σy, since
W (b) is very close to symmetric around c/2. !

Theorem 2 The quantity µ̃ as defined in (28) can be written as

µ̃ = q
c∑

b=1

P1(b)KbW (b)
{

1
2 − κ +

b

c
(κq − 1)

}
. (29)

Proof: In (28) we shift the
∑

y to the front and write P(σ) = Pr[σy = b]Pr[σ\y = x|σy = b] and∑
σ =

∑
b

∑
x. The

∑
x of θy|σ yields Kb according to the definition (24). !

Corollary 5 For κ > 1
2(q−1) the contribution of the b = c term to µ̃ vanishes in the limit of

large c.
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Figure 2: Example of W (b) for q = 3, κ = 0.34.

to minimize W , i.e. the coalition chooses y = arg min{W (σα)}α∈Q. Numerical inspection shows
that the function W (b) has a minimum at b = dc/2e (see Fig. 2).
For large c this is easily understood: application of Lemma 7 for large b and c − b gives W (b) ≈
[ bc (1 − b

c )]
−1/2, a function with its minimum at b = c/2 and symmetric around this minimum.

Hence the optimal strategy consists of choosing the symbol α whose σα is closest to c/2. It turns
out that this is precisely the same as majority voting. This can be seen as follows. First consider
the case where the ‘closest to c/2’ strategy results in σy > c/2. Because of the sum rule

∑
α σα = c,

there can be no α 6= y with σα > c/2; hence the strategy has resulted in selecting the majority
symbol. Second, consider the ‘closest to c/2’ strategy yielding σy = c/2− δ, with δ > 0. If there is
any α 6= y with σα > σy, it will have to satisfy σα ≥ c/2 + δ = c−σy. Only the equality is allowed
(σα = c− σy) by the sum rule; it gives rise to almost the same amount of accusation as σy, since
W (b) is very close to symmetric around c/2. �

Theorem 2 The quantity µ̃ as defined in (28) can be written as

µ̃ = q

c∑
b=1

P1(b)KbW (b)
{

1
2 − κ+

b

c
(κq − 1)

}
. (29)

Proof: In (28) we shift the
∑
y to the front and write P(σ) = Pr[σy = b]Pr[σ\y = x|σy = b] and∑

σ =
∑
b

∑
x. The

∑
x of θy|σ yields Kb according to the definition (24). �

Corollary 5 For κ > 1
2(q−1) the contribution of the b = c term to µ̃ vanishes in the limit of

large c.

Proof: In (29) we split off the b = c term, which has Kc = 1 due to the marking conditon. After
some rewriting of Gamma functions this yields

µ̃ = cq
B(c+ κ− 1

2 , κ[q − 1] + 1
2 )

B(κ, κ[q − 1])
+ q

c−1∑
b=1

P1(b)KbW (b)
{

1
2 − κ+

b

c
(κq − 1)

}
. (30)

In the limit of large c, the first term scales as (1/c)κ[q−1]−1/2. For κ[q − 1] > 1
2 this vanishes

asymptotically. �
Corollary 5 tells us that in the relevant case κ ≈ 1/q, the contributions to µ̃ work completely
different than in the usual binary scheme (q = 2, κ = 1

2 ). There the b = c term scales as c0 and
all the b < c terms are zero.
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4 Statistics of the accusations

4.1 Our approach: Fourier transform

We now describe the basis of our method of computing false accusation probabilities. The whole
approach is based on a single observation: when random variables are added, the pdf of the sum is
obtained by multiplying the Fourier transforms of their respective pdf’s and then doing a Fourier
back-transform. In other words, if X ∼ f1, Y ∼ f2 and Z = X + Y ∼ f3, then f̃3 = f̃1f̃2. When
this rule is applied to the m random variables in the accusation sum, it leads to the following
result.

Theorem 3 Let j be an innocent user. Let ϕ denote the pdf of S(i)
j , with S

(i)
j as defined in (7).

Let ϕ̃ be the Fourier transform of ϕ. Then the probability that Sj > Z is given by

Rm(Z̃) =
1
2

+
i

2π

∫ ∞
−∞

dk
exp ikZ̃

k

[
ϕ̃(

k√
m

)
]m

. (31)

Proof: see Appendix A. �
This result gives us a closed-form expression for Rm(Z̃) that contains only a single integration
and a limited number of sums. (The sums are contained in the evaluation of ϕ̃, as will become
apparent in Section 4.3.) These will have to be evaluated numerically. Note that Pr[Sj > 0] is not
necessarily equal to 1

2 .
It turns out that numerical evaluation of the integral in (31) is difficult, because of the fast
oscillations of the integrand at large k. For this reason, we have chosen for a somewhat indirect
method of evaluating (31). It is based on a series expansion in powers of k. It has the advantage
that the accuracy of the numerical evaluation is well under control, and that the dependence of
Rm on m is visible. The disadvantage is that many terms in the expansion have to be kept.

Theorem 4 Let j be an innocent user. Let ϕ have a finite third moment. Then it is possible to
write [

ϕ̃(
k√
m

)
]m

= e−
1
2k

2

[
1 +

∞∑
t=0

ωt(m)(i sgn k)αt |k|νt
]
, (32)

where αt are real numbers; the coefficients ωt(m) are real; the powers νt satisfy ν0 = 3 and
νt+1 > νt. The νt are not necessarily integer. All the coefficients ωt(m) are decreasing functions
of m, decreasing as m−νt/6 or faster.
The probability of accusing user j is given by

Rm(Z̃) = Ω(Z̃) +
1
π

∞∑
t=0

ωt(m)Γ(νt)2νt/2Im
[
i−αtH−νt(iZ̃/

√
2)
]
. (33)

Here H is the Hermite function.

Proof: see Appendix B. �
The proof closely follows one of the standard proofs of the Central Limit Theorem. In the limit
m→∞ all the coefficients ωt vanish, leaving only the term Ω(Z̃) which is the right-hand tail mass
of the normal distribution.
For integer ν the function H−ν reduces to the Hermite polynomial of order ν − 1, multiplied by a
factor exp(− 1

2 Z̃
2). (See Corollary 2.)

In Section 4.2 we determine the distribution ϕ. In Section 4.3 the Fourier transform ϕ̃ is computed
and the leading order parameters νt, ωt, αt are derived.
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b Left tail Right tail u = −0 u = +0

1 ( 1
|u| )

2c+1+2κ[q−1] ( 1
u )5+2κ |u|1+2κ u2c−3+2κ[q−1]

c ( 1
|u| )

3+2κ[q−1] ( 1
u )2c+3+2κ |u|2c−1+2κ u−1+2κ[q−1]

Table 1: Dominant powers in ϕ(u) in the tails and close to u = 0.

4.2 Distribution function of an innocent user’s accusation

Theorem 5 For an innocent user j, the distribution function ϕ of S(i)
j is given by

u > 0 : ϕ+(u) =
2q

B(κ, κ[q − 1])

c∑
b=1

(
c

b

)
(u2)κ[q−1]+c−b− 1

2

(1 + u2)c+1+κq
Kb

u < 0 : ϕ−(u) =
2q

B(κ, κ[q − 1])

c∑
b=1

(
c

b

)
(u2)κ+b−

1
2

(1 + u2)c+1+κq
Kb. (34)

The proof is given in Appendix D. Note that all dependence on the strategy is contained in the
numbers Kb ∈ [0, 1]. Furthermore we see that the left tail and the right tail of ϕ(u) have different
power law behaviour. This is summarized in Table 1.
The right tail is dominated by the b = 1 term; it is proportional to (1/u)5+2κ. The left tail is
dominated by the b = c term, and is proportional to (1/|u|)3+2κq−2κ. It was found numerically in
[18] that the ‘optimal’ κ (in terms of maximizing µ̃) lies close to 1/q; for such a choice of κ the
left tail is heavier than the right tail.4 Such a property is obviously beneficial for the innocent’s
accusation. The discrepancy between the tails is even more pronounced if the attackers use the
majority voting strategy (which for q ≥ 3, κ ≈ 1/q minimizes µ̃, as mentioned in Section 3).
Then the right tail is dominated by the b = dc/qe term, which behaves as (1/u)3+2dc/qe+2κ, which
for c > q decreases even faster than (1/u)5+2κ. From this perspective it may be better for the
attackers not to use majority voting; another strategy may yield a form of the ρ curve that is
better for them. The best strategy strikes a balance between decreasing µ̃ and lengthening the
tail of ϕ+(u).
In the binary case, it is easy to identify where the balance lies: For κ ≈ 1

2 , the strategy has
practically no effect on µ̃, so the attackers should concentrate on lengthening the ϕ+(u) tail. This
is achieved by setting Ψb nonzero for small values of b, e.g. interleaving or minority voting.
The behaviour of ϕ(u) around u = 0 is also noteworthy. For u ↑ 0 the function is dominated by
the b = 1 contribution |u|1+2κ, which has zero derivative at u = 0. For u ↓ 0 the b = c term
u−1+2κ[q−1] dominates; this one, however, has infinite derivative for κ < 1/(q − 1) (which is the
case when e.g. κ ≈ 1/q).

Corollary 6 For an innocent user, the overall probability of positive and negative accusation are
in general unequal, and are given by

Pr[u > 0] = q

c∑
b=1

KbP1(b)
b+ κ

c+ κq

Pr[u < 0] = q

c∑
b=1

KbP1(b)
c− b+ κ[q − 1]

c+ κq
. (35)

4Notice that for 2κ[q− 1] > 1 the absolute third moment exists: the integral
R

du |u|3ϕ(u) is convergent in both
tails. (As opposed to the binary case with κ = 1/2.) Consequently, there is a guaranteed convergence to the normal
distribution when i.i.d. random variables ui ∼ ϕ are added together in large numbers.
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Proof: Follows by evaluating the u-integrals with Lemma 6, then applying Lemma 3 and finally
rewriting the Beta functions using B(x, y + 1) = B(x, y) y

x+y . �
Note that the probabilities properly add up to 1; this is readily seen from Lemma 4. Note too
what happens when the colluders choose a majority voting strategy: then Kb tends to be small
for small b and large for large b (see Section 5.1). The terms with large b then dominate the
summations in Corollary 6, and consequently Pr[u > 0] > Pr[u < 0]. This is consistent with the
fact that the left (u < 0) tail is heavier: the probability mass at u < 0 must be further removed
from u = 0 in order to cause E[u] = 0.

Corollary 7 If the colluder strategy is the interleaving attack, θy|σ = σy
c , then

ϕ+(u) =
2q

B(κ, κ[q − 1])
(u2)κ[q−1]− 1

2

(1 + u2)2+κq

ϕ−(u) =
2q

B(κ, κ[q − 1])
(u2)κ+

1
2

(1 + u2)2+κq
,

and Pr[u > 0] = κ+1
κq+1 ,

Proof: The first part follows directly by applying Lemma 5 to (34) and using
∑c
b=0

(
c
b

)
bxb =

xc(1 + x)c−1. The second part follows from taking the integral
∫∞
0

du ϕ+(u). �
It is interesting to note that the interleaving attack yields a ϕ(u) distribution that has the heaviest
possible tails for both positive and negative u (see Table 1): proportional to (1/|u|)3+2κ[q−1] for
the left tail and (1/u)5+2κ for the right tail. It also has the lowest possible dominant powers
around u = 0. Furthermore, ϕ(u) has the special property that it is completely independent of c.

4.3 The Fourier transform of ϕ

We compute the Fourier transform of ϕ(u) using the following lemma.

Lemma 13 (From [14], section 2.5.9) Let k ∈ R, Re v > − 1
2 , and d > 0. Let the function Λ

be defined as the following convergent integral,

Λ(d, v; k) :=
∫ ∞

0

du
u2d−1

(u2 + 1)v+d
eiku.

This integral is expressed in terms of hypergeometric 1F2 functions as

Λ(d, v; k) = (−ik)2vΓ(−2v) 1F2(v + d; v + 1
2 , v + 1;

k2

4
) + 1

2

∞∑
j=0

(ik)j

j!
B(d+

j

2
, v − j

2
)

= (−ik)2vΓ(−2v) 1F2(v + d; v + 1
2 , v + 1;

k2

4
)

+ 1
2B(d, v) 1F2(d; 1

2 , 1− v;
k2

4
) +

ik

2
B(d+ 1

2 , v − 1
2 ) 1F2(d+ 1

2 ; 3
2 ,

3
2 − v;

k2

4
).

Notice that in general Λ(d, v; k) is not an entire function of k due to the appearance of the factor
k2v in the first term, which for general v is not an entire function.
The hypergeometric function 1F2 has the sum representation 1F2(α;β1, β2; z) =

∑∞
j=0

(α)j
j!(β1)j(β2)j

zj

where (α)j = α(α + 1) · · · (α + j − 1) is the Pochhammer symbol. The radius of convergence is
infinity. The 1F2 function can be evaluated by using software packages such as Mathematica.

Theorem 6 The Fourier transform of ϕ is given by

ϕ̃(k) =
2q

B(κ, κ[q − 1])

c∑
b=1

(
c

b

)
Kb ·

[
Λ(db, vb; k) + Λ(Db, Vb;−k)

]
,
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with Λ as defined in Lemma 13, and

db = b+ κ ; vb = c− b+ κ[q − 1] + 1
Db = c− b+ κ[q − 1] ; Vb = b+ κ+ 1. (36)

Proof: The Fourier transform is defined as ϕ̃(k) =
∫∞
−∞du ϕ(u)e−iku. We use the expression

for ϕ given in Theorem 5. The integral for the summands in ϕ+ is immediately of the form
appearing in Lemma 13 and yields Λ(Db, Vb;−k). The integral over the ϕ− terms is of the form∫ 0

−∞du f(u2)e−iku, which can be rewritten as
∫∞
0

du f(u2)eiku; this has the form of the integral
in Lemma 13 and yields Λ(db, vb; k). �
For q ≥ 3 and realistic κ, none of the values db, vb, Db, Vb in (36) is integer or half-integer. Hence
substitution into all the Gamma functions and Pochhammers contained in the 1F2 functions of
Lemma 13 is well defined. Note that, given the summation range 1 ≤ b ≤ c, the smallest possible
value of vb or Vb is vc = 1 + κ[q − 1] > 1. Hence, in a power series expansion for small k, the k2v

term in (36) always comes ‘after’ the k3 power. In fact, for q ≥ 3 and κ ≈ 1/q we have 2vc ∈ (3, 4).

Corollary 8 For q ≥ 3 the leading order terms in the expansion of ϕ̃(k) are given by

ϕ̃(k) = 1− 1
2k

2 +
2q

B(κ, κ[q − 1])

{
(ik)3

2 · 3!

c∑
b=1

Kb[B(db + 3
2 , vb − 3

2 )−B(Db + 3
2 , Vb − 3

2 )]

+(−ik)2+2κ[q−1]Γ(−2− 2κ[q − 1])

+
(ik)4

2 · 4!

c∑
b=1

Kb[B(db + 2, vb − 2)−B(Db + 2, Vb − 2)] + (ik)4+2κK1Γ(−4− 2κ)

}
.

+ · · ·
Proof: Follows by substituting the first expression for Λ from Lemma 13 into Theorem 6, and then
cutting off the small-argument power series of the 1F2 function after the k0 term. �
Corollary 9 If the colluders use the interleaving attack, then

ϕ̃inter(k) = 1− 1
2k

2 +
2q

B(κ, κ[q − 1])

(ik)4+2κΓ(−4− 2κ)1F2(κq;κ+ 5
2 , κ+ 3; k

2

4 )

+(−ik)2+2κ[q−1]Γ(−2− 2κ[q − 1])1F2(κq;κ[q − 1] + 3
2 , κ[q − 1] + 2; k

2

4 )

+ 1
2

∞∑
j=3

(ik)j

j!
[B(κ+ 1 + j

2 , κ[q − 1] + 1− j
2 ) + (−1)jB(κ[q − 1] + j

2 , κ+ 2− j
2 )]

 .
Proof: The Fourier integrals of the ϕ+ and ϕ− given in Corollary 7 are precisely of the form
handled in Lemma 13, with (d = κ[q− 1], v = κ+ 2) and (d = κ+ 1, v = κ[q− 1] + 1) respectively.
�

5 Numerics for the majority voting strategy

We first present a fast algorithm for computing the Kb parameters in the case of majority voting.
Then we show numerical results for the minimum code length required to resist a coalition of c0
attackers who use the majority voting strategy.

5.1 Computing Kb for majority voting

Lemma 14 Let the colluder strategy be majority voting. Let Nb ∈ N with Nb > max{c−b, bq−c},
and let tb and Gba be defined as

tb = ei2π/Nb ; Gba =
b−1∑
x=0

Γ(κ+ x)
x!

taxb . (37)
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Then Kb is given by

b <
c

q
: Kb = 0 (38)

c

q
≤ b < c

2
: Kb =

b!(c− b)!
Γ(c− b+ κ[q − 1])Γ(b+ κ)B(κ1q−1)

· 1
qNb

Nb−1∑
a=0

t−acb (Gba)q ·
{(

1 +
Γ(b+ κ)tabb
b!Gba

)q
− 1
}
. (39)

b =
c

2
: Kc/2 = 1− q − 1

2
B(κ1q−1 + c

2e1)
B(κ1q−1)

(40)

= 1− 1
2

(1 + κ)c/2−1

(1 + κ[q − 1])c/2−1

b >
c

2
: Kb = 1. (41)

The proof is given in Appendix C.
These expressions look very complicated. However, they are easier to evaluate numerically than (24).
Evaluation of (41) involves only two sums: for every a, the Gba has fewer than c/2 terms, and
the a-sum has Nb terms, with Nb = O(cq/2). The total number of terms is O(c2q/4). Direct
evaluation of (24) on the other hand involves a (q − 1)-dimensional sum with O([c/2]q−1) terms,
a higher power of c when q > 3.
Note that a large number N can be chosen that satisfies N > max{c−b, bq−c} for all c/q ≤ b < c/2.
Then all the Nb values in (39) can be set to N . The price one pays for this small simplification is
that the sums contain more terms.

5.2 Behaviour of Rm(Z̃) for majority voting

From all the results in the previous sections, the false accusation probability for a fixed innocent
user, as a function of q, κ, c, and m, is numerically computed as follows (assuming ε2 ≈ 1/2).
The Kb parameters are evaluated using Lemma 14. A power series expansion for x = ϕ̃(k)− 1 is
obtained from Theorem 6. It is substituted in the series expansion of ln(1+x). Then k is replaced
by k/

√
m and the whole expression is multiplied by m, yielding a power series for m ln ϕ̃(k/

√
m).

The first term, − 1
2k

2, is split off, and the rest is substituted into the power series of the exp
function. The resulting series precisely yields the powers νt, ‘angles’ αt and coefficients ωt(m) as
defined in (32). These are then used in (33) to obtain the final result.
Fig. 3 shows a typical example of the shape of the resulting curve. For low values of Z̃ the curve
lies below the Guassian tail integral Ω(Z̃), meaning that the Guassian approximation is actually
pessimistic there! Then at some point the curve crosses Ω(Z̃) and becomes a power-law tail.
We will use the notation mcross(ε1) for the value of m where the crossover point Rm(Z̃) = Ω(Z̃)
lies exactly at Ω(Z̃) = ε1. For m ≥ mcross(ε1), the Gaussian approximation is valid (and even
pessimistic) for false accusation probabilities up to ε1. Note that mcross(ε1) depends on c, q, κ
and the pirate strategy. In the case of the majority voting attack, we find that mcross decreases
with c. This happens because the Kb parameters for majority voting (Lemma 14) kick in only at
b ≥ c/q, with Kb = 0 for b < c/q. From (34) we see that the b = c/q term in ϕ(u), which then is
the heaviest of the contributions to the right tail, behaves as (1/u)3+2κ+2c/q. Thus, the right tail
becomes less heavy with increasing c, facilitating convergence to the Gaussian form.
We also find that mcross increases with q. This can be understood from the same reasoning as
above. The main contribution to the right tail, (1/u)3+2κ+2c/q, is an increasing function of q.
It is important to remark on the number of terms that should be kept in the power series. Some
general, unsurprising rules of thumb apply. For an accurate result, more terms need to be kept
when Z̃ is increased and when m is decreased. For m < 100, powers larger than k50 are required,
with rather long computation times. Less obviously, the crossover region sometimes needs more

18



The proof is given in Appendix C.
These expressions look very complicated. However, they are easier to evaluate numerically than (24).
Evaluation of (43) involves only two sums: for every a, the Gba has fewer than c/2 terms, and
the a-sum has Nb terms, with Nb = O(cq/2). The total number of terms is O(c2q/4). Direct
evaluation of (24) on the other hand involves a (q − 1)-dimensional sum with O([c/2]q−1) terms,
a higher power of c when q > 3.
Note that a large number N can be chosen that satisfies N > max{c−b, bq−c} for all c/q ≤ b < c/2.
Then all the Nb values in (41) can be set to N . The price one pays for this small simplification is
that the sums contain more terms.

5.2 Behaviour of the false positive probability

From all the results in the previous sections, the false accusation probability for a fixed innocent
user, as a function of q, κ, c, and m, is numerically computed as follows (assuming ε2 ≈ 1/2).
The Kb parameters are evaluated using Lemma 16. A power series expansion for x = ϕ̃(k)− 1 is
obtained from Theorem 5. It is substituted in the series expansion of ln(1+x). Then k is replaced
by k/

√
m and the whole expression is multiplied by m, yielding a power series for m ln ϕ̃(k/

√
m).

The first term, − 1
2k2, is split off, and the rest is substituted into the power series of the exp

function. The resulting series precisely yields the powers νt and coefficients ωt(m) as defined in
(32). These are then used in (33) to obtain the final result.
Fig. 2 shows a typical example of the shape of the resulting curve. For low values of Z̃ the curve
lies below Ω(Z̃), meaning that there the Guassian approximation is actually pessimistic! Then at
some point the curve crosses Ω(Z̃) and becomes a power-law tail.
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!5

Z̃

log10prob. Gaussian tail

Rm(Z̃)

q = 10
κ = 0.11
c = 17
m = 700

Figure 2: Logarithmic plot of the probability of accusing a fixed innocent user j, as a function of
the threshold Z̃ = Z/

√
m, with parameter settings as listed in the graph.

It is important to remark on the number of terms that should be kept in the power series. Some
general, unsurprising rules of thumb apply. For an accurate result, more terms need to be kept
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Figure 3: Logarithmic plot of the probability Rm(Z̃) of accusing a fixed innocent user, as a function
of the scaled threshold Z̃, for the majority voting attack and with parameter settings as listed in
the graph.
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3. Find the point where Rm(Z̃) = ε1. Denote this point as Z̃∗.

4. Check if Z̃∗ < µ̃
c0

√
m. If not, increase m and go to step 2. If yes, decrease m and go to

step 2.

6 Numerics for the interleaving strategy

7 Numerics for the minority voting strategy

Lemma 17 Let the colluder strategy be minority voting. Let Mb ∈ N with Mb ≥ (c−b)(q−2)+1.
Let e1 = (1, 0, · · · , 0) be a (q − 1)-component vector. Let sb and Hba be defined as

sb := ei2π/Mb , Hba :=
∑

x∈{0}∪{b+1,··· ,c−b}

Γ(κ + x)
x!

ωax
b . (44)

Then Kb is given by

1 ≤ b <
c

2
: Kb =

b!(c− b)!
Γ(c− b + κ[q − 1])Γ(b + κ)B(κ1q−1)

· 1
qMb

Mb−1∑
a=0

s−ac
b (Hba)q ·

{(
1 +

Γ(b + κ)sab
b

b!Hba

)q

− 1
}

(45)

b =
c

2
: Kb = 1

2 (q − 1)
B(κ1q−1 + e1c/2)

B(κ1q−1)
c/2 < b < c : Kb = 0. (46)

The proof is given in Appendix D. Just as with majority voting, complicated expressions arise.
However, evaluation of Kb using (45) requires O(qc2) terms, whereas direct evaluation of (24)
requires O(cq−1) terms

8 Summary and future work

@ approach may be applicable to the joint decoder
@ guilty distribution: favorable negative contribution T inv
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Figure 4: Logarithmic plot of the correction to Ω(Z̃) as a function of νmax, the maximum power
of k kept in the expansion.

terms than other values of Z̃. For example, the curve in Fig. 3 requires powers up to k20 to get a
converging result around Z̃ = 8. An example of such convergence is shown in Fig. 4.

5.3 Sufficient code lengths for majority voting

Table 2 shows sufficient code lengths against colluders who use the majority voting strategy. The
crossover values mcross are also listed. We take parameters: ε2 ≈ 1

2 , κ ≈ 1/q, with κ > 1/q. The
sufficient code length m∗ as a function of q, κ, c, ε1 was determined as follows. We numerically
solved the equation

Rinv
m (ε1) = µ̃maj

√
m

c
(42)

for m, where µ̃maj is the statistical parameter µ̃ computed according to (29) for the majority
voting strategy.5 The solution gives the smallest possible value for m such that there exists a Z̃
satisfying Rm(Z̃) = ε1 as well as Z̃ ≤ µ̃maj

√
m/c. The latter condition is required in order to have

Pr[FN] ≤ 1
2 . (See the guilty curve in Fig. 1.)

Table 2 gives the solution m∗ as well as the Z̃ value at the solution (Z̃∗), and the crossover6 value
mcross as defined in Section 5.2. The proportionality constant in the relation m∗ ∝ c2 ln(1/ε1) is

5Note that µ̃maj is only slightly larger than the µ̃ of the ‘optimal’ µ̃-reducing strategy discussed in [18], because
our choice κ ≈ 1/q implies that majority voting is very close to optimal. Also note that µ̃maj weakly depends on c,
but is independent of m.

6An entry like ‘< 100’ means that high powers of k are required in the series expansion in order to determine
mcross more accurately, and we did not invest the necessary time.
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MAJORITY VOTING; ε1 = 10−10; ε2 ≈ 0.5

q κ c m∗ Z̃∗ m∗
c2 ln 1/ε1

mcross

3 0.34 3 1.29 · 103 10.4 6.22 11 · 103

4 7.5 · 102 5.91 2.04 3 · 102

5 1.19 · 103 5.97 2.07 3 · 102

7 2.41 · 103 6.06 2.14 3 · 102

20 2.09 · 104 6.24 2.27 < 300

80 3.44 · 105 6.33 2.33 < 300

10 0.105 3 2.48 · 103 21.3 12.0 9 · 105

5 1.90 · 103 10.8 3.30 3 · 104

6 1.26 · 103 7.30 1.52 4 · 103

7 1.25 · 103 6.22 1.11 4 · 102

11 3.16 · 103 6.24 1.13 < 100

20 1.07 · 104 6.29 1.16 < 100

80 1.75 · 105 6.34 1.19 < 100

16 0.066 3 2.8 · 103 24.1 14 3 · 106

5 2.36 · 103 12.73 4.10 2 · 105

6 1.68 · 103 8.89 2.03 2 · 104

7 1.20 · 103 6.42 1.06 1.3 · 103

80 1.59 · 105 6.34 1.08 < 100

Table 2: Sufficient code lengths for various alphabet and coalition sizes. The normal distribution
has Ω(Z̃) = 10−10 at Z̃ = 6.36.

also shown.
Several conclusions can be drawn from the table.

• For very small coalitions the Gaussian approximation does not hold, e.g. (q = 3, c ≤ 3),
(q = 10, c ≤ 6), (q = 16, c ≤ 7).

• Even then a decent code length m∗ � mcross can often be achieved, e.g. (q = 10, c =
5 and c = 6), (q = 16, c = 6 and c = 7). This is possible because the Rm curve still quickly
descends as a function of Z̃ even when Z̃ lies to the right of the crossover point.

• For large coalitions the Gaussian approximation holds. The proportionality constant in
m∗ ∝ c2 ln(1/ε1) has a minimum as a function of c where the Gaussian regime sets in. With
growing c, the Z̃∗ approaches 6.36, which is the value at which Ω(Z̃) = 10−10.

Remark: This is not the final word on the majority voting attack. Better results can probably be
achieved with different choices of κ. This is left for future work.
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Figure 4: .

6 Numerics for the interleaving strategy

6.1 Behaviour of Rm(Z̃) for the interleaving attack

False positive probabilities were computed as described in Section 5.2, except for two differences:
(i) The starting point for the power series in k is Corollary 10, so there is no need to compute the
Kb parameters. (ii) The shape of Rm now does not depend on c.
An example is shown in Fig. 4.

2 4 6 8

!14

!12

!10

!8

!6

!4

!2

Z̃

log10prob.

Rm(Z̃)

Ω(Z̃)

q = 3
κ = 1.29
m = 400
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6.2 Sufficient code length for the interleaving attack

Theorem 7 For the interleaving strategy, the µ̃ parameter becomes

µ̃inter = q
B(κ + 1

2 , κ[q − 1] + 1
2 )

B(κ, κ[q − 1])
. (45)

Proof: From the definition of µ̃ it follows that it can be computed as an expectation value in a
single content segment, µ̃ = E[σyg1(py) + (c− σy)g0(py)], with E the expectation over p, σ and y,
and g1 and g0 as defined in (8). The Ey(· · · ) expectation is given by

∑
y

σy

c (· · · ). We write

σy

c
[σyg1(py) + (c− σy)g0(py)] = py

σy − cpy√
py(1− py)

+
1
c

(σy − cpy)2√
py(1− py)

. (46)

From the properties of the multinomial distribution we get Eσ[σy−cpy] = 0 and Eσ[(σy−cpy)2] =
cpy(1 − py). Next, the expectation Ep over the full vector p reduces to the expectation over the
component py, for which we use the marginal pdf f(p) (Lemma 2). This gives

µ̃inter =
∑

y

1
B(κ, κ[q − 1])

∫ 1

0

dpy p−1+κ
y (1− py)−1+κ[q−1]

√
py(1− py). (47)

The result of the integration does not depend on y, so the
∑

y yields a factor q. The integral
yields B(κ + 1

2 , κ[q − 1] + 1
2 ). !

Fig. 5 shows the effect of µ̃inter on the code length for various q and κ. For the interleaving attack,
the factor 2/µ̃2, which appears as a multiplier in the Gaussian limit expression (13) for the code
length, is a decreasing function of κ and q. Increasing the alphabet has a large impact when q is
small, but very little impact when q is large.
In the case of the interleaving attack, Eq. (44) for finding the sufficient code length m∗ has more
structure than in the case of majority voting. To be completely explicit about the dependence
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Figure 5: Logarithmic plot of the probability Rm(Z̃) of accusing a fixed innocent user, as a function
of the scaled threshold Z̃. Parameter settings as listed in the graph.

6 Numerics for the interleaving strategy

6.1 Behaviour of Rm(Z̃) for the interleaving attack

False positive probabilities were computed as described in Section 5.2, except for two differences:
(i) The starting point for the power series in k is Corollary 9, so there is no need to compute the
Kb parameters. (ii) The shape of Rm now does not depend on c.
An example is shown in Fig. 5. We have observed for q ≥ 3 that a crossing point of the Rm and
Ω curve as in Fig. 3 can occur for small κ (e.g. q = 3, κ = 0.34, m = 104). However, we mostly
studied somewhat larger κ than in Section 5, in order to obtain shorter codes, and for these there
were no crossings.
As a general rule we have observed that increasing q worsens the convergence to the Gaussian
limit. We conjecture that this is caused by the faster dwindling left tail, (1/|u|)3+2κ[q−1], while
the right tail remains equally heavy.

6.2 Sufficient code length for the interleaving attack

Theorem 7 For the interleaving strategy, the µ̃ parameter becomes

µ̃inter = q
B(κ+ 1

2 , κ[q − 1] + 1
2 )

B(κ, κ[q − 1])
. (43)

Proof: From the definition of µ̃ it follows that it can be computed as an expectation value in a
single content segment, µ̃ = E[σyg1(py) + (c− σy)g0(py)], with E the expectation over p, σ and y,
and g1 and g0 as defined in (8). The Ey(· · · ) expectation is given by

∑
y
σy
c (· · · ). We write

σy
c

[σyg1(py) + (c− σy)g0(py)] = py
σy − cpy√
py(1− py)

+
1
c

(σy − cpy)2√
py(1− py)

. (44)

From the properties of the multinomial distribution we get Eσ[σy−cpy] = 0 and Eσ[(σy−cpy)2] =
cpy(1 − py). Next, the expectation Ep over the full vector p reduces to the expectation over the
component py, for which we use the marginal pdf f(p) (Lemma 2). This gives

µ̃inter =
∑
y

1
B(κ, κ[q − 1])

∫ 1

0

dpy p−1+κ
y (1− py)−1+κ[q−1]

√
py(1− py). (45)

The result of the integration does not depend on y, so the
∑
y yields a factor q. The integral

yields B(κ+ 1
2 , κ[q − 1] + 1

2 ). �
Fig. 6 shows the effect of µ̃inter on the code length for various q and κ. For the interleaving attack,
the factor 2/µ̃2, which appears as a multiplier in the Gaussian limit expression (13) for the code
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inter

Here we made use of a standard representation of the delta function, δ(k) = 1
π limη→0 η/(k2 +η2).

We also used the fact that in the remaining integration the Deven vanishes since it gets multiplied
by an odd function of k. Then we use that a > 0 in the power series of Dodd. This causes the
integrand to behave like k−1+a in the limit η → 0, i.e. the integral near k = 0 is convergent even
when η is precisely zero. Thus we can set η = 0 in this integral.

Pr[Sj > Z] = i lim
η↓0

∫ ∞

−∞
dk

D(k)
k + iη

= i

∫ ∞

−∞
dk

D(k)
k

+ πD(0). (53)

!

B Proof of Theorem 4

We start from Corollary 4 and write a general power series expansion,

ϕ̃(k) = 1− 1
2k2 +

∞∑
t=0

γt|k|rt , (54)

where the rt ≥ 3 are powers and the γt ∈ C are coefficients of the form iβt sgn k times a real
factor. In this expression the desired relation ϕ̃(−k) = [ϕ̃(k)]∗ evidently holds, and the properties
ϕ̃(0) = 1, ϕ̃′(0) = 0, ϕ̃′′(0) = −1, |ϕ̃′′′(0)| <∞ are clearly present. Then we write[

ϕ̃(
k√
m

)
]m

= exp
[
m ln ϕ̃(

k√
m

)
]

= e−
1
2k2

exp

[
m

∞∑
t=0

(
|k|√
m

)r′
tδt

]
, (55)

where the powers r′t ≥ 3 and coefficients δt ∝ iβ
′
tsgn k are obtained (laboriously) by substituting

(54) into the Taylor series for the logarithm, ln(1 + ε) = ε− ε2/2 + ε3/3− ε4/4 + · · · . It is worth
noting that m disappears from the k2 term, but not from the others. Eq. (33) is obtained from
(55) by using the Taylor series for the exp function,

exp ε = 1 + ε + ε2/2! + ε3/3! + · · · (56)

and (again laboriously) collecting terms with equal powers of k.
Since we started out with powers rt ≥ 3, we end up with powers νt ≥ 3. A power |k|νt may
occur together with many different powers of m. This is seen as follows. The series expansion of
ln ϕ̃(k/

√
m) is a power series in |k|/√m. Then the logarithm is multiplied by m, and a power |k|r′

always occurs together with m1−r′/2. Next, the k-expansion of exp mixes up the powers of m. For
instance, the power k6 occurs as mδ6(|k|/√m)6 ∝ k6m−2 but also as a term [mδ3(|k|/√m)3]2/2! ∝
k6m−1.
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Figure 6: The factor 2/µ̃2
inter (see Eq. (13)) as a function of κ for various alphabet sizes.

length, is a decreasing function of κ and q. Increasing the alphabet has a large impact when q is
small, but very little impact when q is large.
In the case of the interleaving attack, Eq. (42) for finding the sufficient code length m∗ has more
structure than in the case of majority voting. To be completely explicit about the dependence
on the various variables we write µ̃inter(q, κ) and Rqκm(Z̃). Since µ̃inter and Rqκm do not depend
on c, it makes sense to isolate c and reorganize (42) as

c =
√
m
µ̃inter(q, κ)
Rinv
qκm(ε1)

. (46)

This equation gives an upper bound on the coalition size that can be resisted by the code. The
easiest way to handle the numerics is to choose (for fixed q, κ, ε1) a set of values for m, and
then compute Z̃∗ and c as a function of m. (The results for c are not integer in general, but it is
implicitly understood that they should be rounded down.) We therefore present our results in a
slightly different form than in Section 5.3.
Fig. 7 shows how Z̃∗ and m∗ converge to their Gaussian limits as a function of the code length.
The c on the horizontal axis is a parametrization of m, representing the coalition size that can
be resisted by the code. The limiting value for Z̃∗ is Ωinv(ε1). The limiting value for m∗ is
mlimit = [cΩinv(ε1)/µ̃]2. We have plotted the fraction m∗/mlimit = [Z̃∗/Ωinv(ε1)]2.
Note that the factor [Ωinv(ε1)]2 in the expression for mlimit is noticeably smaller than the bound
2 ln(1/ε1). This means that the code can be made even shorter. The ratio [Ωinv(ε1)]2/[2 ln(1/ε1)]
is plotted in Fig. 8. Fig. 9 shows the familiar code length proportionality constant m/(c2 ln ε−1

1 ).

The case of the binary alphabet (q = 2) is rather special. If κ is set to 1
2 , then the left tail of

ϕ(u) becomes so heavy that E(|u|3) =∞, severely hampering convergence to the Gaussian limit.
Tardos [17] introduced a cutoff parameter t � 1 so that pα ∈ (t, 1 − t), which curbs the tail,
yielding E(|u|3) < ∞. (Tardos did not formulate it in this way; for him it was a technical trick
that allows for the use of the Markov inequality in a crucial part of a security proof.) We do not
set κ exactly to 1

2 and we do not use the cutoff t, but instead we consider κ ≥ 0.55. This is close
enough to get a good impression of the behaviour of the original Tardos code, but large enough
to get numerical results quickly. For κ closer to 1

2 our method requires many more powers of k to
be kept, leading to long computation times. We observe a difference between q = 2 and q ≥ 3. In
the binary case, the results are better than Gaussian in a large portion of parameter space, and
already at small coalition sizes. For q ≥ 3, the Gaussian limit is approached ‘from the other side’,
i.e. with results that are worse than the Gaussian limit.
From the numerics we conclude that the attack vs. defense game is quite complex. In the
asymptotic limit, the µ̃-minimizing strategy of [18] is the best attack; the best defense was shown
to be setting κ a bit larger than 1/q; in that regime the attack is basically majority voting. In the
small c regime the interleaving attack is a potent strategy. It can be effectively defended against
by choosing κ as large as possible; this facilitates convergence to the Gaussian limit and at the
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same time increases µ̃. However, κ cannot be increased indefinitely, for otherwise the defense
against other attacks becomes too weak. (The µ̃-minimizing attack of [18] becomes too powerful.)
Finding a balance between these effects is left for future work.

7 Summary and future work

We have analyzed the q-ary Tardos fingerprinting scheme in the restricted digit model. We have
introduced a new parametrization Ψb(x) of the attack strategy. It has the advantage that it no
longer depends on any symbol index α ∈ Q; furthermore, it allows for pre-computation of the
parameters Kb = Ex|bΨb(x)
We have shown for κq ≈ 1 that the majority voting strategy minimizes µ̃. We have determined
the probability distribution of the accusation of an innocent user due to a single content segment.
Using the Fourier approach we have used this to set up a series expansion for the systematic
computation of the total accusation probability for an innocent user. As a first test of our method
we have numerically evaluated our expansions for ε1 = 10−10 and various parameter settings.
We have done this for two attacks that are of special interest, the majority voting attack and
the interleaving attack. We have found that the ‘shape’ parameter κ plays a crucial role. When
κ is chosen so as to maximize µ̃ in the face of a µ̃-reducing attack, then convergence to the
Gaussian limit is quite bad, especially for large alphabets. Increasing κ dramatically improves the
convergence. At the same time the µ̃ decreases; hence, the game of attack and defense is quite
complex, involving the ratio of Rinv

m (ε1) and µ̃ instead of a single one of these parameters. A full
study of general attacks, for different ε1, is left for future work.
It would be interesting to see if the approach developed here can be applied to accusation proba-
bilities in the joint decoder scenario.
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A Proof of Theorem 3

We have Pr[Sj > Z] = Pr
[∑m

i=1 S
(i)
j > Z

]
for innocent j. The terms S

(i)
j are independent,

identically distributed random variables. This allows us to write

Pr[Sj > Z] =
∫ ∞

−∞
du1ϕ(u1) · · ·

∫ ∞

−∞
dumϕ(um) Θ(u1 + · · · + um − Z). (49)

Here Θ is the Heaviside step function. Next we use a well known integral representation of the
step function,

Θ(x) = lim
η↓0

1
2πi

∫ ∞

−∞
dλ

eiλx

λ− iη
. (50)

Substituting (50) into (49) and rearranging the order of the integrations, we get

Pr[Sj > Z] = lim
η↓0

∫ ∞

−∞

dλ

2πi

e−iλZ

λ− iη

m∏
a=1

[∫ ∞

−∞
dua ϕ(ua)eiλua

]

= lim
η↓0

∫ ∞

−∞

dλ

2πi

e−iλZ

λ− iη
[ϕ̃(−λ)]m = − lim

η↓0

∫ ∞

−∞

dk

2πi

eikZ/
√

m

k + iη

[
ϕ̃(

k√
m

)
]m

. (51)

In the last line of (51) we changed the integration variable to k = −λ
√

m in order to get the ‘scaled’
threshold Z/

√
m in the integrand, which makes it easier to visualize the result using Fig. 1.

We define D(k) = (2π)−1eikZ/
√

m
[
ϕ̃( k√

m
)
]m

for brevity and write D(k) = Deven(k) + Dodd(k).
The power expansion of Dodd around k = 0 has dominant term ka, where a > 0 (Corollary 4).
We write

lim
η↓0

∫ ∞

−∞
dk

D(k)
k + iη

= lim
η↓0

∫ ∞

−∞
dk

(k − iη)D(k)
k2 + η2

= lim
η↓0

∫ ∞

−∞
dk

kDodd(k)
k2 + η2

− iπD(0). (52)

Here we made use of a standard representation of the delta function, δ(k) = 1
π limη→0 η/(k2 +η2).

We also used the fact that in the remaining integration the Deven vanishes since it gets multiplied
by an odd function of k. Then we use that a > 0 in the power series of Dodd. This causes the
integrand to behave like k−1+a in the limit η → 0, i.e. the integral near k = 0 is convergent even
when η is precisely zero. Thus we can set η = 0 in this integral.

Pr[Sj > Z] = i lim
η↓0

∫ ∞

−∞
dk

D(k)
k + iη

= i

∫ ∞

−∞
dk

D(k)
k

+ πD(0). (53)

!
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Figure 7: Convergence to the Gaussian limit for the interleaving attack, for ε1 = 10−10. Left:
Code length m∗ compared to the Gaussian value [cΩinv(ε1)/µ̃]2, as a function of the coalition size c.
Right: Z̃∗ as a function of c.
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Figure 8: The factor [Ωinv(ε1)]2 compared to the bound 2 ln(1/ε1).

!
! ! ! ! ! !

!

!

!
! ! ! ! ! ! ! ! !

!

!

! ! ! ! ! ! ! ! !

6 8 10 12 14 16

3.4

3.6

3.8

4.0

4.2

4.4

c

m∗
c2 ln(1/ε1) q=2

κ = 0.55

0.60

0.65

References

[1] E. Amiri and G. Tardos. High rate fingerprinting codes and the fingerprinting capacity. In
Proc. 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 336–345,
2009.

[2] O. Blayer and T. Tassa. Improved versions of Tardos’ fingerprinting scheme. Designs, Codes
and Cryptography, 48(1):79–103, 2008.

[3] D. Boneh and J. Shaw. Collusion-secure fingerprinting for digital data. IEEE Transactions
on Information Theory, 44(5):1897–1905, 1998.

[4] T. Furon, A. Guyader, and F. Cérou. On the design and optimization of Tardos probabilistic
fingerprinting codes. In Information Hiding, volume 5284 of Lecture Notes in Computer
Science, pages 341–356. Springer, 2008.
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Figure 9: Interleaving attack. The often studied proportionality constant in m∗ ∝ c2 ln 1
ε1

, as a
function of c, for various q and κ.
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[5] T. Furon, L. Pérez-Freire, A. Guyader, and F. Cérou. Estimating the minimal length of Tardos
code. In Information Hiding 2009, volume 5806 of Lecture Notes in Computer Science, pages
176–190.

[6] I.S. Gradshteyn and I.M. Ryzhik. Table of Integrals, Series, and Products, 5th edition. Aca-
demic Press, 1994.

[7] S. He and M. Wu. Joint coding and embedding techniques for multimedia fingerprinting.
TIFS, 1:231–248, June 2006.

[8] Y.W. Huang and P. Moulin. Saddle-point solution of the fingerprinting capacity game under
the marking assumption. In Proc. IEEE International Symposium on Information Theory
(ISIT), 2009.

[9] Y.W. Huang and P. Moulin. Saddle-point solution of the fingerprinting capacity game under
the marking assumption, 2009. http://arxiv.org/abs/0905.1375.

[10] J. Kilian, F.T. Leighton, L.R. Matheson, T.G. Shamoon, R.E. Tarjan, and F. Zane. Resistance
of digital watermarks to collusive attacks. In IEEE International Symposium on Information
Theory (ISIT) 1998, page 271.

[11] M. Kuribayashi, N. Akashi, and M. Morii. On the systematic generation of Tardos’s finger-
printing codes. In International Workshop on Multimedia Signal Processing (MMSP) 2008,
pages 748–753.

[12] P. Moulin. Universal fingerprinting: Capacity and random-coding exponents. In Preprint
arXiv:0801.3837v2, avilable at http: // arxiv. org/ abs/ 0801. 3837 , 2008.

[13] K. Nuida, M. Hagiwara, H. Watanabe, and H. Imai. Optimal probabilistic fingerprint-
ing codes using optimal finite random variables related to numerical quadrature. CoRR,
abs/cs/0610036, 2006.

[14] A.P. Prudnikov, Yu.A. Brychkov, and O.I. Marichev. Integrals and Series, 4th printing,
volume 1. CRC, 1998.

[15] H.G. Schaathun. On error-correcting fingerprinting codes for use with watermarking. Multi-
media Systems, 13(5-6):331–344, 2008.

[16] A. Somekh-Baruch and N. Merhav. On the capacity game of private fingerprinting systems
under collusion attacks. IEEE Trans. Inform. Theory, 51:884–899, March 2005.

[17] G. Tardos. Optimal probabilistic fingerprint codes. In Proceedings of the 35th Annual ACM
Symposium on Theory of Computing (STOC), pages 116–125, 2003.

26
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A Proof of Theorem 3

We have Pr[Sj > Z] = Pr
[∑m

i=1 S
(i)
j > Z

]
for innocent j. The terms S(i)

j are independent,
identically distributed random variables. This allows us to write

Pr[Sj > Z] =
∫ ∞
−∞

du1ϕ(u1) · · ·
∫ ∞
−∞

dumϕ(um) Θ(u1 + · · ·+ um − Z). (47)

Here Θ is the Heaviside step function. Next we use a well known integral representation of the
step function,

Θ(x) = lim
η↓0

1
2πi

∫ ∞
−∞

dλ
eiλx

λ− iη . (48)

Substituting (48) into (47) and rearranging the order of the integrations, we get

Pr[Sj > Z] = lim
η↓0

∫ ∞
−∞

dλ
2πi

e−iλZ

λ− iη
m∏
a=1

[∫ ∞
−∞

dua ϕ(ua)eiλua
]

= lim
η↓0

∫ ∞
−∞

dλ
2πi

e−iλZ

λ− iη [ϕ̃(−λ)]m = − lim
η↓0

∫ ∞
−∞

dk
2πi

eikZ/
√
m

k + iη

[
ϕ̃(

k√
m

)
]m

. (49)

In the last line of (49) we changed the integration variable to k = −λ√m in order to get the ‘scaled’
threshold Z/

√
m in the integrand, which makes it easier to visualize the result using Fig. 1.

We define D(k) = (2π)−1eikZ/
√
m
[
ϕ̃( k√

m
)
]m

for brevity and write D(k) = Deven(k) + Dodd(k).
The power expansion of Dodd around k = 0 has dominant term ka, where a > 0 (Corollary 4).
We write

lim
η↓0

∫ ∞
−∞

dk
D(k)
k + iη

= lim
η↓0

∫ ∞
−∞

dk
(k − iη)D(k)
k2 + η2

= lim
η↓0

∫ ∞
−∞

dk
kDodd(k)
k2 + η2

− iπD(0). (50)

Here we made use of a standard representation of the delta function, δ(k) = 1
π limη→0 η/(k2 +η2).

We also used the fact that in the remaining integration the Deven vanishes since it gets multiplied
by an odd function of k. Then we use that a > 0 in the power series of Dodd. This causes the
integrand to behave like k−1+a in the limit η → 0, i.e. the integral near k = 0 is convergent even
when η is precisely zero. Thus we can set η = 0 in this integral.

Pr[Sj > Z] = i lim
η↓0

∫ ∞
−∞

dk
D(k)
k + iη

= i

∫ ∞
−∞

dk
D(k)
k

+ πD(0). (51)

�

B Proof of Theorem 4

We start from Corollary 4 and write a general power series expansion,

ϕ̃(k) = 1− 1
2k

2 +
∞∑
t=0

γt|k|rt , (52)
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where the rt ≥ 3 are powers and the γt ∈ C are coefficients of the form iβt sgn k times a real
factor. In this expression the desired relation ϕ̃(−k) = [ϕ̃(k)]∗ evidently holds, and the properties
ϕ̃(0) = 1, ϕ̃′(0) = 0, ϕ̃′′(0) = −1, |ϕ̃′′′(0)| <∞ are clearly present. Then we write[

ϕ̃(
k√
m

)
]m

= exp
[
m ln ϕ̃(

k√
m

)
]

= e−
1
2k

2
exp

[
m

∞∑
t=0

(
|k|√
m

)r
′
tδt

]
, (53)

where the powers r′t ≥ 3 and coefficients δt ∝ iβ
′
tsgn k are obtained (laboriously) by substituting

(52) into the Taylor series for the logarithm, ln(1 + ε) = ε− ε2/2 + ε3/3− ε4/4 + · · · . It is worth
noting that m disappears from the k2 term, but not from the others. Eq. (32) is obtained from
(53) by using the Taylor series for the exp function,

exp ε = 1 + ε+ ε2/2! + ε3/3! + · · · (54)

and (again laboriously) collecting terms with equal powers of k.
Since we started out with powers rt ≥ 3, we end up with powers νt ≥ 3. A power |k|νt may
occur together with many different powers of m. This is seen as follows. The series expansion of
ln ϕ̃(k/

√
m) is a power series in |k|/√m. Then the logarithm is multiplied by m, and a power |k|r′

always occurs together with m1−r′/2. Next, the k-expansion of exp mixes up the powers of m. For
instance, the power k6 occurs as mδ6(|k|/√m)6 ∝ k6m−2 but also as a term [mδ3(|k|/√m)3]2/2! ∝
k6m−1.
The ‘worst case’ (many factors m resulting from high powers of ε in (54)) occurs when νt is a
multiple of 3, say νt = 3j; there the power k3j can be built up from a term [mδ3(|k|/√m)3]j/j!,
which is proportional to k3jmj−3j/2 = kνtm−νt/6. All the j factors scale as m(|k|/√m)3 =
|k|3/√m. This is the least negative power of m that can occur relative to the power of k. For
other powers νt, the ‘building blocks’ from which kνt is built up cannot all scale in this way; at
least one of the factors has faster decay.7 This proves the statement about the at least m−νt/6

decay.
Finally, (33) follows by applying Lemma 9 and Corollary 2 to evaluate the integrals that arise
when (32) is substituted into Theorem 3. �

C Proof of Lemma 14

C.1 The case b < c/q

A symbol that occurs fewer than c/q times cannot have the majority. Consider the extreme case
where all the other symbols also occur b times: then the total number of symbols received by the
coalition would be q · b < c.

C.2 The case b > c/2

Since the colluder strategy is majority voting, we have Ψb(x) = 1 for b > c/2. (This follows from
the fact that none of the components xa can exceed c/2 due to the sum rule

∑
a xa = c − b <

c/2.) The result (41) follows after substitution of Ψb(x) = 1 into (24), summing up (
∑
x) the

probabilities to 1, and finally writing the Beta functions in terms of Gamma functions according
to (2).

7For instance, the least negative power of m multiplying k7 is obtained from the ε2 term in (54) and is given by
2[mδ3(|k|/

√
m)3][mδ4(|k|/

√
m)4]/2! ∝ [|k|3/

√
m][|k|4/m].
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C.3 The case b = c/2

Now Ψb(x) = 1 unless xβ = c/2 for some β ∈ {1, · · · , q− 1}; in that case Ψb(x) = 1/2 since there
are two equivalent symbols to choose from. We have

Kc/2 =
∑

x:xβ 6=c/2
Pq−1(x| c

2
) +

q−1∑
a=1

(
c/2
c/2

)
B(κ1q−1 + c

2ea)
B(κ1q−1)

· 1
2

=
∑
x

Pq−1(x| c
2

)− 1
2

q−1∑
a=1

B(κ1q−1 + c
2ea)

B(κ1q−1)

= 1− q − 1
2

B(κ1q−1 + c
2ea)

B(κ1q−1)
. (55)

In the last line we used the fact that the a is arbitrary. Finally, without loss of generality we can
set a = 1.

C.4 The case c/q < b < c/2

We have Ψb(x) = 0 whenever xj > b for some index j. Hence we only have to sum over xj ≤ b.
When xj < b for all j, then Ψb(x) = 1. Furthermore, when there are exactly ` indices with xj = b,
then Ψb(x) = 1/(`+ 1).
We reorganize the x-sum in (24) to take the multiplicity ` into account: ` of the components are
set to b and the leftover summation variables x1 to xq−1−` range between 0 and b− 1.

∑
x

Ψb(x)(· · · )→
q−1∑
`=0

1
`+ 1

(
q − 1
`

) b−1∑
x1=0

· · ·
b−1∑

xq−1−`=0

δ`b+x1+···+xq−1−`,c−b (· · · ). (56)

Here the factor
(
q−1
`

)
pops up because the summand in (24) is fully symmetric under permutations

of x. The Kronecker delta takes care of the constraint that the components of x add up to c− b.
Notice that we let ` get as large as q − 1, even though it may be impossible to satisfy the x-sum
constraint for large `; this is taken care of by the Kronecker delta, which sets the constraint-
violating terms to zero.
Next we use a sum representation of the Kronecker δ as follows,

δz,0 =
1
N

N−1∑
a=0

(ei2π/N )az, (57)

with z = (`+ 1)b+ x1 + · · ·+ xq−1−` − c. This is a correct representation only if N is larger than
the maximum |z| that can occur. Hence, in order for (57) to work for the δ in (56), N must be
larger than the maximum value of |(`+ 1)b+ x1 + · · ·+ xq−1−` − c| that may occur for any (b, `).
Taking into account that the range of b is c/q ≤ b < c/2, and that xj ≤ b− 1, the bound on N as
stated in the Lemma follows after some algebra.8

We shift the a-sum completely to the left, through the x-sum and the `-sum. Next we write the
upper Beta function in (24), for given multiplicity `, as

B(κ1q−1 + x) =
[Γ(κ+ b)]`

∏q−1−`
j=1 Γ(κ+ xj)

Γ(c− b+ κ[q − 1])
, (58)

and the multinomial as (
c− b
x

)
=

(c− b)!
[b!]`

∏q−1−`
j=1 xj !

. (59)

8It is allowed to choose N as a function of b. That leads to a slightly smaller number of terms in the a-summation.
We did not wish to add such a complication.
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All the expressions depending on the xj variables are fully factorized; the part of the summand
that contains the xj is given by

q−1−`∏
j=1

 b−1∑
xj=0

Γ(κ+ xj)
xj !

ω
axj
N

 = (Gba)q−1−`. (60)

Next we evaluate the `-sum analytically. It is given by

q−1∑
`=0

1
`+ 1

(
q − 1
`

)
v` =

(1 + v)q − 1
qv

(61)

with

v =
Γ(b+ κ)ωabN

b!Gba
. (62)

Finally the result (41) follows after some elementary rewriting. �

D Proof of Theorem 5

We start by considering the probability of a certain accusation value u occurring for an innocent
user, for fixed p and y. (We omit all column indices.) There are only two discrete possibilities:
(i) g1(py) if the user’s symbol is y; this occurs with probability py; (ii) g0(py) if the user’s symbol
is not y; this occurs with probability 1− py. Hence we can write this distribution as a sum of two
delta peaks as follows,

ϕ(u|p, y) = pyδ(u− g1(py)) + (1− py)δ(u− g0(py)). (63)

The full ϕ(u), without conditioning, is obtained by taking the expectation over y and p. Since the
expectation over y involves the parameters θy|σ, the expectation over σ has to be done as well.

ϕ(u) = EpEσ|p
∑
y∈Q

θy|σ ϕ(u|p, y). (64)

Next we note that ϕ(u|p, y) depends only on py. Hence we can write ϕ(u|py), and

ϕ(u) =
∑
y∈Q

EpyEσ|pyθy|σ ϕ(u|py) =
∑
y∈Q

EpyEσy|pyEσ\y|σyθy|σ ϕ(u|py). (65)

Now we use Eσ\y|σyθy|σ = Kσy , the binomial form (21) of Eσy|py and the marginal distribution of
py (Lemma 2). The dummy summation variable σy is replaced by the notation b in order to stress
the fact that it does not depend on y. Substitution of all these ingredients gives

ϕ(u) =
∑
y∈Q

∫ 1

0

dpy f(py)
c∑
b=0

(
c

b

)
pby(1− py)c−bKb ϕ(u|py)

=
q

B(κ, κ[q − 1])

c∑
b=1

(
c

b

)
Kb

∫ 1

0

dpy p−1+κ+b
y (1− py)−1+κ[q−1+]c−bϕ(u|py). (66)

In the last line we have used that K0 = 0 and that the integral over py yields the same result for
every y. In order to evaluate the py-integral we have to rewrite the delta functions of (63) into
the form δ(py − · · · ). We use the rule

δ(u− w(p)) =
δ(p− winv(u))
|dw/dp| (67)
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for any monotonic function w(p), which yields

δ(u− g1(p)) = Θ(u)
2u

(1 + u2)2
δ(p− 1

1 + u2
)

δ(u− g0(p)) = Θ(−u)
2|u|

(1 + u2)2
δ(p− u2

1 + u2
). (68)

After some algebra, it is then seen that the py-integral evaluates to

2
(1 + u2)c+κq+1

[
Θ(u)(u2)κ[q−1]+c−σy− 1

2 + Θ(−u)(u2)κ+σy−
1
2

]
. (69)

Splitting ϕ into a part containing Θ(u) and a part containing Θ(−u) finally yields the end result.
�
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