
FPGA Implementations of SHA-3 Candidates:
CubeHash, Grøstl, LANE, Shabal and Spectral Hash

Brian Baldwin, Andrew Byrne, Mark Hamilton, Neil Hanley,

Robert P. McEvoy, Weibo Pan and William P. Marnane

Claude Shannon Institute for Discrete Mathematics, Coding and Cryptography.

Department of Electrical & Electronic Engineering,

University College Cork, Cork, IRELAND

Email: {brianb, andrewb, markh, neilh, robertmce, weibop, liam}@eleceng.ucc.ie

Abstract—Hash functions are widely used in, and form an
important part of many cryptographic protocols. Currently, a
public competition is underway to find a new hash algorithm(s)
for inclusion in the NIST Secure Hash Standard (SHA-3).
Computational efficiency of the algorithms in hardware will form
one of the evaluation criteria. In this paper, we focus on five of
these candidate algorithms, namely CubeHash, Grøstl, LANE,
Shabal and Spectral Hash. Using Xilinx Spartan-3 and Virtex-5
FPGAs, we present architectures for each of these hash functions,
and explore area-speed trade-offs in each design. The efficiency
of various architectures for the five hash functions is compared
in terms of throughput per unit area. To the best of the authors’
knowledge, this is the first such comparison of these SHA-3
candidates in the literature.

I. INTRODUCTION

Hash functions operate at the heart of contemporary cryp-

tographic protocols, such as the Digital Signature Standard

(DSS), Transport Layer Security (TLS), Internet Protocol

Security (IPSec), random number generation algorithms, au-

thentication algorithms and password storage mechanisms.

A hash function H maps a message x of variable length to

a string of fixed length. The process of applying H to x is

called ‘hashing’, and the output H(x) is called the ‘message

hash’ or ‘message digest’. Cryptographic hash functions are

hash functions that possess specific properties such as one-

wayness [1], which means that for a given hash value y, it

should be computationally infeasible to find an input x such

that H(x) = y. Another important property for cryptographic

hash functions is collision resistance, which means that it

should be computationally infeasible to find any two distinct

inputs x1 and x2, such that H(x1) = H(x2).
The SHA-1 (Secure Hash Algorithm) function, introduced

by NIST in 1995, produces message hashes of length 160 bits.

In 2002, NIST published three new hash functions with longer

hash lengths: SHA-256, SHA-384 and SHA-512. In 2004,

SHA-224 was added to the standard, and these four algorithms

form the SHA-2 family of hash functions [2]. Due to security

concerns [3], the trend in the cryptographic community is

to move away from using older hash functions like SHA-1,

towards newer functions like those in the SHA-2 family [4].

Currently, NIST is holding a public competition to develop a

new cryptographic hash algorithm(s) [5], similar to the contest

held to choose the Advanced Encryption Standard (AES)

algorithm [6]. The new hash function(s) will be called SHA-3

(or the Advanced Hash Standard (AHS)), and may ultimately

supersede the functions in the SHA-2 family. The contest has

received 64 submissions from designers all around the world,

and 51 of these designs recently progressed through to the

first round of the contest. These hash algorithms are available

for public comment and scrutiny, and such research is vital

to the selection process. In particular, NIST has stated that

computational efficiency of the algorithms in hardware, over

a wide range of platforms, will be addressed during the second

round of the contest [7].

In this paper we present FPGA hardware implementations

of five of the SHA-3 candidates: CubeHash, Grøstl, LANE,

Shabal and Spectral Hash. FPGAs are an attractive choice

for implementing cryptographic algorithms, because of their

low cost relative to ASICs. FPGAs are flexible when adopting

security protocol upgrades, as they can be re-programmed in-

place, and FPGAs also allow rapid prototyping of designs. Our

goal is to explore area-speed trade-offs in the implementations

of the five hash functions, and to compare the efficiency of the

designs by examining the throughput per unit area metric.

The rest of this paper is organised as follows. Section II

gives an overview of the hash function architectures, and

describes the wrapper used in the evaluation of the designs.

Sections III–VII respectively describe the FPGA implementa-

tions of the five hash functions in this case study. For each hash

function, its specification is briefly described; an exploration

of the design space is presented; and implementation results

on the Spartan-3 and Virtex-5 FPGA platforms are supplied.

Section VIII concludes the paper by comparing the results of

the various designs.

II. OVERVIEW OF THE HASH FUNCTION ARCHITECTURES

In the design of the hash function architectures described

in this paper, our main goal was to optimise throughput.

Throughput is calculated as follows:

Throughput = # Bits in a message block×Maximum clock frequency
Clock cycles per message block

High-throughput hash function implementations are benefi-

cial, for example in network server applications. A secondary

goal was to analyse the throughput per slice of the architec-

tures, to determine which hash function implementations make

f

31

0

1

47

32

33

C reg

Hi−1

Mi

Hi

data_in

16

17

la

6

32

512

15

A reg

B reg

32

data_out

start done

512

512
Compression

Function

Fig. 1. Wrapper used to obtain Place & Route results

the most efficient use of FPGA area. All of the hash algorithms

examined in this paper include initialisation, padding and final-

isation stages. However, we focused on implementing the com-

pression function f of each hash function. The compression

functions perform the majority of the computations in the hash

algorithms, and the throughput of the algorithms is largely

determined by the throughput of the compression functions

(this is especially true for large message sizes). A webpage

called the ‘SHA-3 Zoo’ has been set up by the Institute for

Applied Information Processing and Communications (IAIK)

in Graz, to track hardware implementation results of SHA-3

candidates [8]. In the language of the authors of the SHA-3

Zoo, the architectures described in this paper can be described

as ‘core functionality’ implementations.

To allow direct substitution for the functions in the SHA-2

family, it is a requirement of the contest that the SHA-3

algorithms have output lengths n ∈ {224, 256, 384, 512}. For

the LANE and Grøstl hash functions examined in this paper,

we designed two architectures (per hash function) in order to

produce all of the required message digest lengths. For each of

the three other hash functions in the study, a single architecture

can produce all of the required message digest lengths. Within

each of these seven architectures, various area-speed trade-offs

were also investigated.

Two FPGA platforms were targeted in the study: the

low-cost Xilinx Spartan-3 xc3s5000-5fg900, and the newer

technology Xilinx Virtex-5 xc5vlx220-2-ff1760. Results for a

particular hash function architecture on the two FPGA plat-

forms cannot be directly compared, since these two platforms

have different underlying technologies. Of course, comparing

different architectures on the same FPGA platform is a fair

comparison. Each compression function design f was captured

using VHDL, and Synthesis, Place and Route were carried out

using Xilinx ISE v9.1i. We measure the area of compression

function designs in FPGA slices, as given in the Map reports.

Each compression function f has a very large number

of input and output signals; therefore, the Place and Route

process will not be able to proceed past Mapping without

including a wrapper (similar to [9]). Our wrapper, illustrated

in Fig. 1, consists of registers and multiplexers, and is used to

connect the I/O buses of f to 32-bit I/O interfaces at the FPGA

pads. The registers also ensure that the wrapper does not affect

the critical path of the compression function f . Synthesis,

C

ROT 7 SWAP

SWAP

ROT 11 SWAP

SWAP
512

512 512

512

B

A’

’

A

B

f

Fig. 2. Block diagram of the CubeHash compression function

Place and Route are carried out on the wrapped compression

functions, and the maximum allowable clock frequency is

obtained from the Post-Place and Route static timing report.

The following sections detail the implementations of the five

hash functions. Note that in each section, the notation used to

describe the operations of each hash function is local to that

section.

III. CUBEHASH

CubeHash was submitted by Bernstein to the SHA-3 con-

test [10]. CubeHash is defined by three parameters:

• b ∈ {1, 2, 3, . . . , 128}, the number of bytes in a block of

the padded message;

• r ∈ {1, 2, 3, . . .}, the number of times the compression

function is iterated for each padded message block;

• h ∈ {8, 16, 24, . . . , 512}, the number of bits in the

message digest.

Parameters r and b allow security/performance tradeoffs in

different CubeHash implementations, and a particular version

of the algorithm is then specified as CubeHashr/b-h.

A. Specification

All of the CubeHash variants use a 1024-bit state, that is

represented as thirty-two 32-bit words x[t], 0 ≤ t ≤ 31, where

each word is interpreted in little-endian form. During the

algorithm’s execution, the state is operated upon by a com-

pression function, denoted here by fC and described below.

CubeHashr/b-h uses the following operations to compute the

hash of a message M :

• Initialisation. State words x[0], x[1] and x[2] are respec-

tively set to integers h
8

, b and r, and the remaining 29

state words are set to zero. The round function fC is then

applied to the state 10r times.

• Message Padding and Parsing. The message M is padded

and parsed into N b-byte blocks Mi, 0 ≤ i ≤ N − 1.

• Message Compression using fC . Block Mi is XORed

into the first b bytes of the state, and the round function

fC is applied to the state r times. This sequence of XOR-

ing and applying fC is performed on each of the padded

message blocks.

• Finalisation and Output. After block MN−1 has been

processed, the integer 1 is XORed with the last state

word, and the round function is applied to the state a

further 10r times. The message digest comprises the first

h bits of the state.

A block diagram of the CubeHash compression function fC

is shown in Fig. 2. Essentially, the compression function has

two 512-bit inputs, labelled A and B, which are formed by

splitting the 1024-bit state in half. The two 512-bit datapaths

then undergo a series of operations, comprising:

• 2× 16 additions modulo 232 (denoted by ⊞), where the

datapath A is added word-by-word to datapath B;

• 2× 16 32-bit Boolean XORs (denoted by ⊕), where the

two datapaths are XORed word-by-word;

• 2× 16 rotation operations, where each word in datapath

B is cyclically rotated upwards by a fixed number of bits;

• 4 × 8 swapping operations, where specified words in a

datapath exchange positions.

If required, the outputs of the compression function, labelled

A′ and B′, can be fed directly to the inputs A and B of the

next iteration of the compression function.

B. Compression Function Implementation & Results

In this paper, we designed FPGA implementations of the

CubeHash compression function with parameters r = 8 and

b = 1, as recommended by Bernstein [10]. The rotation

and swapping operations can be implemented in hardware

by simply re-labelling the relevant signals. Since the state

comprises 1024 bits, the same architecture for fC can be used

to produce message digests with any of the lengths required

for SHA-3 (i.e. h ∈ {224, 256, 384, . . . , 512}). Therefore, a

CubeHash8/1-256 implementation will have the same through-

put and throughput per slice performance as a CubeHash8/1-

512 implementation. Similarly, the implementations of Shabal

and Spectral Hash described in Sections VI and VII respec-

tively use a single architecture to produce all of the required

message digest lengths.

The critical path through the compression function consists

of two modulo 232 additions and two XOR operations, as

indicated by the heavy lines in Fig. 2. The compression

function is used r = 8 times for each message block Mi (i.e.

for each message byte in this case, since b = 1). Therefore,

we investigated CubeHash architectures where fC is unrolled

by various degrees. The lowest area design iteratively uses

a single fC unit and takes 8 clock cycles to process a single

message block, and the highest area design uses a chain of four

fC units in series to process a single message block in two

clock cycles. The results are shown in Table I. Note that the

figures quoted for each design include the initial XOR of the

message block with the state, and also include the area of the

output register that stores the result of the last fC calculation

in the chain.

As expected, the critical path of each design increases with

the degree of unrolling. However, in the 2x-unrolled Virtex-

5 design, the increase in the critical path is greater than the

corresponding decrease in the number of clock cycles, so an

overall increase in throughput (TP) is not obtained. The larger

(4x-unrolled) designs were dense and congested on the chosen

FPGAs, and could not be fully routed by the routing tool.

In any case, it is interesting to note that the throughput on

both FPGAs is quite low, because each message block in

CubeHash8/1 consists of only 1 byte.

TABLE I
CUBEHASH8/1 COMPRESSION FUNCTION IMPLEMENTATION RESULTS

Design
Architecture

Area Max. Freq.
#Cycles

TP TP/Area
Number (slices) (MHz) (Gbps) (Mbps/slice)
Spartan-3

#1 Iterative 2883 59.26 8 0.05 0.02
#2 2x-unrolled 3268 37.90 4 0.07 0.02
#3 4x-unrolled Congested Design

Virtex-5
#1 Iterative 1178 166.80 8 0.16 0.14

#2 2x-unrolled 1440 55.14 4 0.11 0.07
#3 4x-unrolled Congested Design

IV. GRØSTL

Grøstl was submitted to the SHA-3 contest by Gauravaram

et al. [11]. Grøstl is an iterated hash function with a compres-

sion function built from two fixed, large distinct permutations.

The design of Grøstl borrows heavily from components used

in the AES block cipher, resulting in strong confusion and

diffusion properties [6]. Grøstl is defined for a number of

variants, denoted Grøstl-n, which return message digests of

bit length n ∈ {8, 16, . . . , 512}. Four variants of Grøstl

are explicitly defined for the SHA-3 contest, where n ∈
{224, 256, 384, 512}.

A. Specification

The Grøstl variants can be divided into two categories, based

on the size of the algorithm’s internal state, denoted by ℓ.

For Grøstl-224/256 ℓ = 512, whereas for Grøstl-384/512 ℓ =
1024. In this paper, we denote the Grøstl compression function

by fG.

Grøstl-n uses the following operations to compute the hash

of a message M :

• Initialisation. An initial hash value H−1 is set to the ℓ-bit

representation of n.

• Message Padding and Parsing. The message M is padded

and parsed into N ℓ-bit blocks Mi, 0 ≤ i ≤ N − 1.

• Message Compression using fG. Each message block Mi

is combined with the previous hash value Hi−1, and a

permutation P is applied to the result. A second permu-

tation Q operates in parallel on Mi. The compression

function output Hi is formed by XOR-ing Hi−1 with the

outputs of P and Q, as illustrated in Fig. 3.

• Output Transformation. The function P (x)⊕x is applied,

where x is the final hash value HN−1, and the ℓ-bit result

is truncated to leave the rightmost n bits.

G

i

P Q

Hi−1 M

Hi

f

Fig. 3. Grøstl Compression func-
tion

r

sel1 0

AddRoundConstant

SubBytes

MixBytes

ShiftBytes

ro
u

n
d

s

Fig. 4. Grøstl P /Q permutation

Round

XTime512 512

8 8

512

X4Time

[15,8]

[7,0]

[23,16]

[31,24]

[39,32]

[47,40]

[55,48]

[63,56]

64

64
8

512

8

512

8 8

AddRoundConstant SubBytes ShiftBytes MixBytes

Constant

Fig. 5. Grøstl-224/256 Permutation Function Implementation

Permutations P and Q are based on the AES block ci-

pher [6], and are illustrated in Fig. 4. Each input to P /Q

is represented as a sequence of bytes; mapped to the state

matrix in a similar way to the AES. When ℓ = 512 an 8× 8
matrix of bytes is used, and when ℓ = 1024 an 8× 16 matrix.

Permutations P and Q are executed iteratively for r rounds.

For Grøstl-224/256, the designers recommend using r = 10,

and r = 14 is recommended for Grøstl-384/512. P and Q each

have four round transformations, executed in the following

order: (i) AddRoundConstant, where a single byte is added

to the state; (ii) SubBytes, where the AES S-box is applied

to each byte of the state; (iii) ShiftBytes, where each row of

the state is cyclically shifted; and (iv) MixBytes, where each

column of the state is transformed using matrix multiplication.

B. Compression Function Implementation & Results

Permutations P and Q are identical except for the execution

of the AddRoundConstant step, where different round con-

stants are used. Therefore, when implementing fG, one design

choice is to compute Q in parallel by replicating the hardware

for P . Another approach is to use an interleaved design, which

reuses the hardware for P to compute Q, resulting in extra

clock cycles but lower area.
The architecture developed for the implementation of the

Grøstl permutation functions is illustrated in Fig. 5, for ℓ =
512 (similar hardware was developed for the ℓ = 1024 case).

The first stage in each permutation is the AddRoundConstant

block which simply performs an XOR on one byte of the ℓ-

bit input state. The round constants are stored in distributed

memory on the FPGA.
The SubBytes stage transforms the state, byte by byte,

using the AES S-box. We implemented the S-boxes as look-up

tables, and investigated two design choices: storage of the S-

boxes in distributed memory (FPGA slice LUTs), and storage

in dedicated Block RAM (BRAM). Both designs are fully

parallel, allowing all bytes of the state to be transformed with

minimum latency. The BRAMs are synchronous; therefore, the

SubBytes transformation takes a single clock cycle to compute

if implemented using BRAM.
The SwapBytes transformation was realised in hardware

by simply re-labelling the bytes of the state. MixBytes is

the final stage of the permutation function, and processes

each column of the state matrix separately and in parallel

using combinational logic. Fig. 5 illustrates the logic for

transforming a single byte of a particular column. The bytes

in each column are combined using a series of XOR and

TABLE II
GRØSTL-224/256 COMPRESSION FUNCTION IMPLEMENTATION RESULTS

Design
S-box P /Q

Area Max. Freq.
Cycles

TP TP/Area
Number (slices) (MHz) (Gbps) (Mbps/slice)
Spartan-3

#4
BRAM

Interleaved 3183 91.02 20 2.33 0.73
#5 Parallel 4827 71.53 10 3.66 0.75

#6
Slice LUTs

Interleaved 5508 60.37 20 1.54 0.28
#7 Parallel 8470 50.06 10 2.56 0.30

Virtex-5
#4

BRAM
Interleaved 3184 250.43 20 6.41 2.01

#5 Parallel 4516 142.87 10 7.31 1.61
#6

Slice LUTs
Interleaved 5878 128.38 20 3.28 0.55

#7 Parallel 8196 101.89 10 5.21 0.63

TABLE III
GRØSTL-384/512 COMPRESSION FUNCTION IMPLEMENTATION RESULTS

Design
S-box P /Q

Area Max. Freq.
Cycles

TP TP/Area
Number (slices) (MHz) (Gbps) (Mbps/slice)
Spartan-3

#8
BRAM

Interleaved 6313 79.61 28 2.91 0.46
#9 Parallel - - - - -
#10

Slice LUTs
Interleaved 10293 50.12 28 1.83 0.17

#11 Parallel 17452 43.49 14 3.18 0.18
Virtex-5

#8
BRAM

Interleaved 6368 144.03 28 5.26 0.82
#9 Parallel - - - - -
#10

Slice LUTs
Interleaved 10848 111.13 28 4.06 0.37

#11 Parallel 19161 83.33 14 6.09 0.31

multiplication operations. All of these MixBytes operations

were implemented in combinational logic on the FPGA. In the

cases where the SubBytes S-boxes were implemented using

distributed ROM, an output register (not shown in Fig. 5)

was used to store the state at the output of the MixBytes

transformation. This round output register is not required if

the S-boxes are implemented in synchronous BRAM.

The compression function fG for the Grøstl implementation

consists of two such permutation functions, P and Q. Two

XOR arrays are required to complete the compression function

for the input to P , and for the final output Hi. Note that in

the interleaved fG design that uses distributed memory for the

S-boxes, an additional register was placed between the S-Box

and SwapBytes stages, to allow P and Q to be processed using

the same hardware blocks.

The Post-Place & Route results for the fG implementa-

tions are given in Tables II and III, for Grøstl-224/256 and

Grøstl-384/512 respectively. Note that for Grøstl-384/512, the

BRAM requirements of the parallel architectures exceeds the

resources available on the FPGAs. Implementing the S-boxes

using BRAM, available on both FPGAs, improves the clock

frequency significantly while also reducing the number of

slices required. This returns a higher throughput/area metric

for both Grøstl variants.

Message Expansion

H

iC P0

0W 1W 2W 3W 4W 5W

Q1Q

P P2 P P4 P

0

531

iHi−1 M

f
L

i

Fig. 6. LANE compression function structure

V. LANE

The LANE hash function, developed by Indesteege et al. is

another candidate for the SHA-3 competition [12]. It is an iter-

ated hash function with four variants, LANE-224, LANE-256,

LANE-384, and LANE-512, where the suffix denotes the mes-

sage digest size in bits.

A. Specification

Like Grøstl, components of the AES block cipher are also

used in the LANE compression function [6]. In this paper, we

denote the compression function by fL. The LANE variants

can be divided into two categories, according to the size of

the internal states. LANE-224 and LANE-256 use a 256-bit

state (corresponding to two AES states), while LANE-384 and

LANE-512 use a 512-bit state (corresponding to four AES

states). Here, LANE-224/256 is described. LANE-224/256 uses

the following operations to compute the hash of a message M :

• Initialisation. An initial hash value H−1 is computed by

applying the compression function fL to a sequence of

bits, which consists of a pre-determined string, and may

comprise an optional random salt.

• Message Padding and Parsing. The message M is zero-

padded, and parsed into N 512-bit blocks Mi.

• Message Compression using fL. Each message block Mi

is combined with the previous hash value Hi−1, and a

series of AES-based round transformations is applied. A

counter Ci is also maintained, which tracks the number

of message bits processed.

• Finalisation and Output. The hash value HN−1 is passed

once more through the compression function, with the

message input set to a string containing the message

length and, if applicable, the salt value. The 256-bit result

is taken as the LANE-256 output, or truncated to give the

LANE-224 output.

A block diagram of the LANE compression function fL is

given in Fig. 6. The function begins with a message expansion,

where Mi is combined with Hi−1 using a series of XOR and

concatenation operations. The result of the message expansion

stage is six 256-bit expanded message words W0, . . . ,W5. The

remainder of fC consists of five 256-bit XOR operations and

eight permutation ‘lanes’, labelled Pi, i ∈ {0, . . . , 5}, and

Qj , j ∈ {0, 1}, and arranged in two layers. Each permutation

0
Round

Counter

1 0

SwapColumns

ik

iC

Round
Register

SubBytes

MixColumns

ShiftRows

MessageIn

AddCounter

AddConstant

Last Round?

First Round?

r

MessageOut

1

Fig. 7. Block diagram of the Pi/Qj permutation

is executed r times. In LANE-224/256, r = 6 for the Pi

permutations and r = 3 for the Qi permutations.

Permutation blocks Pi and Qj are identical ∀ (i, j), and

comprise the operations shown in Fig. 7. The SubBytes,

ShiftRows and MixColumns transformations are reused from

the AES block cipher, and are applied independently to each

AES sub-state within the Pi or Qj state. The AddConstant

transformation causes a pre-defined round constant ki to be

XORed with part of the Pi/Qj state. Similarly, the AddCounter

transformation XORs part of the counter Ci with the state.

Finally, the SwapColumns transformation swaps columns be-

tween the AES sub-states that make up the Pi/Qj state. The

AddConstant and AddCounter operations are omitted during

the last round of the permutations.

LANE-384/512 has a similar structure to LANE-256, where

the main differences are: (i) the message blocks are 1024-bit;

(ii) the internal Pi/Qj states are 512-bit; and (iii) r = 8 for

the Pi permutations and r = 4 for the Qj permutations.

B. Compression Function Implementation & Results

In order to implement the compression function fL, we

firstly designed hardware for the permutations Pi/Qj in

LANE-224/256 and LANE-384/512. The SubBytes function

was realised using look-up tables for each AES S-box, im-

plemented in distributed memory. The MixColumns transfor-

mation was realised using a combination of XOR and doubling

operations [13]. The AddConstant and AddCounter operations

simply equate to XORs. The ShiftRows and SwapColumns

transformations were implemented by re-labelling the relevant

signals. A counter was also required to track the round number.

A register was used to store the output state between iterations

of the permutation. Therefore, the permutation circuitry logic

is fully combinational, from input to the output of the Swap-

Columns transformation.

Implementing the compression function fL presents a trade-

off, due to the parallelism in the algorithm’s design. A high-

area implementation of fL uses six permutation circuits to

process each Wi in parallel. Two of these circuits can sub-

sequently be re-used to calculate Q1 and Q2. A low-area

implementation of fL uses just one permutation circuit to

to compute Pi and Qj ∀ (i, j), but requires extra control

circuitry and extra clock cycles. We investigated this trade-

off by implementing several architectures for fL, with various

TABLE IV
LANE-224/256 COMPRESSION FUNCTION IMPLEMENTATION RESULTS

Design # Parallel Area Max. Freq.
#Cycles

TP TP/Area
Number Pi units (slices) (MHz) (Gbps) (Mbps/slice)
Spartan-3

#12 1 5725 50.2 49 0.52 0.09
#13 2 8756 42.0 28 0.76 0.08
#14 6 19692 31.3 14 1.14 0.05

Virtex-5
#12 1 3442 133 49 1.38 0.40
#13 2 4515 120 28 2.19 0.48
#14 6 6888 123 14 4.49 0.65

TABLE V
LANE-384/512 COMPRESSION FUNCTION IMPLEMENTATION RESULTS

Design # Parallel Area Max. Freq.
#Cycles

TP TP/Area
Number Pi units (slices) (MHz) (Gbps) (Mbps/slice)
Spartan-3

#15 1 6635 41.0 63 0.66 0.10
#16 2 17499 30.4 35 0.88 0.05
#17 6 - - - - -

Virtex-5
#15 1 3439 142 63 2.30 0.67
#16 2 4030 116 35 3.39 0.84
#17 6 14649 69.8 17 4.20 0.28

numbers of parallel permutation lanes. For each fL design,

the round constants were pre-computed and stored in Block

RAM on the FPGA.

The results are given in Tables IV and V, for LANE-224/256

and LANE-384/512 respectively. Clearly, the more Pi blocks

that are implemented in parallel, the better the throughput

that is attained. Note that LANE-384/512 would not fit on the

Spartan-3 FPGA when 6 Pi permutation units are implemented

in parallel. On the Spartan-3, the best throughput per slice is

obtained when using just one Pi unit.

VI. SHABAL

Shabal was submitted by the Saphir research project to

the SHA-3 contest [14]. It uses a sequential iterative hash

construction, to process messages in blocks of ℓm = 512
bits. The hash function output is of size ℓh bits, where

ℓh ∈ {192, 224, 256, 384, 512}.

A. Specification

The Shabal compression function, denoted here by fSh, is

based on a Non-Linear Feedback Shift Register (NLFSR) con-

struction. This compression function operates on an internal

state, denoted by (A,B,C). In the submission to the SHA-3

contest, A is defined as a 12 × 32-bit word, and B and C

are defined as 16 × 32-bit words. Therefore, Shabal has an

Sh

Mw

A

B

C

W

f

P

Fig. 8. Shabal Compression Function

1

V

U

A

139 15

B

80 15

15

0 11

C

150

M

0 6

Fig. 9. NLFSR-based Shabal Permutation

internal state of 1, 408 bits. Furthermore, a 64-bit counter W is

defined to track the number of message blocks that have been

processed. Shabal uses the following operations to compute

the hash of a message M :

• Initialisation. The internal state (A,B,C) is initialised to

(A0, B0, C0), and this value can be pre-computed.

• Message Padding and Parsing. The message M padded

and parsed into N 512-bit blocks Mw, 0 ≤ w ≤ N − 1.

• Message Compression using fSh. Each message block

Mw is combined with state words B and C using

addition and subtraction modulo 232. State word A is

XORed with the counter W . Additionally, a NLFSR-

based permutation P is applied to state words A and B,

and P is parameterised by Mw and C. A block diagram

of the compression function fSh is shown in Fig. 8.

• Finalisation and Output. After block MN−1 has been

processed, the compression function fSh is invoked three

more times, without changing the value of Mw = MN−1

or without updating the counter W . The hash output is

formed using ℓh bits from state word C.

The permutation P operates at the core of the Shabal

compression function fSh. To describe P , we use the notation

A[α], 0 ≤ α ≤ 11, and B[β], C[β], 0 ≤ β ≤ 16, to denote

a particular 32-bit word of the state. The operation x ≪ y

denotes bitwise rotation of x by y positions, the operator ∧
denotes Boolean AND, and the Boolean inverse of z is denoted

by z. Operators U and V denote multiplication modulo 232 by

integer values 3 and 5, respectively. The permutation P has

three sequential operations:
1) Rotation:

B[i]← B[i] ≪ 17
for 0 ≤ i ≤ 15;

2) NLFSR-based Permutation:

a) A[i + 16j mod 12]← U(A[i + 16j mod 12]
⊕ V (A[(i− 1) + 16j mod 12] ≪ 15)
⊕ C[8− i mod 16])⊕B[i + 13 mod 16]
⊕ (B[i + 9 mod 16] ∧B[i + 6 mod 16]⊕M [i]

b) B[i]← (B[i] ≪ 1)⊕A[i + 16j mod 12]

for 0 ≤ j ≤ 2 and 0 ≤ i ≤ 15; and

3) Addition:

A[j mod 12]← A[j mod 12] ⊞ C[j + 3 mod 16]

for 0 ≤ j ≤ 35.

The central part of P is illustrated in Fig. 9.

TABLE VI
SHABAL COMPRESSION FUNCTION IMPLEMENTATION RESULTS

Design Final Additions Area Max. Freq.
#Cycles

TP TP/Area
Number in P (slices) (MHz) (Gbps) (Mbps/slice)
Spartan-3

#18 Series 1933 89.71 85 0.54 0.27
#19 Parallel 2223 71.48 49 0.74 0.33

Virtex-5
#18 Series 2307 222.22 85 1.33 0.58
#19 Parallel 2768 138.87 49 1.45 0.52

B. Compression Function Implementation & Results

When designing FPGA-based hardware for fSh, the XOR,

addition and subtraction operations were all implemented in

parallel. In the permutation P , the rotation operations were

implemented through simple wiring. In order to realise the

central part of the permutation, we adopted a shift-register

based approach, as shown in Fig. 9, where the state words

are shifted along chains of 32-bit registers. The multiplication

operations U and V form the non-linear part of the NLFSR;

these were implemented using the shift-then-add method. Once

the shift registers have been loaded with the appropriate initial

values, the central permutation result is calculated after 48

clock cycles.

The final part of the permutation P adds words from the A

and C states. For these modulo 232 additions, we investigated

two design choices. In the first design, the NLFSR is used

together with a single adder to compute A[0] ⊞ C[3], and the

result is fed back to A[15]. Note that the direction in which the

C word is shifted must be reversed. This design takes a further

36 clock cycles to produce the final result. The second design

for this stage of P expands the addition into 12 × 3 series

additions, e.g. A[0] ← A[0] ⊞ C[3] ⊞ C[15] ⊞ C[11]. In this

way, the final result is computed without requiring extra clock

cycles, but at the expense of area for 35 additional adders.

The area, timing and throughput results for our fSh imple-

mentations are shown in Table VI. In the lower-area imple-

mentations, the critical path is within the NLFSR construction,

from register A[11] to register B[15]. The higher-area imple-

mentations have a longer critical path, due to the three series

additions used to compute the final result. However, these

higher-area implementations still attain better throughputs than

the lower-area implementations, due to the lower number of

clock cycles required. Both designs have similar throughput

per slice metrics, with the higher-area implementation more

efficient on the Spartan-3 platform, and the lower-area imple-

mentation more efficient on the Virtex-5 platform.

VII. SPECTRAL HASH

Spectral Hash, also called ‘s-hash’, was submitted by Koç

et al. to the SHA-3 contest [15], [16]. It is a Merkle-Damgård

based function that uses the Discrete Fourier Transform (DFT)

to generate the required diffusion and confusion properties.

A. Specification

During the algorithm’s execution, the compression function

(denoted here by fSp) operates on the current message block

Mi; the hash of the previous message Hi−1; and a permu-

tation state Pi, which is dependent on previously processed

AffineTransformation

k−DFT

j−DFT

Permutation Register

f
Sp

Swap 3

Swap 4

Swap 1 & 2

Plane Rotation

Data Register

MessageIn PermutationInHashIn

PermutationOutMessageOut

i−DFT

Nonlinear Transformation

Fig. 10. Block diagram of the Spectral Hash compression function

message blocks. These internal states are termed prisms and

are represented as 4× 4× 8 matrices of different word sizes.

Spectral Hash uses the following operations to compute the

hash of a message M :

• Message Padding and Initialisation. The message M is

padded and parsed into t 512-bit blocks M1, . . . ,Mt.

A p-prism is created with 7-bit words, and initialised

sequentially with the values 0, . . . , 127. The words in p-

prism are then swapped according to the values of words

in the first message block M1. The hash of the previous

state is set to the all-zero vector, and stored in h-prism.

• Message Compression. Block Mi is placed into an s-

prism of 4-bit words, and processed with Hi−1 and Pi.

• Finalisation and Output. When all t message blocks have

been processed, a bit marking scheme is utilised to select

the required number of bits from the h-prism, to form the

message digest.

A block diagram of the Spectral Hash compression function

fSp is shown in Fig. 10. It consists of the following operations

on both the s-prism and the p-prism:

• Affine Transformation, performs an inversion in GF (24)
followed by a linear shift on each byte in p-prism.

• Swap Controls, swap bytes in p-prism according to the

values in s-prism.

• Discrete Fourier Transforms, sixteen 8-point DFTs and

two sets of thirty-two 4-point DFTs are performed on

s-prism. Each DFT is performed over the field GF (17).
• Non-linear Transformation, a transformation of s-prism

according to the state of p-prism. The previous hash value

h-prism is also taken into account in this step.

• Plane Rotation, an output rotation of the p-prism.

B. Compression Function Implementation & Results

Two implementations of Spectral Hash were designed. Both

implementations use slice Look-Up-Tables (LUT) for the

affine transformation as well as the modular 17 reduction in

the DFT calculations. The 8-point DFT hardware can also

be re-used for the 4-point DFT by padding the extra points

with zeros. The Single Cycle implementation completes the

compression function in a single clock cycle by performing the

TABLE VII
SPECTRAL HASH COMPRESSION FUNCTION IMPLEMENTATION RESULTS

Design
Architecture

Area Max. Freq.
#Cycles

TP TP/Area
Number (slices) (MHz) (Gbps) (Mbps/slice)
Spartan-3

#20 Low Area 7393 46.50 339 0.07 0.009
#21 Single Cycle Single-Cycle design too large for Spartan-3 FPGA

Virtex-5
#20 Low Area 9051 125.26 339 0.18 0.02
#21 Single Cycle 14601 31.34 1 16.04 1.09

s-prism and p-prism calculations in parallel and fully unrolling

the operations. This leads to a large area, i.e. sixteen 8-

point DFT hardware architectures are required. The Low Area

architecture reuses the hardware, saving on area at the expense

of extra clock cycles. The results are given in Table VII,

which show that on the Virtex-5, very high throughputs can

be attained using a fully parallel implementation.

VIII. COMPARISON OF IMPLEMENTATIONS

In order to compare the various hash function implementa-

tions with one another, the throughput and area results for all

of the designs presented in this paper are plotted in Figs. 11

and 12, for the Spartan-3 and Virtex-5 FPGAs respectively.

In each figure, the results are labelled 1–21, corresponding to

the labels in Tables I–VII. The crosses (×) denote designs

that produce only 224/256-bit hashes; the stars (∗) denote

designs that produce only 384/512-bit hashes; and the bullets

(•) denote designs that can produce all of the required hash

lengths.
The 224/256-bit hash function producing the best through-

put per slice on the Spartan-3 FPGA is design #5, i.e. Grøstl-

224/256, with S-boxes implemented in BRAM and the P and

Q permutations in parallel. The most efficient design on the

Virtex-5 FPGA for producing 224/256-bit hashes is design

#4, i.e. Grøstl-224/256, with S-boxes implemented in BRAM

and the P and Q permutations interleaved. The 384/512-bit

hash function producing the best throughput per slice on the

Spartan-3 FPGA is design #8, i.e. Grøstl-384/512, with S-

boxes implemented in BRAM and the P and Q permutations

interleaved. The most efficient design on the Virtex-5 FPGA

for producing 384/512-bit hashes is design #21, i.e. single-

cycle Spectral Hash (an outlier, not shown on the graph in

Fig. 12). In conclusion, of the five hash functions studied

in this paper, the Grøstl implementations currently give the

best overall balance between throughput and area, when im-

plemented on FPGAs.

REFERENCES

[1] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of

Applied Cryptography. CRC Press, 1996.
[2] National Institute of Standards and Technology, “FIPS PUB 180-2.

Secure Hash Standard,” August 2002.
[3] X. Wang, Y. L. Yin, and H. Yu, “Finding collisions in the full

SHA-1,” in Advances in Cryptology — CRYPTO 2005, 25th Annual

International Cryptology Conference, ser. Lecture Notes in Computer
Science, V. Shoup, Ed., vol. 3621. Springer, 2005, pp. 17–36.

[4] A. K. Lenstra, “Further progress in hashing cryptanalysis (white paper),”
http://cm.bell-labs.com/who/akl/hash.pdf, February 2005.

[5] National Institute of Standards and Technology, “Cryptographic hash
algorithm competition,” http://www.csrc.nist.gov/groups/ST/hash/sha-3/.

[6] ——, “FIPS PUB 197. Advanced Encryption Standard,” November
2001.

0 5000 10000 15000 20000
0

0.5

1

1.5

2

2.5

3

3.5

4

12

4

5

6

7

8

10

11

12

13

14

15

16

18

19

20

Area (slices)

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Fig. 11. Throughput vs. Area for the Spartan-3 designs

0 5000 10000 15000 20000
0

1

2

3

4

5

6

7

8

12 3

4

5

6

78

10

11

12

13

14

15

16

17

18
19

20

Area (slices)

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Fig. 12. Throughput vs. Area for the Virtex-5 designs

[7] ——, “Announcing request for candidate algorithm nominations for a
new cryptographic hash algorithm (SHA-3) family,” Federal Register,
vol. 72, no. 212, pp. 66 212–66 220, November 2007.

[8] IAIK, “SHA-3 hardware implementations,” http://ehash.iaik.tugraz.at/
wiki/SHA-3 Hardware Implementations.

[9] Z. Chen, S. Morozov, and P. Schaumont, “A hardware interface for
hashing algorithms,” Cryptology ePrint Archive, Report 2008/529, 2008,
http://eprint.iacr.org/2008/529.

[10] D. J. Bernstein, “CubeHash specification (2.B.1),” Submission to NIST,
2008.

[11] P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel, C. Rech-
berger, M. Schläffer, and S. S. Thomsen, “Grøstl – a SHA-3 candidate,”
Submission to NIST, 2008.

[12] S. Indesteege, E. Andreeva, C. De Cannière, O. Dunkelman, E. Käsper,
S. Nikova, B. Preneel, and E. Tischhauser, “The LANE hash function,”
Submission to NIST, 2008.

[13] V. Fischer and M. Drutarovský, “Two methods of Rijndael imple-
mentation in reconfigurable hardware,” in Cryptographic Hardware

and Embedded Systems — CHES 2001, ser. LNCS, Çetin Kaya Koç,
D. Naccache, and C. Paar, Eds., vol. 2162, 2001, pp. 77–92.

[14] E. Bresson, A. Canteaut, B. Chevallier-Mames, C. Clavier, T. Fuhr,
A. Gouget, T. Icart, J.-F. Misarsky, M. Naya-Plasencia, P. Paillier,
T. Pornin, J.-R. Reinhard, C. Thuillet, and M. Videau, “Shabal, a submis-
sion to NIST’s cryptographic hash algorithm competition,” Submission
to NIST, 2008.

[15] G. Saldamli, C. Demirkiran, M. Maguire, C. Minden, J. Topper,
A. Troesch, C. Walker, and Çetin Kaya Koç, “Spectral hash,” Submission
to NIST, 2008.

[16] R. C. C. Cheung, Çetin Kaya Koç, and J. D. Villasenor, “An efficient
hardware architecture for spectral hash algorithm,” Submitted to ASAP
2009.

