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Abstract

We introduce bonsai trees, a lattice-based cryptographic primitive that we apply to resolve some
important open problems in the area. Applications of bonsai trees include:

• An efficient, stateless ‘hash-and-sign’ signature scheme in the standard model (i.e., no random
oracles), and

• The first hierarchical identity-based encryption (HIBE) scheme (also in the standard model) that
does not rely on bilinear pairings.

Interestingly, the abstract properties of bonsai trees seem to have no known realization in conventional
number-theoretic cryptography.

1 Introduction

Lattice-based cryptographic schemes have undergone rapid development in recent years, and are attractive due
to their low asymptotic complexity and potential resistance to quantum-computing attacks. One notable recent
work in this area is due to Gentry, Peikert, and Vaikuntanathan [GPV08], who constructed an efficient ‘hash-
and-sign’ signature scheme and an identity-based encryption (IBE) scheme. (IBE is a powerful cryptographic
primitive in which any string can serve as a public key [Sha84].)

Abstractly, the GPV schemes are structurally quite similar to Rabin/Rabin-Williams signatures [Rab79]
(based on integer factorization) and the Cocks/Boneh-Gentry-Hamburg IBEs [Coc01, BGH07] (based on the
quadratic residuosity problem), in that they all employ a so-called “preimage sampleable” trapdoor function
as a basic primitive. As a result, they have so far required the random oracle model (or similar heuristics) for
their security analysis. This is both a theoretical drawback and also a practical concern (see, e.g., [LN09]), so
avoiding such heuristics is an important goal.

Another intriguing open question is whether any of these IBE schemes can be extended to deliver richer
levels of functionality, as has been done in pairing-based cryptography starting from the work of Boneh and
Franklin [BF03]. For example, the more general notion of hierarchical IBE [HL02, GS02] permits multiple
levels of secret-key authorities. This model is more appropriate for large organizations, isolates damage in the
case of secret-key exposure, and has further applications such as such as forward-secure encryption [CHK07]
and broadcast encryption [DF02, YFDL04].
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1.1 Our Results

We put forward a new cryptographic notion called a bonsai tree, and give a realization based on hard lattice
problems. (Section 1.2 gives an intuitive overview of bonsai trees, and Section 1.4 discusses their relation
to other primitives and techniques.) We then show that bonsai trees resolve some central open questions in
lattice-based cryptography: roughly speaking, they remove the need for random oracles in many important
applications, and facilitate delegation for purposes such as hierarchical IBE.

Our first application of bonsai trees is an efficient, stateless signature scheme that is secure in the standard
model (no random oracles) under conventional lattice assumptions. Our scheme has a ‘hash-and-sign’
flavor that does not use the key-refresh/authentication-tree paradigm of many prior constructions (both
generic [GMR88, NY89] and specialized to lattice assumptions [LM08]), and in particular it does not require
the signer to keep any state. (This a crucial property in many real-world scenarios, where distinct systems may
sign for the same public key.) In our scheme, the signature length and verification time are a factor of k larger
than in the random-oracle scheme of [GPV08] (where k is the output length of a chameleon hash function),
and the signing algorithm is essentially as efficient as the one from [GPV08].1 The underlying hard problem
is the standard short integer solution (SIS) problem dating back to the seminal work of Ajtai [Ajt04], which
is known to be as hard as several worst-case approximation problems on lattices. The concrete approximation
factor underlying our signature scheme is Õ(

√
k · n3/2), which is only a factor

√
k looser (roughly) than that

of [GPV08].
Our second application is a hierarchical identity-based encryption (HIBE) scheme, which is the first

HIBE that does not rely on bilinear pairings. The scheme works in the standard model, also making it the first
non-pairing-based IBE that does not use random oracles (or qualitatively similar heuristics). The underlying
hard problem is the standard learning with errors (LWE) problem as defined by Regev, which is also as
hard as certain worst-case lattice problems [Reg05, Pei09] and is already the foundation for many other
cryptographic schemes (including the plain IBE of [GPV08]).

Additionally, our HIBE is anonymous across all levels of the hierarchy, i.e., a ciphertext conceals
(computationally) the identity to which is was encrypted. Anonymity is a useful property in many applications,
such as fully private communication [BBDP01] and searching on encrypted data [BCOP04, ABC+08]. While
there are a few anonymous (non-hierarchical) IBEs [BF03, CS07, BGH07, GPV08], only one other HIBE is
known to be anonymous [BW06].

1.2 Overview of Bonsai Trees and Applications

The art of arboreal bonsai is centered around a tree and the selective control thereof by an arborist, the tree’s
cultivator and caretaker. By combining natural, undirected growth with controlled propagation techniques
such as wiring and pruning, the arborist can cultivate trees according to a variety of aesthetic forms.

Similarly, cryptographic bonsai is not so much a precise definition as a collection of principles and
techniques, which can be employed in a variety of ways. (The intuitive description here is developed
technically in Section 3.) The first principle is the tree itself, which is a hierarchy of trapdoor functions
having certain properties. The arborist can be any of several entities in the system — e.g., the signer in a
signature scheme or a simulator in a security proof — and it can exploit both kinds of growth, undirected and
controlled. Briefly stated, undirected growth of a branch means that the arborist has no privileged information
about the associated function, whereas the arborist controls a branch if it knows a trapdoor for the function.

1More precisely, our signing algorithm performs about k forward computations of a trapdoor function, plus one inversion
operation (which dominates the running time).
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Moreover, control automatically extends down the hierarchy, i.e., knowing a trapdoor for a parent function
implies knowing a trapdoor for any of its children.

In our concrete instantiation, the functions in the tree are indexed by a hierarchy of public lattices chosen
at random from a certain ‘hard’ family (i.e., one having a connection to worst-case problems). The lattices
may be specified by a variety of means, e.g., a public key, interaction with a system, a random oracle, etc.
Their key property is that they naturally form a hierarchy as follows: excepting the root, every lattice in the
tree is a higher-dimensional superlattice of its parent. More precisely, a parent lattice in Rm is simply the
restriction of its child(ren) in Rm′ (where m′ > m) to the first m dimensions. As we shall see shortly, this
hierarchical relationship means that a parent lattice naturally ‘subsumes’ its children (and more generally, all
its descendants).

Undirected growth in our realization is technically straightforward, emerging naturally from the underly-
ing hard average-case lattice problems (SIS and LWE). This growth is useful primarily for letting a simulator
embed a challenge instance into the tree (but it may have other uses as well).

To explain controlled growth, we first need a small amount of technical background. As explored in prior
works on lattice-based cryptography (e.g., [GGH97, HPS98, HHGP+03, GPV08, PVW08, Pei09]), a lattice
has a ‘master trapdoor’ in the form of a short basis, i.e., a basis made up of relatively short lattice vectors.
Knowledge of such a trapdoor makes it easy to solve a host of seemingly hard problems relative to the lattice,
such as decoding within a bounded distance, or randomly sampling short lattice vectors. The reader may view
a short basis for a lattice as roughly analogous to the factorization of an integer, though we emphasize that
there are in general many distinct short bases that convey roughly ‘equal power’ with respect to the lattice.

In light of the above, we say that an arborist controls a branch of a bonsai tree if it knows a short basis for
the associated lattice. The hierarchy of lattices is specially designed so that any short basis of a parent lattice
can be easily extended to a short basis of any higher-dimensional child lattice, with no loss in quality. This
means that control of a branch implicitly comes with control over all its offshoots. In a typical application,
the privileged entity in the system (e.g., the signer in a signature scheme) will know a short basis for the root
lattice, thus giving it control over the entire tree. Other entities, such as an attacker, will usually have less
power, though in some applications they might also be given control over certain parts of the tree.

So far, we have deliberately avoided the question of how an arborist comes to control a (sub)tree
by acquiring a short basis for the associated lattice. A similar issue arises in other recent cryptographic
schemes [GPV08, PVW08, Pei09], but in a simpler setting involving only a single lattice and short basis (not
a hierarchy). In these schemes, one directly applies a special algorithm, originally conceived by Ajtai [Ajt99]
and recently improved by Alwen and Peikert [AP09], which generates a hard random lattice together with a
short basis ‘from scratch.’

At first glance, the algorithms of [Ajt99, AP09] seem useful only for controlling a new tree entirely by its
root, which is not helpful if we need finer-grained control. However, it is observed in [AP09] that the main
technique for generating a lattice with a short basis is actually more general. In our language, the technique
allows an arborist to generate and take control of a new offshoot from any uncontrolled branch of a tree.
More formally, it provides a way to extend a given random lattice (the parent) into a higher-dimensional
random superlattice (the child), while simultaneously producing an entire short basis for the child lattice.
We stress that no special knowledge about the parent is required to do this, even though the two lattices are
related; moreover, the child is distributed (statistically) as if it were an undirected offshoot. The technique,
therefore, allows the arborist to achieve a primary bonsai aesthetic: a carefully controlled tree that nonetheless
gives the appearance of having grown without any outside intervention.2

2It is worth noting that in [Ajt99, AP09], even the simple goal of generating one lattice with a short basis actually proceeds in
two steps: first start with a sufficient amount of random undirected growth, then produce a single controlled offshoot according to the
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1.2.1 Application 1: Hash-and-Sign without Random Oracles

Our end goal is a signature scheme that meets the de facto notion of security, namely, existential unforgeability
under adaptive chosen-message attack [GMR88]. By a standard, efficient transformation using chameleon
hashes [KR00] (which have efficient realizations under conventional lattice assumptions), it suffices to
construct a weakly secure scheme, namely, one that is existentially unforgeable under a static attack in which
the adversary submits all its query messages before seeing the public key.

Our weakly secure scheme signs messages of length k, the output length of the chameleon hash. The
public key represents a binary bonsai tree T of depth k in a compact way, which we describe in a moment.
The secret key is a short basis for the lattice Λε at the root of the tree, which gives the signer control over all
of T . To sign a message µ of length k, the signer first ‘hashes’ µ by walking its associated root-to-leaf path,
arriving at the corresponding lattice Λµ. The signature is simply a short nonzero vector v ∈ Λµ, chosen at
random from a certain ‘canonical’ distribution (which can be sampled efficiently using the signer’s control
over Λµ). A verifier can check the signature v simply by deriving Λµ itself from the public key, and checking
that v is a sufficiently short nonzero vector in Λµ.

The bonsai tree T is represented compactly by the public key in the following way. First, the root lattice
Λε is specified completely. Then, for each level i = 0, . . . , k − 1, the public key includes two blocks of
randomness that specify how a parent lattice at level i branches into its two child lattices. We emphasize that
all nodes at a given depth use the same two blocks of randomness to derive their children.

The proof of security is at heart a combinatorial game on the tree between the simulator S and forger F ,
which goes roughly as follows. The forger gives the simulator a set M = {µ1, . . . , µQ} of messages, and S
needs to cultivate a bonsai tree (represented by pk) so that it controls some set of subtrees covering all of M ,
yet is unlikely to control the leaf of whatever arbitrary message µ∗ 6∈M for which F eventually produces a
forgery. If the latter condition happens to hold true, then the forger has found a short nonzero vector in a
‘hard’ random lattice, in violation of the underlying assumption.

To satisfy these conflicting constraints, S colors red all the edges on the root-to-leaf paths of the messages
in M , and lets all the other edges implicitly be colored blue. The result is a forest of at most Q · k distinct
blue subtrees {B`}, each growing off of some red path by a single blue edge. The simulator chooses one of
these subtrees B` uniformly at random (without regard to its size), guessing that the eventual forgery will lie
in B`. It then cultivates a bonsai tree so that all the growth on the path up to and throughout B` is undirected
(by embedding its given challenge instance as usual), while all the remaining growth in T \B` is controlled.
The simulator can achieve such control within the confines of the public key by controlling one branch at
each level leading up to B` (namely, the branch growing off of the path to B`), and none thereafter.

1.2.2 Application 2: Hierarchical Identity-Based Encryption

Bonsai trees also provide a very natural and flexible approach for realizing HIBE. For simplicity, consider
an authority hierarchy that is a binary tree, which suffices for forward-secure encryption and general HIBE
itself [CHK07]. The master public key of the scheme describes a binary bonsai tree, which mirrors the
authority hierarchy. The root authority starts out by controlling the entire tree, i.e., it knows a trapdoor short
basis for the lattice at the root. Each authority is entitled to control its corresponding branch of the tree. Any
entity in the hierarchy can delegate control over an offshoot branch to the corresponding sub-authority, simply
by computing and revealing a short basis of the associated child lattice. In this framework, encryption and
decryption algorithms based on the LWE problem are relatively standard.

main technique. Fittingly, this is analogous to the common bonsai practice of growing a new specimen from a cutting of an existing
tree, which is generally preferred to growing a new plant ‘from scratch’ with seeds.
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For the security proof, the simulator again prepares a bonsai tree so that it controls certain branches
(corresponding to the adversary’s queries), while allowing the undirected growth of others (corresponding
to the adversary’s target identity). This can be accomplished in a few ways, with different advantages and
drawbacks in terms of the security notion achieved and the tightness of the reduction. One notion is security
against a selective-identity attack, where the adversary must declare its target identity before seeing the public
key, but may adaptively query secret keys afterward. In this model, the simulator can cultivate a bonsai tree
whose growth toward the (known) target identity is undirected, while controlling each branch off of that path;
this setup makes it easy for the simulator to answer any legal secret-key query.

A stronger notion is a fully adaptive attack, where the adversary may choose its target identity after
making its secret-key queries. As in several prior (H)IBEs, here the simulator (roughly speaking) needs to
guess in advance the location of the target identity, which it can do with probability about 2−d/d, where d
is the depth of the tree. We note that the bonsai framework also appears amenable to certain combinatorial
techniques introduced by Boneh and Boyen [BB04b] for dealing with adaptive attacks on (H)IBE schemes,
though we do not pursue their application in this work.

Based on the above description, the reader may still wonder whether secret-key delegation is actually
secure, i.e., whether the real and simulated bases are drawn from the same probability distribution. In fact,
they may not be! For example, under the most straightforward method of extending a basis, the child basis
actually contains the parent basis within it, so it is clearly insecure to reveal the child. We address this
issue with an additional bonsai principle of randomizing control, using the ‘oblivious’ sampling algorithm
of [GPV08]. This produces a new basis under a ‘canonical’ distribution (regardless of the original input
basis), which ensures that the real system and simulation coincide. The randomization increases the length of
the basis by a small factor — which accumulates geometrically with each delegation from parent to child —
but for reasonable depths, the resulting bases are still short enough to be useful when all the parameters are
set appropriately. (See Section 1.3 for more details.)

For achieving security under chosen-ciphertext attacks (CCA security), a transformation due to Boneh,
Canetti, Halevi, and Katz [CHK04, BCHK07] gives a CCA-secure HIBE for depth d from any chosen
plaintext-secure HIBE for depth d+ 1. Alternatively, we observe that the public and secret keys in our HIBE
scheme are of exactly the same ‘type’ as those in the recent CCA-secure cryptosystem of [Pei09], so we can
simply plug that scheme into our bonsai tree/HIBE framework. Interestingly, the two approaches result in
essentially identical schemes.

1.2.3 Variations

This paper focuses almost entirely on bonsai trees that are related, via worst- to average-case reductions, to
general lattices. Probably the main drawback is that the resulting public and secret keys are rather large. For
example, the public key in our signature scheme is larger by a factor of k (the output length of a chameleon
hash function) than that of its random-oracle analogue, which is already at least quadratic in the security
parameter. Fortunately, the principles of bonsai trees may be applied equally well using analogous hard
problems and tools for cyclic/ideal lattices (developed in, e.g., [Mic07, PR06, LM06, PR07, SSTX09]). This
approach can ‘miniaturize’ the bonsai trees and most of their associated operations by an almost-linear
factor in the security parameter. The resulting schemes are still not suitable for practice, but their asymptotic
behavior is attractive.

1.3 Complexity and Open Problems

Here we discuss some quantitative details of our schemes, and describe some areas for further research.
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Several important quantities in our bonsai tree constructions and applications depend upon the depth of
the tree. The dimension of a lattice in the tree grows linearly with its depth, and the size of the trapdoor basis
grows roughly quadratically with the dimension.

Accordingly, in our HIBE scheme, the size of a ciphertext grows linearly with the depth of the identity to
which it is encrypted. Moreover, the (Euclidean) length of an entity’s trapdoor basis increases geometrically
with its depth in the tree (more precisely, with the length of the delegation chain), due to the re-randomization
that is performed during each delegation. To ensure correct decryption, the inverse noise parameter 1/α
in the associated LWE problem, and hence the approximation factor of the underlying worst-case lattice
problems, must grow with the basis length. In particular, a hierarchy of depth d corresponds (roughly) to
an nd/2 approximation factor for worst-case lattice problems, where n is the dimension. Because lattice
problems are conjectured to be hard to approximate to within even subexponential factors, the scheme may
remain secure even for depths as large as d = nc for any c < 1.

As in some prior pairing-based (H)IBEs (e.g.,[GS02, BB04a]), a basic security reduction for a full
adaptive-identity attack is somewhat loose, degrading exponentially with the (bit) length of the identities.
The reason, roughly speaking, is that the simulation must ‘guess’ in advance which identity the adversary
will attack, and there are exponentially many such identities as a function of the depth. Recent works have
achieved tight reductions for pairing-based (H)IBEs under various assumptions [Gen06, GH09, Wat09], and
a variant of the GPV IBE also has a tight reduction, but their approaches do not seem to translate to our
setting. The issue, essentially, is that our simulator is required to produce a ‘master trapdoor’ for each queried
identity, which makes it difficult to embed the challenge problem into the adversary’s view. In prior systems
with tight reductions, secret keys are less ‘powerful,’ so the simulator can embed a challenge while still
producing secret keys for any identity (even the targeted one).

A final very interesting (and challenging) question is whether bonsai trees can be instantiated based on
other mathematical foundations, e.g., integer factorization. At a very fundamental level, our lattice-based
construction seems to rely upon a kind of random self-reducibility that the factorization problem is not known
to enjoy.

1.4 Related Techniques and Works

The abstract properties of bonsai trees appear to have no known realization in conventional number-theoretic
cryptography. However, our applications use combinatorial techniques that are similar to those from prior
works.

The analysis of our signature scheme is reminiscent of (and influenced by) the recent RSA-based
signatures of Hohenberger and Waters [HW09b], but there are also some significant structural differences.
Most significantly, our scheme does not need to perform a trapdoor inversion operation for every prefix of the
message as in [HW09b]. Additionally, in contrast with prior hash-and-sign schemes (e.g., [GHR99, CS00,
HW09a, HW09b]), our simulator does not use an ‘accumulator’ to sign exactly the queried messages, but
instead sets up the public key so that it knows enough trapdoors to cover all the messages (and potentially
many others). This induces the forest-of-subtrees structure as described in Section 1.2.1, which requires a
somewhat different simulation strategy from that of [HW09b] to ensure that a forgery is useful.

The structure of our HIBE is also similar, at a combinatorial level at least, to that of prior pairing-
based HIBEs, in that the simulator can ‘control’ certain edges of an (implicit) tree by choosing certain
random exponents itself. However, there are no trapdoor functions per se in pairing-based constructions;
instead, the pairing is used to facilitate secret agreement between the encrypter and decrypter. Our approach,
therefore, may be seen as a blend between pairing-based techniques and the trapdoor techniques found
in [Coc01, BGH07, GPV08].
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In a concurrent and independent work, Cash, Hofheinz, and Kiltz [CHK09] have also developed a HIBE
scheme in the standard model based on the LWE problem. Though their scheme emerged from an alternative
perspective and differs in some technical details, the complexity and underlying machinery are very similar to
ours. We have also learned that Agrawal and Boyen [AB09] independently developed a standard-model, but
non-hierarchical, IBE based on LWE. Their construction also has structure and complexity similar to ours,
but it does not address delegation. In both other works [CHK09, AB09], signature schemes follow from the
(H)IBEs via a generic transformation, but they are less efficient than our signatures by a factor of a security
parameter (and have somewhat looser security reductions), because the (H)IBEs must first be made fully
secure against adaptive-identity attacks.

2 Preliminaries

2.1 Notation

For a positive integer k, [k] denotes the set {1, . . . , k}; [0] is the empty set. We denote the set of integers
modulo an integer q ≥ 1 by Zq. For a string x over some alphabet, |x| denotes the length of x. We say that a
function in n is negligible, written negl(n), if it vanishes faster than the inverse of any polynomial in n.

The statistical distance between two distributions X and Y (or two random variables having those
distributions), viewed as functions over a countable domain D, is defined as maxA⊆D|X (A)− Y(A)|.

Column vectors are named by lower-case bold letters (e.g., x) and matrices by upper-case bold letters
(e.g., X). We identify a matrix X with the ordered set {xj} of its column vectors, and let X‖X′ denote the
(ordered) concatenation of the sets X,X′. For a set X of real vectors, we define ‖X‖ = maxj‖xj‖, where
‖·‖ denotes the Euclidean norm.

For any (ordered) set S = {s1, . . . , sk} ⊂ Rm of linearly independent vectors, let S̃ = {s̃1, . . . , s̃k}
denote its Gram-Schmidt orthogonalization, defined iteratively as follows: s̃1 = s1, and for each i = 2, . . . , k,
s̃i is the component of si orthogonal to span(s1, . . . , si−1). Clearly, ‖s̃i‖ ≤ ‖si‖ for all i.

2.2 Cryptographic Definitions

The main cryptographic security parameter through the paper is n, and all algorithms (including the adversary)
are implicitly given the security parameter n in unary.

For a (possibly interactive) algorithm A having binary output, we define its distinguishing advantage
between two distributions X and Y to be |Pr[A(X ) = 1]− Pr[A(Y) = 1]|. We use the general notation
Advatk

SCH(A) to describe the of an adversary A mounting an atk attack on a cryptographic scheme SCH,
where the definition advantage is specified as part of the attack. Similarly, we write AdvPROB(A) for the
advantage of an adversary A against a computational problem PROB (where again the meaning of advantage
is part of the problem definition).

Chameleon hash functions. Chameleon hashing was introduced by Krawczyk and Rabin [KR00]. For our
purposes, we need a slight generalization in the spirit of “preimage sampleable” (trapdoor) functions [GPV08].

A family of chameleon hash functions is a collectionH = {hi :M×R→ Y} of functions hi mapping
a message m ∈ M and randomness r ∈ R to a range Y . The randomness spaceR is endowed with some
efficiently sampleable distribution (which may not be uniform). The functions hi are efficiently computable
given their description, and have the property that for any m ∈ M, for hi ← H and r ← R, the pair
(hi, hi(m, r)) is uniform over (H,Y) (up to negligible statistical distance). The chameleon property is
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that a random hi ← H may be generated together with a trapdoor t, such that for any output y ∈ Y and
message m ∈M, it is possible (using t) to efficiently sample r ∈ R (under theR’s distribution) conditioned
on the requirement that hi(m, r) = y. Finally, the family has the standard collision-resistance property,
i.e., given hi ← H it should be hard for an adversary to find distinct (m, r), (m′, r′) ∈ M×R such that
hi(m, r) = hi(m′, r′).

A realization under conventional lattice assumptions of chameleon hash functions (in the above sense) for
M = {0, 1}` is straightforward, using the particular preimage sampleable functions (PSFs) from [GPV08].
Briefly, the chameleon hash function is simply a PSF applied to m‖r, which may also be viewed as the sum
of two independent PSFs applied to m and r, respectively. We omit the details.

Signatures. A signature scheme SS for a message spaceM is a tuple of PPT algorithms as follows:

• Gen outputs a verification key vk and a signing key sk.

• Sign(sk, µ), given a signing key sk and a message µ ∈M, outputs a signature σ ∈ {0, 1}∗.

• Ver(vk, µ, σ), given a verification key vk, a message µ, and a signature σ, either accepts or rejects.

The correctness requirement is: for any µ ∈ M, generate (vk, sk) ← Gen and σ ← Sign(sk, µ). Then
Ver(vk, µ, σ) should accept with overwhelming probability (over all the randomness in the experiment).

We recall two standard notions of security for signatures. The first, existential unforgeability under static
chosen-message attack, or eu-scma security, is defined as follows: first, the forger F outputs a list of query
messages µ1, . . . , µQ for some Q. Next, (vk, sk) ← Gen and σi ← Sign(sk, µi) are generated for each
i ∈ [Q], then vk and σi (for each i ∈ [Q]) are given to F . Finally, F outputs an attempted forgery (µ∗, σ∗).
The advantage Aeu-scma

SS (F) of F is the probability that Ver(vk, µ∗, σ∗) accepts and µ∗ 6= µi for all i ∈ [Q],
taken over all the randomness of the experiment.

Another notion, called existential unforgeability under adaptive chosen-message attack, or eu-acma
security, is defined similarly, except that F is first given vk and may adaptively choose the messages µi.

Using a family of chameleon hash functions (as defined above), there is a generic construction of eu-acma-
secure signatures from eu-scma-secure signatures; see, e.g., [KR00]. Furthermore, the construction results
in an online/offline signature scheme; see [ST01]. The basic idea behind the construction is that the signer
chameleon hashes the message to be signed, then signs the hashed message using the eu-scma-secure scheme
(and includes the randomness used in the chameleon hash with the final signature).

Key-Encapsulation Mechanism (KEM). We present all of our encryption schemes in the framework of
key encapsulation, which simplifies the definitions and leads to more modular constructions. A KEM for
keys of length ` = `(n) is a triple of PPT algorithms as follows:

• Gen outputs a public key pk and a secret key sk.

• Encaps(pk) outputs a key κ ∈ {0, 1}` and its encapsulation as σ ∈ {0, 1}∗.

• Decaps(sk, σ) outputs a key κ.

The correctness requirement is: for (pk, sk)← Gen and (κ, σ)← Encaps(pk), Decaps(sk, σ) should output
κ with all but negl(n) probability.

In this work we are mainly concerned with indistinguishability under chosen-plaintext attack, or ind-cpa
security. The attack is defined as follows: generate (pk, sk)← Gen, (κ, σ)← Encaps(pk), and κ′ ← {0, 1}`
(chosen uniformly and independently of the other values). The advantage Advind-cpa

KEM (A) of an adversary A
is its distinguishing advantage between (pk, sk, κ) and (pk, sk, κ′).
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Hierarchical Identity-Based Encryption (HIBE) and Binary Tree Encryption (BTE). In HIBE, iden-
tities are strings over some alphabet ID; BTE is the special case of HIBE with identity space ID = {0, 1}.
A HIBE is a tuple of PPT algorithms as follows:

• Setup(1d) outputs a master public key mpk and root-level secret key skε. (In the following, 1d and
mpk are implicit parameters to every algorithm, and every skid is assumed to include id itself.)

• Extract(skid, id′), given a secret key for identity id ∈ ID<d that is a prefix of id′ ∈ ID≤d, outputs a
secret key skid′ for identity id′.

• Encaps(id) outputs a key κ ∈ {0, 1}` and its encapsulation as σ ∈ {0, 1}∗, to identity id.

• Decaps(skid, σ) outputs a key κ.

The correctness requirement is: for any identity id ∈ ID≤d, generate (mpk, skε)← Setup(1d), skid via any
legal sequence of calls to Extract starting from skε, and (κ, σ)← Encaps(id). Then Decaps(skid, σ) should
output κ with all but negl(n) probability (over all the randomness in the experiment).

There are several attack notions for HIBE. We are mainly concerned with the simple notion of in-
distinguishability under a chosen-plaintext, selective-identity attack, or sid-ind-cpa security. The attack
is defined as follows: first, the adversary A is given 1d and names a target identity id∗ ∈ ID≤d. Next,
(mpk,msk) ← Setup(1d), (κ, σ∗) ← Encaps(id∗), and κ′ ← {0, 1}` are generated. Then A is given
(mpk, κ∗, σ∗), where κ∗ is either κ or κ′. Finally, A may make extraction queries, i.e., it is given oracle
access to Extract(skε, ·), subject to the constraint that it may not query any identity that is a prefix of (or equal
to) the target identity id∗. The advantage Advsid-ind-cpa

HIBE (A) of A is its distinguishing advantage between the
two cases κ∗ = κ and κ = κ′.

Another notion is an adaptive-identity attack, in which the adversary is first given mpk and oracle access
to Extract(skε, ·) before choosing its target identity id∗ (as before, under the constraint that no query identity
be a prefix of id∗). Finally, both notions may be extended to chosen-ciphertext attacks in the natural way; we
omit precise definitions.

2.3 Lattices

In this work, we are concerned only with m-dimensional full-rank integer lattices, which are discrete
additive subgroups of Zm having finite index, i.e., the quotient group Zm/Λ is finite. A lattice Λ ⊆ Zm can
equivalently be defined as the set of all integer linear combinations of m linearly independent basis vectors
B = {b1, . . . ,bm} ⊂ Zm:

Λ = L(B) =
{
Bc =

∑
i∈[m]

cibi : c ∈ Zm
}
.

When m ≥ 2, there are infinitely many bases that generate the same lattice.
The following lemma will be useful in our constructions.

Lemma 2.1 ([MG02, Lemma 7.1, page 129]). There is a deterministic poly-time algorithm ToBasis(B,S)
that, given an arbitrary basis B of an m-dimensional lattice Λ = L(B) and a full-rank set of lattice vectors
S ⊂ Λ, outputs a basis T of Λ such that ‖t̃i‖ ≤ ‖s̃i‖ for all i ∈ [m].

9



2.3.1 Hard Lattices and Problems

We will work with an certain family of integer lattices whose importance in cryptography was first demon-
strated Ajtai [Ajt04]. Let n ≥ 1 and modulus q ≥ 2 be integers; the dimension n is the main cryptographic
security parameter throughout this work, and all other parameters are implicitly functions of n. An m-
dimensional lattice from the family is specified relative to the additive group Znq by a parity check (more
accurately, “arity check”) matrix A ∈ Zn×mq . The associated lattice is defined as

Λ⊥(A) =
{
x ∈ Zm : Ax =

∑
j∈[m]

xj · aj = 0 ∈ Znq
}
⊆ Zm.

One may check that Λ⊥(A) contains the identity 0 ∈ Zm and is closed under addition, hence it is a subgroup
of (and lattice in) Zm.

We recall the short integer solution (SIS) and learning with errors (LWE) problems, which may be seen
as average-case problems related to the family of lattices described above.

Definition 2.2 (Short Integer Solution). An instance of the SISq,β problem (in the `2 norm) is a uniformly
random matrix A ∈ Zn×mq for any desiredm = poly(n). The goal is to find a nonzero integer vector v ∈ Zm

such that ‖v‖2 ≤ β and Av = 0 ∈ Znq , i.e., v ∈ Λ⊥(A).

Let χ be some distribution over Zq. For a vector v ∈ Z`q of any dimension ` ≥ 1, Noisyχ(v) ∈ Z`q
denotes the vector obtained by adding (modulo q) independent samples drawn from χ to each entry of v
(one sample per entry). For a vector s ∈ Znq , As,χ is the distribution over Znq × Zq obtained by choosing a
vector a ∈ Znq uniformly at random and outputting (a,Noisyχ(〈a, s〉)). In this work (and most others relating
to LWE), χ is always a discretized normal error distribution χ parameterized by α, which is obtained by
drawing x ∈ R from a normal distribution of standard deviation α and outputting bq · xe mod q.

Definition 2.3. The learning with errors problem LWEq,χ is to distinguish, given oracle access to any desired
m = poly(n) samples, between the distribution As,χ (for uniformly random and secret s ∈ Znq ) and the
uniform distribution over Znq × Zq.

We write AdvSISq,β (A) and AdvLWEq,χ(A) to denote the success probability and distinguishing advan-
tage of an algorithm A for the SIS and LWE problems, respectively.

For appropriate parameters, solving SIS and LWE (on the average, with non-negligible advantage) is
known to be as hard as approximating certain lattice problems, such as the (decision) shortest vector problem,
in the worst case. Specifically, for q ≥ β · ω(

√
n log n), solving SISq,β yields approximation factors of

Õ(β ·
√
n) [MR07, GPV08]. For q ≥ (1/α) · ω(

√
n log n), solving LWEq,χ yields approximation factors of

Õ(n/α) (in some cases, via a quantum reduction); see [Reg05, Pei09] for precise statements.

2.3.2 Gaussians over Lattices

We briefly recall Gaussian distributions over lattices; for more details see [MR07]. For any s > 0 and
dimension m ≥ 1, define the Gaussian function ρs : Rm → R+ as ρs(x) = exp(−π‖x‖2/s2). For an
m-dimensional lattice Λ, define the discrete Gaussian distribution DΛ,s over Λ (centered at zero) as

∀ x ∈ Λ, DΛ,s(x) ∼ ρs(x)

(where each probability is normalized by
∑

v∈Λ ρs(v)), and DΛ,s(x) = 0 elsewhere.
We summarize several standard facts from the literature about discrete Gaussians over lattices.
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Lemma 2.4. Let B be a basis of an m-dimensional lattice Λ (for m ≥ n), and let s ≥ ‖B̃‖ · ω(
√

log n).

1. [MR07, Lemma 4.4]: Prx←DΛ,s
[‖x‖ > s ·

√
m] ≤ negl(n).

2. [PR06, Lemma 2.11]: Prx←DΛ,s
[x = 0] ≤ negl(n).

3. [Reg05, Corollary 3.16]: a set of O(m2) independent samples from DΛ,s contains a set of m linearly
independent vectors, except with negl(n) probability.

4. [GPV08, Theorem 4.1]: there is a PPT algorithm SampleD(B, s) that generates samples from DΛ,s

(up to negl(n) statistical distance).

3 Principles of Bonsai Trees

In this section we lay out the framework and techniques for the cultivation of bonsai trees by a (cryptographic)
arborist. There are four basic principles, which we explore in turn: undirected growth, controlled growth,
extending control to a descendant, and randomizing control.

3.1 Undirected Growth

Let A ∈ Zn×mq , and let A′ = A‖Ā ∈ Zn×m′q for some m′ > m be some extension of A. Then it is easy to
see that Λ⊥(A′) ⊆ Zm′ is a higher-dimensional superlattice of Λ⊥(A) ⊆ Zm (when the latter is lifted to
Zm′). Indeed, for any v ∈ Λ⊥(A), the vector v′ = v‖0 ∈ Zm′ is in Λ⊥(A′) because A′v′ = Av = 0 ∈ Znq .
As such, undirected growth in a bonsai tree is accomplished simply by concatenating fresh uniformly random
vectors from Znq onto a given parity-check matrix A.

3.2 Controlled Growth

We say that an arborist controls a lattice if it knows a relatively good (short) basis for the lattice. The following
lemma shows how to grow a new controlled extension off of any (usually uncontrolled) lattice.

Proposition 3.1 ([AP09, Lemma 3.4]). Let δ > 0 be any fixed real constant and let q ≥ 3 be odd. There is a
PPT algorithm ExtLattice(A1,m2) that, given uniformly random A1 ∈ Zn×m1

q for any m1 ≥ (1 + δ)n lg q
and poly(n)-bounded m2 ≥ (4 + 2δ)n lg q, outputs (A2 ∈ Zn×m2

q ,S ∈ Zm×mq ), where m = m1 + m2,
such that:

• A = A1‖A2 ∈ Zn×mq is within negl(n) statistical distance of uniform,

• S is a basis of Λ⊥(A), and

• ‖S̃‖ ≤ O(
√
n lg q) with overwhelming probability.

3.3 Extending Control

Here we describe how an arborist may extend its control of a lattice to any arbitrary extension (without any
loss of quality in the resulting basis).

The deterministic algorithm ExtBasis(S,A′ = A‖Ā) takes a basis S of Λ⊥(A) ⊆ Zm for any A ∈
Zn×mq that generates Znq and arbitrary Ā ∈ Zn×m̄q , where m and m̄ may be arbitrary. It outputs a basis S′ of
Λ⊥(A′) ⊆ Zm′ , where m′ = m+ m̄, computed as follows:

11



• For i = 1, . . . ,m, let s′i = si‖0 ∈ Zm′ .

• For i = 1, . . . , m̄, let s′m+i = ti‖ei ∈ Zm′ , where ti ∈ Zm is an arbitrary integer solution to the
equation Ati = −āi = a′i+m ∈ Znq , and ei ∈ Zm̄ is the ith standard basis vector.

Lemma 3.2. ExtBasis(S,A′) runs in poly-time and outputs a basis S′ of Λ⊥(A′) such that ‖S̃′‖ = ‖S̃‖.

Proof. The running time of ExtBasis is polynomial, because integer solutions ti exist and can be found by
standard linear algebra (they need not be short).

We now verify the desired properties of S′. Observe that for i = 1, . . . ,m, we have A′s′i = Asi = 0
by assumption on S, and for i = 1, . . . , m̄, we have A′s′m+i = Ati + āi = 0 by construction. Thus
S′ ⊂ Λ⊥(A′). To check that S′ is indeed a basis, let x′ = x‖x̄ ∈ Λ⊥(A′) be arbitrary, where x ∈ Zm,
x̄ ∈ Zm̄. Then we have

0 = A′x′ = Ax + Āx̄ = Ax− (AT)x̄ = A(x−Tx̄) ∈ Znq .

Thus x − Tx̄ ∈ Λ⊥(A), so by assumption on S there exists z ∈ Zm such that Sz = x − Tx̄. Now let
z′ = z‖x̄ ∈ Zm′ . By construction of S′, we have

S′z′ = (Sz + Tx̄)‖x̄ = x‖x̄ = x′.

Because x′ ∈ Λ⊥(A′) was arbitrary, S′ is therefore a basis of Λ⊥(A′).
Finally, we confirm that ‖S̃′‖ = ‖S̃‖. For i = 1, . . . ,m, we clearly have ‖s̃′i‖ = ‖s̃i‖. Now because

S is full-rank, we have span(S) = span(e1, . . . , em) ⊆ Rm′ . Therefore for i = m + 1, . . . ,m′, we have
s̃′i = ei ∈ Rm′ , so ‖s̃′i‖ = 1 ≤ ‖s̃′1‖, and we are done.

3.4 Randomizing Control

Finally, we show how an arborist can randomize its control over a lattice, with a slight loss in quality. This
operation is typically needed for securely delegating control to another entity.

The randomized algorithm RandBasis(S, s) takes a basis S of some m-dimensional lattice Λ and a
parameter s ≥ ‖S̃‖ · ω(

√
log n), and outputs a new basis S′ of Λ, generated as follows.

1. For i = 1, . . . ,m:

(a) Choose v ← SampleD(S, s). If v is linearly independent of {v1, . . . ,vi−1}, then let vi = v
and go to the next value of i; otherwise, repeat this step.

2. Output S′ = ToBasis(V,S).

The following lemma follows immediately by Lemma 2.1 (regarding ToBasis) and the facts about discrete
Gaussians listed in Lemma 2.4.

Lemma 3.3. With overwhelming probability, S′ ← RandBasis(S, s) repeats Step 1a at most O(m2) times,
and ‖S̃′‖ ≤ s ·

√
m. Moreover, for any two bases S0,S1 of the same lattice and any s ≥ ‖S̃i‖ · ω(

√
log n)

for i = 0, 1, RandBasis(S0, s) and RandBasis(S1, s) are within negl(n) statistical distance.
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4 Signatures

Here we use bonsai tree principles to construct a signature scheme that is existentially unforgeable under
a static chosen-message attack (i.e., eu-scma-secure). As discussed in Section 2.2, this suffices (using
chameleon hashing) for the construction of a full eu-acma-secure scheme.

Our scheme involves a few parameters:

• dimensions m1,m2 = O(n lg q), and a bound L̃ = O(
√
n lg q) (all as per Proposition 3.1),

• a (hashed) message length k and a ‘total dimension’ m = m1 + (k + 1)m2, and

• a Gaussian parameter s = L̃ · ω(
√

log n).

The scheme SS is defined as follows.

• Gen: generate (via Proposition 3.1) A0 ∈ Zn×(m1+m2)
q that is (negligibly close to) uniform with a basis

S of Λ⊥(A0) such that ‖S̃‖ ≤ L̃. For each (b, j) ∈ {0, 1} × [k], generate uniform and independent
A(b)
j ∈ Zn×m2

q . Output vk = (A0, {A(b)
j }) and sk = (S, vk).

• Sign(sk, µ ∈ {0, 1}k): let Aµ = A0‖A(µ1)
1 ‖ · · · ‖A(µk)

k ∈ Zn×mq . Output v← DΛ⊥(Aµ),s, via

v← SampleD(ExtBasis(S,Aµ), s).

(In the negligibly rare event that v = 0 or ‖v‖ > s ·
√
m (Lemma 2.4), we may re-sample v.)

• Ver(vk, µ,v): let Aµ be as above. Accept if v 6= 0, ‖v‖ ≤ s ·
√
m, and v ∈ Λ⊥(Aµ); else, reject.

4.1 Efficient Implementation

The above signing algorithm is described in a way that is most convenient for the analysis, but it is not very
efficient: first it extends a dimension-m1 basis of Λ⊥(A0) into a dimension-m basis of Λ⊥(Aµ), and then
invokes the SampleD algorithm on the m-dimensional basis; note that this requires time at least quadratic in
m. Fortunately, the signing algorithm may be implemented much more efficiently, due to the special structure
of the extended basis and the implementation of SampleD from [GPV08].

Consider S′ = ExtBasis(S,Aµ). By the construction in Section 3.3, observe that for all i > j > m1+m2,
the projection of si in the direction of s̃j = ej is zero. In the iterative “nearest-plane” implementation of
SampleD, the coordinates vi for i > m1 +m2 are therefore independent and drawn from DZ,s. Thus there
is no need to compute ExtBasis(S,Aµ) at all, and the implementation of SampleD may be optimized to
work as follows: choose v← DΛ⊥(Aµ),s by sampling vi ← DZ,s independently for each i > m1 +m2, and
then choose the first m1 +m2 coordinates of v by sampling from a Gaussian over the appropriate coset of
Λ⊥(A0) to ensure that v ∈ Λ⊥(Aµ). Essentially, this optimization corresponds to computing the trapdoor
function from [GPV08] about k times in the forward direction, followed by one inversion operation.

4.2 Security

Theorem 4.1. There exists a PPT oracle algorithm (a reduction) S attacking the SISq,β problem for β =
s ·
√
m such that, for any adversary F mounting an eu-scma attack on SS that makes at most Q queries,

AdvSISq,β (SF ) ≥ Adveu-scma
SS (F)/(k ·Q)− negl(n).
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Proof. Let F be an adversary mounting an eu-scma attack on SS. We construct a reduction S attacking
SISq,β . The reduction S takes as input m′ = m1 + (2k + 1)m2 uniformly random and independent samples
from Znq in the form of a matrix A ∈ Zn×m′q , parsing A as

A = A0‖U(0)
1 ‖U

(1)
1 ‖ · · · ‖U

(0)
k ‖U

(1)
k

for matrices A0 = Zn×(m1+m2)
q and U(b)

i ∈ Zn×m2
q .

S simulates the static chosen-message attack to F as follows. First, S invokes F to receive Q messages
µ(1), . . . , µ(Q) ∈ {0, 1}k. (We may assume without loss of generality that F makes exactly Q queries.) Then
S computes the set of all strings p ∈ {0, 1}≤k having the property that p is a shortest string such that no
µ(j) has it as a prefix. Intuitively, each p corresponds to a maximal subtree of the bonsai tree that does not
contain any of the queried messages. This set may be computed efficiently via a breadth-first pruned search
of {0, 1}≤k, viewed as a binary tree. Namely, starting from a queue initialized to ε, repeat the following until
the queue is empty: remove the next string p from the queue and test whether it is the prefix of any µ(j); if
not, add p to the set, else if |p| < k, add p‖0, p‖1 ∈ {0, 1}≤k to the queue. Note that this algorithm runs in
polynomial time because the only strings ever placed in the queue are prefixes of µ(j), and hence there are at
most k ·Q strings in the set.

Next, S chooses some p from its set uniformly at random, letting t = |p|. It then provides an SS
verification key vk = (A0, {A(b)

j }) to F , generated as follows:

• Uncontrolled growth: for each i ∈ [t], let A(pi)
i = U(0)

i . For i = t + 1, . . . , k, and b ∈ {0, 1}, let
A(b)
i = U(b)

i .

• Controlled growth: for each i ∈ [t], generate A(1−pi)
i and basis Si such that ‖S̃i‖ ≤ L̃ by invoking

ExtLattice(A0‖A(p1)
1 ‖ · · · ‖A(pi−1)

i−1 ,m2).

S generates signatures for each queried message µ = µ(j) as follows: let i be the first position at which
µi 6= pi. Then S generates the signature v← DΛ⊥(Aµ),s as

v← SampleD(ExtBasis(Si,Aµ), s),

where Aµ is as in the signature scheme. (In the rare case that v = 0 or ‖v‖ > s ·
√
m, S can simply

re-sample v.)
Finally, if F produces a valid forgery (µ∗,v∗ 6= 0), then we have Aµ∗ · v∗ = 0 ∈ Znq for Aµ∗ as

defined in SS. First, S checks whether p is a prefix of µ∗. If not, S aborts; otherwise, note that Aµ∗ is the
concatenation of A0 and k blocks of the form U(b)

i . Therefore, S can generate a nonzero v ∈ Zm′ by suitably
arranging the entries of v∗ and padding with zero entries so that

Av = 0 ∈ Znq .

S outputs v as a solution to SIS.
We now analyze the reduction. First observe that conditioned on any choice of p, the verification key vk

given to F is negligibly close to uniform. Therefore, the choice of p is statistically hidden from F , so if F
produces a valid forgery, p is a prefix of µ∗ with probability at least 1/(k ·Q)− negl(n). In such a case, it
is immediate that ‖v‖ = ‖v∗‖ ≤ β, hence v is a valid solution to SIS, as desired. Finally, observe that the
signatures given to F are distributed exactly as in the real attack (up to negligible statistical distance), by
Lemma 2.4 and the fact that s ≥ ‖S̃i‖ · ω(

√
log n).
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5 Hierarchical ID-Based Encryption

5.1 Key Encapsulation Mechanism

For our HIBE schemes, it is convenient and more modular to abstract away the encryption and decryption
processes into a key-encapsulation mechanism (KEM). The following LWE-based KEM, which is based
on the idea of using a short lattice basis as the trapdoor for an injective one-way function, is now standard
(see [GPV08, Pei09]). The reader need not be concerned with the details in order to progress to the HIBE
schemes; it is enough simply to understand the KEM interface (i.e., the public/secret keys and ciphertext).

KEM is parameterized by the modulus q, dimension m, key length `, and a bound L̃ that determines
the error distribution χ used for encapsulation. As usual, all these parameters are functions of the LWE
dimension n, and are instantiated based on the particular context in which the KEM is used. KEM also uses
an algorithm called Invert, which recovers s ∈ Znq from Noisyχ(Ats), given A and a suitably short basis of
Λ⊥(A). See, e.g., [Pei09] for details on the implementation of Invert.

• Gen: generate (via Proposition 3.1) A ∈ Zn×mq that is (negligibly close to) uniform with a basis S
of Λ⊥(A) such that ‖S̃‖ ≤ L̃. Also generate U ∈ Zn×`q uniformly at random. Output public key
pk = (A,U) and secret key sk = (S, pk).

• Encaps(pk = (A,U)): choose key k← {0, 1}` and s← Znq . Output key k and ciphertext (b,p) ∈
Zmq × Z`q, where

b← Noisyχ(Ats) and p← Noisyχ(Uts + k · bq/2c).

• Decaps(sk, (b,p)): Let s ← Invert(S,A,b). Output the k ∈ {0, 1}` such that k · bq/2c is closest
(modulo q) to p−Uts ∈ Z`q.

We point out one nice property of KEM, which is convenient for the security proof of our BTE/HIBE
schemes: for any dimensions m ≤ m′ (and leaving all other parameters the same), the adversary’s view for
dimension m may be produced by taking a view for dimension m′, and truncating the values A ∈ Zn×m′q

and b ∈ Zm′q to their first m (out of m′) components.
The following lemma is standard from prior work.

Lemma 5.1 (Correctness and Security). Let q ≥ 2L̃
√
m and χ = Ψ̄α for 1/α ≥ L̃ · ω(

√
log n). Then

Decaps is correct with overwhelming probability over the randomness of Encaps. Moreover, there exists a
PPT oracle algorithm (a reduction) S attacking the LWEq,χ problem such that, for any adversaryA mounting
an ind-cpa attack on KEM,

AdvLWEq,χ(SA) ≥ Advind-cpa
KEM (A)− negl(n).

5.2 BTE and HIBE Schemes

Our main construction in this section is a binary tree encryption (BTE) scheme, which suffices for full
HIBE by hashing the components of the identities with a universal one-way or collision-resistant hash func-
tion [CHK07]. We mainly focus on the case of selective-identity, chosen-plaintext attacks, i.e., sid-ind-cpa
security.

The BTE scheme is parameterized by dimensions m1,m2 = O(n lg q) as per Proposition 3.1, as well as
a few quantities that are indexed by depth within the hierarchy. For an identity at depth i ≥ 0 (where i = 0
corresponds to the root),
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• m1 + (i+ 1)m2 is the dimension of a lattice associated with the identity;

• L̃i is an upper bound on the Gram-Schmidt lengths of its secret short basis;

• for i ≥ 1, si is the Gaussian parameter used to generate that secret basis, which must exceed L̃j ·
ω(
√

log n) for all j < i.

These parameters, along with the total depth d of the hierarchy (or more accurately, the maximum number
of delegations down any chain of authority), determine the modulus q and error distribution χ used in the
cryptosystem. We instantiate all the parameters after describing the scheme.

• Setup(d): Generate (via Proposition 3.1) A0 ∈ Zn×(m1+m2)
q that is (negligibly close to) uniform with

a basis S0 of Λ⊥(A0) such that ‖S̃‖ ≤ L̃0. For each (b, j) ∈ {0, 1} × [d], generate uniform and inde-
pendent A(b)

j ∈ Zn×m2
q . Choose U ∈ Zn×`q uniformly at random. Output mpk = (A0, {A(b)

j },U, d)
and msk = S0.

All the remaining algorithms implicitly take the master public key mpk as an input. For an identity
id ∈ {0, 1}∗ of length t = |id| ≤ d, we let Aid = A0‖A(id1)

1 ‖ · · · ‖A(idt)
t , and let pkid = (Aid,U)

denote the KEM public key associated with identity id.

• Extract(Sid, id′ = id‖īd): if t′ = |id′| > d, output ⊥. Else, let t = |id| and t̄ = |īd|, and choose

Sid′ ← RandBasis(ExtBasis(Sid,Aid′), st′).

(Note that st′ ≥ L̃t · ω(
√

log n) ≥ ‖S̃id‖ · ω(
√

log n), as required by RandBasis.)

Output skid′ = (Sid′ , pkid′).

• Encaps(id): output (κ, σ)← KEM.Encaps(pkid).

• Decaps(skid, σ): output κ← KEM.Decaps(skid, σ).

Instantiating the parameters. Suppose that BTE is used in a setting in which Extract(Sid, id′) is invoked
only on identities id′ whose lengths are a multiple of some k ≥ 1. For example, consider the two main
applications of [CHK07]: in the forward-secure encryption scheme we have k = 1, while in the generic
BTE-to-HIBE transformation k is the output length of some UOWHF.

We need only define si and L̃i for i that are multiples of k. Let

L̃i = si ·
√
m1 + (i+ 1)m2 = si ·O(

√
d · n lg q)

be the bound on the Gram-Schmidt lengths of the secret bases (and note that this bound is satisfied with
overwhelming probability by Lemma 2.4). Define si = L̃i−k · ω(

√
log n), and unwind the recurrence to

obtain
L̃t = L̃0 ·O(

√
d · n lg q)t/k · ω(

√
log n)t/k.

Finally, to ensure that the underlying KEM is complete (Lemma 5.1), we let q ≥ 2L̃d
√
m1 + (d+ 1)m2

and χ = Ψ̄α for 1/α = L̃d · ω(
√

log n). For any d = poly(n), invoking the worst-case to average-case
reduction for LWE yields an underlying approximation factor of Õ(n3/2 · (d ·

√
n)d/k).
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5.2.1 Variations

Anonymity. With a small modification, BTE may be made anonymous across all depths of the hierarchy.
That is, ciphertexts hide (computationally) the particular identities to which they are encrypted. The
modification is simply to extend the b component of the KEM ciphertext to have length exactly m1 + (d+
1)m2, by padding it with enough uniformly random and independent elements of Zq. (The decryption
algorithm simply ignores the padding.) Anonymity then follows immediately by the pseudorandomness of
the LWE distribution.

Shorter public key in the random oracle model. In the random oracle model, the {A(b)
j } component of

the master public key may be omitted, because each Aid can instead be constructed by querying the random
oracle on, say, each prefix of the identity id. Moreover, the identity hierarchy need not be a binary tree, but
may have arbitrary degree. The security proof for this variant is a straightforward adaptation of the one given
below.

Adaptive-identity security. Our proof of security may be adapted to the case of adaptive-identity attacks
(aid-ind-cpa), via a reduction that loses a factor of about 2−d/d in its advantage relative to the adversary.
Techniques such as those found in [BB04b, Wat05] may be applicable to improve the tightness of the
reduction; we leave this to future work.

Chosen-ciphertext security. Security under chosen-ciphertext attack (sid-ind-cca or aid-ind-cca) follows
directly by a transformation of [BCHK07], from ind-cpa-secure HIBE for depth d + 1 to ind-cca-secure
HIBE for depth d.

5.3 Security

Theorem 5.2 (Security of BTE). Let atk = sid-ind-cpa. There exists a PPT oracle algorithm (a reduction)
S attacking KEM (instantiated with dimension m = m1 + (d+ 1)m2 and q, χ as in BTE) such that, for any
adversary A mounting an atk attack on BTE,

AdvKEM(SA) ≥ Advatk
BTE(A)− negl(n).

Proof of Theorem 5.2. Let A be an adversary mounting a sid-ind-cpa-attack on BTE. We construct a re-
duction S attacking KEM. It is given a uniformly random public key pk = (A ∈ Zn×mq ,U ∈ Zn×`q ), an
encapculation (b,p) ∈ Zmq × Z`q, and a key k ∈ {0, 1}` which either is encapsulated by (b,p) or is uniform
and independent; the goal of S is to determine which is the case.
S simulates the (selective-identity) attack on HIBE to A as follows. First, S invokes A on 1d to receive

its challenge identity id∗ of length t∗ = |id∗| ∈ [d]. Then S produces a master public key mpk, encapsulated
key, and some secret internal state as follows:

• Parsing the KEM inputs. Parse A as A = A0‖A1‖ · · · ‖Ad, where A0 ∈ Zn×(m1+m2)
q and Ai ∈

Zn×m2
q for all i ∈ [d]. Similarly, truncate b to b∗ ∈ Zm1+(t∗+1)m2

q .

• Undirected growth. For each i ∈ [t∗], let A(id∗i )
i = Ai.
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• Controlled growth. For each i ∈ [t∗], generate A(1−id∗i )
i ∈ Zn×m2

q and basis Ti by invoking

ExtLattice(A0‖ · · · ‖Ai−1,m2). If t∗ < d, for each b ∈ {0, 1} generate A(b)
t∗+1 and basis T(b)

t∗+1

by two independent invocations of ExtLattice(A0‖ · · · ‖At∗ ,m2). For each i > t∗ + 1 (if any) and
b ∈ {0, 1}, generate A(b)

i ∈ Zn×m2
q uniformly at random.

S gives to A the master public key mpk = (A0, {A(b)
j },U, d), the encapsulation (b∗,p), and the key k.

Then S answers each secret-key query on an identity id that is not a prefix of (or equal to) id∗ as follows:

• If t = |id| ≤ t∗, then let i ≥ 1 be the first position at which idi 6= id∗i . Answer the query as

Sid ← RandBasis(ExtBasis(Ti,Aid), st).

• If t = |id| > t∗, answer the query as

Sid ← RandBasis(ExtBasis(T(idt∗+1)
t∗+1 ,Aid), st).

Finally, S outputs whatever bit A outputs.
We now analyze the reduction. First, observe that the master public key given to A is negligibly close

to uniform (hence properly distributed), by hypothesis on KEM and by Proposition 3.1. Next, one can
check that secret-key queries are distributed as in the real attack (to within negl(n) statistical distance), by
Lemma 3.3 (note that the Gram-Schmidt vectors of each basis Ti,T

(b)
t∗+1 are sufficiently short to invoke

RandBasis). Finally, the encapsulation (b∗,p) (for identity id∗) and key k are distributed as in the real attack,
by the truncation property of KEM. Therefore, S’s overall advantage is within negl(n) of A’s advantage, as
desired.
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