
Efficient Key Exchange with Tight Security Reduction

Jiang Wu
David R. Cheriton School of Computer Science

University of Waterloo
200 University Ave., W.
Waterloo, ON N2L 3G1

Canada

Berkant Ustaoglu
Okamoto Research Laboratory

NTT Information Sharing Platform Laboratories
3-9-11, Midori-cho Musashino-shi, Tokyo 180-8585

Japan

Abstract

In this paper, we propose two authenticated key exchange (AKE) protocols, SMEN and
SMEN−, which have efficient online computation and tight security proof in the extended
Canetti-Krawczyk (eCK) model. SMEN takes 1.25 exponentiations in online computation, close
to that (1.17 exponentiations) of the most efficient AKEs MQV and its variants HMQV and
CMQV. SMEN has a security reduction as tight as that of NAXOS, which is the first AKE hav-
ing a tight security reduction in the eCK model. As a comparison, MQV does not have a security
proof; both HMQV and CMQV have a highly non-tight security reduction, and HMQV needs a
non-standard assumption; NAXOS takes 2.17 exponentiations in online computation; NETS, a
NAXOS variant, takes two online exponentiations in online computation. SMEN simultaneously
achieves online efficiency and a tight security proof at a cost of 0.17 more exponentiations in
offline computation and the restriction that one party is not allowed to establish a key with
itself. SMEN− takes 1.29 exponentiations in online computation, but SMEN− does not use the
static private key to compute the ephemeral public key (as does in SMEN, NAXOS, CMQV,
and NETS), and hence reduces the risk of leaking the static private key.

1 Introduction

An authenticated key establishment (AKE) protocol enables two parties to establish a shared key
with the property that, when one party computes a key, it is ensured that only the intended party
can compute the same key. Most AKE protocols are extension of the Diffie-Hellman key exchange
protocol [5]. Typically, such an AKE works on a cyclic group G with a generater g. A party Â has a
static public/private key pair (A, a) where A = ga. Another party B̂ has a static public/private key
pair (B, b) where B = gb. Â computes an ephemeral public/private key pair (X, x) where X = gx,
and sends X to B̂. B̂ computes an ephemeral public/private key pair (Y, y) where Y = gy, and
sends Y to Â. Â and B̂ compute a shared key based on their private keys and the peer’s public
keys.

1

Several attacks and security properties for AKE protocols have been identified in the litera-
ture, e.g., known-key security (KKS), perfect forward secrecy (PFS),1 key compromise imperson-
ation (KCI), unknown key share (UKS), leak of ephemeral key (LEP) (see [8] and [6] for detailed
description of the attacks). Several AKE security models have been proposed to capture these
attacks. Typical early work includes the BR model by Bellare and Rogaway [2], and the CK model
by Canetti and Krawzcyk [3]. Recently, LaMacchia, Lauter and Mityagin presented an extended
Canetti-Krawczyk (eCK) security model [7], which captures all above attacks within a single model.

Both security and efficiency are important to AKE protocols. Efficiency is evaluated by using
the number of exponentiation operations used by one party to establish a key.2 MQV [8] and
its variants HMQV [6] and CMQV [15] are among the most efficient AKE protocols, which take
only 2.17 exponentiation operations for one party to establish a key. However, MQV does not
have a security proof based on some commonly used assumptions. HMQV has a very complicated
security proof in the CK model (plus some security properties not captured by the CK model). The
proof is based on the Gap Diffie-Hellman (GDH) assumption [13] and the knowledge-of-exponent
assumption (KEA) [4]. CMQV has a relatively simple security proof in the eCK model based
on GDH assumption. Both proofs are in the random oracle (RO) model [1]. Both proofs use
the Forking Lemma of Pointcheval and Stern [14], which introduces a constant not worked out in
HMQV or CMQV and results in non-tight security reduction [15].

The NAXOS AKE protocol [7] has a tight security proof based on GDH in the eCK model.
In NAXOS, both the static private key and the ephemeral private key are used to compute an
ephemeral public key. This trick prevents an adversary from obtaining the discrete log of the
ephemeral public key unless both the static private key and the ephemeral private key are leaked.
However, NAXOS is not very efficient. It takes 3.17 exponentiations for one party to establish
a session key. NETS [9] is a variant of NAXOS that takes three exponentiations to establish a
session key. It has been an open problem to find an AKE that achieves the performance of MQV
and enjoys a security reduction as tight as that of NAXOS. A potential disadvantage of using the
NAXOS trick is that this may increase the risk of leaking the static private key, since the key is
used twice as much as in an AKE without using the NAXOS trick.

Online Efficiency. The computation in an AKE protocol can be divided into two parts: offline
computation and online computation. Offline computation can be done any time before one party
starts to engage in a key exchange process with any other party. Online computation takes place
when one party starts to compute the shared key with a specific peer after they have exchanged
ephemeral public keys. Online efficiency is more important than offline efficiency since it is “real
time”. In previous studies, performance of an AKE protocol is evaluated by using the total number
of exponentiations in key establishment. The reason of doing so may be that all previous AKE
protocols have the same offline computation overhead, and hence the total efficiency represents
the online efficiency. When offline computation overheads are different for different protocols, it is
reasonable to use online efficiency, instead of the overall efficiency, as the first criteria to evaluate
the computational performance.

1As indicated in [6], any two-pass AKE can only achieve weak perfect forward secrecy (wPFS). The PFS considered
in this paper is actually wPFS.

2We assume that, in the protocols, 1) it is not necessary to check if xq = 1 to verify whether x is an element
of a group G of order q, 2) efficient algorithms are used to compute the product of multiple exponentiations (e.g.,
g1

x1g2
x2) and multiple exponentiations using the same base (e.g., gx, gy). See Section 2.2 for these algorithms).

2

Our Contribution. In this paper, we propose two AKEs named SMEN (Secure MQV or Efficient
NAXOS) and SMEN−. SMEN takes 1.25 exponentiations in online computation and 1.17 exponen-
tiations in offline computation. It is secure in the eCK model and enjoys the same simplicity and
tightness in security proof as NAXOS. SMEN− takes 1.29 exponentiations in online computation.
SMEN− may provide better security against static private key leakage, and it may be the first
efficient AKE secure in the eCK model without using the NAXOS trick. Table 1 compares the
above AKE protocols in efficiency and security.

Protocol Efficiency Security Assumption Proof NAXOS
Offline Online trick

MQV 1 1.17 KKS, wPFS, KCI, UKS ? ? No
HMQV 1 1.17 CK, wPFS, KCI, LEP ROM, GDH, KEA not tight No
CMQV 1 1.17 eCK ROM, GDH not tight Yes
NAXOS 1 2.17 eCK ROM, GDH tight Yes
NETS 1 2 eCK ROM, GDH tight Yes
SMEN− 1.17 1.29 eCK ROM, GDH tight No
SMEN 1.17 1.25 eCK ROM, GDH tight Yes

Table 1: Efficiency (in number of exponentiations) and security comparison.

Organization. The remainder of this paper is organized as follows. In Section 2, we review the
eCK model and other preliminary background. In Section 3, we present the SMEN protocol, its
performance analysis, and its security proof. In Section 4, we present the SMEN− protocol, its
performance analysis, and its security proof. Section 5 concludes the paper.

2 Preliminary

2.1 Extended Canetti-Krawczyk Model

The extended Canetti-Krawczyk (eCK) model is described as an experiment between an adversary
M̂ and a challenger Ĉ. A certificate authority ĈA is involved in registering public keys. Initially,
M̂ selects the identities of n honest parties, for whom Ĉ generates static private key/public key
pairs and registers the public keys to ĈA.

Execution of an AKE by one of these parties is called an AKE session. A session identifier sid
is defined as

sid = (role, Â, B̂, comm),

where role = {I, R} is the role (initiator/responder) of the owner of the session, Â is the identity
of the owner, B̂ is the identity of the other party in the session, and comm is the concatenation
of communication messages between the two parties. Two sessions sid = (role, Â, B̂, comm1) and
sid∗ = (role, B̂, Â, comm2) are matching sessions if role is the complement of role and comm1 =
comm2 . A protocol execution between Â and B̂ without the intervention of an adversary produces
two matching sessions.

In the experiment, M̂ controls all communications between the parties, and can reveal the static
private key of a party, the ephemeral private key in a session, and the session key of a session. M̂
can make any sequence of the following queries, which Ĉ needs to answer accordingly:

3

• Send(Â, B̂, comm). M̂ sends a message comm to Â on behalf of B̂. Ĉ returns Â’s response.

• StaticKeyReveal(Â). Ĉ returns the static private key of Â.

• EphemeralKeyReveal(sid). Ĉ returns the ephemeral private key of the session sid.

• SessionKeyReveal(sid). Ĉ returns the session key of the session sid.

• Establish(Â). Using this query, the adversary registers an arbitrary public key on behalf of
an adversary controlled party Â. Ĉ only checks the validity of the public key, but does not
need to check the possession of the corresponding private key.

A session sid(role, Â, B̂, comm) is fresh if the following conditions hold:

• Both Â and B̂ are honest parties.

• M̂ did not query the session key of sid or its matching session sid∗ (if the matching session
exists).

• M̂ did not query both the static private key of Â and the ephemeral private key of Â in this
session.

• If sid∗ exists, then M̂ did not query both the static private key of B̂ and the ephemeral
private key of B̂ in this session.

• If sid∗ does not exist, then M̂ did not query the static private key of B̂ .

Security of an AKE is defined as follows. In an eCK experiment, M̂ issues Send, StaticKeyReveal,
EphemeralKeyReveal, SessionKeyReveal, and Establish queries polynomial times (in a security param-
eter λ) in any sequence. Then M̂ selects a completed session sid, and makes a query Test(sid). To
answer Test(sid), Ĉ chooses a bit b ∈ {0, 1} uniformly at random. If b = 1, then Ĉ sets the session
key of sid as K. Otherwise, Ĉ selects K from the key space uniformly at random. Ĉ then returns
K as the answer of Test(sid). M̂ continues to query Send, StaticKeyReveal, EphemeralKeyReveal,
SessionKeyReveal, and Establish polynomial times. At last, M̂ outputs a bit b′ and terminates the
game. If the selected test session is fresh and b′ = b, then M̂ wins the game.

The advantage of the adversary M̂ in the eCK experiment with AKE protocol Π is defined as

AdvAKE
Π (M̂) = Pr[M̂ wins]− 1

2
.

An AKE protocol is secure (in the eCK model) if no efficient adversary M̂ has more than a negligible
advantage in winning the above experiment, i.e.,

AdvAKE
Π (M̂) < 1/Q(λ)

for any polynomial Q() when λ is sufficiently large.

4

Assumptions. Let G = 〈g〉 be a cyclic group of prime order q. Let λ = log2 q be the security
parameter. Let x ∈R S indicate choosing x uniformly at random from set S. The following problems
and assumptions are defined on G.

• Discrete log problem (DLP): given X ∈R G, find x. We use DLG(·) to denote the function
that solves DLP.

• Computation Diffie-Hellman (CDH) problem: given X ∈R G, Y ∈R G, find gxy where gx =
X, gy = Y . We use CDH(·, ·) to denote the function that solves CDH.

• Decisional Diffie-Hellman (DDH) problem: distinguish (gx, gy, gz) from (gx, gy, gxy) where
x ∈R Zq, y ∈R Zq, z ∈R Zq. We use DDH(·, ·, ·) to denote the function that solves DDH.
DDH(X, Y, Z) outputs 1 if Z = CDH(X, Y). Otherwise, DDH(X, Y, Z) outputs 0.

• Gap Diffie-Hellman problem (GDH): given an DDH oracle which solves the DDH problem,
solve the CDH problem.

The DL/CDH/DDH/GDH assumption says that the probability that any polynomial time (in λ)
algorithm can solve the DLP/CDH/DDH/GDH problem is negligible (in λ).

2.2 Efficient Exponentiation Algorithms

Single Exponentiation. To compute a single gx, a popular algorithm is the square-and-multiply
algorithm [11, §14.6.1]. Suppose that the bit length of x is t and the cost of a square operation is
the same as a multiplication. Then the algorithm on average takes 1.5t multiplication to compute
gx.

Multiplication of Exponentiations. To compute the product of k exponentiations
g0

e0 . . . gk−1
ek−1 , the simultaneous multiple exponentiation [11, Algorithm 14.88] can be used to

reduce the computation. For k = 2, it takes 7
4 t + 2 multiplications, for k = 3, it takes 15

8 t + 6
multiplications, and for k = 4, it takes 31

16 t+12 multiplications. Approximately, it can be estimated
that the product of two exponentiations takes 1.17 times a single exponentiation, product of three
exponentiations takes 1.25 times a single exponentiation, and product of four exponentiations takes
1.29 times a single exponentiation.

The algorithm requires additional storage. It stores 2k − 1 − k more group elements than
computing k separate exponentiations. For small k = 2, 3, 4, the overhead is trivial for most
applications.

Exponentiations Using the Same Base. To compute two exponentiations gx and gy using
the same base, the exponent combination algorithm [12] can be used. This algorithm takes about
1.17 times the cost of a single exponentiation to compute gx and gy simultaneously.

3 SMEN AKE Protocol

3.1 Description

In the protocol description, λ is the security parameter. G is a cyclic group of prime order q where
log2 q ≈ λ. h1 : Zq × Zq → Zq and h2 : G×G → {0, 1}λ are two hash functions. Â and B̂ are two

5

parties with static private/public key pairs (a,A = ga) and (b, B = gb) respectively. We assume
that the public key certificate of a party can be obtained after knowing its identity. The two-pass
SMEN protocol is as follows:

Offline phase

1. Â selects two ephemeral private keys x̃1 ∈R Zq, x̃2 ∈R Zq, and computes

x1 = h1(x̃1, a), X1 = gx1 , x2 = h1(x̃2, a), X2 = gx2 .

Â stores x̃1, x̃2, X1, X2, and erases x1, x2.

2. B̂ selects two ephemeral private keys ỹ1 ∈R Zq, ỹ2 ∈R Zq, and computes

y1 = h1(ỹ1, b), Y1 = gy1 , y2 = h1(ỹ2, b), Y2 = gy2 .

B̂ stores ỹ1, ỹ2, Y1, Y2, and erases y1, y2.

Online phase

1. Â initializes a session s=(I, Â, B̂, X1, X2, ⊥) and sends (B̂, Â,X1, X2) to B̂.

2. Upon receiving (B̂, Â, X1, X2), B̂ performs the steps:

(a) if Â = B̂, then rejects and stops.

(b) verifies that X1 ∈ G, X2 ∈ G.

(c) computes y1 = h1(ỹ1, b), y2 = h1(ỹ2, b).

(d) computes the session key

K = h2(Ay1X1
bX2

y2 , Â, B̂,X1, X2, Y1, Y2).

(e) erases ỹ1, ỹ2, y1, y2.

(f) completes a session s=(R, B̂, Â, X1, X2, Y1, Y2), and sends (Â, B̂, X1, X2, Y1, Y2) to Â.

3. Upon receiving (Â, B̂, X1, X2, Y1, Y2), Â performs the following steps:

(a) if B̂ = Â, then rejects and stops.

(b) verifies that a session s =(I, Â, B̂, X1, X2, ⊥) exists.

(c) verifies that Y1 ∈ G, Y2 ∈ G.

(d) computes x1 = h1(x̃1, a), x2 = h1(x̃2, a).

(e) computes the session key

K = h2(Bx1Y1
aY2

x2 , Â, B̂,X1, X2, Y1, Y2).

(f) erases x̃1, x̃2, x1, x2.

(g) completes the session s =(I, Â, B̂, X1, X2, Y1, Y2).

It is straightforward to verify that, without the intervention of an adversary, Â and B̂ complete
with identical shared session keys and matching sessions.

6

3.2 Efficiency

In the online phase, each party needs to compute a product of three exponentiations. Using the
simultaneous multiple exponentiation algorithm, the cost is about 1.25 exponentiations on average.
As a comparison, MQV, HMQV, and CMQV compute a product of two exponentiations in online
phase, which takes 1.17 exponentiation.

In the offline phase, each party computes two exponentiations using the same base g. Using the
exponent combination algorithm, the cost is 1.17 exponentiations, only 0.17 exponentiation more
than that of MQV, HMQV, or CMQV.

3.3 Security

Theorem 3.1. SMEN is secure in the eCK model if h1() and h2() are modelled as independent
random oracles and if the GDH assumption holds.

Let εgdh be the probability that any polynomial time algorithm solves the GDH problem, and let
εdl be the probability that any polynomial time algorithm solves the DL problem. For any adversary
that involves at most n honest parties and activates at most k sessions, we have that

AdvAKE
SMEN (M̂) ≤ max{k2, nk}(εgdh + εdl).

Proof. Define

f(Â, B̂,X1, X2, Y1, Y2)
= CDH(A, Y1)CDH(B,X1)CDH(X2, Y2).

Let E indicates a true eCK experiment, let M be the event that M̂ wins an eCK experiment,
and let H be the event that M̂ queried h2(f(Â, B̂,X1, X2, Y1, Y2), Â, B̂,X1, X2, Y1, Y2) where sid =
(∗, Â, B̂,X1, X2, Y1, Y2) is the test session. Let H̄ be the event that H does not happen. It holds
that

AdvAKE
SMEN (M̂) = Pr[M |E]− 1/2

= Pr[M ∧H|E] + Pr[M ∧ H̄|E]− 1/2.

First we consider the event M ∧ H̄. Let σ be a 7-tuple

σ = (f(Â, B̂,X1, X2, Y1, Y2), Â, B̂,X1, X2, Y1, Y2).

A session key is computed as K = h2(σ). In the protocol, only matching sessions have identical
7-tuples. In the eCK model, M̂ is not allowed to reveal the session keys of the test session or
its matching session. Since h2() is modelled as a random oracle, without querying h2(σ) where σ
is identical to the 7-tuple of the test session, M̂ does not obtain any information about the test
session key. It holds that

Pr[M ∧ H̄|E] = 1/2

and

AdvAKE
SMEN (M̂) = Pr[M ∧H|E] (1)

≤ Pr[H|E].

7

Algorithm 1: SessionKey(Â, B̂,X1, X2, Y1, Y2)

if (⊥, Â, B̂,X1, X2, Y1, Y2, h) ∈ T2 then
return h

else if (α, Â, B̂,X1, X2, Y1, Y2, h) ∈ T2 where α = f(Â, B̂,X1, X2, Y1, Y2) then
return h

else
add (⊥, Â, B̂,X1, X2, Y1, Y2, h) to T2 where h ∈R {0, 1}λ

return h

Next we consider the event H. There are two cases that M̂ chooses a test session: a test session with
a matching session (denoted as event L) and a test session without a matching session (denoted as
event L̄).

L. The test session has a matching session.

In this case, we modify the experiment E to E′ as follows. In E′, Ĉ selects at random a session
sidA owned by an honest party Â and a session sidB owned by an honest party. Ĉ runs E′

the same way as it runs E, except that Ĉ aborts E′ if sidA and sidB become non-matching
as the experiment proceeds, or sidA is not chosen by M̂ as the test session in the experiment.
Let T be the event that Ĉ does not abort E′, i.e., sidA is the test session and sidB is its
matching session. It holds that

Pr[H|E ∧ L] = Pr[H|E′ ∧ T] (2)

=
Pr[H ∧ T |E′]

Pr[T |E′]
≤ k2 Pr[H|E′]

We then modify the experiment E′ to experiment S in which Ĉ simulates the hash functions
h1() and h2(). In S, Ĉ maintains a hash table T2. T2 contains tuples (α, Â, B̂,X1, X2, Y1, Y2, h)
where h is supposed to be the hash value

h = h2(α, Â, B̂,X1, X2, Y1, Y2).

T2 is initially empty. We define two algorithms, SessionKey() in Algorithm 1 and Hash() in
Algorithm 2, to maintain T2.

Let (X, Y) be the input of a CDH challenge. We modify E′ to S as follows.

• For sidA, Ĉ chooses (x̃1, x̃2) and computes X1 as defined in the protocol, but sets
X2 = X, and computes the session key

K = SessionKey(Â, B̂,X1, X2, Y1, Y2).

If a tuple (α, Â, B̂,X1, X2, Y1, Y2) already exists in T2, then SessionKey() needs to check
if α = f(Â, B̂,X1, X2, Y1, Y2). Since a = DLG(A) and x1 = DLG(X1) are known,
SessionKey() can check if this relation holds by using the DDH oracle to check if

DDH(X2, Y2, α/(Bx1Y1
a)) = 1.

8

Algorithm 2: Hash(α, Â, B̂,X1, X2, Y1, Y2)

if (α, Â, B̂,X1, X2, Y1, Y2, h) ∈ T2 then
return h;

else if there is a tuple (⊥, Â, B̂,X1, X2, Y1, Y2) ∈ T2 and α = f(Â, B̂,X1, X2, Y1, Y2) then
update the tuple to (α, Â, B̂,X1, X2, Y1, Y2, h)
return h

else
add (α, Â, B̂,X1, X2, Y1, Y2, h) to T2 where h ∈R {0, 1}λ.
return h

• For sidB, Ĉ chooses (ỹ1, ỹ2) and computes Y1 as defined in the protocol, but sets Y2 = Y ,
and computes the session key

K = SessionKey(Â, B̂,X1, X2, Y1, Y2).

If a tuple (α, Â, B̂,X1, X2, Y1, Y2) already exists in T2, then SessionKey() needs to check
if α = f(Â, B̂,X1, X2, Y1, Y2). Since b = DLG(B) and y1 = DLG(Y1) are known,
SessionKey() can check if this relation holds by using the DDH oracle to check if

DDH(X2, Y2, α/(Ay1X1
b)) = 1.

• For any other sessions, Ĉ proceeds according to the protocol faithfully.

• Ĉ answers the hash query h2(α, Î, R̂,X1, X2, Y1, Y2) by replying with

Hash(α, Î, R̂,X1, X2, Y1, Y2).

When the query is h2(α, Â, B̂,X1, X2, Y1, Y2), if a tuple ((⊥, Â, B̂,X1, X2, Y1, Y2, h)) is al-
ready in T2, Hash() needs to check if α = f(Â, B̂,X1, X2, Y1, Y2). Since each (⊥, Â, B̂,X1, X2, Y1, Y2, h) ∈
T2 is added by SessionKey() where Ĉ knows either (a, x1) or (b, y1), Hash() is able to
check if the relation holds.

• Ĉ simulates h1() in the usual way. When queried with h1(x), if h1(x) has not been
queried, then Ĉ returns a random value; otherwise, Ĉ returns the same value as it
returned for h1(x) before.

• Ĉ answers the StaticKeyReveal, EphemeralKeyReveal, SessionKeyReveal, and Establish
queries faithfully.

The difference between the probabilities that H happens in E′ and S is upper bounded by
the probability that M̂ successfully distinguishes the two experiments. Let D be the output
of a distinguisher for the two experiments. It holds that

|Pr[H|E′]− Pr[H|S]| ≤ |Pr[D = 1|E′]− Pr[D = 1|S]|.

We consider the probability that M̂ distinguishes S from E′. The difference between E′ and
S is due to the fact that Ĉ does not know DLG(X2) or DLG(Y2) where X2 = X, Y2 = Y .
However, the session keys involving X2 or Y2 are computed by using SessionKey() or Hash(),

9

and SessionKey() and Hash() give consistent results. Since sidA is the test session, M̂ is not
allowed to reveal both a and (x̃1, x̃2), or both b and (ỹ1, ỹ2). Suppose that M̂ is able to
distinguish E′ from S. Then M̂ must be able to distinguish at least one of the following four
pairs of distributions:

(a) (X, A, a) and (gh1(a,x̃2), A, a) (corresponding to the case that M̂ reveals a),
(b) (X, A, x̃2) and (gh1(a,x̃2), A, x̃2) (corresponding to the case that M̂ reveals x̃2),
(c) (Y, B, b) and (gh1(b,ỹ2), B, b), (corresponding to the case that M̂ reveals b),
(d) (Y, B, ỹ2) and (gh1(b,ỹ2), A, ỹ2) (corresponding to the case that M̂ reveals ỹ2).

Since h1 is a random oracle, (X, A, a) and (gh1(a,x̃2), A, a) are indistinguishable. If M̂ is able
to distinguish (X, A, x̃2) from (gh1(a,x̃2), A, x̃2), then, in the random oracle model, it can be
shown that M̂ must have queried h1(a, x̃2), therefore, he must have computed a = DLG(A).
Similarly, (Y, B, b) and (gh1(b,ỹ2), B, b) are indistinguishable, and if M̂ is able to distinguish
(Y, B, ỹ2) from (gh1(b,ỹ2), B, ỹ2), then M̂ must have computed b = DLG(B). We conclude that
the if M̂ is able to distinguish E′ and S, then M̂ is able to solve the DLP. It holds that∣∣Pr[D = 1|E′]− Pr[D = 1|S]

∣∣ ≤ εdl.

Therefore,

Pr[H|E′] ≤ Pr[H|S] + εdl (3)

If H happens in S, then the inputs to h2(f(Â, B̂,X1, X2, Y1, Y2), Â, B̂,X1, X2, Y1, Y2) are
recorded in T2. Since Ĉ knows (a, x1), Ĉ can find the record by using the DDH oracle to
check if

DDH(X2, Y2, α/(Bx1Y1
a)) = 1,

and then find
CDH(X, Y) = CDH(X2, Y2) = α/(Bx1Y1

a).

In this case, Ĉ solves a CDH problem using a DDH oracle. It holds that

Pr[H|S] ≤ εgdh. (4)

Combining (2), (3), and (4), it holds that

Pr[H|E ∧ L] ≤ k2(εgdh + εdl). (5)

L̄. The test session does not have a matching session.

In this case, we modify E to E′ as follows. Ĉ randomly chooses an honest party B̂ and a
session sidA owned by an honest party Â. Ĉ runs E′ the same way as it runs E, except that
Ĉ aborts E′ if the peer in sidA is not B̂, or sidA is not chosen as the test session in the
experiment. Let T be the event Ĉ does not abort E′, i.e., sidA is the test session and the
peer in this session is B. It holds that

Pr[H|E ∧ L̄] = Pr[H|E′ ∧ T] (6)

=
Pr[H ∧ T |E′]

Pr[T |E′]
≤ kn Pr[H|E′]

10

We then modify the experiment E′ to experiment S as follows. Without loss of generality,
we assume that Â is the initiator in the session sidA.

• For B̂, Ĉ sets B = Y . In a session sidB = (R, B̂, Ô,X1, X2, Y1, Y2) owned by B̂ where B
is a responder, Ĉ picks (ỹ1, ỹ2) as the ephemeral private keys, chooses y1 ∈R Zq, y2 ∈R Zq,
and computes Y1 = gy1 , Y2 = gy2 . Ĉ computes the session key as

K = SessionKey(Ô, B̂,X1, X2, Y1, Y2).

If a tuple (α, Ô, B̂,X1, X2, Y1, Y2) already exists in T2, then SessionKey() needs to check
if α = f(Ô, B̂,X1, X2, Y1, Y2). Since y1 and y2 are known, SessionKey() can check if the
relation holds by using the DDH oracle to check if

DDH(B,X1, α/(Oy1X2
y2) = 1

where O is the static public key of the peer Ô.
In a session sidB = (I, B̂, Ô,X1, X2, Y1, Y2) owned by B̂ where B is an initiator, the
simulation is similar and we omit the detailed steps.

• For sidA = (I, Â, B̂,X1, X2, Y1, Y2), Ĉ generates (x̃1, x̃2) and computes X2 according to
the protocol, but sets X1 = X. Ĉ computes the session key as

K = SessionKey(Â, B̂,X1, X2, Y1, Y2).

If a tuple (α, Â, B̂,X1, X2, Y1, Y2) already exists in T2, then SessionKey() needs to check
if α = f(Â, B̂,X1, X2, Y1, Y2). Since a = DLG(A) and x2 = DLG(X2) are known,
SessionKey() can check if the relation holds by using the DDH oracle to check if

DDH(X1, B, α/(Y1
aY2

x2)) = 1.

• For any other sessions, Ĉ proceeds according to the protocol faithfully.

• Ĉ answers the hash query h2(α, Î, R̂,X1, X2, Y1, Y2) by replying with

Hash(α, Î, R̂,X1, X2, Y1, Y2).

When the query is h2(α, Ô, B̂,X1, X2, Y1, Y2), if a tuple ((⊥, Ô, B̂,X1, X2, Y1, Y2, h)) al-
ready exists in T2, Hash() needs to check if α = f(Ô, B̂,X1, X2, Y1, Y2). When the query
is h2(α, Â, B̂,X1, X2, Y1, Y2), if a tuple ((⊥, Â, B̂,X1, X2, Y1, Y2, h)) already exists in T2,
Hash() needs to check if α = f(Â, B̂,X1, X2, Y1, Y2). Since each (⊥, Ô, B̂,X1, X2, Y1, Y2, h) ∈
T2 or (⊥, Â, B̂,X1, X2, Y1, Y2, h) ∈ T2 is added by SessionKey(), Ĉ knows either (y1, y2)
or (a, x2) respectively. Therefore, Hash() is able to check if the relation holds.

• Ĉ simulates h1() in a usual way.

• Ĉ answers the StaticKeyReveal, EphemeralKeyReveal, SessionKeyReveal, and Establish
queries faithfully.

We consider the probability that M̂ distinguishes S from E′. The difference between the
probabilities that H happens in the two experiments is upper bounded by the probability

11

that M̂ successfully distinguishes the two experiments. Let D be output of a distinguisher
for the two experiments. It holds that

|Pr[H|E′]− Pr[H|S]| ≤ |Pr[D = 1|E′]− Pr[D = 1|S]|.

The difference between E′ and S is due to the fact that Ĉ does not know DLG(B) or DLG(X1)
where X1 = X, B = Y . However, the session keys involving B or X1 are computed by calling
SessionKey() or by calling Hash(), and SessionKey() and Hash() give consistent results. Since
sidA is the test session, M̂ is not allowed to reveal both a and (x̃1, x̃2), or to reveal DLG(B).
In this case, the only way that M̂ can distinguish S from E′ is if M̂ queries h1(a, x̃1), h1(b, ỹ1),
or h1(b, ỹ2) to find out that X2, Y1, or Y2 was not computed correctly. However, M̂ cannot
do this unless it computes DLG(X1) or DLG(B) (A more detailed analysis would be similar
to the analysis for distinguishing E′ and S under the event L). It holds that

|Pr[D = 1|E′]− Pr[D = 1|S]| ≤ εdl.

Therefore,

Pr[H|E′] ≤ Pr[H|S] + εdl (7)

If H happens in S, then the inputs of the hash query

h2(f(Â, B̂,X1, X2, Y1, Y2)), Â, B̂,X1, X2, Y1, Y2)

are recorded in T2. Since Ĉ knows (a, x2) for sidA, Ĉ can find the record by checking if

DDH(X1, B, α/(Y1
aY2

x2)) = 1,

and then find
CDH(X, Y) = CDH(X1, B) = α/(Y1

aY2
x2)).

In this case, Ĉ solves a CDH problem using a DDH oracle. Then it holds that

Pr[H|S] ≤ εgdh. (8)

Combining (6), (7), and (8), it holds that

Pr[H|E ∧ L̄] ≤ kn(εgdh + εdl). (9)

Combining (1), (5), and (9), we have that

AdvAKE
SMEN (M̂) ≤ Pr[H|E]

= Pr[H|E ∧ L] Pr[L] + Pr[H|E ∧ L̄] Pr[L̄]
≤ max{Pr[H|E ∧ L],Pr[H|E ∧ L̄]}
= max{k2, kn}(εgdh + εdl).

If the GDH assumption and the DL assumption hold, then εgdh and εdl are negligible in the security
parameter λ. Both k and n are polynomial in λ. Therefore, AdvAKE

SMEN (M̂) is negligible.

12

3.4 Reflection Attacks

SMEN does not allow a party to establish a key with itself. This is necessary to prevent M̂ from
distinguishing S from E′ under the event L̄ (the test session does not have a matching session).
Recall that under the event L̄, in experiment S, B̂’s public key B is replaced with Y . If Â = B̂,
then M̂ would find out that A 6= Y and deduce that it is in S. From another point of view, if
SMEN allows a party to establish a key with itself, then the protocol suffers from the following
reflection attack where M̂ impersonates Â to Â : M̂ receives (Â, Â,X1, X2) from Â , chooses
y2, computes Y1 = 1/X1, Y2 = gy2 , and sends back (Â, Â,X1, X2, Y1, Y2). The session key is
K = h2(gx2y2 , Â, Â,X1, X2, Y1, Y2), and M̂ can compute it using y2.

We note that, although NAXOS and NETS allow a party to establish a key with itself, their
security proofs do not cover this case. In the proofs, when the adversary chooses a test session
(role, Â, B̂, ∗) without a matching session, the simulator changes a true experiment to a simulated
experiment by substituting the public key of the peer B̂ with V , where V is part of the input
of a CDH challenge. The proofs are based on the argument that the two experiments are indis-
tinguishable to the adversary. However, this argument holds only when Â 6= B̂. When B̂ = Â,
the adversary can find out it is in a simulated experiment because V 6= A where A is Â’s public
key. This flaw can be fixed by adding a case to the proof. When M̂ chooses (role, Â, Â, ∗) as a
test session, the simulator change the experiment as follows: Ĉ randomly chooses a party Â , and
substitutes its public key with V . M̂ chooses r ∈R Zq and computes X = Ar, and sets the session
key as K ∈R {0, 1}λ. If M̂ does not choose a session (role, Â, Â, ∗) without a matching session as
the test session, then Ĉ aborts. It can be shown that if M̂ wins the experiment, then in the random
oracle model, Ĉ can compute gv2

. If Ĉ can compute gv2
for given gv, then it can solve the CDH

problem [10].

4 SMEN− AKE Protocol

SMEN uses the NAXOS’ trick to compute an ephemeral public key so that an adversary cannot
get its discrete log in the eCK model. This trick needs to use the static private key to compute
the ephemeral public key. If we want to minimize the risk of leaking the static private key, then
we may try to minimize the use of the static private key. At the same time, we do not want to
sacrifice the efficiency or tightness of reduction too much. To achieve this property, we propose
SMEN−, which does not use the NAXOS trick, but is still efficient in online computation and tight
in security reduction.

4.1 Description

In the protocol description, λ is the security parameter. G is a cyclic group of prime order q
where log2 q ≈ λ. h : G × G → {0, 1}λ is a hash function. Â and B̂ are two parties with
static public key/private key pairs ((A1, A2), (a1, a2)) and ((B1, B2), (b1, b2)) respectively, where
A1 = ga1 , A2 = ga2 , B1 = gb1 , B2 = gb2 . We assume that the public key certificate of a party can
be obtained after knowing its identity. The two-pass SMEN− protocol is as follows:

Offline phase

1. Â selects x1 ∈R Zq, x2 ∈R Zq, computes X1 = gx1 , X2 = gx2 , and stores x1, x2, X1, X2.

13

2. B̂ selects y1 ∈R Zq, y2 ∈R Zq, computes Y1 = gy1 , Y2 = gy2 , and stores y1, y2, Y1, Y2.

Online phase

1. Â initializes a session s=(I, Â, B̂, X1, X2, ⊥) and sends (B̂, Â,X1, X2) to B̂.

2. Upon receiving (B̂, Â, X1, X2), B̂ performs the steps:

(a) if Â = B̂, then B̂ rejects and stops.
(b) verifies that X1 ∈ G and X2 ∈ G.
(c) computes the session key K = h(A1

y1X1
b1A2

b2X2
y2 , Â, B̂,X1, X2, Y1, Y2).

(d) sends (Â, B̂, X1, X2, Y1, Y2) to Â.
(e) completes session s=(R, B̂, Â, X1, X2, Y1, Y2).

3. Upon receiving (Â, B̂, X1, X2, Y1, Y2), Â performs the following steps:

(a) if Â = B̂, then Â rejects and stops.
(b) verifies that a session s =(I, Â, B̂, X1, X2, ⊥) exists.
(c) verifies that Y1 ∈ G and Y2 ∈ G.
(d) computes the session key K = h(B1

x1Y1
a1B2

a2Y2
x2 , Â, B̂,X1, X2, Y1, Y2).

(e) completes session s =(I, Â, B̂, X1, X2, Y1, Y2).

It is straightforward to verify that, without the intervention of an adversary, Â and B̂ complete
with identical shared session keys and matching sessions.

4.2 Efficiency

In the online phase, each party needs to compute a product of four exponentiations. Using the
simultaneous multiple exponentiation algorithm, the cost is about 1.29 exponentiations on average.

4.3 Security

Theorem 4.1. SMEN− is secure in the eCK model if the hash function h() is modelled as a random
oracle and if the GDH assumption holds.

Let εgdh be the probability that any polynomial time algorithm solves the GDH problem. For any
adversary that involves at most n honest parties and activates at most k sessions, we have that

AdvAKE
SMEN−(M̂) ≤ max{k2, nk}εgdh.

Proof. Define

f2(Â, B̂,X1, X2, Y1, Y2)
= CDH(A1, Y1)CDH(B1, X1)CDH(A2, B2)CDH(X2, Y2).

Let E indicates a true eCK experiment, let M be the event that M̂ wins an eCK experiment,
and let H be the event that M̂ queried h(f2(Â, B̂,X1, X2, Y1, Y2), Â, B̂,X1, X2, Y1, Y2) where sid =
(∗, Â, B̂,X1, X2, Y1, Y2) is the test session. As with SMEN, it holds that

AdvAKE
SMEN−(M̂) ≤ Pr[H|E]. (10)

14

In the eCK model, M̂ is not allowed to reveal both the static private key and the ephemeral private
key of a test session. If the test session has a matching session, then M̂ is not allowed to reveal
both the static private key and the ephemeral private key of the matching session, either. If the
test session does not have a matching session, then M̂ is not allowed to reveal the static private
key of the peer in the session. There are six cases that M̂ chooses a test session. We denote them
as L1, . . . , L6, and describe the simulation and analysis for each case as follows. Let (X, Y) be the
input of a CDH challenge.

L1. The test session does not have a matching session, and M̂ does not reveal the ephemeral
private key of the owner of the test session.

In this case, we modify E to E′ as follows. Ĉ chooses an honest party B̂ and a session sidA

owned by an honest party Â at random. Ĉ runs E′ the same way as it runs E, except that
Ĉ aborts E′ if the peer in sidA is not B̂, or sidA is not chosen as the test session in the
experiment. Let T be the event Ĉ does not abort E′. It holds that

Pr[H|E ∧ L̄] = Pr[H|E′ ∧ T] (11)

=
Pr[H ∧ T |E′]

Pr[T |E′]
≤ kn Pr[H|E′]

We then modify the experiment E′ to experiment S. In S, Ĉ simulates h() the same way
as Ĉ simulates h2() in SMEN, except that the function f() in SMEN is substituted with
f2(). Without loss of generality, we assume that Â is an initiator in a session in which it
participates, and B̂ is a responder in a session in which it participates.

• For B̂, Ĉ sets B1 = Y . In a session sidB = (R, B̂, Ô,X1, X2, Y1, Y2) owned by B̂, Ĉ
picks (ỹ1, ỹ2) as the ephemeral private keys, chooses y1 ∈R Zq, y2 ∈R Zq, and computes
Y1 = gy1 , Y2 = gy2 . Ĉ computes the session key as

K = SessionKey(Ô, B̂,X1, X2, Y1, Y2).

If a tuple (α, Ô, B̂,X1, X2, Y1, Y2) is already in T2, then SessionKey() needs to check if
α = f2(Ô, B̂,X1, X2, Y1, Y2). Since b2, y1 and y2 are known, SessionKey() can check if
the relation holds by using the DDH oracle to check if

DDH(B1, X1, α/(O1
y1O2

b2X2
y2) = 1

where (O1, O2) is the public static key of the peer Ô.

• For sidA = (I, Â, B̂,X1, X2, Y1, Y2), Ĉ generates (x̃1, x̃2) and computes X2 according to
the protocol, but sets X1 = X. Ĉ computes the session key as

K = SessionKey(Â, B̂,X1, X2, Y1, Y2).

If a tuple (α, Â, B̂,X1, X2, Y1, Y2) already exists in T2, then SessionKey() needs to check
if α = f2(Â, B̂,X1, X2, Y1, Y2). Since a1, a2 and x2 are known, SessionKey() can check if
the relation holds by using the DDH oracle to check if

DDH(X1, B1, α/(Y1
a1B2

a2Y2
x2)) = 1.

15

• For any other sessions, Ĉ proceeds according to the protocol faithfully.

• Ĉ answers the hash query h2(α, Î, R̂,X1, X2, Y1, Y2) by replying with

Hash(α, Î, R̂,X1, X2, Y1, Y2).

When the query is h2(α, Ô, B̂,X1, X2, Y1, Y2), if a tuple ((⊥, Ô, B̂,X1, X2, Y1, Y2, h)) al-
ready exists in T2, Hash() needs to check if

α = f2(Ô, B̂,X1, X2, Y1, Y2).

When the query is h2(α, Â, B̂,X1, X2, Y1, Y2), if a tuple ((⊥, Â, B̂,X1, X2, Y1, Y2, h)) al-
ready exists in T2, then Hash() needs to check if

α = f2(Â, B̂,X1, X2, Y1, Y2).

Since each (⊥, Ô, B̂,X1, X2, Y1, Y2, h) ∈ T2 or (⊥, Â, B̂,X1, X2, Y1, Y2, h) ∈ T2 is added
by SessionKey(), Ĉ knows either (b2, y1, y2) or (a1, a2, x2) respectively. Therefore, Hash()
is able to check if the relation holds.

• Ĉ simulates h1() in a usual way.

• Ĉ answers the StaticKeyReveal, EphemeralKeyReveal, SessionKeyReveal, and Establish
queries faithfully.

The difference between E′ and S is due to the fact that Ĉ does not know DLG(B1) or DLG(X1)
where X1 = X, B1 = Y . However, the session keys involving B1 or X1 are computed by
SessionKey() or by Hash(), and SessionKey() and Hash() give consistent results. In event L1,
since M̂ does not reveal the ephemeral private key of Â or static private key of B̂, E′ and S
are identical to M̂ . Therefore,

Pr[H|E′] = Pr[H|S]. (12)

If H happens in S, then the inputs of the hash query

h2(f2(Â, B̂,X1, X2, Y1, Y2)), Â, B̂,X1, X2, Y1, Y2)

is recorded in T2. Since Ĉ knows (a1, a2, x2) for sidA, Ĉ can find the record by checking if

DDH(X1, B1, α/(Y1
a1B2

a2Y2
x2)) = 1,

and then find
CDH(X, Y) = CDH(X1, B1) = α/(Y1

a1B2
a2Y2

x2)).

In this case, Ĉ solves a CDH problem using a DDH oracle. Then it holds that

Pr[H|S] ≤ εgdh. (13)

Combining (11), (12), and (13), it holds that

Pr[H|E ∧ L1] ≤ knεgdh.

For the following cases, we only describe the simulation and the analysis result. It is straight-
forward to work out the details following the same approach in L1.

16

L2 M̂ chooses a test session without a matching session, M̂ does not reveal the static private
key of the session owner.

Change E to E′: Ĉ chooses a session sidA at random. Let Â be the owner of sidA. Ĉ chooses
a party B̂ at random. Ĉ stops if the peer in sidA is not B̂, or sidA is not the test session. It
holds that

Pr[H|E ∧ L2] = nk Pr[H|E′].

Change E′ to S: Ĉ sets A2 = X, B2 = Y .

We have that
Pr[H|E ∧ L2] ≤ nkεgdh.

L3. M̂ chooses a test session with a matching session. M̂ does not reveal the static private key
of the session owner. M̂ does not reveal the static private key of the matching session owner.

Change E to E′: Ĉ chooses a session sidA at random. Let Â be the owner of the session. Ĉ
chooses another party B̂ at random. Ĉ stops if sidA is not the test session or the other party
in sidA is not B̂ . It holds that

Pr[H|E ∧ L3] = nk Pr[H|E′].

Change E′ to S: Ĉ sets A2 = X, B2 = Y .

We have that
Pr[H|E ∧ L3] ≤ nkεgdh.

L4. M̂ chooses a test session with a matching session. M̂ does not reveal the ephemeral private
key of the session owner. M̂ does not reveal the static private key of the matching session
owner.

Change E to E′: Ĉ chooses a session sidA at random. Let Â be the owner of sidA. Ĉ chooses
another party B̂ at random. Ĉ stops if the peer in sidA is not B̂, or sidA is not the test
session. It holds that

Pr[H|E ∧ L4] = nk Pr[H|E′].

Change E′ to S: Ĉ sets X1 = X, B1 = Y .

We have that
Pr[H|E ∧ L4] ≤ nkεgdh.

L5. M̂ chooses a test session with a matching session. M̂ does not reveal the static private key
of the session owner. M̂ does not reveal the ephemeral private key of the matching session
owner.

Change E to E′: Ĉ chooses a party Â at random and chooses a session sidB at random. Let
B̂ be the owner of sidB. Ĉ stops if the matching session of sidB is not the test session, or
the the peer in sidB is not Â. It holds that

Pr[H|E ∧ L5] = nk Pr[H|E′].

Change E′ to S: Ĉ sets A1 = X, Y1 = Y .

17

We have that
Pr[H|E ∧ L5] ≤ nkεgdh.

L6. M̂ chooses a test session with a matching session. M̂ does not reveal the ephemeral private
key of the session owner. M̂ does not reveal the ephemeral private key of the matching session
owner.

Change E to E′: Ĉ chooses a session sidA at random. Let Â be the owner of sidA. Ĉ chooses
a session sidB at random. Let B̂ be the owner of sidB. Ĉ stops if sidA and sidB are not
matching or sidA is not the test session. It holds that

Pr[H|E ∧ L6] = k2 Pr[H|E′].

Change E′ to S: Ĉ sets X2 = X, Y2 = Y .

We have that
Pr[H|E ∧ L6] ≤ k2εgdh.

Summarizing the above results, it holds that

AdvAKE
SMEN−(M̂) ≤ Pr[H|E]

=
6∑

i=1

Pr[H|E ∧ Li] Pr[Li]

≤ max{Pr[H|E ∧ Li], 1 ≤ i ≤ 6}
= max{k2, kn}εgdh.

5 Conclusion

In this paper, we proposed two AKE protocols that have efficient online computation and tight
security proofs in the eCK model. Previous AKEs provide either efficient computation (e.g., MQV,
HMQV, CMQV), or tight security proof (e.g., NAXOS, NETS), but not both. As an example,
CMQV uses 2.17 exponentiations in computation, but does not have a tight security proof. NETS
has a tight security proof, but it takes three exponentiations in computation. We focused on
improving the efficiency of online computation instead of the total computation, because online
computation is “realtime” and its efficiency is more important. We prosed an AKE named SMEN
whose online computation takes 1.25 exponentiations, close to that (1.17 exponentiations) of MQV,
HMQV, and CMQV. The security reduction of SMEN is as tight as that of NAXOS in the eCK
model. The NAXOS trick is used in the design of SMEN. We also proposed SMEN−, which does
not use the NAXOS trick. SMEN− takes 1.29 exponentiations in online computation. Without
the NAXOS trick, SMEN− may be more resilient to static private key leakage. Both SMEN and
SMEN− achieve efficient online computation and tight security reduction at the cost of one more
exponentiation in offline computation and a longer message, and the limitation that one party is
not allowed to establish a key with itself.

18

References

[1] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing efficient
protocols. In CCS ’93: Proceedings of the 1st ACM conference on Computer and communica-
tions security, pages 62–73, New York, NY, USA, 1993. ACM.

[2] M. Bellare and P. Rogaway. Entity authentication and key distribution. In CRYPTO ’93 Pro-
ceedings, volume 773 of Lecture Notes in Computer Science, pages 232–249, Berlin, Heidelberg,
New York, 1994. Springer.

[3] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for build-
ing secure channels. In EUROCRYPT ’01: Proceedings of the International Conference on
the Theory and Application of Cryptographic Techniques, pages 453–474, London, UK, 2001.
Springer-Verlag.

[4] I. Damg̊ard. Towards practical public key systems secure against chosen ciphertext attacks.
In CRYPTO ’91: Proceedings of the 11th Annual International Cryptology Conference on
Advances in Cryptology, pages 445–456, London, UK, 1992. Springer-Verlag.

[5] W. Diffie and M.E. Hellman. New directions in cryptography. IEEE Transactions on Infor-
mation Theory, 22(6):644–654, 1976.

[6] H. Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In V. Shoup, editor,
CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages 546–566. Springer, 2005.

[7] B.A. LaMacchia, K. Lauter, and A. Mityagin. Stronger security of authenticated key exchange.
In Willy Susilo, Joseph K. Liu, and Yi Mu, editors, ProvSec, volume 4784 of Lecture Notes in
Computer Science, pages 1–16. Springer, 2007.

[8] L. Law, A.J. Menezes, M. Qu, J. Solinas, and S. Vanstone. An efficient protocol for authenti-
cated key agreement. Designs, Codes and Cryptography, 28:119–134, 2003.

[9] J. Lee and C.S. Park. An efficient authenticated key exchange protocol with a tight security
reduction. Cryptology ePrint Archive, Report 2008/345, 2008. http://eprint.iacr.org/.

[10] U.M. Maurer and S. Wolf. Diffie-Hellman oracles. In N. Koblitz, editor, CRYPTO’96, volume
1109 of Lecture Notes in Computer Science, pages 268–282. Springer, 1996.

[11] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied Cryptography. CRC
Press, Boca Raton, 1996.

[12] D. M’Räıhi and D. Naccache. Batch exponentiation: a fast DLP-based signature generation
strategy. In CCS ’96: Proceedings of the 3rd ACM conference on Computer and communica-
tions security, pages 58–61, New York, NY, USA, 1996. ACM.

[13] T. Okamoto and D. Pointcheval. The gap-problems: A new class of problems for the security
of cryptographic schemes. In Kwangjo Kim, editor, Public Key Cryptography, volume 1992 of
Lecture Notes in Computer Science, pages 104–118. Springer, 2001.

[14] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures.
J. Cryptology, 13(3):361–396, 2000.

19

[15] B. Ustaoglu. Obtaining a secure and efficient key agreement protocol from (H)MQV and
NAXOS. Designs, Codes and Cryptography, 46(3):329–342, 2008.

20

