Attribute-based Authenticated Key Exchange*

M. Choudary Gorantla, Colin Boyd, and Juan Manuel Gonzalez Nieto

Information Security Institute, Faculty of IT, Queensland University of Technology
GPO Box 2434, Brisbane, QLD 4001, Australia.
Email: mc.gorantla@gmail.com, {c.boyd,j.gonzaleznieto}@qut.edu.au

Abstract. We introduce the concept of attribute-based authenticated key exchange (AB-AKE) within
the framework of ciphertext policy attribute-based systems. A notion of AKE-security for AB-AKE is
presented based on the security models for group key exchange protocols and also taking into account
the security requirements generally considered in the ciphertext policy attribute-based setting.

We also extend the paradigm of hybrid encryption to the ciphertext policy attribute-based encryption
schemes. A new primitive called encapsulation policy attribute-based key encapsulation mechanism
(EP-AB-KEM) is introduced and a notion of chosen ciphertext security is defined for EP-AB-KEMs.
We propose an EP-AB-KEM from an existing attribute-based encryption scheme and show that it
achieves chosen ciphertext security in the generic group and random oracle models.

We present a generic one-round AB-AKE protocol that satisfies our AKE-security notion. The protocol
is generically constructed from any EP-AB-KEM that satisfies chosen ciphertext security. Instantiating
the generic AB-AKE protocol with our EP-AB-KEM will result in a concrete one-round AB-AKE
protocol also secure in the generic group and random oracle models.

Keywords. Attribute-based Key Exchange, Attribute-based KEM, Group Key Exchange

1 Introduction

In a distributed collaborative system, it is often convenient for the members to communicate with
the others in the system using attributes that describe their roles or responsibilities. These attributes
are highly desirable if the members join/leave the system dynamically. Consider an Internet forum
where the members are organized into user groups based on the members’ skills or privileges. It
is a natural requirement that the members of a user group should be able to establish secure
communication with the other members belonging to particular user groups. The communication
in these forums is generally carried out through initiating a thread or by posting messages within
an existing thread. To enable authentic and confidential communication, the forum administrator
may specify an access policy with the user groups being attributes. Obviously, only the members
of the forum whose attributes (e.g. membership to user groups) satisfy the policy should be able
to have read and/or write access to the thread.

In the above scenario, the members do not necessarily have to know the identity of the other
members with whom they want to communicate. In fact, the administrator may be requested not to
disclose the identity of a member to the others for privacy reasons. Any member whose attributes
satisfy the policy specified by the administrator should be able to participate in the communication.
Note that the communication can naturally be among a group of more than two members, since the
defined policy may be satisfied by attributes of more than two members. Hence, an authenticated
group key exchange protocol that facilitates attributes usage can be employed in this setting. We
call such a protocol, an attribute-based authenticated key exchange (AB-AKE) protocol. Once a
session key among the willing participants has been established via the key exchange protocol, it
can be used for establishing secure communication among the participants.

* This work has been supported in part by the Australian Research Council through Discovery Project DP0666065.

We can further envisage applications for AB-AKE in interactive chat rooms and also in or-
ganizations with strict hierarchy like the military. In interactive chat rooms, each room may be
associated with a policy defined with a set of interests being the attributes. Any member whose
interests satisfy the policy of a chat room can have read and/or write access to it. Similarly, a
policy over ranks (e.g., Sergeant, Lieutenant, Major, Colonel etc.) as attributes can be specified
for the units in the military by another unit at a higher level in the hierarchy. All the units whose
attributes satisfy the policy can establish secure communication among themselves through an
AB-AKE protocol.

ATTRIBUTE-BASED ENCRYPTION. Sahai and Waters [29] introduced the concept of attribute
based encryption (ABE) as an extension to ID-based encryption [7], in which a set of descrip-
tive attributes is regarded as an identity. Goyal et al. [22] further extended the idea of ABE and
introduced two variants: key policy attribute based encryption (KP-ABE) and ciphertext policy
attribute based encryption (CP-ABE). In a KP-ABE system, the private key of a party is associ-
ated with an access policy defined over a set of attributes while the ciphertext is associated with
a set of attributes. A ciphertext can be decrypted by a party if the attributes associated with the
ciphertext satisfy the policy associated the user’s private key. A CP-ABE system can be seen as
a complementary form to KP-ABE system, wherein the private key is associated with a set of
attributes, while a policy defined over a set of attributes is attached to the ciphertext. A ciphertext
can be decrypted by a party if the attributes associated with its private key satisfy the ciphertext’s
policy.

1.1 Contributions

In this paper, we introduce the concept of AB-AKE. We assume that each member willing to
participate in an AB-AKE protocol is issued a private key for a set of attributes that he/she
possesses. Our modelling of AB-AKE follows the framework of CP-ABE in that the attributes are
associated with the private keys. We assume that the members are given an access policy which
their attributes have to satisfy for them to participate in the protocol. Alternatively, a common
policy may be negotiated by the group members themselves. The protocol takes the access policy
as input and computes messages for the other parties. Similar to the CP-ABE systems, we may
assume that the policy is attached to the protocol messages in an AB-AKE protocol, although this
assumption is not necessary since each member knows the policy at the outset of the protocol. A
member whose attributes satisfy the given policy can compute the session key from the incoming
messages and (if exists) its own contribution.

While a complementary flavour of AB-AKE can be conceptualized based on KP-ABE systems,
we do not explore this direction in this work. For the type of applications that we have discussed
earlier, AB-AKE protocols based on CP-ABE systems suit well. AB-AKE can be seen as an ex-
tension of group key exchange (GKE) [11,26,25] with the additional expressiveness provided by
the ciphertext-policy attribute-based systems. We define a notion of authenticated key exchange
security (AKE-security) for AB-AKE by adapting a corresponding notion for GKE to the attribute-
based setting. The property of collusion resistance considered by attribute-based systems [22, 4, 32]
is naturally embedded into our AKE-security notion.

We then propose a generic one-round AB-AKE protocol that satisfies our AKE-security notion.
The protocol is based on a type of attribute-based key encapsulation mechanism (KEM) that we
call encapsulation policy attribute-based KEM (EP-AB-KEM). In an EP-AB-KEM, the attributes
are associated to the private key of a party and access policy is attached to the encapsulation. We

define a notion of chosen ciphertext security for EP-AB-KEM based on a corresponding notion
considered for CP-ABE schemes.

Our AB-AKE protocol is generic in the sense that it can be instantiated using any EP-AB-KEM
that satisfies chosen ciphertext security. We propose a chosen-ciphertext secure EP-AB-KEM based
on the CP-ABE scheme of Bethencourt et al. [4] and using the generic technique of Boneh et al. [9].
While we apply the technique of Boneh et al. to the chosen plaintext secure EP-AB-KEM implicit
in Bethencourt et al.’s scheme, we also make some non-trivial changes to adapt it to the attribute-
based setting. The proposed EP-AB-KEM is then proven secure in the generic group and random
oracle models. Incidentally, we are the first to model and construct EP-AB-KEMs, which are of
independent interest.

Finally, an AB-AKE protocol satisfying our AKE-security provides implicit authentication that
is similar to the corresponding notion considered for normal key exchange protocols. Particularly,
our AKE-security notion ensures each protocol participant that no other party apart from par-
ties who satisfy the given policy can possibly learn the value of the session key. Note that an
EP-AB-KEM cannot achieve this property since it does not provide any sender authentication.
Consequently, the receivers in EP-AB-KEM whose attributes satisfy the policy have no way of
knowing whether the sender actually satisfies the same policy or not. For example, if we use an
EP-AB-KEM in a user group, any one can post a message that is encrypted with the symmetric
of the EP-AB-KEM. Alternatively, if the message is encrypted with a session key derived from an
AB-AKE protocol the readers will get the assurance that only someone with valid attribute set has
posted the message.

Our generic construction of AB-AKE can be seen as an extension of the protocols of Boyd et
al. [10] and Gorantla et al. [19] to the attribute-based setting. One disadvantage of our protocol is
that it cannot provide forward secrecy. However, for some of the applications that we have discussed,
forward secrecy may not be necessary. For example, in an Internet forum the administrator may
like to moderate the content posted in the user groups or in the military a unit at a higher rank
would like to monitor the communication among the units at the same or a lower rank. In such
scenarios, an AB-AKE protocol without forward secrecy will be useful since any party with the right
attribute set will be able to recover the session key and consequently the messages encrypted with
it. Nevertheless, forward secrecy is generally a highly desirable property for key exchange protocols.
Hence, we also sketch constructions of AB-AKE protocols that can achieve forward secrecy.

1.2 Related Work

The concept of fuzzy secret handshake proposed by Ateniese et al. [1] seems closely related to
our modelling of AB-AKE. However, there are a few important differences: In AB-AKE, we allow
policies specified by the members to be very expressive consisting of several threshold gates, while
fuzzy secret handshake only considers a single threshold gate. In a (fuzzy) secret handshake protocol,
if a member do not satisfy the attributes specified by another member, the attributes of none of
the members can be learned by the other member. On the other hand, in an AB-AKE protocol, if
a member does not satisfy the policy specified by the other members, the members do not know
anything about the attributes of the other members except what can be inferred by the policies
attached to the protocol messages. Although both the properties look similar, we emphasize that
an AB-AKE protocol would not hide the affiliation of the members even if the protocol was not
successful [23]. Note that the property of “affiliation hiding” is the main requirement for (fuzzy)

secret handshakes. Finally, the fuzzy secret handshake protocol of Ateniese et al. considers only
two party setting, while our protocol naturally operates in a group setting.

In independent work, Steinwandt and Corona [31] proposed a two-round attribute-based group
key exchange protocol that achieves forward secrecy. Their protocol uses the GKE protocol of Bohli
et al. [6] as the base protocol and replaces the public key signature scheme in Bohli et al. with an
attribute-based signcryption scheme to authenticate the protocol messages. Recently, Birkett and
Stebila [5] introduced the concept of predicate-based key exchange which encompasses key policy
attribute-based key exchange. However, their security model considers key exchange between only
two parties.

1.3 Organization

Section 2 presents a security model for EP-AB-KEM and also proposes a chosen ciphertext secure
EP-AB-KEM. We first define a security model for AB-AKE in Section 3 and then present a generic
one round AB-AKE protocol based on EP-AB-KEM. In Appendix 5, we outline how to construct
AB-AKE protocols with forward secrecy. Appendices A, B and C contain preliminaries, proof of
the proposed EP-AB-KEM and proof of the generic AB-AKE protocol respectively. We describe
the hybrid CP-ABE construction and prove its security in Appendix D.

2 Encapsulation Policy Attribute-based KEM

We first give a formal definition of security for EP-AB-KEM. As in the earlier attribute-based
systems [22,4], we review the definition of an access structure and use it in the security model.
Later, we present a concrete EP-AB-KEM based on the CP-ABE scheme of Bethencourt et al. [4].

Definition 1 (Access Structure [2]). Let {Uj,---,U,} be a set of parties. A collection A C
21U1,.Un} is monotone if VB,C :if B € A and B C C then C € A. An access structure (respec-
tively, monotone access structure) is a collection (respectively, monotone collection) A of non-empty
subsets of {Uy,---,Uy,}, ie., A C 2{UnUnk\ {61 The sets in A are called authorized sets, and
the sets not in A are called the unauthorized sets.

In our EP-AB-KEM and later in the protocol, each party is assumed to possess a set of at-
tributes. A policy over a set of attributes is specified through an access structure A. Hence, A
contains the authorized sets of attributes i.e., A C 21518\ {4} for a given set of attributes
{S1,--+,Sn}. As in the CP-ABE of Bethencourt et al., we consider only monotonic access struc-
tures. In the rest of the paper, by an access structure we mean a monotonic one.

A EP-AB-KEM consists of five polynomial-time algorithms:

Setup: takes the security parameter k& and the attribute universe description U as inputs. The
public parameters PK and the master key MK are the outputs.

Encapsulation: takes as input the public parameters PK and an access structure A over the at-
tribute universe U. It outputs an encapsulation C' and a symmetric key K such that only a user
with attributes satisfying A can recover K from C'. Similar to the CP-ABE schemes, we assume
that the encapsulation implicitly contains A.

KeyGen: takes as input the master key MK, the public parameters PK and a set of attributes S
of a user that give a description of the user’s private key. The output is the user’s private key
SK.

Decapsulation: takes as input the public parameters PK, an encapsulation C' which contains an
access structure A and a private key SK corresponding to a set of attributes .S. The algorithm
outputs either a symmetric key K or L.

We also define an optional delegation algorithm, which allows a user with attribute sets S and
a corresponding secret key SK to derive a secret key for another set of attributes S such that
SCSs.

Delegate: takes as input the public parameters PK, a secret key SK corresponding to a set of

attributes S and a set S C S. It outputs a secret key SK for the attribute set S.

For an EP-AB-KEM to be considered valid, it is required that for any key SK corresponding to
an attribute set S, if S satisfies A and if (K, C') < Encapsulation(PK, A), then Decapsulation(PK,C, SK) =
K.

2.1 Security Model

Bethencourt et al. [4] defined a notion of indistinguishability under chosen plaintext attack (IND-
CPA) for CP-ABE schemes. In this section, we adapt their notion and extend it to define a notion
of indistinguishability under chosen ciphertext attacks (IND-CCA) for EP-AB-KEM. The security
notion is formally defined as follows.

Definition 2. An EP-AB-KEM is IND-CCA secure if the advantage of any probabilistic polynomial
time adversary A in the following game is negligible in the security parameter k.

Setup: The challenger runs the Setup algorithm and returns PK to A°.
Phase 1: A issues Extract and Decap queries as follows:

Extract: This query can be issued multiple times with sets of attributes Si,---,5;, as input.
The challenger returns a private key corresponding to each input attribute set. We do not
require the input attribute sets to be distinct.

Decap: This query is issued with an encapsulation C' and an attribute set S as inputs. Note
that C implicitly contains an access structure A defined over the attribute universe U. The
challenger executes the Decapsulation algorithm on C using a private key corresponding to
S and returns the output of Decapsulation to A2,

Challenge: At the end of Phase 1, A gives an access structure A* defined over U to the
challenger. The challenger first chooses a bit b. It then runs the Encapsulation algorithm with
A* as input and generates a symmetric key—encapsulation pair (K7, C*). It then sets K, to be a
random key drawn from the probability distribution of the symmetric key. The tuple (K3, C*)
is returned to A°? as the challenge. A trivial restriction on the adversary’s choice of A* is that
none of the attributes sets S1,---,S; passed as input to Extract queries in Phase 1 should
satisfy A*.

Phase 2: A is allowed to execute in the same way as in Phase 1 with the following restrictions:
(1) none of the attribute sets Sy, 11, -+ , S passed as input to Extract queries in Phase 2 satisfy
A* and (2) a Decap query with C* as input in combination with an attribute set S* that satisfies
A* is not allowed.

Guess: The goal of A is to guess whether the key K} is encapsulated within C* or not. A
finally outputs a guess bit ¥'. It wins the game if b = b. The advantage of A°?® is given as
Advgeca = |2 - Pr[t) = b] — 1].

Existing security notions for CP-ABE schemes also consider the weaker selective model where
A@ declares the challenge access structure A* before the Setup phase. Similarly, a corresponding
model for EP-AB-KEMs can be defined.

Similar to earlier CP-ABE schemes [4,13,32], we have not explicitly modelled the delegation
mechanism in the security model for EP-AB-KEMs. However, we require that for a given set of
attributes, a secret key output by the Delegate algorithm will have identical distribution to the one
output by the KeyGen algorithm. In particular, the Decapsulation algorithm using a private key
SK should work in the same way irrespective of SK being an output of KeyGen or Delegate. Our
security model for EP-AB-KEMs suffices in the presence of an adversary who may obtain delegated
private keys since such queries can be simulated using Extract queries.

Remark 1. In Definition 2, A is allowed to issue multiple Extract queries with attribute sets as
input such that none of the individual sets S; satisfy the challenge access structure A*. Hence,
similar to earlier definitions of attribute-based encryption schemes, our definition also takes care of
collusion resistance. An EP-AB-KEM satisfying the above definition ensures that from the private

keys of S;’s, A cannot construct a private key corresponding to another attribute set S* such
that S* satisfies A*.

HyBRID CP-ABE. An EP-AB-KEM satisfying the above IND-CCA security notion can be
combined with any IND-CCA secure data encapsulation mechanism to construct an IND-CCA
secure CP-ABE scheme [14,15]. We describe the hybrid construction and prove its security in
Appendix D.

2.2 A Chosen Ciphertext Secure EP-AB-KEM

Bethencourt et al. [4] first proposed a construction of a CP-ABE scheme. Their scheme was
shown IND-CPA secure assuming generic group and random oracle models. Later, many CP-ABE
schemes [21,13,32] have been proposed and shown IND-CPA secure without assuming generic
group or random oracle models, but analyzed only in the selective model of security. Recently,
Lewko et al. [27] proposed a fully secure CP-ABE scheme in the standard model using composite
order bilinear groups.

We now construct an IND-CCA secure EP-AB-KEM based on the CP-ABE scheme of Bethen-
court et al.. The idea is to enhance the security of the IND-CPA secure EP-AB-KEM that is
implicit in Bethencourt et al.’s CP-ABE scheme. For this purpose, the techniques of Fujisaki and
Okamoto [18,17] and Canetti et al. (CHK) [12] can be applied in the random oracle and standard
models respectively. As remarked by Bethencourt et al., IND-CCA security for CP-ABE (and cor-
respondingly for EP-AB-KEM) schemes can be achieved by a straightforward application of the
Fujisaki-Okamoto technique.

Bethencourt et al. also suggested that the delegation mechanism of their CP-ABE scheme can
be leveraged to achieve IND-CCA security using the CHK transform. However, we observe that
applying the CHK transform to CP-ABE schemes (similarly to EP-AB-KEMs) is slightly more
involved. Specifically, contrary to the approach followed by KP-ABE schemes, IND-CCA security
for CP-ABE schemes cannot be achieved by directly leveraging the delegation mechanism. We
later discuss why this is so and then present an IND-CCA secure EP-AB-KEM by making a few
changes to the Setup and Encapsulation algorithms derived from Bethencourt et al.’s CP-ABE
scheme. Although the CHK technique can be used to achieve IND-CCA security in the standard

model, our EP-AB-KEM will only be secure assuming generic groups and random oracles since the
base CP-ABE scheme also assumes the same. Finally, we choose the scheme of Bethencourt et al.
because it is secure in the fully adaptive model (i.e., non-selective model). In Remark 3, we discuss
the necessity of an EP-AB-KEM to be secure in the adaptive model for constructing AB-AKE
protocols.

The IND-CCA secure scheme first generates a one-time key pair (sk, vk) for a signature scheme
with the condition that the verification key is of the same length as the length of an attribute in
the attribute universe U. Let A be the access structure given as input to the EP-AB-KEM. We
now construct a more restrictive access structure A’ = A AND vk and execute the CPA-secure
EP-AB-KEM under A’. The resulting encapsulation is then signed using the one-time signing key
sk. The encapsulation of the CCA-secure EP-AB-KEM contains the encapsulation generated by
the underlying CPA-secure EP-AB-KEM, the signature generated on it and the verification key
vk. The recipient first checks the signature using vk and then executes the CPA-secure KEM’s
decapsulation algorithm under A’ to extract the symmetric key.

While the above informal description of our construction directly follows the CHK technique,
the tricky part in the context of EP-AB-KEM (or CP-ABE) is to empower the recipient with
a private key corresponding to the attributes that satisfy the modified access structure A’. The
recipient may already possess attributes that satisfy A. However, since the verification key vk is
one-time and chosen randomly for each execution of EP-AB-KEM, the recipient cannot be issued
with a private key that can decrypt messages encrypted under A’ = A AND wvk. This problem
cannot be addressed by the delegation mechanism in an EP-AB-KEM (or CP-ABE) scheme since
it can be used to derive private key corresponding to an attribute set S’ from the one corresponding
to S only if S’ C S. But, we have an additional attribute in the form of vk. Note that this is not a
problem in the KP-ABE system since it naturally allows a party with a private key corresponding
to an access structure A to derive private keys corresponding to access structures that are more
restrictive than A.

To address the above problem, we make modifications to the Setup and Encapsulation algorithms
derived from the CP-ABE scheme of Bethencourt et al. [4]. Our EP-AB-KEM now enables a
recipient with private key for attributes that satisfy A to decapsulate an encapsulation created
under A’, irrespective of the choice of vk by the sender. As in the CP-ABE scheme of Bethencourt
et al., an access structure A is represented in the form of an access tree 7.

Access Tree. Let T be a tree representing an access structure. Each interior node of T represents
a threshold gate, while each leaf node is described by an attribute. Let num, be the number of
children of a node x and let k, be its threshold value. We have 0 < k, < num,. A threshold gate
associated to an internal node with threshold value k, outputs true if at least k, of its children
output true. If the threshold gate represented by an interior node is an AND gate then k, = num,
and if the gate is OR, k; = 1. The threshold value for each leaf node x is defined to be k, = 1.
The parent of a node x in the tree T is denoted by the function parent(x), while the attribute of a
leaf node x is denoted by att(z). The children of each interior node are numbered from 1 to num,,.
The function index(x) returns such a number associated with a node z. We assume that the index
values are uniquely assigned in an arbitrary manner for a given access structure.

Satisfying an access tree. Let r be the root of an access tree 7. The subtree of T rooted at
a node z is denoted by T,. If a set of attributes -y satisfy the access tree 7., it is denoted as
Tz () = 1. The function 7;(7) is computed recursively as follows: If x is an interior node, for each

children 2’ of x, T,/(7) is evaluated. T.() returns 1 if and only if at least k, children of x return
1. If z is a leaf node, T, (y) returns 1 if and only if att(z) € ~.

Let Gg and G; be two multiplicative groups of prime order p and g be an arbitrary generator of
Go. Let e : Gg x Gg — Gy be an admissible bilinear map as defined in Section A.1. The Lagrange’s
coefficient A; ¢ for i € Z, and a set S of elements in Z, is defined as: A; g = IT jes,j#%.

Setup(k). It chooses the groups Gy, G; and defines a bilinear map e : Go x Gy — Gy. It also selects
o, B1, B2 € Zy such that 81 # f2, B1 # 0 and B2 # 0. The public key is

PK = <G0’Gl76797 hy = g™, f1 = gV by = g™, fo = 91/5276(979)60 '

The master key MK is (B1, B2, g%).

Encapsulation(PK, 7). This algorithm generates an encapsulation and a symmetric key under the
access tree T using the public key PK. It first executes the KeyGen algorithm of the signature
scheme (ref. Section A.2) and obtains a one-time key pair (sk, vk). Let A be the access structure
represented by 7. The algorithm now constructs a new access tree 7' for the access structure
(A AND vk) as follows: Let R be the root node of 7. The root node R’ of the new tree 7 is
set as the AND gate with T as its subtree and the verification key vk as a leaf node attached
to R'.

The algorithm now generates a polynomial ¢, for each node x in the tree 7 in a top-down
approach as follows: Starting from the root node R’, for each node z in the tree set the degree
d, of the polynomial associated with x to be k, — 1 i.e., the degree of the polynomial is one
less than the threshold value associated with the node x. The algorithm starts from the root
node and first chooses a random s € Zj,. Then it chooses dr/ other points randomly to define
the polynomial ¢(R’). For any node = other than the root, it sets ¢;(0) = gparent(x)(index(z))
and chooses d, other points randomly to define the polynomial g(x).

Let Y be the set of leaf nodes in the subtree T rooted at R. The only other leaf node in the
tree 77 is the one that describes the verification key vk. The algorithm proceeds as follows:

K =e(g,9)™.

2. Oy = hi.

3. VyeY: C, = gqy(o),CZ’/ = H(att(y))Qy(O)_

4. Cyo = h2*O Cr = H(uk) 1),

5. Let C = (T,C1,Cy, C;, Cu, Cl1), Vy € Y. Compute a signature o = Sig;(C).
The final encapsulation C' = (C, vk, o).

KeyGen(MK ,PK,S). It chooses r, 7y € Z, and r; € Z, for each j € S. The private key is computed
as:

—

SK = (D =g/h B=g/% VjeS: Dj=g HG), D}=g%).

Delegate(SK, PK, S). It takes as input a secret key SK corresponding to a set of attributes S and
another set S C S. The key SK is of the form SK = (D,FE, Vj € S : Dj,D;-). The algorithm

chooses 7 and 71, Vk € S. The new key for S is generated as:

SK =(D=Df], E=Efy, Yk e S: Dy = Dpg"H(k)*, D, = Djg™).

Decapsulation(SK, PK,C'). Upon receiving an encapsulation C, the decryptor first parses the ac-
cess tree T'. It then extracts the subtree T rooted at R from 7’. Note that this can be easily
done since the node that describes the verification key as an attribute can be identified with the
help of the verification key vk sent in the encapsulation. The algorithm first verifies the signature
o on C using the verification key vk. If the verification succeeds, it proceeds as follows:

e(Cus H(k) - g7/%) _ e(Cong”/) - e(Co, H (k)
e(Cl,, ha) e(Cly, ha)
_ ey, g% ey, H (k)
o e(H('Uk;)(Ivk(O)’ h2)
_ 6(952‘%;19(0)797'/62) _ e(g’g)“]vk(o).

ka:

A recursive algorithm DecryptNode(C, SK,) that takes as input C, a private key SK associated
with a set of attributes S and a node = from the subtree T is then executed as below:

If z is a leaf node, then let ¢ = att(x). If i ¢ S, then DecryptNode(C, SK,z) = L. Otherwise it
is defined as follows:

e(D3,Ch e(g"-H (i) g9z (0) .
DecryptNode(C, SK,) = egg;&; - (eg(gf',&l)(i)gz(m)) = e(g,)%=,

If x is an interior node then DecryptNode(C, SK, z) proceeds as follows: For all nodes z that are
children of x, the algorithm DecryptNode(C, sk, z) is called. The output is stored as F,. Let S,
be an arbitrary k,-sized set of child nodes z such that F, # L. If no such set exists, the function
returns L. Otherwise, the decapsulation algorithm proceeds as follows:

A, o
F, = H F. ”Sz(o), where i = index(z), S., = {index(z) : 2 € S, }
ZGSz

= 1] (elg. g) @) st ®

2E€S,

= H (e(g’ g)r'qparent(z)(index(z)))Ai’sgc (0)
ZESy

= 1 (eg. g™ =22 ©
ZGSz

= (e(g,9)" .

Finally, the decapsulation algorithm calls the DecryptNode algorithm on the node R, which
is the root of the subtree 7. If T is satisfied by the attribute set S, then we have Fr =
DecryptNode(C, SK, R) = e(g, g)" %), We now compute Fp from F,;, and Fg using polynomial
interpolation as follows:

Ain ex(x v
Fpo= J[Forees s
z€{R,vk}

= e(g.9)" O
=e(g,9)".

Let A = e(g,g)"®. The symmetric key is recovered as

e(C1,D) e(hi, gty e(g,g)s@tn)

A elg9) elgg)

Note that in Equation 1, we implicitly verify that the one-time verification key has not been
replaced. If vk was replaced the symmetric key computed in Equation 2 would be L. Alternatively,
the verification check can be done explicitly at the cost of an additional pairing operation. In
Appendix B, we show that the proposed EP-AB-KEM is IND-CCA secure in the generic group and
random oracle models.

=e(g,9)* = K. (2)

3 Attribute-based Authenticated Key Exchange

An AB-AKE protocol consists of three polynomial-time algorithms: Setup, KeyGen and KeyEx-
change. The Setup and KeyGen algorithms are identical to those defined for EP-AB-KEM in Sec-
tion 2. Each party in the AB-AKE protocol executes the KeyExchange algorithm which initially
takes as input the master public key PK, an access structure A and a private key for a set of
attributes S. If S satisfies A, KeyExchange proceeds as per specification and may generate out-
going messages and also accept incoming messages from other parties as inputs. The output of
KeyExchange is either a session key « or L.

Communication Model. Let U= {Uj,--- ,U,} be a set of n users. The protocol may be executed
among any subset U C U of size 7 > 2. We assume that each user has a set of descriptive attributes.
Let SK; be the private key corresponding to an attribute set S; of user U;. We assume that an
access structure A is given as input to all the users. Note that this A may be specified by a higher
level protocol. Alternatively, the users can run an interactive protocol to negotiate a common access
structure A. We also assume that all the users execute the protocol honestly. If a user U; wants to
establish a session key with respect to an access structure A, it first checks whether its attribute
set S; satisfies A or not i.e., checks if S; € A. U; proceeds with the protocol execution only if .S;
satisfies A. Thus, any user U; with attribute set §; that satisfies A is a potential participant in
the key exchange protocol. The set of parties whose individual attributes satisfy A can compute a
common session key.

An AB-AKE protocol 7 executed among 72 < n users is modelled as a collection of 7 programs
running at the 7 parties. Each instance of 7 within a party is defined as a session and each party
may have multiple such sessions running concurrently. Let 7/ be the j-th run of the protocol 7 at
party U; € U. Each protocol instance at a party is identified by a unique session ID. We assume

that the session ID is derived during the run of the protocol. The session ID of an instance 7 is

(2
denoted by sidg . An instance ﬂg enters an accepted state when it computes a session key sk? . Note
that an instance may terminate without ever entering into an accepted state. The information of
whether an instance has terminated with acceptance or without acceptance is assumed to be public.

Note that there may be more than one party whose attributes satisfy A, hence we consider
a group setting for AB-AKE. We define partnership in AB-AKE protocol as follows: A set of 7
instances at 7 different parties i C U are called partners if

1. they all have the same session ID; and

10

2. the attributes of each U; € U satisfy A.

An AB-AKE protocol is called correct if the instances at the parties in U are partnered and
output identical session keys in the presence of a passive adversary.

Adversarial Model. The communication network is assumed to be fully controlled by the adver-
sary, which schedules and mediates the sessions among all the parties. The adversary is allowed to
insert, delete or modify the protocol messages. We also assume that it is the adversary that may
select the protocol participants from the set /. While the adversary may not know the attribute set
that a user possesses, it can initiate an instance of the AB-AKE protocol with an access structure
of its choice. In addition to controlling the message transmission, the adversary is allowed to ask
the following queries.

- Send(wg ,m) sends a message m to the instance 775 . If the message is A, the instance 773

initiated with the access structure A. Otherwise, the message is processed as per the protocol
specification. The response of 7] to any Send query is returned to the adversary.

is

— ReveaIKey(ﬂf) If ﬂf has accepted, the adversary is given the session key sk:g established at 77{ .

— Corrupt(.S;) This query returns a private key SK; corresponding to the attribute set S;. A

— Test(]) A random bit b is secretly chosen. If b = 1, the adversary is given sk established at 7.
Otherwise, a random value chosen from the session key probability distribution is given. Note
that a Test query is allowed only on an accepted instance.

7. m is called fresh if

Definition 3 (Freshness). Let A be the access structure for an instance 7

the following the conditions hold: (1) the instance m or any of its partners has not been asked a
RevealKey query and (2) there has not been a Corrupt query on an input S; such that S; satisfies

A.

Definition 4 (AKE-security). An adversary A,y against the AKE-security notion is allowed to
make Send, RevealKey and Corrupt queries in Stage 1. A,k makes a Test query to an instance
m) at the end of Stage 1 and is given a challenge key K} as described above. It can continue
asking queries in Stage 2. Finally, A,ie outputs a bit b’ and wins the AKE-security game if (1)
v = b and (2) the Test instance 7/ remains fresh till the end of Aue’s execution. Let Succy,,, be
the event that Azke wins the AKE-security game. The advantage of A,ke in winning this game is
Adv 4, = |2-Pr[Succy,] —1|. A protocol is called AKE-secure if Adv 4,,, is negligible in the security

parameter k for any polynomial time A,ye.

Remark 2. By allowing the adversary to reveal the private keys corresponding to attribute sets
which individually do not satisfy the given access structure A* in the test session, our definition
naturally considers collusion resistance. In other words, any number of parties whose individual
attribute sets do not satisfy A* may collude among themselves and try to violate the AKE-security
of the protocol. An AB-AKE protocol satisfying our AKE-security notion will still remain secure
against such collusion attacks.

4 A Generic One-round AB-AKE Protocol

We now present a simple generic AB-AKE protocol based on IND-CCA secure EP-AB-KEM.
Informally, each party executes an EP-AB-KEM in parallel and combines the symmetric key it has

11

Computation

Each U, executes an EP-AB-KEM on the input (PK,7) where PK is the master public key and 7T is the access
tree that represents an access structure A. As a result, a symmetric key and encapsulation pair (K;,C;) is
obtained.

(K, C;) + Encapsulation(PK,T).
Broadcast

Each U; broadcasts the generated encapsulation C;.

Ui —x: C;.
Key Computation

1. Each U; executes the decapsulation algorithm using its private key SK; on each of the incoming encapsulations
C; and obtains the symmetric keys K, for j # .

K; < Decapsulation(sk;, C;) for each j # 1.

2. Each U; then computes the session ID as the concatenation of all the outgoing and incoming messages
exchanged i.e. sid = (C1|| ---||C#), where 7 is the number of protocol participants.
3. The session key k is then computed as

£ = fr,(sid) @ frey(sid) @ - - @ fi; (sid)

where f is a pseudorandom function.

Fig. 1. A Generic One-round AB-AKE Protocol

generated with the symmetric keys extracted from the incoming messages to establish a common
session key. Our construction is an extension of the one-round protocols of Boyd et al. [10] and
Gorantla et al. [19] to the attribute-based setting. Figure 1 presents our generic one-round AB-AKE
protocol.

At the beginning of the protocol each party is given an access structure A represented via
an access tree 7. The protocol uses an EP-AB-KEM scheme (Setup, Encapsulation, KeyGen, De-
capsulation). Each U; is issued a private key SK; corresponding to the attributes set S; that it
possesses. Each party U; who has attribute set .S; satisfying the access structure A runs the Encap-
sulation algorithm and obtains a symmetric key-encapsulation pair (K;, C;). The parties broadcast
the encapsulations to the other parties. Upon receiving the encapsulations, each party runs the De-
capsulation algorithm using the its private key on each of the incoming encapsulations and extracts
the symmetric keys. The number of protocol participants 72 can be derived based on the number
of input messages received within a prescribed time period. The session key is finally computed by
each party from the symmetric key that it has generated and all the symmetric keys decapsulated
from the incoming encapsulations.

A pseudo-random function f is applied to derive the session key. We assume that the symmetric
key output by the Decapsulation algorithm can be directly used as a seed for f. Otherwise, we will
have to extract and then expand the randomness from the output of the Decapsulation algorithm
as done by Boyd et al. [10].

Theorem 1. The AB-AKE protocol in Fig. 1 is AKE-secure as per Definition 4 assuming that the
underlying EP-AB-KEM is IND-CCA secure. The advantage of Aake @5

12

2
<n- qfs + Qs - (TNL Ad'UAprf +Ad1)_Acca)

ake — ‘C’

Adv g

where 1 is the number of parties in the protocol, qs is the number of sessions Aake 15 allowed to
activate, |C| is the size of the ciphertext space, Adv geea is the advantage of a polynomial adversary
A against the IND-CCA security of the underlying EP-AB-KEM and Adv 4o is the advantage

of a polynomial adversary AP against the pseudorandomness of the pseudorandom function f.

The proof of the above theorem is given in Appendix C.

Concrete Instantiation. From the EP-AB-KEM proposed in Section 2.2, a concrete AB-AKE
protocol can be directly realized. It follows from the security of the EP-AB-KEM and the generic
AB-AKE protocol that the instantiated protocol is AKE-secure in the generic group and the random
oracle models.

5 Extensions

The security model in Section 3 is concerned only about the basic notion of AKE-security without
forward secrecy. Forward secrecy is one of the most important security properties for key exchange
protocols since it limits the damage of long-term key exposure. A key exchange protocol with
forward secrecy ensures that even if the long-term key of a party is exposed, all the past session
keys established using that long-term key will remain uncompromised.

Forward secrecy seems to be more important in the case of AB-AKE protocols than in the case
of normal public key based key exchange protocols. To see why, let us assume that the adversary
obtains the private key of a user U; who possesses a set of attributes S;. If an AB-AKE protocol
does not achieve forward secrecy, then the adversary can compromise all the protocol sessions which
have been established with access structures that can be satisfied by S;. Note that the party U;
does not even have to participate in any of these sessions. We now define a notion of freshness that
takes forward secrecy into account.

5.1 AKE-security with Forward Secrecy

Definition 5 (FS-Freshness). Let A be the access structure for an instance 77. 7/ is called fs-fresh

if the following the conditions hold: (1) the instance 7] or any of its partners has not been asked a
RevealKey query and (2) there has not been a Corrupt query on an input S; before 7le- or its partner

instances have terminated, such that .S; satisfies A.

Definition 5 can be coupled with the AKE-security notion in Definition 4 to arrive at AKE-
security notion with forward secrecy for AB-AKE protocols.

5.2 Constructing AB-AKE Protocols with Forward Secrecy

Our one-round AB-AKE protocol can be modified to achieve AKE-security with forward secrecy
for two-party and three-party settings using known techniques. For a two-party AB-AKE protocol
with forward secrecy, one can use the technique of Boyd et al. [10] where ephemeral Diffie-Hellman
public keys are appended with the encapsulations. Similarly, for a three-party AB-AKE protocol

13

with forward secrecy, the protocol of Joux [24] can be executed in the same round with our EP-
AB-KEM based protocol. The session keys in both the protocols will include the ephemeral Diffie-
Hellman key components which ensure forward secrecy. However, the protocols will achieve weak
forward secrecy, wherein the adversary has to remain passive during protocol execution. The security
of the resulting two-party and three-party AB-AKE protocols will depend on the hardness of the
computational Diffie-Hellman and bilinear Diffie-Hellman problems respectively along with the
security of the underlying AB-AKE protocol (the security of the latter has been proven already).

Constructing AB-AKE protocols in the more general group setting needs more than one round.
The compiler of Katz and Yung (KY) [26] turns an unauthenticated group key exchange protocol
into an authenticated one. The compiler uses a public key based signature as an “authenticator”
for this purpose. One may adapt the KY compiler to the attribute-based setting by replacing the
normal public key based signature with an attribute-based signature [28]. The resulting compiler
can then be applied to the two-round unauthenticated Burmester and Desmedt (BD) protocol [11]
to achieve a three-round AB-AKE protocol with forward secrecy. Since the session key established
by the BD protocol is ephemeral it achieves forward secrecy, whereas the attribute-based KY
compiler provides authentication. Although the attribute-based version of the KY compiler can be
constructed with necessary changes to the KY compiler, it may not be straightforward. We leave
this construction for future work.

6 Conclusion

We have initiated the concept of AB-AKE in the ciphertext-policy attribute-based system. Our
modelling of AB-AKE assumes that each party has a set of attributes and a corresponding private
key. A policy is defined (or negotiated) for each execution of the protocol and the parties satisfying
the policy can establish a common shared key by executing the protocol. In the security model for
AB-AKE, we have considered only outsider adversaries. Our security model can be extended by
considering insider attackers who try to impersonate other protocol participants [25].

We have also introduced the concept of EP-AB-KEM. We then proposed a one-round generic
AB-AKE protocol based on IND-CCA secure EP-AB-KEMs. For concrete instantiation of this
protocol, we have presented an EP-AB-KEM and shown it secure under the IND-CCA notion in
the generic group and random oracle models. As a consequence, a concrete AB-AKE protocol based
on this EP-AB-KEM would also be secure in the generic group and random oracle models.

References

1. Giuseppe Ateniese, Jonathan Kirsch, and Marina Blanton. Secret Handshakes with Dynamic and Fuzzy Matching.
In Proceedings of the Network and Distributed System Security Symposium—NDSS’07. The Internet Society, 2007.

2. Amos Beimel. Secure Schemes for Secret Sharing and Key Distribution. PhD thesis, Israel Institute of Technology,
Technion, Haifa, Israel, 1996.

3. Kamel Bentahar, Pooya Farshim, John Malone-Lee, and Nigel P. Smart. Generic constructions of identity-based
and certificateless kems. J. Cryptology, 21(2):178-199, 2008.

4. John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-Policy Attribute-Based Encryption. In IEEE
Symposium on Security and Privacy, pages 321-334. IEEE Computer Society, 2007.

5. James Birkett and Douglas Stebila. Predicate-Based Key Exchange. Cryptology ePrint Archive, Report 2010,/082,
2010. To appear at ACISP 2010. Available at http://eprint.iacr.org/2010/082.

6. Jens-Matthias Bohli, Maria Isabel Gonzalez Vasco, and Rainer Steinwandt. Secure group key establishment
revisited. Int. J. Inf. Sec., 6(4):243-254, 2007.

14

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

D. Boneh and M.K. Franklin. Identity-Based Encryption from the Weil Pairing. In Advances in Cryptology—
CRYPTO’01, volume 2139 of LNCS, pages 213—-229. Springer, 2001.

Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical Identity Based Encryption with Constant Size Cipher-
text. In Advances in Cryptology—EUROCRYPT 2005, volume 3494 of LNCS, pages 440-456. Springer, 2005.
Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-Ciphertext Security from Identity-Based
Encryption. SIAM J. Comput., 36(5):1301-1328, 2007.

Colin Boyd, Yvonne Cliff, Juan Manuel Gonzéalez Nieto, and Kenneth G. Paterson. One-Round Key Exchange
in the Standard Model. International Journal of Applied Cryptography, 1(3):181-199, 2009.

Mike Burmester and Yvo Desmedt. A Secure and Efficient Conference Key Distribution System (Extended
Abstract). In Advances in Cryptology—-EUROCRYPT 9/, pages 275-286, 1994.

Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-Ciphertext Security from Identity-Based Encryption. In
Advances in Cryptology-EUROCRYPT 2004, volume 3027 of LNCS, pages 207—-222. Springer, 2004.

Ling Cheung and Calvin Newport. Provably secure ciphertext policy ABE. In CCS ’07: Proceedings of the 1jth
ACM conference on Computer and communications security, pages 456-465, New York, NY, USA, 2007. ACM.
Ronald Cramer and Victor Shoup. Design and Analysis of Practical Public-Key Encryption Schemes Secure
against Adaptive Chosen Ciphertext Attack. SIAM J. Comput., 33(1):167-226, 2004.

Alexander W. Dent. A Designer’s Guide to KEMs. In Cryptography and Coding, 9th IMA International Confer-
ence, Clirencester, volume 2898 of LNCS, pages 133—-151. Springer, 2003.

Alexander W. Dent. Hybrid Cryptography. Cryptology ePrint Archive, Report 2004/210, 2004. http://eprint.
iacr.org/2004/210.

Eiichiro Fujisaki and Tatsuaki Okamoto. How to Enhance the Security of Public-Key Encryption at Minimum
Cost. In Public Key Cryptography—PKC ’99, volume 1560 of LNCS, pages 53—68. Springer, 1999.

Eiichiro Fujisaki and Tatsuaki Okamoto. Secure Integration of Asymmetric and Symmetric Encryption Schemes.
In Michael J. Wiener, editor, Advances in Cryptology—CRYPTO ’99, volume 1666 of LNCS, pages 537-554.
Springer, 1999.

M. Choudary Gorantla, Colin Boyd, Juan Manuel Gonzilez Nieto, and Mark Manulis. Generic One Round
Group Key Exchange in the Standard Model. In 12th International Conference on Information Security and
Cryptology—ICISC 2009. Springer, 2009.

M. Choudary Gorantla, Colin Boyd, and Juan Manuel Gonzéalez Nieto. On the connection between signcryption
and one-pass key establishment. In Steven D. Galbraith, editor, IMA Int. Conf., volume 4887 of LNCS, pages
277-301. Springer, 2007.

Vipul Goyal, Abhishek Jain, Omkant Pandey, and Amit Sahai. Bounded Ciphertext Policy Attribute Based
Encryption. In Automata, Languages and Programming, 35th International Colloquium—-ICALP’08, volume 5126
of LNCS, pages 579-591. Springer, 2008.

Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-grained access
control of encrypted data. In Proceedings of the 13th ACM Conference on Computer and Communications
Security—CCS’06, pages 89-98. ACM, 2006.

Stanislaw Jarecki and Xiaomin Liu. Private Mutual Authentication and Conditional Oblivious Transfer. In Shai
Halevi, editor, Advances in Cryptology—CRYPTO’09, volume 5677 of LNCS, pages 90-107. Springer, 2009.
Antoine Joux. A One Round Protocol for Tripartite Diffie-Hellman. In Algorithmic Number Theory, 4th Inter-
national Symposium, volume 1838 of LNCS, pages 385-394. Springer, 2000.

Jonathan Katz and Ji Sun Shin. Modeling insider attacks on group key-exchange protocols. In Proceedings of
the 12th ACM Conference on Computer and Communications Security—CCS’05, pages 180-189. ACM, 2005.
Jonathan Katz and Moti Yung. Scalable Protocols for Authenticated Group Key Exchange. In Advances in
Cryptology—-CRYPTO’03, volume 2729 of LNCS, pages 110-125. Springer, 2003.

Allison Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters. Fully Secure Func-
tional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product Encryption. Cryptology ePrint
Archive, Report 2010/100, 2010. To appear at EUROCRYPT 2010. Available at http://eprint.iacr.org/
2010/110.

Hemanta Maji, Manoj Prabhakaran, and Mike Rosulek. Attribute-based signatures: Achieving attribute-privacy
and collusion-resistance. Cryptology ePrint Archive, Report 2008/328, 2008. http://eprint.iacr.org/2008/
328.

Amit Sahai and Brent Waters. Fuzzy Identity-Based Encryption. In Ronald Cramer, editor, Advances in
Cryptology—EUROCRYPT’05, volume 3494 of LNCS, pages 457—-473. Springer, 2005.

J.T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. ACM, 27(4):701-717,
1980.

15

31. Rainer Steinwandt and Adriana Sudrez Corona. Attribute-based group key establishment. Unpublished
manuscript.

32. Brent Waters. Ciphertext-Policy Attribute-Based Encryption: An Expressive, Efficient, and Provably Secure
Realization. Cryptology ePrint Archive, Report 2008/290, 2008. http://eprint.iacr.org/.

33. R. Zippel. Probabilistic algorithms for sparse polynomials. In E.W. Ng, editor, EUROSAM, volume 72 of LNCS,
pages 216-226. Springers, 1979.

A Preliminaries

A.1 Bilinear Pairing

Let Gg and G; be two multiplicative groups of prime order p. Let g be an arbitrary of Gg. The
pairing e : Gg X Gg — Gy is called an admissible bilinear map if it has the following properties:

Bilinearity: Vu,v € Gg and a,b € Z,, we have e(u?,v?) = e(u,v)?.
Non-degeneracy: e(g, g) # 1.
Computable: There exists an efficient algorithm to compute e(g, g).

A.2 Strong Existential Unforgeability

A signature scheme X consists of three polynomial time algorithms: SigKeyGen, Sign and Verify.
The probabilistic algorithm SigKeyGen generates a signing-verification key pair (sk, vk). Sign is also
a probabilistic algorithm that produces a signature ¢ on an input message m using the signing key
sk. Verify is a deterministic algorithm that takes a tuple (m, o, vk) as input and outputs a boolean
value. If ¢ is a valid signature on m under vk, Verify returns 1. Otherwise 0 is returned.

A signature is said to be strongly existentially unforgeable against chosen message attacks
(sUF-CMA) if there exists no probabilistic polynomial time adversary A“™ that has non-negligible
success probability in the security game below:

Setup: The challenger runs the SigKeyGen algorithm to generate a key pair (sk, vk) and passes
the verification key vk on to A™M2,

Sign Queries: This query is asked by A“™ with a message m as input. The challenger runs the
Sign algorithm with signing key sk and returns the signature o to A“™2. A“M? is allowed to issue
multiple Sign queries in an adaptive manner.

Forgery: The adversary outputs a tuple (m*,o*). It wins the sUF-CMA security game if (1) o*
is a valid signature on the message m* under vk and (2) (m*, o*) has not been an output of any
of the Sign queries issued earlier.

B Security Proof of EP-AB-KEM

We prove the security of our EP-AB-KEM in the generic group and random oracle models. Intu-
itively, our security proof implies that if there are any weaknesses in our EP-AB-KEM, they will
only have come from exploiting specific mathematical structures of the underlying groups or the
cryptographic hash functions used in the instantiation. Our proof closely follows the proof of the
CP-ABE scheme of Bethencourt et al. [4].

16

The Generic Group Model [8] . We consider two random encodings v, 11 of the additive group
[F, i.e., injective maps g, 91 : F, — {0,1}™, where m > 3log(p). We write Go = {¢o(z)|x € F,}
and G1 = {¢1(x)|z € Fp}. We are given oracles to compute the group operations in both the groups
and also a non-degenerate bilinear map e : Gg X Gg — Gy. The identity elements in the groups can
be accessed by the queries 10(0) and 1 (0), while the generators by (1) and 1 (1). We denote

Yo(1), Yo(w) and 91 (y) by g, g* and e(g, g)? respectively.
We are also given access to a random oracle to represent the hash function H : {0,1}* — Go.

Theorem 2. Let 1o, Y1, Gy and Gy be defined as above. For any A, let q be the total num-
ber of group elements it receives from the oracles and during its interaction with the IND-CCA
security game of the EP-AB-KEM. Let Advema be the advantage of a polynomial time adversary
A M against the sUF-CMA notion of the signature scheme Y. We have the advantage of A as
max{Adv gms, O(q?/p)}.

Proof. Note that in the Challenge phase of the EP-AB-KEM security game, the adversary has to
distinguish between real symmetric key and a value randomly chosen from symmetric key probabil-
ity distribution i.e., with respect to our scheme the adversary has to distinguish between e(g, g)**
and e(g, g)? for a randomly chosen 0 € F,.

At the setup time, the simulation chooses «, 1, 82 at random from). If 51 = B2, f1 = 0 or
B2 = 0 the setup is aborted just as it would be in the actual construction. The public parameters

1 a1
hi = g%, ho = g™, f1 = gP1, fo = gP2 and e(g, g)® are sent to the adversary. The answers to the
queries asked by A as part of the EP-AB-KEM security game are simulated as below:

H-queries: The simulation maintains a list for the random oracle H with the input and response
as entries. When a query is issued to the random oracle with input ¢, the simulation first checks
if there is an entry for ¢ in the list. If there exists an entry, it returns the previously returned
response. Otherwise a new random value ¢; is chosen from F,, and the value g'i is returned. The
values (t;, g') are stored along with the input i. The queries with input vk are answered in the
same way.

Extract queries: When the 4°“® makes j-th key generation query on a set of attributes S;, a new

(4)

random value) e [F, and for each ¢ € S; new random value r;”” € I}, are chosen. The simulator

(2
then generates a private key corresponding to S; as in the scheme. It computes D = g(a”m)/ B,
E = g"m/ﬁ2 and for each i € Sj, D; = g’"(j) . H(z’)rzm and D) = g"zm. The private key is passed
onto A,

Decap queries: When A°“? asks for a decapsulation query on an input encapsulation C, the sim-
ulation first parses the access tree 7’ from C. It then extracts the verification key vk and the
subtree 7 from 7’. The simulation first verifies the signature on the encapsulation using vk
and if it is valid proceeds with decapsulation as follows: It computes F,; and F, for each leaf
node and interior node in 7 as specified in the decapsulation algorithm. Note that this can
be performed using appropriate queries to g, 11 and the random oracle H. Finally, Fr is
computed and the symmetric key K recovered. Note that as in the decapsulation algorithm if
vk was replaced, the simulation would set K to L. Finally, K is returned.

In the Challenge phase, A? outputs a challenge access structure 7*. Let Y* denote the set
of leaf nodes in 7*. The simulation does the following: It generates a one-time key pair (sk*, vk™)
and constructs an access tree T* from 7* and vk*. It then chooses s € F,. It then computes the

17

shares \; = ¢;(0) for all i € Y* and A+ = g+ (0) as described in the scheme. The choice of A;’s
can be perfectly simulated by choosing | random values 1, - - -, y; uniformly at random from F,
for some value [and then letting A; fixed as a public linear combination of uq,--- , y; and s. Later
in proof, we will think of A; as such linear combination of these independent random variables.
Finally, the simulation chooses a random ¢ € F, and constructs the challenge symmetric
key and encapsulation as follows: K* = e(g,9)? and C; = hi. For each relevant attribute i,
Cr = ghi,Cl* = g, For the verification key vk*, Cyr = hg‘“’“*, Le = gl o Let C* =
(T, C*,Cf, Cf, Cyp, CL, <). Tt then computes a signature o* on C* using the one-time secret key

sk*. The encapsulation values (C*, vk™*, o*) are sent to A2.
Following the generic proof of Boneh et al. [9], we divide the proof into the following two cases:

Case 1: Let Forge be the event that 4°“® submits a decapsulation query with input (C, vk, o) that

is different from the challenge encapsulation given to it but with vk = vk*. We now show that
Pr[Forge] is negligible.
With the simulation of A°“®’s queries as described above we now construct a forger A“™? against
the signature scheme. We assume that A“™M? is given the challenge verification key vk* at the
beginning of the experiment. As described above, the public parameters are generated and
answers to A“?’s queries are simulated. If A outputs a query (C,vk*, o) even before the
Challenge phase, then F outputs (C,o) as its forgery and stops. Let (C*,vk™, o*) be the
challenge encapsulation given to A?. If A°?® submits a valid encapsulation (C,vk*,0) in a
decapsulation query, as per the EP-AB-KEM security game we must have (C,o0) # (C*,o%).
In this case A“M™ submits (C,o) as its forgery. Hence, the success probability of A“™? is at
least Pr[Forge]. Since, the one-time signature scheme is assumed to be strongly unforgeable,
Pr[Forge] < Adv4ema must be negligible. Note that in this case (i.e., when Forge occurs), A“?’s
view would have been identical even if we had set § = as.

Case 2: In this case, we assume that the event Forge does not occur. We now show that de-
capsulation queries with an input verification key vk # vk* does not give A““® any advantage.
Note that since we have assumed that Forge does not occur, a decapsulation query with input
vk = vk® must contain an invalid signature. For such a query A°?® is returned L. The rest of
the proof below deals with Case 2.

When A? makes a query to the group oracles, we may condition on the event that (1) A
provides as input only the values it received from the simulation or intermediate values it obtained
as response from the oracles and (2) there are p distinct values in the ranges of both vy and ;.
This event happen with the overwhelming probability of 1 — O(q/p?), where ¢ is the upper bound
on the number of queries that can be made during the simulation. We may even keep track of
the algebraic expressions being called for from the oracles as long as “accidental collisions” do
not occur. Specifically, we can think of an oracle query as being a rational function v = n/¢ in
the variables 0, o, 31, Bo, s, ti’s, r0)’s, rgj)’s and pg’s. An accidental collision would be when for
queries corresponding to any two distinct formal rational functions n/& # n'/¢’, we have that the
values of /¢ and 7' /¢’ coincide due to random choices of these independent variables’ values.

We now condition that no such accidental collisions occur in either Gy or ;. For any pair of
distinct queries /¢ and 7'/¢’ within a group, a collision occurs only if the non-zero polynomial
n/&—n'/& evaluates to zero. The total degree of this polynomial in our case is at most 5 (a constant).
By Schwart-Zippel lemma [30, 33], the probability of this event is O(1/p). By a union bound, the

18

probability that any such collision happens in our simulation is at most O(q?/p). Hence, we can
condition on no such collision happening and still maintain 1 — O(¢?/p) of the probability mass.

We now consider what the adversary’s view would have been, if we had set 8 = «as. In this
part of Case 2 of the proof, subject to the above conditioning, we show that the adversary’s view
would have been identically distributed. Since we are in the generic group model, where each group
element’s representation is uniformly and independently chosen, the only way that adversary’s
view can differ in the case § = «as is if there are two queries v and ¢/ into G; such that v # v/ but
V]|o—as = V'|g—as. Since O only occurs as e(g, g)? in Gy, the only dependence v or v/ can have on
0 is by having some additive terms of the form ~6 for some constant . Therefore we must have
v—1v' = ~yas—~0 for some constant v # 0. We can then artificially add the query v — v/ +~0 = yas
to the adversary’s queries. We will now show that based on the information given to the adversary
it can never construct a query for e(g, g)7**.

ti i Ait; rt) + tﬂ”gj)
Tl(j) tity Aitir titir Ay
t;(r9) 4 ti/rg,j)) tirg,” o+ s
as+rPs 7@ Ay tiNidys
)\i/(r(j) + tﬂ‘ij)))\irrij) titi/)\i)\i’ ti)\z‘ (T(j) + ti/’f‘g,j))
ti)\irg/j) (r@) + tirgj))(r(j,) + ti/rf,j,)) (r9 4+ tirgﬂ)ry,) rgj)'rl(,j)
stuk 3 Auk Lokt Lokbors Lok i
tortiNi Loktor’ Aok ok (T(j) + tz‘h(j)) tvkn(j)
Lok Aok Lot tors Aok Aupr Lok Avkti Lok Aok A
Tokti Aok N\i tok Aok (T(j) + tiT',Ej)) tvaUkng) T(j))\vk
Table 1. Possible query types into G1 from the adversary

Table 1 enumerates all the possible query types into Gy by means of the bilinear map and the
group elements given to the adversary except for those that contain §; or §2 in every monomial as
they will not be relevant for constructing a query involving the term as. In the table, the variables ¢
and i’ are possible attribute strings, j and j' are indices of secret key queries made by the adversary
and vk and vk’ are the verification keys generated by KeyGen algorithm of the signature scheme.
Note that all the possible queries are given in terms of A;’s, not ux’s. It can be checked that the
query terms in the table can be formed by the adversary from the information available to it. In
addition to the polynomials in the table, the adversary also has access to 1 and «. The adversary can
query for arbitrary linear combination of these terms. We will now show that no such combination
can produce a polynomial of the form yas for some constant « # 0.

In Table 1 the only term that contains as is as+7)s, which can be formed by pairing s3; with
a+ri) /B1. By such queries, the adversary could create a polynomial of the form yas+ jer Vi srd)
for some set 1" and constants v, 7; # 0. To obtain a query polynomial of the form yas the adversary
must add other linear combinations in order to cancel the terms of the form 3, 7 ; sr). From the
table, the only other terms that the adversary has access to that could involve terms of the form
sr¥) are obtained by pairing r() —i—tirgj) with some Ay and also by pairing So Ay, with) /B2. This
is so since, Ay and A\, terms are public linear combinations of 1, --- , gy and s. The adversary can
create a query polynomial of the form:

19

yos + Z VJST(j) + Z Apr) 4)\i'tz‘?“gj) + A | + other terms.
JET (4,8 ,vk) €Ty

We now complete the proof with the following case analysis that shows that any of the adver-
sary’s query polynomials cannot be of the form yas.

Case 2a: In this case, let us assume that there exists some j € T" such that the set of secret shares
Lj={ X, Nk = 30 (2,7, 0k) € T]’} do not allow for reconstruction of s. If this is the case, then
the term sr() will not be cancelled and hence the adversary’s query cannot be of the form yas.

Case 2b: Now we assume that for all j € T, the set of secret shares L; = {\y, Ak : 30 :
(1,7, vk) € T]’} do allow for the reconstruction of the secret s. Fix any j € T'. Consider the set
of attributes S; that belongs to the j-th Extract query from the adversary. By the restriction
that no requested key should pass the challenge access structure and by the properties of the
secret sharing scheme, the set of shares L;. = {\; : ¢ € §;} cannot reconstruct s. Thus, there
must exist at least one share A\ in L; such that Ay is linearly dependent of L;- when written in
terms of s and g1, -, . Thus for some i € S;, there must be a term of the form)\i/tiry) in

the adversary’s queries. However, it is evident from Table 1 that the adversary has no access to

a term of this form. Hence, none of the queries can be of the form yas.

O

C Security Proof of the Generic AB-AKE Protocol

Proof. We prove the theorem in a sequence of games. Let S; be the event that A, wins the
AKE-security game in Game i.

Game 0. This is the original AKE-security game as per Definition 4. We have

Adv g, = |2 - Pr[So] —1]. (3)

Game 1. This game is the same as the previous one except that if two different sessions at user
U; output identical message C;, then the game aborts. Let Repeat be such an event. As there
are n users in the protocol, we have

| Pr[Sp] — Pr[S1]| < n - Pr[Repeat]. (4)
As the adversary is allowed to activate at most g; number of sessions, we have
Pr[Repeat] < ﬁ (5)
—C

Game 2. This is the same as the previous game except that a value ¢ ¥id [1, gs] is chosen. If the
Test query does not occur in the t-th session the game aborts and outputs a random value. Let
E» be the event that the guess is correct.

Pr[Sy] = Pr[Sa|Fa] Pr[Eb] + Pr[Sa|~FEs] Pr[-Es] Pr[Sl]qls + % (1 _ ql> . (6)

20

Game 3. This is identical to the previous game except that the output of each fx, for 1 <i <n
is replaced by a random value chosen uniformly from {0, 1}k . We hayve,

| Pr[Sa] — Pr[Ss]| < 71 - Adv . (7)

Game 4. This game is identical to the previous game except that the queries asked of A,ke are now
answered by A°“?, an adversary against the IND-CCA security of the underlying EP-AB-KEM
as follows: A°“@ forwards the public parameters that it received from its challenger to A,k.. Note
that if we allow A,k to choose the access structure in the Test session, A,ke chooses A* and
sends it to A°“? at the beginning of the Test session. Otherwise, A itself may choose A*. Once
Aake chooses the Test session, A“? gives the challenge access structure A* to its challenger. The
EP-AB-KEM challenger returns (K3, C*) to A“? as described in Definition 2. The goal of A
is to output whether Kj is encapsulated within C* or not. A“? finally chooses a user U whose
attributes S} satisfy the challenge access structure A*. With these choices, A““® now starts
simulating answers to the queries of A, as below. Note that we explain only the simulation
done in the test session. The queries issued in all the other sessions can be trivially answered
by A, since it is allowed to extract private keys corresponding to attributes that satisfy all
the access structures except A*.

Send (7!, m): If m contains only A*, as per the protocol it has to initiate the test session at Uj.
If Uy = U}, A°?® returns the challenge encapsulation C* as the outgoing message from the
instance 7¢. Otherwise, A“? runs the Encapsulation algorithm on behalf of U; and obtains
the pair (K;, C;). It keeps K; with itself and returns C; as the outgoing message.

On the other hand, if the message contains an encapsulation C;, A proceeds as follows:

1. If U; = U, it issues a Decap query to its challenger with C; and the attributes of U
as input. If the challenger returns a key K;, A? stores K; and accepts the session.
Otherwise, the session is rejected. Note that if U; = U/, then C; cannot be equal to Cf
conditioning on the event Repeat in Game 1.

2. IftU; # U, A first checks if C; = C7. If it matches A““® accepts the session. Otherwise,
as described above it issues Decap query to its challenger with C; and the attributes of
U} as input. Note that the attributes of U;* satisfy the access structure A* embedded in
C;. If the challenger returns a key K;, A stores K; and accepts the session. Otherwise,
A rejects the session.

RevealKey(77): Note that a RevealKey query on the test session is not allowed. In all other
sessions A can answer this query by simply asking Decap query on all the encapsulations
exchanged in that session. Since A is also allowed to extract private keys corresponding
to attributes that do not satisfy A*, it can trivially answer the RevealKey queries of all the
sessions other than the test session.

Corrupt(S;): If S; do not satisfy A*, then A can trivially answer this query using the Extract
query available to it as part of the IND-CCA security game of the EP-AB-KEM.

Test(m!): A now embeds the challenge key K into the response to Aake. It computes the
challenge key £* = fi,(sid) @ --- ® fr,(sid) & --- & fk, (sid). Note that, as described in the
simulation of Send queries above, all the symmetric other than Kj are either generated by
A or obtained from its challenger via Decap queries. The key * is returned to Ajye.

Since the simulation by A? for A, is perfect without any aborts, Game 3 and Game 4 are
indistinguishable. We have Pr[S4] = Pr[S3].

21

Let b be the output of Auke. A“® simply passes this bit onto its challenger. This game is
essentially Ake playing IND-CCA security game against the EP-AB-KEM’s challenger. .4
succeeds whenever A, does so. Hence, the advantage of A“? is at least the same as that of
Aake. We have

‘2 : PI'[S4] —].‘ S AdUAcca. (8)

From Equations 3 to 8,we have the claimed advantage for A,ye.
O

Remark 3. From Game 4 of the above proof, it is evident that A obtains the challenge access
structure A* only at the initiation of the Test session. However, A? has to answer the queries
asked by A,k on sessions established prior to the Test session for which A°® has to interact
with its challenger. As in the selective security model for EP-AB-KEM, if A“® commits to an
access structure at the start of its game, it cannot simulate answers to all the queries asked by
Aake- Hence, we need an IND-CCA secure EP-AB-KEM secure in the fully adaptive model for our
generic construction of AB-AKE protocols.

D Ciphertext Policy Attribute-based Hybrid Encryption

We now extend the paradigm of hybrid encryption to CP-ABE. We show that an IND-CCA secure
EP-AB-KEM when combined with any IND-CCA secure DEM will result in an IND-CCA secure
CP-ABE scheme. The hybrid CP-ABE scheme will have the usual efficiency advantages that a
hybrid encryption scheme has over a direct public key encryption scheme.

While our proof may seem straightforward, note that it has not previously been formally estab-
lished. Combining a KEM and a DEM to achieve a secure hybrid encryption scheme is not always
trivial, for example, as in the case of certificateless KEMs [3]. Moreover, Gorantla et al. [20] de-
scribed a notion of security for signcryption KEMs which can be useful in establishing a relationship
with key exchange protocols, but cannot be used in combination with any DEM for the purpose of
hybrid signcryption. Hence, it is necessary to validate the combination of any KEM and DEM.

We show our result only for fully adaptive CCA-secure hybrid CP-ABE schemes. Our proof
can be easily extended to other flavours of security i.e., notions that consider CPA-secure and/or
selective-policy CP-ABE schemes.

D.1 CCA Security for CP-ABE Schemes

A CP-ABE scheme consists of four polynomial time algorithms: Setup, Encrypt, KeyGen, Decrypt.
An optional Delegate algorithm may also exist. The access structure A and the set of parties are as
defined in Section 2.

Setup(k, U) This algorithm takes the security parameter k and the attribute universe description
U as inputs. The public parameters PK and the master key MK are the outputs.

Encrypt(PK, M, A) This algorithm takes as input the public parameters PK, a message M and
an access structure A over the attribute universe U. This algorithm encrypts M and produces a
ciphertext C'T" such that only a user that possesses a set of attributes satisfying A will be able
to decrypt the message. We assume that the ciphertext implicitly contains A.

22

KeyGen(MK, PK,S) This algorithm takes as input the master key MK, the public parameters
PK and a set of attributes S. The output is a private key SK corresponding to the attribute
set S.

Decrypt(PK,CT, SK) takes as input the public parameters PK, a ciphertext CT which contains
an access structure A and a private key SK corresponding to a set of attributes .S. The algorithm
returns either a message M or L.

For a CP-ABE scheme to be considered valid, it is required that for any message M from
the message space, for any key SK corresponding to an attribute set S, if S satisfies A and if
CT < Encrypt(PK,M,A), then Decrypt(PK,CT,SK) = M.

Bethencourt et al. [4] defined the notion of fully adaptive CPA security for CP-ABE schemes.
An analogous model with selective security has been defined by Goyal et al. [21]. As remarked by
Waters [32], the CPA security model of Bethencourt et al. could be easily extended to model CCA
security. We now describe IND-CCA security notion for CP-ABE schemes.

Definition 6. A CP-ABE is IND-CCA secure if the advantage of any PPT adversary A in the
following game is negligible in the security parameter k.

Setup: The challenger runs the Setup algorithm and returns the public parameters PK to A,
Phase 1: A issues Extract and Decap queries as follows:

Extract: This query can be issued multiple times with sets of attributes Si,---,5;, as input.
The challenger returns a private key corresponding to each input attribute set. We do not
require the input attribute sets to be distinct.

Decrypt: This query is issued with a ciphertext CT and an attribute set S as inputs. Note
that CT implicitly contains an access structure A defined over the attribute universe U. The
challenger executes the Decrypt algorithm on CT using a private key corresponding to S
and returns the output of Decrypt to A

Challenge: At the end of Phase 1, A gives an access structure A* defined over U and two
plaintexts mg and mj of same length to the challenger. The challenger first chooses a bit b. It
then runs the Encrypt algorithm with A* and m; as input and generates a ciphertext CT*. The
challenge ciphertext CT* is given to A“?. A trivial restriction on the adversary’s choice of A*
is that none of the attributes sets S1,---,S5; passed as input to Extract queries in Phase 1
should satisfy A*.

Phase 2: A is allowed to execute in the same way as in Phase 1 with the following restrictions:
(1) none of the attribute sets Sy, 11, - , Sq passed as input to Extract queries in Phase 2 satisfy
A* and (2) a Decrypt query with CT* as input in combination with an attribute set S* that
satisfies A* is not allowed.

Guess: The goal of A is to guess which of the messages mg or my is encrypted is encrypted
within CT*. A2 finally outputs a guess bit o’. It wins the game if & = b. The advantage of
A is given as Advgea = |2 - Pr[b/ = b] — 1].

D.2 CCA Security for DEM

The security requirements considered for a DEM are the same as those for a symmetric encryption
scheme [14,16]. We first describe the syntax for DEMs and then the notion of IND-CCA security
considered for them.

A DEM consists of a pair of deterministic algorithms:

23

ENC takes as input a message m of arbitrary length and a symmetric key K of some predetermined
length. The output is a ciphertext C' which is computed on m using K.

DEC takes as input a ciphertext C and a symmetric key K of some pre-determined length and
outputs either a message m or an error symbol L.

A DEM must satisfy the following soundness property: for all K € {0,1}*, and for any message
m € {0,1}*, we have DEC(K,ENC(K, m)) = m.
The IND-CCA security model for DEMs has been defined as follows:

1. The challenger generates a key K. The description of the DEM is given to the adversary, while
K is kept secret.

2. The adversary is allowed to run until it submits two messages mg and m; of the same length
to the challenger. The challenger selects a random bit 6 € {0, 1} and encrypts my using K. The
resulting ciphertext C* is returned to the adversary.

3. The adversary is given access to a decryption oracle only after it receives the challenge ci-
phertext. It may query issues decryption queries on any input C # C*. The oracle returns
m <+ DEC(K, C) to the adversary.

4. Finally, the adversary outputs a bit ¢ and wins the game if §/ = 6. The advantage of the
adversary is defined as |2 - Pr[¢/ = 0] — 1].

Cramer and Shoup [14] presented an IND-CCA construction of a DEM using symmetric key
techniques.

D.3 Hybrid CP-ABE

Let (Setup,Encapsulation, KeyGen, Decapsulation) and (ENC,DEC) be the given EP-AB-KEM and
DEM respectively. We assume that the length of keys generated by the EP-AB-KEM is the same
as the length of the keys used by the DEM. Following Cramer and Shoup [14], a hybrid CP-ABE
(Setup,Encrypt, KeyGen, Decrypt) can be constructed as follows:

Setup and KeyGen: The Setup and KeyGen algorithms of the hybrid CP-ABE will remain the same
as the corresponding algorithms of the underlying EP-AB-KEM scheme.

Encrypt(PK, M, A): This algorithm first runs the encapsulation algorithm of the EP-AB-KEM
and obtains a symmetric key-encapsulation pair i.e., (K, C7) < Encapsulation(PK,A). It then
runs the encryption algorithm of the DEM on the input message using the key K i.e., Cs <
ENC(K, M). It returns CT = (C1,C2) as the ciphertext.

Decrypt(PK,CT, SK): It first parses the ciphertext CT as (C1,C2) and returns L if there is any
failure in parsing. Otherwise, it first executes the decapsulation algorithm of the EP-AB-KEM
to compute a symmetric key i.e., K < Decapsulation(SK, PK,C}). If Decapsulation rejects, it
outputs L. Finally, it executes the decryption algorithm of the DEM with Cs as input using K
and extracts the message i.e., M < DEC(K,C>).

We now restate the theorem of Cramer and Shoup [14] in the context of hybrid CP-ABE as
follows.

Theorem 3. If EP-AB-KEM and DEM are IND-CCA secure then so is the hybrid CP-ABE
scheme. The advantage of a PPT adversary AP?®¢ against the IND-CCA security of the hybrid
CP-ABE scheme is given as

24

AdUAcpabe g 2 . (AdUAkem + Ad’UAdem)

where Adv grem is the advantage of a PPT adversary Ak qgainst the IND-CCA security of
the underlying EP-AB-KEM and Adv yeem is the advantage of a PPT adversary A%™ against the
IND-CCA security of the underlying DEM.

Proof. The proof is given in a sequence of games. Let S; be the event that the adversary against
the hybrid CP-ABE scheme wins in Game 1.

Game 0. This is the original IND-CCA game defined for the CP-ABE scheme. We have

Adv gepabe = |2 - Pr[Sp] — 1. (9)
Game 1. This game is identical to the previous game with the following changes: During the
Challenge phase, when AP outputs a challenge access structure A* and a pair of messages
mo and my1, the challenge ciphertext (Cf,C3) is computed as follows and is returned to AP2be:
~ b & 0,1}
— (K, CY) < Encapsulation(PK, A*).
— K+ & {0, 11",
— O} « ENC(K*, My).
For any decryption query with input (S, (CY,C2)), where Cy # C3 and for S satisfying the
challenge access structure A*| then return DEC(K™, C3) as the response.
We now describe an adversary A*™ against the IND-CCA security of the EP-AB-KEM which
can simulate this game for AP2be. Akem forwards the public parameters to AP2Pe. Note that
Ake™ can answer any key extraction query of AP2Pe by forwarding it as its own Extract query to
its challenger. Similarly, the Decrypt queries of AP2P¢ are answered using its access to the Decap
oracle. Specifically, on any Decrypt query with input (S, (C1,Cy)), A*™ first queries its Decap
oracle with input (S, C7) and obtains a symmetric key K. If K = L, it returns L. Otherwise,
it then executes the DEC algorithm of the DEM with Cs as input using the K and extracts the
message i.e., M < DEC(K, Cs).
During the Challenge phase, when A%2P¢ outputs (A*, mg, m1), A™ forwards A* to its chal-
lenger. Let (K*,C}) be the challenge given to it. A*™ now selects a random bit 6 pia {0,1} and
computes C + ENC(K*, Mp). The challenge ciphertext (Cf,C3) is returned to APabe.
All the queries in Phase 2 are answered as before, except that when a decryption query of
the form (S, (Cf, C2)), where Cy # C5 and for S satisfying the challenge access structure A* is
given it returns DEC(K™, C3) as the response.
Finally, AP2¢ outputs a bit ¢'. If ¢ = 6, it outputs 1, otherwise outputs 0. Thus A*™ wins
whenever A%2P¢ does. We have

’ PI‘[S()] - Pr[Sl” S AdUAkem . (10)
Note that this game is essentially AP2P¢ playing the IND-CCA game against the DEM. This is

so particularly since the ciphertext component C3 is generated using a random symmetric key
K*. We have

‘2 N PI‘[Sﬂ -].‘ - AdvAdem. (11)

By combining the Equations 9 to 11, we have the claimed advantage for AP2be. O

25

