
MAC Precomputation

with Applications to Secure Memory∗

Juan A. Garay† Vladimir Kolesnikov‡ Rae McLellan‡

Abstract

We present ShMAC (Shallow MAC), a fixed input length message authentication
code that performs most of the computation prior to the availability of the message.
Specifically, ShMAC’s message-dependent computation is much faster and smaller in
hardware than the evaluation of a pseudorandom permutation (PRP), and can be im-
plemented by a small shallow circuit, while its precomputation consists of one PRP
evaluation.

A main building block for ShMAC is the notion of strong differential uniformity
(SDU), which we introduce, and which may be of independent interest. We show an
efficient SDU construction built from previously considered differentially uniform func-
tions.

Our motivating application is a system architecture where a hardware-secured pro-
cessor uses memory controlled by an adversary. We also present in technical detail
a novel, efficient approach to encrypting and authenticating memory and discuss the
associated trade-offs, while paying special attention to minimizing hardware costs and
the reduction of DRAM latency.

Key words: Message authentication code (MAC), MAC precomputation, System on a
Chip, tamper-resistant hardware.

1 Introduction

With the highly publicized attacks on consumer computer products, such as the iPhone and
gaming consoles (see, e.g., [12] and references therein), security of computing has become
a topic of widespread commercial interest. Broadly speaking, security of computing can
be divided into two main areas — hardware and software security. Software security is
concerned with integrity of the software and whether it can be suborned to yield control or
reveal sensitive information to an outside attacker. Hardware security, on the other hand,

∗An abridged version of this paper appears in the proceedings of the 12th Information Security Conference
– ISC 2009 [17].

†Yahoo Labs,701 First Ave., Sunnyvale, CA 94089. E-mail: garay@yahoo-inc.com. Work partly done
while the author was at Bell Labs.

‡Bell Labs, 600 Mountain Ave., Murray Hill, NJ 07974,USA. E-mail: {kolesnikov,rae}@research.
bell-labs.com.

1

assumes that the adversary has full physical access to the device and may use oscilloscopes
and logic analyzers to observe and compromise the computing system. This paper focuses
on ways to efficiently provide hardware security. For that purpose, we present a new MAC
technique, and discuss its application in securing memory.

Recent VLSI advances have provided strongly tamper-resistant hardware computing
platforms by integrating complete Systems on a Chip, through SoC technology. It is con-
sidered infeasible to all but government-scale attackers to perform meaningful analysis of
the internals of production SoC. Ideally, we would store and execute the entire computa-
tion on a SoC, eliminate external DRAM (Dynamic Random Access Memory), and encrypt
all off-chip communication. However, this is not possible in most practical scenarios, due
to prohibitive costs of such large SoC. In this paper we consider the question of how to
encrypt off-chip DRAM transactions with minimal performance degradation and cost in-
crease. Note that such transactions occur much more frequently than network messages and
have much more stringent latency requirements. Since processor performance is so tightly
dependent on off-chip memory latency, speeding up the encryption/authentication process
is of primary importance.

For many on-chip bus protocols (e.g., [3, 21]) the address is available early in the bus
transaction between the processor and memory controller, while the larger-size data follows
later and is composed of multiple transfers of sub-units. Such serialization of data trans-
fers in on-chip buses is an engineering trade-off between performance and the number of
wires required for a wider bus. Therefore, an encryption/authentication algorithm which
can postpone data-dependent computation, can start earlier in the memory transaction
and potentially reduce the performance impact of an encrypted memory system. This pa-
per describes an efficient way to encrypt off-chip memory transactions and provide data
authentication that takes advantage of the early arrival of the memory address.

1.1 Our Contributions

Our primary contribution is a new fixed input length Message Authentication Code (MAC)
construction which allows the bulk of the MAC computation to be performed before the
message m is available. The computation dependent on m is the evaluation of (a new
variant of) an ϵ-differentially uniform (ϵ-DU) function [30, 29] (cf. Section 2) and an XOR
operation, which is much simpler and faster than a typical MAC implementation via a block
cipher. In envisioned instantiations, MAC precomputation is a PRP (e.g., a full 10-round
AES) evaluation, and the remaining computation (dependent on m) is an evaluation of 2-
or 4-round AES.

As a second contribution, we present a secure DRAM architecture, discussing at length
security/efficiency trade-offs and underlying design choices.

1.2 Related Work

As our work consists of two relatively independent (but complementary) contributions –
a cryptographic construction and a secure DRAM design – we separate the discussions of
related work accordingly below. First, we discuss Wegman-Carter [37] and related construc-
tions, followed by an overview of previous work on secure DRAM.

2

On precomputation in Fixed Input Length MACs. Some details and applications
of the specific property of MAC precomputation have been discussed in the literature (e.g.,
[25]), although, to our knowledge, not in the severely restricted environments (with respect
to both data-dependent computation and precomputation time and chip surface area) that
we consider. In this section we overview previous work on message authentication, with
emphasis on precomputation. We discuss the relationships between the building blocks,
clarify the terminology and review some efficient constructions.

We are mainly interested in validating 256-bit data blocks. One natural approach to
achieve this is, to simply encrypt with a blockcipher, such as AES, the data concatenated
with the address, and possibly with some redundancy. However, this solution is unsatisfac-
tory since it does not allow for precomputation, and, further, in RAM-validation scenarios,
requires both encryption and decryption hardware.

Before discussing previous work in more detail, we recall some definitions. Let H :
K ×X → Y be a function family, indexed by the key k ∈ K. A Universal Hash Function
(UHF), or universal2, H guarantees that ∀x1 ̸= x2 ∈ X,Prk[Hk(x1) = Hk(x2)] ≤ 1

|Y | .

That is, no pair of preimages is mapped into the same value by more than one |Y |-th of
the functions. A stronger notion of Strongly Universal (SU) H requires that ∀x1 ̸= x2 ∈
X, ∀y1, y2 ∈ Y,Prk[Hk(x1) = y1∧Hk(x2) = y2] =

1
|Y |2 . In other words, Hk maps all distinct

x1, x2 independently and uniformly.
One of the most celebrated MAC schemes, and also one that naturally allows precom-

putation, was proposed by Wegman and Carter [37]. Extending the authors’ previous work
on UHF families, in [37] they introduced the notion of SU hash families, and showed that
MACk,r(m) = Hk(m)⊕ r is an unconditionally secure MAC, where H is an SU function, r
is a one-time pad, and k is a random index into the family H.

Stinson [32] formalized the notion of ϵ-Almost SU (ASU), a more general class of func-
tions usable with the Wegman-Carter MAC construction. As the name suggests, ASU
functions simply allow less strict bounds on the probability guaranteed by SU. Stinson also
showed how to combine a (faster) UHF with an ASU function to obtain a faster ASU func-
tion. Brassard [7] pointed out that a pseudorandom generator could be used in place of
one-time pad. Krawczyk [24] noticed that ϵ-Almost XOR Universal (AXU) function fami-
lies, weaker than ASU’s, are sufficient for Wegman-Carter MAC. (Recall that H is ϵ-AXU,
if ∀x1 ̸= x2 ∈ X, ∀c ∈ Y,Prk[Hk(x1) ⊕ Hk(x2) = c] ≤ ϵ. Krawczyk called this notion
otp-secure, but AXU is the more frequently used term today.)

Following these fundamental results, a lot of work went into the design of efficient univer-
sal, almost universal(AU), ASU and AXU functions. Most of the research concentrated on
software-efficient functions, i.e., those that take advantage of CPU’s instruction sets which,
in particular, include multiplication. Unfortunately, algebraic solutions are not adequate
for our setting, due to the latency and cost of hardware implementation of the multiplica-
tion operation. In particular, Galois field multiplication of two q-bit numbers requires the
evaluation of roughly O(q2) gates. While being well-suited for time-area trade-offs [31, 27],
allowing, for example one-cycle evaluation with an O(q2) surface area, or m-cycle evaluation
with an O(m) area, this approach is less appealing than what we propose in this work. (See
our comparison with [39], presented in related work on secure memory below.)

In fact, acceptable solutions would only be those that reuse the circuitry of the pseudo-
random function (PRF) to generate the pad r and to evaluate H. Our solution does just

3

that. Alternatively, a MAC scheme with a similar performance can be extracted from a
large volume of previous work. Several papers contribute pieces of the total solution, but, to
our knowledge, none explicitly states it; further, several sources use conflicting terminology.

Firstly, we point out that neither UHF nor AU functions are sufficient for Wegman-
Carter MAC security. This is because they do not guarantee that an offset in the argument
will not result in an unpredictable offset in the value of Hk. For example, the identity
function is a UHF, but clearly a Wegman-Carter MAC based on it is easily forged. We
note, however, that UHF and AU are often used in MACs for efficiency reasons, but only
as part of the function H; a stronger ASU component is additionally required in H [32].
Further, some sources (e.g., [38]) “blend” the notions of UHF and SU, in fact defining UHF
as SU.

Therefore, although it was previously observed, in [29], for example, that it is possible
to obtain AU functions from four-round AES, such results are not applicable for our uses
of Wegman-Carter MAC. To our knowledge, the only explicit AXU construction from an
ϵ-DU function appeared in [22]. In particular, it uses AXU derived from a 4-round AES in
the Wegman-Carter MAC. That MAC construction, however ([22], Algorithm 1), generates
fresh keys for H and the pad r for each MAC evaluation, which is an unacceptable overhead
for our setting1. Further, the work performed after arrival of the message is still greater
than ours for an equivalent security guarantee.

Related work on secure memory. There is a vast amount of work on securing memory.
One direction uses smart cards or other separate adjunct chips such as TPMs (Trusted
Platform Module) [35]. These methods are usually limited; for example, they do not protect
intellectual property contained in the software running on an (insecure) host, but only secure
execution of small parts of it by running it on the smart card/TPM. An interesting use of a
smart card processor was proposed in the XµP system [8]. XµP allows the ROM-less smart
card to execute signed code, using the terminal as a (cheap) storage. [8] describes ways of
securing the computation, including a public key and symmetric key-based authentication of
the executing code. At a high level, the symmetric-key case resembles our setting; however,
XµP is not as severely restricted, uses computationally expensive hash functions, and does
not attempt MAC precomputation.

Another system is XOM [26], which provides architectural support for software licensing
and allows code to be authenticated and run even under untrusted operating systems.
XOM requires a significant modification of the processor’s instruction cache, the addition
of special instructions, and operating system (OS) support. Our system is more general, is
independent of the instruction set, and supports any processor architecture.

Closer to our setting, securing memory in a SoC system was announced by IBM [19]
and considered academically (e.g., AEGIS [34, 33], CryptoPage [13], TEC-Tree [15]). These
systems validate memory by maintaining a hash tree of the entire DRAM, each transaction
requiring 20-30 DRAM accesses and hash evaluations. Caching part of the tree somewhat
reduces the performance impact [18] at the cost of on-chip resources. Solutions to the
similar problem of “online memory checking” (see [6, 14] and references therein), where the

1It might be the case – analysis needed – that by applying ideas used in our construction, the keys of H,
(but not r) could be reused, which would bring the resource requirements of [22] roughly down to those in
our proposed construction.

4

checker (processor) ensures (only) the integrity of adversarially controlled storage (RAM),
also incur a logarithmic overhead. Our MAC is an order of magnitude faster (but with
weaker replay protection). We believe such compromise is well suited for many industrial
applications.

Another important development in this field in recent years is the announcement by Intel
of its plan to introduce Software Guard Extensions (SGX) in their mass-produced CPUs.
SGX [1] is a set of instructions and mechanisms for memory access and protection, which
is intended to allow private “enclaves” within the CPU core. A program can be loaded into
an enclave, and executed with a guarantee that even a hypervisor/administrator would not
be able to access any of its data. In particular, the enclave’s data is written to RAM in
encrypted and authenticated form. To the best of our knowledge, at the time of this writing
there is no (published) full specification of how the data is encrypted/authenticated. Intel’s
“Software Guard Extensions Programming Reference” [2] seems to indicate that the basic
encryption block is a page, and that SGX uses standard AES to encrypt and authenticate
the data. Our work is different in that SGX is a system approach built from large blocks,
whereas we focus on optimizing a specific building block, low-latency authentication, which
is not addressed by SGX.

At a high level, the approach taken by Yan et al. [39] is similar to ours, but uses
instead GF(2128) multiplication for the authentication of the plaintext data, as part of the
GCM (Galois/Counter Mode) mode of operation they employ. As noted above, each such
multiplication requires O(q2) = O(1282) gates (or operations). This is significantly greater
than the cost of 2 or 4 rounds of AES used in our solution (which – using an unoptimized
implementation – only needs approximately 6K and 12K gates, respectively). A low-latency
implementation of GF(2128) multiplication comparable to 2-round AES latency would have
a surface area quadratic in q, which is unacceptable in the settings we consider.

Other systems such as the one presented in [36], PE-ICE [16] or TEC-Tree [15], forgo
Merkle trees but require significant on-chip storage for nonce or checksum values updated on
each memory write. While the amount of on-chip storage can be as small as a byte for each
encrypted off-chip storage block, this method does not scale to support the desired gigabytes
of off-chip DRAM. Further, it can be shown that “natural” CRC (Cyclic Redundancy Code)-
based integrity checking mechanisms (e.g., [36]) have critical vulnerabilities (see Section 5).

Given these overheads, as a design decision we choose to forgo replay-attack protection,
but instead mitigate the threat by changing the encryption keys at reasonably frequent
intervals. In encryption and authentication, we focus on efficiency and minimal additional
on-chip resources. In our system, authenticating a memory access takes slightly more than
a PRP evaluation, and is effectively further reduced by the precomputation of the MAC.

1.3 Organization of the Paper

In Section 2 we introduce the necessary notation, definitions and building blocks that we
will be using. Section 3 is the cryptographic core of this work. We first discuss the intuition
behind, and then formally present our MAC construction — ShMAC, together with an
evaluation of its performance and instantiation considerations. In Section 4 we present the
system aspects of our secure memory architecture. In particular, we discuss the assumptions,
security objectives, and restrictions of our system, and its use of ShMAC. We conclude the
paper with Section 5, where we analyze vulnerabilities of a proposed system attempting to

5

achieve low latency using CRC-based integrity checking.

2 Preliminaries

We denote the security parameter by k, keys by ℓ ∈ {0, 1}k, and a pseudorandom permu-
tation by PRP. By x ∈R X we denote uniformly random sampling of variable x from the
distribution X.The constructions in this work assume the existence of PRPs. For simplicity
of notation and without loss of generality, we consider ciphers and related objects, where
the key length is equal to the block length. Of course, this need not be always the case,
and our analysis would need to be adjusted for the extra parameter.

2.1 Message Authentication Code (MAC)

A MAC is a tool for ensuring data integrity. It is most commonly used in authenticating
communication, and we use it in a similar setting. In our setting, the data is stored in an
untrusted location and MAC is used to ensure its integrity.

In a traditional MAC, the tag generation function is stateless and deterministic, and
verification is done by applying the tagging function to compute the correct tag of the given
message, and comparing it with the candidate tag. We need a slightly more general notion,
a nonce-based MAC, and which allows the generation function to use nonces (see [5]). More
formally:

Definition 1 A nonce-based message authentication code is a stateless algorithm MAC :
{0, 1}k × {0, 1}k × {0, 1}∗ → TAG, which on input key ℓ ∈ {0, 1}k, nonce r ∈ {0, 1}k and
message m ∈ {0, 1}∗, outputs a tag t ∈ TAG. (Here TAG is the domain of tags, which
depends on k.) We will sometimes write MAC ℓ,r(m) to mean MAC (ℓ, r,m); we will also
sometimes omit r and just write MAC ℓ(m) for simplicity.

Now let ℓ ∈R {0, 1}k, and A be a nonce-respecting polynomial-time adversary with access
to oracle O(r,m) = MAC ℓ,r(m). A outputs a message m′ and its alleged signature (i.e., a
nonce-tag pair) τ ′ = (r′, t′), subject to the condition that it never received t′ from O(r′,m′).
We say that MAC is secure if for every such A, Pr[MAC ℓ,r′(m

′) = t′] < 1/kc for every c
and sufficiently large k.

In the above definition, by “nonce-respecting adversary” we mean an adversary who never
queries the MAC oracle with the same nonce twice. We give A the freedom to choose his
nonces at will with the single above restriction. Throughout the paper, all our adversaries
are nonce-respecting.

We remark that, although we define MAC in its commonly encountered general form,
in our application we will use the fixed-length variant of this definition, and specifically
for messages of length k, i.e., m ∈ {0, 1}k rather than m ∈ {0, 1}∗. Further, it will be
convenient for us to use keys longer than k bits, and thus we allow ℓ ∈ {0, 1}ck, where c is
a small constant (e.g., c = 2).

We note that Definition 1 imposes a strong unforgeability property [4], which enforces
that A cannot create new valid tags on the old (i.e., already tagged) messages. In contrast,
“regular” message authentication schemes often do not consider a forgery a valid message-
signature pair (m, τ ′) when the oracle was queried on m and returned τ ̸= τ ′. In our

6

application, however, strong unforgeability is essential. We note that, as a side effect, strong
unforgeability allows us to avoid the introduction and discussion of verification oracles in
the definition of MAC. (See [4] for further discussion on this topic.)

We remark that, in practice, MAC schemes are built directly from PRPs. Similarly
to PRPs, practical MAC schemes are not defined for all k, but rather, for some fixed but
sufficiently large k. Our MAC construction will follow the latter paradigm, but we will
perform the analysis in the asymptotic setting.

2.2 ϵ-Differential Uniformity and Properties of AES Rounds

A main building block for our MAC construction is Strongly Differentially Uniform (SDU)
functions, introduced in Section 3.2. An SDU function family is a stronger version of a
Differentially Uniform (DU) family, which is widely used in block cipher design and which
we now present as background.

For our application we will use the sub-class of keyed ϵ-DU permutations, due to their
efficiency. Therefore, for simplicity, we do not discuss here ϵ-DU functions in their full
generality. However, we note that unkeyed permutations or functions [30] could also be
used in our constructions, and our analysis (appropriately modified for indices, etc.) equally
applies.

Let G : {0, 1}k ×{0, 1}k → {0, 1}k be a keyed permutation family. Let ∆x,∆y ∈ {0, 1}k
be fixed and let X ∈ {0, 1}k be a uniformly distributed random variable. Let Gℓ ∈ G.
(In the sequel, we may sometimes omit index ℓ and write G ∈ G, when ℓ is clear from
the context or where it does not play a role.) The differential probability DP(∆x,∆y, ℓ) is
defined as

DP(∆x,∆y, ℓ) = Pr
X
[Gℓ(X)⊕Gℓ(X ⊕∆x) = ∆y]. (1)

Here ∆x and ∆y are viewed as input/output differences. The expected differential proba-
bility EDP(∆x,∆y) is the expectation of DP (∆x,∆y, ℓ), over all keys ℓ. We are interested
in the maximum EDP (MEDP):

MEDP(G) = max∆x,∆y∈{0,1}k\0EDP(∆x,∆y). (2)

Informally, a small MEDP value corresponds to good bit mixing by G — indeed, small
MEDP means that any change in the (randomly chosen) input of the cipher results in an
unpredictable output. However, small MEDP does not necessarily imply “security under
multiple queries,” since the MEDP experiment is defined over all keys ℓ.

Definition 2 We say that a permutation family G as defined above is ϵ-Differentially Uni-
form (ϵ-DU), if MEDP(G) ≤ ϵ.

It is well known [23, 11] that the MEDP of two-round AES (AES2) is at most 1.6 ·2−28,
and the MEDP of four-round AES (AES4) is at most 1.8 ·2−110. Thus, AES2 is a 1.6 ·2−28-
DU permutation, and AES4 is a 1.8 · 2−110-DU permutation. We note that the analysis
of MEDP is usually performed with respect to independently chosen random round keys,
and then it is argued that the result applies to AES round keys derived from AES key. In
our main application we will use independent round keys for performance reasons. This
increases (doubles or quadruples) the effective size of the key, but it is not a problem as
there is only a single key in the entire system.

7

3 ShMAC: MAC with Precomputation

In this section we present Shallow MAC (ShMAC), a MAC scheme which takes advantage of
precomputation. The required precomputation essentially consists of one PRP evaluation,
while the message-dependent portion is a small shallow circuit, which can be evaluated
in a fraction of the time required for a PRP evaluation. (As a bonus, in our envisioned
instantiation, precomputation can share hardware gates with the rest of MAC computation.
This is a critical advantage in cases where chip area is restricted, as it is in typical cost-
oriented FPGA architectures.)

Recall that we require a low-latency MAC scheme, simultaneously “cheap” to implement
in hardware, and faster than the evaluation of a PRP (e.g., AES) or a hash function. This
requirement precludes many standard MAC solutions, such as AES-based, which require
availability of the message at the beginning of the computation. (To be concrete about the
involved latencies, recall that AES requires the sequential evaluation of at least 10 rounds2.
Further, many (but not all) Universal Hash Function (UHF)-based constructions require
expensive group arithmetic and additional hardware, and thus are unacceptable in this
setting. See Section 1.2 for more details.)

However, as also discussed in Section 1, in many systems the address of the memory
transaction arrives before the data, and thus the hardware MAC unit is idle waiting for
the data. We explore the possibility of using these idle cycles to perform precomputation to
speed up MAC generation.

3.1 The Intuition behind ShMAC

An ϵ-DU permutation family G (e.g., 2-round AES), an object with much weaker security
properties than a PRP, can in principle be the core of a MAC, with appropriate pre- and
post-computation. Indeed, G ∈R G provides good bit mixing, but only on random inputs.
We satisfy this by using (nonce-based new and secret) precomputed randomness to mask
the data d prior to each application of G. This masking of the inputs additionally prevents
adversaryA from collecting any information on (the key of)G, even ifA sees MAC evaluated
on messages of his choice (i.e., queries the MAC oracle adaptively).

Note that even though A has no knowledge of the random mask maskr derived from
nonce r, he can attempt a forgery using the same r (and thus the same maskr). The output
unpredictability guarantees of DU functions are too weak to protect against this attack,
since in our scenario A knows G(d⊕maskr)

3. We strengthen the notion of DU to preserve
its guarantees even after one query to G under each possible mask maskr – see Definition
3 below. In terms of implementation, it turns out that masking the output of G with
fixed secret randomness (which can be viewed as part of G’s key) is sufficient to satisfy the
stronger requirements, and results in a secure MAC.

2For our application, fewer rounds (e.g., 8) would provide an adequate level of security, because the keys
are refreshed frequently, and A would only have on the order of seconds or minutes to “crack” the MAC.

3It is easy to see that if G is unkeyed, A can easily construct a forgery.

8

3.2 ϵ-Strongly Differentially Uniform Functions

In this section we introduce the notion of Strong Differential Uniformity (SDU), discuss its
relationship with DU, and present an efficient construction. The new notion is a natural
building block in MAC constructions, including ours, and may have applications in other
areas. For generality, in our notion of ϵ-Strongly Differentially Uniform (ϵ-SDU) permuta-
tions, we allow ϵ to be a function of the security parameter k. At the same time, we perform
concrete analysis of the resulting constructions.

Definition 3 Let G : {0, 1}k×{0, 1}k → {0, 1}k be a permutation family indexed by security
parameter k, and A be a computationally unbounded Turing machine (TM). Consider the
following experiment SDUA,G(k):

1. G ← G is selected at random by choosing the key. Further, a random R ∈ {0, 1}k is
chosen.

2. A provides d, and receives G(d⊕R). A outputs ∆x,∆y ∈ {0, 1}k \ 0.
dj ⊕Rj)⊕∆y = G(dj ⊕Rj ⊕∆x), and 0 otherwise.

3. The output of the experiment is defined to be 1 if G(d ⊕ R) ⊕∆y = G(d ⊕ R ⊕∆x),
and 0 otherwise.

We say that G is ϵ(k)-Strongly Differentially Uniform (ϵ-SDU for short), if for all A,
Pr[SDUA,G(k) = 1] ≤ ϵ(k), where the probability is taken over the random choices used
in the experiment.

It is easy to see how the ϵ-SDU notion is derived from ϵ-DU’s. Indeed, Definition 2
can be cast asymptotically and in game style, resulting in exactly Definition 3, with the
exception that in the corresponding experiment DUA,G(k), A is not given G(d ⊕ R). (We
have omitted this intermediate definition for conciseness.) Note that the notion of ϵ-SDU
is strictly stronger than that of ϵ-DU. Indeed, while unkeyed ϵ-DU functions exist [30],
unkeyed ϵ-SDU functions don’t. (This is because ∀∆x, an ϵ-SDU A can output a winning
∆y since he can invert the received G(d⊕Rj).)

We now show how to construct an efficient ϵ-SDU permutation from any ϵ-DU permu-
tation, such as AES, at additional negligible cost. We stress that this reduction is perfectly
tight, and preserves ϵ exactly.

Lemma 1 Let G′ be a keyed (or unkeyed) ϵ-DU permutation family. Let k be the length of
the output of G′ ∈ G′. Let G = {G = G′ ⊕ ℓ1|G′ ∈ G′, ℓ1 ∈ {0, 1}k} be a family additionally
keyed by uniformly chosen ℓ1 ∈R {0, 1}k. Then G is an ϵ-SDU permutation family, for the
same ϵ.

We first present a brief intuition. Masking the output of G′ with the (random) key
ensures that a distinguisher does not learn anything from the output, and hence the under-
lying ϵ-DU assumption is not violated. At the same time, the randomness of the argument
of G′, combined with the fact that G′ is a permutation, ensures that this constant key is not
correlated among executions. We note that the output of G is random on random inputs.
Hence the ϵ-SDU advantage can be directly translated into the ϵ-DU advantage.
Proof. First, clearly, G is a permutation family iff G′ is a permutation. We now prove
security properties. Suppose G is not ϵ-SDU. We show that then G′ is not ϵ-DU. Let

9

SDUA,G=G′⊕ℓ1,R,ℓ1(k) be an instance of ϵ-SDU experiment, and DUA′,G′,R(k) be its corre-
sponding ϵ-DU instance. Let A be an ϵ-SDU adversary. We construct A’ who, whenever A
wins in SDUA,G(k), wins a corresponding ϵ-DU instance. Clearly, such A’ wins at least as
often as A (i.e. with probability greater than ϵ), and thus G′ is not ϵ-DU.
A’ begins by running A and receiving d, in response to which A’ chooses r′ ∈R {0, 1}k

and gives r′ to A. When A outputs (∆x,∆y), A’ outputs d,∆x,∆y.
Since Gℓ1 = G′ ⊕ ℓ1, if A wins, G′(d ⊕ Ri) ⊕ ℓ1 = G′(d ⊕ R ⊕ ∆x) ⊕ ℓ1 ⊕ ∆y. Then,

by canceling ℓ1, it is easy to see that d,∆x,∆y output by A’ satisfy the DP condition of
DUA′,G′,R(k), and thus A’ wins.

3.3 ShMAC Construction

Let d be a data block, and r ∈ {0, 1}k be a nonce; in practice r may be a counter or chosen
randomly for each MAC evaluation. Let G be a ϵ-SDU permutation family (Definition 3).
negligible in k. Let G be a random member of G, selected by randomly choosing the key
ℓ. Let F : {0, 1}k → {0, 1}k be a function chosen at random from the domain of all
functions with the above domain and range, and unknown to the adversary; in practice F
is implemented by a PRF, such as AES.

Construction 1 Let F,G, r, d be as above. Shallow MAC is the algorithm:

ShMACℓ(r, d) = (r,G(d⊕ F (r))) (3)

Theorem 1 Let G be a ϵ-SDU permutation family, and let G be a random member of G,
and F, r, d be as above. Then Construction 1 is a secure nonce-based MAC, with probability
of forgery p = max{2−k, ϵ}.

Note that because this is a nonce-based MAC and only one query per nonce is allowed,
we do not consider the probability as a function of the number of queries. It will be easy
to see from the proof that, when queried on different nonces, the probability of forgery is
the same for each query.

Restating Theorem 1 in asymptotic terms, we obtain:

Theorem 2 Let G be a ϵ-SDU permutation family, where ϵ = ϵ(k) is negligible in k. Let G
be a random member of G, and F, r, d be as above. Construction 1 is a secure nonce-based
MAC as defined in Definition 1.

In the theorems above, we consider F to be a randomly chosen function. When F is
pseudorandom, the theorems’ claims should be amended accordingly.

For clarity, we now explicitly describe the keying material used in ShMAC for the
concrete case where G is 2-round AES (4-round AES is analogous). G is keyed with a
regular 128-bit AES key, which we, for performance reasons, expand into two round keys.
Further, our ϵ-SDU construction requires a random padding of the function output, which
is part of the ShMAC key. Hence, another 128-bit key is needed for that purpose.

In order to simplify the reductions in the proof of our main theorem, we use a slightly
different formulation of ϵ-SDU. Firstly, we observe that allowing A to obtain G(di ⊕ Ri)

10

in Step 2 of Definition 3 for a number of di values does not change the ϵ-SDU notion, as
long as a new random Ri is used each time. Indeed, because G is a permutation, and Ri is
random, G(di⊕Ri) is just a random value, and this does not help A in generating ∆x,∆y.

Further, in Construction 1, we use a PRF as a source of indexed secret fresh randomness
for each evaluation of MAC. Instead of Ri, we offset di with a randomly chosen secret
function F , evaluated at a point i chosen by A. We restrict A such that the same i cannot
be used more than once. It is easy to see that this modification is also purely cosmetic, and
does not affect the notion of ϵ-SDU.

For clarity, we next include the amended definition, including both modifications.

Definition 4 (Alternate ϵ-SDU definition) Let G : {0, 1}k × {0, 1}k → {0, 1}k be a
permutation family indexed by security parameter k, and A be a computationally unbounded
Turing machine. Consider the following experiment SDUA,G(k):

1. G ← G is selected at random by choosing the key. Further, a function F : {0, 1}k →
{0, 1}k is chosen at random from the domain of all functions with the same domain
and range.

2. A provides a pair (i, di), and receives G(di ⊕ F (i)). A repeats this step as long as
needed, with the restriction that he cannot submit the same i more than once.

3. A outputs j, ∆x,∆y ∈ {0, 1}k \ 0.
4. The output of the experiment is defined to be 1 if G(dj⊕F (j))⊕∆y = G(dj⊕F (j)⊕∆x),

and 0 otherwise.

We say that G is ϵ(k)-Strongly Differentially Uniform (ϵ-SDU for short), if for all A,
Pr[SDUA,G(k) = 1] ≤ ϵ(k), where the probability is taken over the random choices used
in the experiment.

Proof. (Theorem 1). We now prove Theorem 1 by showing that a successful forgery for
ShMAC implies an experiment-win of the SDU game of Definition 4. Let A be such a
ShMAC forger, and d′, τ ′ = (r′, t′) the forgery produced by A.

First, suppose A never queried the MAC oracle O(r′, d) = ShMAC(r′, d) with the nonce
r′. Then, such A has only negligible in k probability of forging the MAC (if F is pseudo-
random, A must be polynomial-time). More specifically, this probability is equal to 2−k

for a truly random function F , and is correspondingly close to that for pseudo-random F .
Indeed, since F is a random function, F (r′) is random to A. As t′ = G(d⊕F (r′)) would be
the value of a permutation of a random point, it must also look random to A, and thus A
cannot compute and output it other than with probability 2−k. More specifically, A cannot
compute it better (noticeably better, if F pseudo-random) than randomly guessing a MAC
tag from the domain of tags.

Now suppose otherwise, i.e., r′ is a nonce previously (once) given to the oracle O.
That is, A adaptively queried O(ri, di) a number of times, and, in particular, obtained
t = G(d⊕F (r′)) from the call O(r′, d). Then, A outputs a valid forgery d′ = dj , τ

′ = (rj , t
′),

where either d′ ̸= d or t′ ̸= t, or both. p. We construct an adversary A’ who uses A to win
the SDU game of Definition 4.

The construction goes as follows. Following Step 1 of the SDU game, functions F
and G are initialized, but kept secret from A’ (and A). A’ now proceeds as follows. A’
initializes A. Now, for each query (ri, di) of A, A’ simply passes it without change as his

11

own query of Step 2 of the ϵ-SDU game of Definition 4. The ϵ-SDU game responds with
ti = G(di⊕F (ri)), which A’ passes to A as MAC oracle response. Finally, when A produces
the forgery d′, τ ′ = (rj , t

′) on nonce rj A’ outputs (rj , d
′ ⊕ dj , t

′ ⊕ tj). This concludes the
description of A’. We analyze the probability of A’ winning the ϵ-SDU experiment — i.e.
of the output of the experiment being 1.

First, note that A’ provides answers which are distributed statistically close to the oracle
answers of the MAC game, which is what A expects to see. We now show that, whenever
the MAC forgery d′, τ ′ = (rj , t

′) output by A is valid, the pair (∆x,∆y) = (d′ ⊕ dj , t
′ ⊕ tj)

that A’ outputs satisfies the experiment-win condition of Step 4 of Definition 4, and hence
allows A’ to win the game.

Indeed, since d′, τ ′ = (rj , t
′) is a valid MAC forgery, it must be that t′ = G(d′ ⊕ F (rj)).

However, tj = G(dj ⊕ F (rj)). Therefore, ∆y = t′ ⊕ tj = G(dj ⊕ F (rj))⊕G((dj ⊕ F (rj))⊕
d′ ⊕ dj).

Note that the reduction is tight, and a successful MAC forgery always results in the
experiment-win in the game of Definition 4. Following through with the probabilities, we
obtain that if A breaks MAC with probability p, A’ wins the ϵ-SDU game with the same
probability p.

Putting together the win probabilities for both cases (A querying and not querying oracle
on r′, we obtain that the probability of forging ShMAC of Construction 1 is p = max{2−k, ϵ}.

Note that ShMAC can be executed on multiple data blocks by simple concatenation
of MACs of individual blocks. This observation is motivated by the fact that efficient ϵ-
SDU functions may not be readily available from the literature for larger data blocks. For
simplicity, we state the following lemma for the case of two blocks; it can be naturally
extended to any polynomial number of blocks.

Lemma 2 Let F,G, r be as above, and let d0 and d1 be data blocks. Then

MAC(d0, d1) = (r,G(d0 ⊕ F (r, 0)), G(d1 ⊕ F (r, 1))) (4)

is a secure nonce-based MAC, with probability of forgery p = max{2−k, ϵ}.

Proof. We show that Equation 4 is a secure double-input-length MAC. First, note that
by Theorem 1, each G(di ⊕ F (r ∥ i)), i ∈ {0, 1}, is a secure unit-input-length MAC with
probability of forgery p = max{2−k, ϵ}, since (r ∥ i) is a nonce in {0, 1}k if and only if r is a
nonce in {0, 1}k−1. Suppose now that there exists an adversary A who is able to forge the
double-input-length MAC with non-negligible probability. We construct a nonce-respecting
A’ who forges one of its component MACs.
A’ initializes A and interacts with it as follows. Recall, for its forgery, A queries the

double-input-length MAC oracle O2(r, d) = ShMACℓ(r, d0 ∥ d1) of Equation 4 for d0, d1 ∈
{0, 1}k and r ∈ {0, 1}k−1. Upon each query by A to O2, A’ queries (and obtains) t0 = O(r ∥
0, d0), t1 = O(r ∥ 1, d1), where O is the unit-input-length MAC oracle. A’ then returns
(t0, t1) to A.

Consider the case when A outputs a forgery (d′0 ∥ d′1, r
′, (t′0, t

′
1)). It must be that A

never obtained (t′0, t
′
1) = O2(r

′, d′0 ∥ d′1). Further, because A is nonce-respecting, he could
have previously made only a single query on nonce r′: (tq0 , tq1) = O2(r

′, q0 ∥ q1).

12

Now, if q0 = d′0 and q1 = d′1, then it must be that either tq0 ̸= t′0 or tq1 ̸= t′1. If tqi ̸= t′i,
then (d′i, r

′ ∥ i, t′i) is a valid forgery, which A’ outputs. Otherwise, if for i ∈ {0, 1}, qi ̸= d′i, or
if A did not query O2 with a nonce r′, then (d′i, r

′ ∥ i, t′i) is a valid forgery, which A’ outputs.
Thus, we showed how to translate each double-input-length MAC forgery to the unit-length
MAC forgery. Since the latter, under the corresponding assumption of Theorem 1, cannot
be achieved with probability greater than p = max{2−k, ϵ}, this p is also bounds the success
probability of the double-input-length MAC forger. This completes the proof of the lemma.

3.4 ShMAC Instantiation Considerations

Theorem 2 is stated with respect to an ideal object — a randomly chosen function. In prac-
tice, this is implemented by means of a PRP, and therefore Theorem 2 becomes conditional
on the existence of PRPs. Of course, this transition into the computational model improves
the chances of A to forge the MAC, but it can be easily shown that this improvement is
negligible. Note that ϵ-DU functions (and thus ϵ-SDU functions) are known to exist, and
their use does not constitute an assumption.

As noted previously, “shortcut” 2- or 4-round versions of AES are ϵ-DU permutations.
Further, AddRoundKey, the final phase of each AES round, implements the transformation
of Lemma 1. At the same time, in many hardware implementations, the AES key schedule is
precomputed, with round keys being randomly chosen. Such shortcut AES implementations
satisfy the stronger ϵ-SDU requirements and are sufficient for security of MAC. In our
implementation, we follow this approach.

Depending on the application, the desired input length of MAC may vary. In our
encrypted memory system, for example, we operate on 256-bit blocks. We wish to point
out several observations that apply to such usage scenarios. First, it is not necessary to
use a “wider” (e.g., 256-bit) block cipher as the PRP F . Wider block ciphers can be more
expensive, since they aim at achieving strong bit mixing (diffusion) on the full block (see,
e.g., the discussion in Section 7.6 of the Rijndael specification [10]). For example, 256-bit
Rijndael requires 14 rounds on twice-larger 256-bit data, vs. the 10 rounds of its 128-bit
AES sibling (cf. Section 4.1 of the Rijndael specification [10]). In our application, F is only
a source of randomness, and it is sufficient to execute AES twice with the corresponding
adjustment of the nonce r to (r, 0) and (r, 1). (Note that this results in a secure MAC – cf.
Lemma 2.) Second, G must be chosen properly as well. Similarly to AES, 256-bit Rijndael
achieves good bit mixing after only 4 rounds [10, 9]. Alternatively, we could apply Lemma 2
and execute 128-bit G (e.g., AES2 or AES4) on each of the two 128-bit halves of masked
data.

In our secure memory application, we choose the nonce r to be a concatenation of the
address of the memory location and a global RAM transaction counter (the latter may have
to be wrapped around for efficiency). This provides a simple and efficient way of generating
nonces. Further, this method allows binding the memory value to the memory location,
preventing replay of valid data at wrong locations4. Another advantage of this nonce choice
is that the bulk of the nonce, the memory address, need not be written to memory, as

4The binding between the data and the nonce is guaranteed by the strong definition of MAC that we use.
Indeed, it disallows a poly-time A to generate new nonce-tag pairs even on previously signed data. Note
that this does not prevent replay at the same memory location. We discuss this trade-off in Section 4.

13

it is managed by underlying subsystems. Further, this method ensures that the nonce is
available before the data arrives, thus allowing precomputation.

4 Applications: Secure DRAM

We now give an overview of a SoC-based secure system which makes use of ShMAC. While
we are mainly interested in integrity checking, for completeness we also discuss a (weak)
form of memory encryption. As noted in Section 1, all system operations (with the excep-
tion of memory transactions) take place inside the presumably secure and tamper-resistant
chip. Therefore, securing the memory, which might be adversarially controlled, closes the
main avenue of attack. We now discuss the hardware aspects of an encrypted memory
implementation using ShMAC for authentication, associated trade-offs and improvements;
we view this technical discussion as an additional contribution of this paper.

In our discussion, we omit some of the aspects of the system, such as secure-boot pro-
cedures, the design of which is not related to MAC. We start by presenting the Encryp-
tion/Authentication Unit (EAU), its on-chip location, connectivity and relationship with
other units.

4.1 Overview of Memory Encryption and Authentication

As shown in the conceptual block diagram, Figure 1(a), the EAU is interposed between a
conventional DRAM controller and the interface logic that allows potential bus masters, such
as CPUs and DMA engines, to access secured off-chip memory. DRAM write transactions
are encrypted on the way out to DRAM and read transactions are decrypted coming back
from DRAM to the SoC. During the encryption process, a MAC is generated and stored with
each encrypted block of memory. During subsequent DRAM read operations, the stored
MAC is compared with a newly recomputed MAC to detect corrupted off-chip memory
contents.

Each MAC is associated with a fixed number of data bytes, called an encryption block,
which is the minimal unit of data. That is, the EAU supports only block-size read or write
DRAM transactions (and transparently handles creation and verification of the associated
MACs). The bus interface logic handles transactions of all sizes. If a bus write transaction
affects only a portion of an encryption block, the EAU first needs to read, decrypt and verify
the unavailable bits (if any) of the encryption block from off-chip DRAM. Then, it merges
the bits to create a full updated encryption block, before it is re-encrypted and written to
DRAM.

Encryption block size and the number of bits in the MAC is a complex engineering
trade-off. Clearly, each bit of MAC stored in DRAM is unavailable for user data and
therefore represents overhead in an encrypting memory system. Short MAC may not offer
sufficient protection against forgers. Since MACs are stored in the same DRAM as the
encryption blocks, there is also the physical and costs constraints of the DRAM data width.
For most SoC systems, the DRAM is usually 16 or 32-bits wide. Therefore, MACs with
that granularity are preferred.

Similarly, the size of the encryption block is determined by the range of data sizes
expected in typical SoC bus transactions. DMA transfers generate bus transactions of

14

key

256
32

Bus Interface Logic

Encryption/Decryption

Logic

CPU

Cache
 DMA

288
32

40

DDR2

SDRAM

Off-Chip

On-Chip

DRAM

Controller

(a) SoC system layout

256-bit

Rijndael
 k

Addr
‘0’

224

256

32

256

Encrypted

Write Data

Encrypted

Read Data

Read

Data

Write

Data

(m,r)
256
16

16

288

m’

r’

256-bit

Rijndael
 k

16

XOR

Tree

m

?

MAC

OK

32
256

288

Addr
‘0’

208

256

32
 16

r

256

Encrypted

Write

Data

Encrypted

Read

Data

(b) Conceptual EAU design

Figure 1: SoC-based Encrypted DRAM

size from single bytes to multi-word IP packets, but CPUs present a characteristic bus
transaction width that corresponds to their cache line size. Choosing an encryption block
size the same as the cache line will efficiently support the most frequent bus transactions.

Our encrypted memory supports a physical 32-bit wide DRAM system. Encryption
blocks are 256-bit wide and the associated MAC can be as short as 32 bits, while providing
reasonable security. Each DRAM transaction is therefore eight 32-bit words of data followed
by one or two words of MAC. This way, the memory overhead is as low as 12.5% and up to
8/9-ths of the DRAM contents is available for user storage.

Stateless vs. stateful integrity checks. In our design, the EAU is stateless. This is
necessary due to severe on-chip resource restrictions. It is not hard to see that encryption
and authentication process as described above exposes the system to replay attacks. For
example, an adversary can replace the current contents of memory with a value that was
stored in that same location previously. Similarly, an adversary can simply not update the
DRAM as required by a write transaction. It is easy to see that the system will decrypt
and mistakenly accept such data as valid.

Stateful operation is necessary to prevent such attacks. Keeping on-chip state per each
memory location, however, is prohibitively expensive. A natural solution is to build a
Merkle tree [28] of MACs for the entire memory space, as proposed and deployed in, e.g.,
[20, 34, 33]. However, even with the possible optimizations, maintaining such a tree of
MAC values is a performance bottleneck (20-30 memory accesses and hash evaluations for
each DRAM transaction) and requires significant on-chip resources, which is unacceptable
in many settings, including ours. Instead of expensive tree-based integrity checking, we use a
much faster method to achieve a level of security sufficient for most commercial applications.

To limit the exposure to replay attacks, we could use one of several natural approaches,
such as periodic refreshing of encryption keys so as to invalidate sufficiently stale encrypted
memory state. It is easy to implement, e.g., by maintaining two memory regions, each
encrypted with its own key, and growing one region at the expense of the other. If the
keys are refreshed often enough, say, every two minutes, then the window of vulnerability

15

Rijndael
k
 Rijndael
k

-1

Addr

Read

Data

256

288

32

288
 288

288

256
 32

Verify

Addr

Write

Data

Encrypted

Write Data

Encrypted

Read Data

(a) Direct method

Rijndael
k

Addr
‘0’

224

256

32

256

Encrypted

Write Data

Encrypted

Read Data

256

Read

Data

Rijndael
k

256

256

Addr
‘0’

224

256

32

Write

Data

(b) Low-latency method

Figure 2: Encryption/authentication methods for off-chip transactions

to replay attacks is fairly narrow.
This idle-time key refreshment is much more efficient than maintaining a Merkle tree.

We believe that frequent key expiration, and a single MAC per encryption block affords
practical levels of security with much less mechanism and performance penalty, and thus is
a better security/performance trade-off, suitable for most industrial applications.

4.2 EAU Implementation Using ShMAC

The most direct method to encrypt and authenticate off-chip memory transactions, would
be to encrypt the concatenated address and data5. This would produce a 288-bit encrypted
memory write value, as shown in Figure 2(a). However, this method serializes the encryption
process with memory write operations and, more importantly, adds decryption delay to the
already performance-limiting DRAM read latency. Additionally, this scheme requires both
encrypt logic and decrypt logic, which is unacceptable for FPGA implementations.

Motivated by low-latency and small footprint requirements, we prefer a different en-
cryption approach, shown on Figure 2(b), and separate MAC generation from the data
encryption process. Figure 1(b) illustrates a conceptual EAU design, described below6. A
256-bit pad is generated by Rijndael encryption of the address7. The pad is then XORed
with the Write data to produce the encrypted result. Since XOR is its own inverse, the
same encryption function can be used for both encryption as well as decryption. While
encryption remains serialized with the DRAM write operation, the pad calculation can
start as soon as the address is available early in the bus transaction. More importantly, for
performance-critical read operations, the pad calculation can occur in parallel with DRAM
read latency. Once encrypted DRAM data is available, a single XOR operation is the only
additional delay incurred by decryption. As a result, decrypted data is returned to the
processor with negligible delay8.

5Additional redundant data can be added under the encryption, if stronger integrity checks are desired.
6Reasonable security parameter sizes were included in Figure 1(b) for concreteness, however, their values

should be evaluated for specific instantiations.
7We note that the 256-bit pad can be more efficiently generated by two parallel 128-bit AES encryptions

in fewer rounds. We omit this, as well as other natural optimizations, for the sake of clarity.
8Admittedly, reusing the pad for the same DRAM location results in a weakness of the encryption process.

16

MAC generation proceeds as follows. The PRP F of Construction 1 is achieved by
running full AES on the address concatenated with a nonce r. The nonce value can be a
global counter that increments with each memory write transaction. We stress that there
is no need for expensive pseudorandom generation of the nonce. Note that this first step of
the MAC calculation can start as soon as an address is available, simultaneously with the
encryption process. The Rijndael output is then XORed with the encrypted data and the
same Rijndael data path is reused to compute G of ϵ-SDU family G. In our implementation,
G is a four-round Rijndael evaluation9. The output of G is truncated or collapsed via an
XOR tree to a value m, which is concatenated with the original unmodified nonce r to form
the MAC written to DRAM — this is the ShMAC output.

In contrast with the decryption process, the MAC verification for memory read opera-
tions must first wait for the DRAM latency in order to acquire the original nonce r, which
is stored off-chip. Once data and MAC arrive, F is computed on the address appended with
r (14 rounds of 256-bit Rijndael). This value is then XORed with the encrypted read data
and the same Rijndael data path is reused to compute G, which consists of four rounds
of Rijndael. The XOR tree collapses the result to generate m, which is compared with
m′, the value of the just-read, off-chip MAC. If they match, the memory read operation is
considered uncorrupted.

Note that MAC verification can only start after the original MAC value is read and much
later than the actual decryption process, which means that data would have already been
returned to the processor before the MAC is verified. We can afford this delay because in
our application we consider MAC failure to be so dire that the system effectively resets and
discards any use of the corrupted data. Thus, we do not need to implement any recovery
mechanisms, such as rollbacks.

Trade-offs and design choices. Due to the unacceptable cost of tree-based integrity
checking, it was our decision to use weaker but much more efficient authentication, which
allows replay attacks within a small window (e.g., one to several minutes). We believe this
is a reasonable compromise. Next, we argue that our authentication approach effectively
limits the forger to replay attacks.

Performance considerations require use of short MACs. We first argue that even 16-bit
security is sufficient in many practical security applications10. (Of course, this parameter
would need to be evaluated for each concrete system instantiation, using the following
discussion as a guideline.) Indeed, on average, it would take the adversary 215 attempts to
forge just one memory block. We can throttle the rate of forgery attempts by, e.g., forcing a
reboot (a natural reaction to a break-in attempt) following a failed memory authentication.
A reboot might take around a minute to complete, which means that forging a single block
would take an expected 20 days of continuous attacks; forging two blocks (expected 230

attempts) is already infeasible. We note that if a reboot is inappropriate, other throttling
measures could be taken, such as throwing exceptions or execution pauses. In sum, it is

However, varying the pad, for example, based on a counter, would preclude pad precomputation for read
transactions, or require significant on-chip storage.

9As discussed in Section 3.4, we alternatively could use parallel execution of two instances of 2- or 4-round
AES.

10Of course, by 16-bit security we mean that the probability of a polynomial-time adversary forging a
MAC is (1

2
)16, and not that it takes 216 operations to break it.

17

not hard to push the attackers to use other attack avenues, such as exploiting the replay
permissiveness.

Achieving 16-bit security requires the use of MACs of greater length, since the ShMAC
output includes a nonce. In our system, the ShMAC nonce consists of the concatenation
of the address and r. We first observe that nonces for different memory locations would
never collide; however, nonces may collide within the same memory locations. If many
collisions occur, the adversary may eventually accumulate some useful information about
G. We mitigate this threat with periodically refreshing F and G (by changing their keys).
As an additional disadvantage to the adversary, he does not learn the full value of G’s, but
only a fraction of it. Thus, we believe that a choice of length for r in the 16–48 bits range
would be appropriate for most applications.

Finally, we note the following trade-off regarding the encryption approach. Since we
encrypt by XORing data with the pad derived from the memory address, the adversary is
able to track changes in data stored in memory. Specifically, when two data blocks d1, d2
are encrypted with the same key and stored in the same memory location, the adversary
is able to compute d1 ⊕ d2 as the XOR of their encryptions. However, natural attempts to
vary the pad, e.g. based on a counter, would either preclude pad precomputation for read
transactions, or require significant on-chip storage. We believe that in many commercial
applications, this weakness, mitigated in particular by frequent key refreshes, does not
significantly help reverse engineering and other hostile analysis and interference.

5 Vulnerabilities of a CRC-based Memory System

As in our case, Vaslin et al. [36] aim to achieve low-latency hardware integrity checking.
Their idea is to use a highly efficient CRC (CRC8 or CRC32) as the MAC of memory block
m, and to encrypt stored data by XORing it with a one-time pad (OTP). For increased
security, they propose to store CRC(m) on-chip, where the attacker cannot access it. It is
claimed that “if the data is changed following storage, a CRC of the retrieved value will
differ from the stored value.”

We observe that in fact, an attacker A can easily forge the data, and in fact has a lot
of flexibility in doing so. Firstly, in many cases A would a priori know the plaintext m
of the encrypted data stored in DRAM. (This is because the memory location can store a
counter, known code, a network message received from A, etc.) Further, it is trivial to find
many m′ ̸= m, such that CRC(m) = CRC(m′). Then, A forges the encryption m′ ⊕ otp
by computing (m⊕m′)⊕ (m⊕ otp). Clearly, this results in the SoC accepting m′ as valid.

Furthermore, it is possible for A to succeed even without having any information about
m. Indeed, each bit of CRC(m) is an XOR of certain bits of m. The OTP encryption simply
offsets the bits of m, but does not “mangle” them. Thus, a flipping of an encrypted bit in
DRAM effects a specific (and known to A) sequence of bit flips in the value of CRC(m).
Flipping DRAM bits appropriately, A can easily arrive at a forged value with the same
CRC as stored on-chip.

References

[1] Intel Software Guard Extensions (Intel SGX). https://software.intel.com/en-us/

18

isa-extensions/intel-sgx, accessed on Sept 1, 2015.

[2] Intel Software Guard Extensions programming reference. https://software.intel.com/

sites/default/files/managed/48/88/329298-002.pdf, accessed on Sept 1, 2015.

[3] ARM. ARM advanced microcontroller bus architecture rev 2.0, 1999.

[4] Mihir Bellare, Oded Goldreich, and Anton Mityagin. The power of verification queries in mes-
sage authentication and authenticated encryption. Cryptology ePrint Archive, Report 2004/309,
2004. http://eprint.iacr.org/.

[5] John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, and Phillip Rogaway. UMAC: Fast
and secure message authentication. In Michael J. Wiener, editor, Advances in Cryptology
– CRYPTO’99, volume 1666 of Lecture Notes in Computer Science, pages 216–233, Santa
Barbara, CA, USA, August 15–19, 1999. Springer, Berlin, Germany.

[6] Manuel Blum, Will Evans, Peter Gemmell, Sampath Kannan, and Moni Naor. Checking the
correctness of memories. In FOCS ’91: Proceedings of the 32nd annual Symposium on Founda-
tions of computer science, pages 90–99, Washington, DC, USA, 1991. IEEE Computer Society.

[7] Gilles Brassard. On computationally secure authentication tags requiring short secret shared
keys. In Advances in Cryptology – CRYPTO 82, pages 79–86. Springer-Verlag, 1983.

[8] Benoit Chevallier-Mames, David Naccache, Pascal Paillier, and David Pointcheval. How to
disembed a program? Cryptology ePrint Archive, Report 2004/138, 2004. http://eprint.

iacr.org/.

[9] Joan Daemen. Annex to AES proposal Rijndael. Chapter 5. Propagation and Correlation.
Available at http://www.iaik.tugraz.at/Research/krypto/AES/old/~rijmen/rijndael/

PropCorr.PDF.

[10] Joan Daemen and Vincent Rijmen. AES proposal: Rijndael. NIST Archive. http://csrc.

nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf, accessed on May 17, 2013.

[11] Joan Daemen and Vincent Rijmen. Understanding two-round differentials in AES. In SCN,
pages 78–94, 2006.

[12] Felix Domke. Console hacking 2006. 23rd Chaos Communication Congress, 2006. http:

//events.ccc.de/congress/2006/Fahrplan/events/1606.en.html, accessed on April 26,
2013.

[13] Guillaume Duc. Cryptopage. Master’s thesis, ENST, Bretagne, June 2004.

[14] Cynthia Dwork, Moni Naor, Guy N. Rothblum, and Vinod Vaikuntanathan. How efficient can
memory checking be? In Theory of Cryptography, TCC 2009, volume 5444, pages 503–520,
2009.

[15] Reouven Elbaz, David Champagne, Ruby B. Lee, Lionel Torres, Gilles Sassatelli, and Pierre
Guillemin. Tec-tree: A low-cost, parallelizable tree for efficient defense against memory re-
play attacks. In P. Paillier and I. Verbauwhede, editors, CHES 2007, pages 289–302, Berlin
Heidelberg, 2007. LNCS 4727, Springer-Verlag.

[16] Reouven Elbaz, Lionel Torres, Gilles Sassatelli, Pierre Guillemin, Michel Bardouillet, and Albert
Martinez. A parallelized way to provide data encryption and integrity checking on a processor-
memory bus. In DAC 2006, pages 506–509, San Francisco, California, USA, July 24-28 2006.
ACM.

[17] Juan A. Garay, Vladimir Kolesnikov, and Rae McLellan. Mac precomputation with applications
to secure memory. In Pierangela Samarati, Moti Yung, Fabio Martinelli, and Claudio Agostino
Ardagna, editors, ISC, volume 5735 of Lecture Notes in Computer Science, pages 427–442.
Springer, 2009.

19

[18] Blaise Gassend, G. Edward Suh, Dwaine Clarke, Marten Van Dijk, and Srinivas Devadas.
Caches and hash trees for efficient memory integrity verification. In In 9th Intl. Symp. on High
Performance Computer Architecture, 2003.

[19] W. Eric Hall and Charanjit S. Jutla. Parallelizable authentication trees. In Selected Areas in
Cryptography, pages 95–109, 2005.

[20] Guerney D. H. Hunt. Secure processors for secure devices and secure end-to-end infrastructure.
Available at http://www.research.ibm.com/jam/secure-processors5-30-06.pdf.

[21] IBM. IBM 128-bit processor local bus version 4.7, 2007.

[22] Goce Jakimoski and K. P. Subbalakshmi. On efficient message authentication via block cipher
design techniques. In Advances in Cryptology – ASIACRYPT 2007, volume 4833, pages 232–
248, 2007.

[23] L. Keliher and J. Sui. Exact maximum expected differential and linear cryptanalysis for two-
round Advanced Encryption Standard. IET Information Security , Vol. 1, No. 2, pp. 53-57,
June 2007.

[24] Hugo Krawczyk. LFSR-based hashing and authentication. In Advances in Cryptology –
CRYPTO 94, pages 129–139, London, UK, 1994. Springer-Verlag.

[25] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. RFC2104 - HMAC: Keyed-hashing for message
authentication. http://www.faqs.org/rfcs/rfc2104.html. Retrieved Sept. 17, 2008.

[26] David Lie, Chandramohan A. Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh, John C.
Mitchell, and Mark Horowitz. Architectural support for copy and tamper resistant software.
In Architectural Support for Programming Languages and Operating Systems, pages 168–177.
ACM, 2000.

[27] David A. McGrew and John Viega. The galois/counter mode of operation (GCM).

[28] Ralph Merkle. Secrecy, authentication, and public key systems. PhD thesis, Stanford Univeristy,
1979.

[29] Kazuhiko Minematsu and Yukiyasu Tsunoo. Provably secure MACs from differentially-uniform
permutations and AES-based implementations. In FSE, pages 226–241, 2006.

[30] Kaisa Nyberg. Differentially uniform mappings for cryptography. In Advances in Cryptology –
EUROCRYPT 93, volume 765, pages 55–64. Springer-Verlag New York, Inc., 1994.

[31] Christof Paar. Implementation options for finite field arithmetic for elliptic curve cryptosystems.
Invited Presentation at the 3rd Workshop on Elliptic Curve Cryptography (ECC ’99), 1999.

[32] Douglas R. Stinson. Universal hashing and authentication codes. In Advances in Cryptology –
CRYPTO 91, pages 74–85, London, UK, 1992. Springer-Verlag.

[33] G.E. Suh, C.W. O’Donnell, and S. Devadas. Aegis: A single-chip secure processor. Design and
Test of Computers, IEEE, 24(6):570–580, Nov.-Dec. 2007.

[34] Gookwon Edward Suh. AEGIS: A Single-Chip Secure Processor. PhD thesis, MIT, 2005.

[35] Trusted Computing Group. TCG Specification Architecture Overview, revision 1 edition, July
2007.

[36] Romain Vaslin, Guy Gogniat, Eduardo Wanderley Netto, Russell Tessier, and Wayne P.
Burleson. Low latency solution for confidentiality and integrity checking in embedded systems
with off-chip memory. In ReCoSoC, pages 146–153, 2007.

[37] M. N. Wegman and J. L. Carter. New hash functions and their use in authentication and set
equality. In J. Comput. System Sci. 22, pages 265–279, 1981.

20

[38] Eric W. Weisstein. ”Universal hash function.” From MathWorld–a Wolfram web resource.
http://mathworld.wolfram.com/UniversalHashFunction.html. Retrieved Sept. 17, 2008.

[39] Chenyu Yan, Daniel Englender, Milos Prvulovic, Brian Rogers, and Yan Solihin. Improving
cost, performance, and security of memory encryption and authentication. In Proceedings of
the 33rd annual international symposium on Computer Architecture, ISCA ’06. IEEE Computer
Society, 2006.

21

