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Abstract. In 1999, Coron, Naccache and Stern discovered an existential signature forgery for two popular
rsa signature standards, iso/iec 9796-1 and 2. Following this attack iso/iec 9796-1 was withdrawn. iso/iec
9796-2 was amended by increasing the message digest to at least 160 bits. Attacking this amended version
required at least 261 operations.

In this paper, we exhibit algorithmic refinements allowing to attack the amended (currently valid) version
of iso/iec 9796-2 for all modulus sizes. A practical forgery was computed in only two days using 19 servers
on the Amazon ec2 grid for a total cost of ≃ us$800. The forgery was implemented for e = 2 but attacking
odd exponents will not take longer. The forgery was computed for the rsa-2048 challenge modulus, whose
factorization is still unknown.

The new attack blends several theoretical tools. These do not change the asymptotic complexity of Coron et
al.’s technique but significantly accelerate it for parameter values previously considered beyond reach.

While less efficient (us$45,000), the acceleration also extends to emv signatures. emv is an iso/iec 9796-2-
compliant format with extra redundancy. Luckily, this attack does not threaten any of the 730 million emv
payment cards in circulation for operational reasons.

Costs are per modulus: after a first forgery for a given modulus, obtaining more forgeries is virtually immediate.

keywords: digital signatures, forgery, rsa, public-key cryptanalysis, iso/iec 9796-2, emv.

1 Introduction

rsa [49] is certainly the most popular public-key cryptosystem. A chosen-ciphertext attack against rsa
textbook encryption was described by Desmedt and Odlyzko in [21]. In rsa textbook encryption, a
message m is simply encrypted as:

c = me mod N

where N is the rsa modulus and e is the public exponent.
As noted in [42], Desmedt and Odlyzko’s attack also applies to rsa signatures:

σ = µ(m)d mod N

where µ(m) is an encoding function and d the private exponent. Desmedt and Odlyzko’s attack only
applies if the encoding function µ(m) produces integers much smaller than N . In which case, one obtains
an existential forgery under a chosen-message attack. In this attack the opponent can ask for signatures
of any messages of his choosing before computing, by his own means, the signature of a (possibly
meaningless) message which was never signed by the legitimate owner of d.

As of today, two encoding function species co-exist:

⋆ An extended abstract of this paper will appear at crypto 2009. This is the full version.
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1. Ad-hoc encodings are “handcrafted” to thwart certain classes of attacks. While still in use, ad-hoc

encodings are currently being phased-out. pkcs#1 v1.5 [32], iso/iec 9796-1 [28] and iso/iec 9796-2
[29, 30] are typical ad-hoc encoding examples.

2. Provably secure encodings are designed to make cryptanalysis equivalent to inverting rsa (possibly
under additional assumptions such as the Random Oracle Model [2]). oaep [3] (for encryption) and
pss [4] (for signature) are typical provably secure encoding examples.

For ad-hoc encodings, there is no guarantee that forging signatures is as hard as inverting rsa. And
as a matter of fact, many such encodings were found to be weaker than the rsa problem. We refer
the reader to [11, 15, 14, 31, 18, 25] for a few characteristic examples. It is thus a practitioner’s rule of
thumb to use provably secure encodings whenever possible. Nonetheless, ad-hoc encodings continue to
populate hundreds of millions of commercial products (e.g. emv cards) for a variety of practical reasons.
A periodic re-evaluation of such encodings is hence necessary.

iso/iec 9796-2 is a specific µ-function standardized by iso [29]. In [19], Coron, Naccache and Stern
discovered an attack against iso/iec 9796-2. Their attack is an adaptation of Desmedt and Odlyzko’s
cryptanalysis which could not be applied directly since in iso/iec 9796-2, the encoding µ(m) is almost
as large as N . iso/iec 9796-2 can be used with hash-functions of diverse digest-sizes kh. Coron et al.

estimated that attacking kh = 128 and kh = 160 will require (respectively) 254 and 261 operations. After
Coron et al.’s publication iso/iec 9796-2 was amended and the current official requirement (see [30]) is
kh ≥ 160. It was shown in [16] that iso/iec 9796-2 can be proven secure (in the random oracle model)
for e = 2 and if the digest size kh is a least 2/3 the size of the modulus.

In this paper, we describe an improved attack against the currently valid (amended) version of iso/iec
9796-2, that is for kh = 160. The new attack applies to emv signatures as well. emv is an iso/iec 9796-
2-compliant format with extra redundancy. The attack is a Coron et al. forgery with new refinements:
better message choice, Bernstein’s smoothness detection algorithm (instead of trial division), large prime
variant and optimized exhaustive search.

Using these refinements, a forgery was computed in only two days, using a few dozens of servers on
the Amazon ec2 grid, for a total cost of us$800. The forgery was implemented for e = 2 but attacking
odd exponents will not take longer. We estimate that under similar conditions an emv signature forgery
would cost us$45,000. Note that all costs are per modulus. After computing a first forgery for a given
N , additional forgeries come at a negligible cost.

2 The iso/iec 9796-2 Standard

iso/iec 9796-2 is an encoding standard allowing partial or total message recovery [29, 30]. Here we
consider only partial message recovery. As we have already mentioned, iso/iec 9796-2 can be used with
hash-functions hash(m) of diverse digest-sizes kh. For the sake of simplicity we assume that kh, the size
of m and the size of N (denoted k) are all multiples of 8;1 this is also the case in the emv specifications.

The iso/iec 9796-2 encoding function is:

µ(m) = 6A16‖m[1]‖hash(m)‖BC16
1 As will be clarified later, if we drop the assumption that k ≡ 0 mod 8, the attack actually becomes faster. Indeed, if m

consists of an odd number of 4-bit nibbles, the encoding function becomes µ(m) = 716||m[1]||hash(m)||BC16, with only
12 fixed bits instead of 16, which in turn makes the involved integers about 4 bits shorter. e.g. the rsa-2048 {a, b}-pair
(cf. section 5.3) becomes {45, 28} instead of {625, 332}.
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where the message m = m[1]‖m[2] is split in two: m[1] consists of the k− kh− 16 leftmost bits of m and
m[2] represents all the remaining bits of m. The size of µ(m) is therefore always k − 1 bits.

The original version of the standard recommended 128 ≤ kh ≤ 160 for partial message recovery (see
[29], §5, note 4). The new version of iso/iec 9796-2 [30] requires kh ≥ 160. The emv specifications also
use kh = 160.

3 Desmedt-Odlyzko’s Attack

In Desmedt and Odlyzko’s attack [42] (existential forgery under a chosen-message attack), the forger
asks for the signature of messages of his choice before computing, by his own means, the signature of
a (possibly meaningless) message that was never signed by the legitimate owner of d. In the case of
Rabin-Williams signatures (see Appendix A), it may even happen that the attacker factors N ; i.e. a
total break.

The attack only applies if µ(m) is much smaller than N and works as follows:

1. Select a bound B and let P = {p1, . . . , pℓ} be the list of all primes smaller than B.

2. Find at least ℓ+ 1 messages mi such that each µ(mi) is a product of primes in P.

3. Express one µ(mj) as a multiplicative combination of the other µ(mi), by solving a linear system
given by the exponent vectors of the µ(mi) with respect to the primes in P.

4. Ask for the signatures of the mi for i 6= j and forge the signature of mj.

In the following we assume that e is prime; this includes e = 2. We let τ be the number of messages
mi obtained at step 2. We say that an integer is B-smooth if all its prime factors are smaller than B.
The integers µ(mi) obtained at step 2 are therefore B-smooth and we can write for all messages mi,
1 ≤ i ≤ τ :

µ(mi) =
ℓ
∏

j=1

p
vi,j

j (1)

To each µ(mi) we associate the ℓ-dimensional vector of the exponents modulo e:

V i = (vi,1 mod e, . . . , vi,ℓ mod e)

Since e is prime, the set of all ℓ-dimensional vectors modulo e forms a linear space of dimension ℓ.
Therefore, if τ ≥ ℓ+1, one can express one vector, say V τ , as a linear combination of the others modulo
e, using Gaussian elimination, which gives for all 1 ≤ j ≤ ℓ :

V τ = Γ · e+

τ−1
∑

i=1

βiV i

for some Γ = (γ1, . . . , γℓ) ∈ Z
ℓ. That is,

vτ,j = γj · e+
τ−1
∑

i=1

βi · vi,j
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Then using (1), one obtains :

µ(mτ ) =
ℓ
∏

j=1

p
vτ,j

j =
ℓ
∏

j=1

p
γj ·e+

τ−1
P

i=1

βi·vi,j

j =





ℓ
∏

j=1

p
γj

j





e

·
ℓ
∏

j=1

τ−1
∏

i=1

p
vi,j ·βi

j

µ(mτ ) =





ℓ
∏

j=1

p
γj

j





e

·
τ−1
∏

i=1





ℓ
∏

j=1

p
vi,j

j





βi

=





ℓ
∏

j=1

p
γj

j





e

·
τ−1
∏

i=1

µ(mi)
βi

That is:

µ(mτ ) = δe ·
τ−1
∏

i=1

µ(mi)
βi , where we denote: δ =

ℓ
∏

j=1

p
γj

j (2)

Therefore, we see that µ(mτ ) can be written as a multiplicative combination of the other µ(mi). For rsa
signatures, the attacker will ask for the signatures of m1, . . . ,mτ−1 and forge the signature of mτ using
the relation:

στ = µ(mτ )
d = δ ·

τ−1
∏

i=1

(

µ(mi)
d
)βi

= δ ·
τ−1
∏

i=1

σβi

i mod N

In Appendix B we describe the corresponding forgery for Rabin-Williams signatures, where, in some
cases, the attacker may even factor N .

The attack’s complexity depends on ℓ and on the probability that the integers µ(mi) are B-smooth.
The reader is referred to Appendix C for a complexity analysis (see also [17]). In practice, the attack is
feasible only if the µ(mi) are relatively small (e.g. less than 200 bits).

4 Coron-Naccache-Stern’s Attack

In iso/iec 9796-2, the encoding function’s output µ(m) is as long as N . This thwarts Desmedt and
Odlyzko’s attack. Coron-Naccache-Stern’s workaround [19] consisted in generating messages mi such
that a linear combination ti of µ(mi) and N is much smaller than N . Then, the attack can be applied
to the integers ti instead of µ(mi).

More precisely, Coron et al. observed that it is sufficient to find a constant a and messages mi such
that:

ti = a · µ(mi) mod N

is small, instead of requiring that µ(mi) is small. Namely, the factor a can be easily dealt with by
regarding a−1 mod N as an “additional factor” in µ(mi); to that end we only need to add one more
column in the matrix considered in section 3. In their attack Coron et al. used a = 28.

Obtaining a small a · µ(m) mod N is done in [19] as follows. From the definition of iso/iec 9796-2:

µ(m) = 6A16 ‖ m[1] ‖ hash(m) ‖ BC16
= 6A16 · 2k−8 + m[1] · 2kh+8 + hash(m) · 28 + BC16

Euclidean division by N provides b and 0 ≤ r < N < 2k such that:

(6A16 + 1) · 2k = b ·N + r
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Denoting N ′ = b ·N one can write:

N ′ = 6A16 · 2k + (2k − r)
= 6A16 ‖ N ′[1]‖N ′[0]

where N ′ is k + 7 bits long and N ′[1] is k − kh − 16 bits long.
Consider the linear combination:

t = b ·N − a ·µ(m)
= N ′ − 28 ·µ(m)

By setting m[1] = N ′[1] we get:

t = 6A16 ‖ N ′[1] ‖ N ′[0]
− 6A16 ‖m[1] ‖ hash(m)‖BC0016

=
�

��6A16 ‖�
�
�N ′[1] ‖ N ′[0]

−
�

��6A16 ‖�
�
�N ′[1] ‖ hash(m)‖BC0016

= N ′[0] − (hash(m)‖BC0016) < 2kh+16

For kh = 160, the integer t is therefore at most 176-bits long.
The forger can thus modify m[2] (and therefore hash(m)), until he gets a set of messages whose

t-values are B-smooth and express one such µ(mτ ) as a multiplicative combination of the others. As per
the analysis in [19], attacking the instances kh = 128 and kh = 160 requires (respectively) 254 and 261

operations.

Note that the sign of the ti’s must be accounted for. This is simple because (−1)d mod N is public.
Hence, when an odd number of ti’s is used a minus sign is inserted into δ.

5 The New Attack’s Building-Blocks

We improve the above complexities by using four new ideas: we accelerate Desmedt-Odlyzko’s process
using Bernstein’s smoothness detection algorithm [7], instead of trial division; we also use the large prime
variant [1]; moreover, we modify Coron et al.’s attack by selecting better messages and by optimizing
exhaustive search to equilibrate complexities. In this section we present these new building-blocks.

5.1 Bernstein’s Smoothness Detection Algorithm

Bernstein [7] describes the following algorithm for finding smooth integers.

Algorithm: Given prime numbers p1, . . . , pℓ in increasing order and positive integers t1, . . . , tn, output
the pℓ-smooth part of each tk:

1. Compute z ← p1 × · · · × pℓ using a product tree.
2. Compute z1 ← z mod t1, . . . , zn ← z mod tn using a remainder tree.
3. For each k ∈ {1, . . . , n}: Compute yk ← (zk)2

e

mod tk by repeated squaring, where e is the smallest
non-negative integer such that 22e ≥ tk.

4. For each k ∈ {1, . . . , n}: output gcd(tk, yk).

We refer the reader to [6] for a description of the product and remainder trees.

Theorem 1 (Bernstein). The algorithm computes the pℓ-smooth part of each tk, in O(b log2 b log log b)
time, where b is the number of input bits.
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In other words, given a list of nt integers ti < 2a and the list of the first ℓ primes, the algorithm will
detect the B-smooth ti’s, where B = pℓ, in complexity:

O(b · log2 b · log log b)

where b = nt · a+ ℓ · log2 ℓ is the total number of input bits.
When nt is very large, it becomes more efficient to run the algorithm k times, on batches of n′t = nt/k

integers. We explain in Appendix D how to select the optimal n′t, and derive the corresponding running
time.

Bernstein recommends a number of speed-up ideas of which we used a few. In our experiments we used
the scaled remainder tree [9], which replaces most division steps in the remainder tree by multiplications.
This algorithm is fastest when fft multiplications are done modulo numbers of the form 2α−1: we used
this Mersenne fft multiplication as well, as implemented in Gaudry, Kruppa and Zimmermann’s gmp
patch [24]. Other optimizations included computing the product z only once, and treating the prime 2
separately.

Bernstein’s algorithm was actually the main source of the attack’s improvement. It proved ≃ 1000
faster than the trial division used in [19].

5.2 The Large Prime Variant

An integer is semi-smooth with respect to y and z if its greatest prime factor is ≤ y and all other factors
are ≤ z. Bach and Peralta [1] define the function σ(u, v), which plays for semi-smoothness the role played
by Dickman’s ρ function for smoothness (see Appendix C): σ(u, v) is the asymptotic probability that an
integer n is semi-smooth with respect to n1/v and n1/u.

After an integer ti has had all its factors smaller than B stripped-off, if the remaining factor ω is lesser
than B2 then ω must be prime. This is very easy to detect using Bernstein’s algorithm. As Bernstein
computes the B-smooth part zi of each ti, it only remains to check whether ti/zi is small enough. In
most cases it isn’t even necessary to perform the actual division since comparing the sizes of ti and zi
suffices to rule out most non-semi-smooth numbers.

Hence, one can use a second bound B2 such that B < B2 < B2 and keep the ti’s whose remaining
factor ω is ≤ B2, hoping to find a second ti with the same remaining factor ω to divide ω out. We refer
the reader to Appendix E for a detailed analysis of the large prime variant in our context.

5.3 Constructing Smaller a · µ(m) − b · N Candidates

In this paragraph we show how to construct smaller ti = a · µ(mi) − b · N values for iso/iec 9796-2.
Smaller ti-values increase smoothness probability and hence accelerate the forgery process.

We write:
µ(x, h) = 6A16 · 2k−8 + x · 2kh+8 + h · 28 + BC16

where x = m[1] and h = hash(m), with 0 < x < 2k−kh−16.
We first determine a, b > 0 such that the following two conditions hold:

0 < b ·N − a · µ(0, 0) < a · 2k−8 (3)

b ·N − a · µ(0, 0) = 0 mod 28 (4)

and a is of minimal size. Then by Euclidean division we compute x and r such that:

b ·N − a · µ(0, 0) = (a · 2kh+8) · x+ r
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where 0 ≤ r < a · 2kh+8 and using (3) we have 0 ≤ x < 2k−kh−16 as required. This gives:

b ·N − a · µ(x, 0) = b ·N − a · µ(0, 0) − a · x · 2kh+8 = r

Moreover as per (4) we must have r = 0 mod 28; denoting r′ = r/28 we obtain:

b ·N − a · µ(x, h) = r − a · h · 28 = 28 · (r′ − a · h)

where 0 ≤ r′ < a · 2kh . We then look for smooth values of r′ − a · h, whose size is at most kh plus the
size of a.

If a and b are both 8-bit integers, this gives 16 bits of freedom to satisfy both conditions (3) and
(4); heuristically each of the two conditions is satisfied with probability ≃ 2−8; therefore, we can expect
to find such an {a, b} pair. For example, for the rsa-2048 challenge, we found {a, b} to be {625, 332};
therefore, for rsa-2048 and kh = 160, the integer to be smooth is 170-bits long (instead of 176-bits in
Coron et al.’s original attack). This decreases further the attack’s complexity. In Appendix F we provide
the optimal {a, b} values for other rsa challenge moduli.

6 Attacking iso/iec 9796-2

We combined all the building-blocks listed in the previous section to compute an actual forgery for
iso/iec 9796-2, with the rsa-2048 challenge modulus. The implementation replaced Coron et al.’s trial
division by Bernstein’s algorithm, replaced Coron et al.’s a · µ(m) − b · N values by the shorter ti’s
introduced in paragraph 5.3 and took advantage of the large prime variant. Additional speed-up was
obtained by exhaustive searching for particular digest values. Code was written in C++ and run on 19
Linux-based machines on the Amazon ec2 grid. The final linear algebra step was performed on a single
pc.

6.1 The Amazon Grid

Amazon.com Inc. offers virtualized computer instances for rent on a pay by the hour basis, which we
found convenient to run our computations. Various models are available, of which the best-suited for cpu-
intensive tasks, as we write these lines, features 8 Intel Xeon 64-bit cores clocked at 2.4ghz supporting
the Core2 instruction set and offering 7gb ram and 1.5tb disk space. Renting such a capacity costs
us$0.80 per hour (plus tax). One can run up to 20 such instances in parallel, and possibly more subject
to approval by Amazon (20 were enough for our purpose so we didn’t apply for more).

When an instance on the grid is launched, it starts up from a disk image containing a customizable
unix operating system. In the experiment, we ran a first instance using the basic Fedora installation
provided by default, installed necessary tools and libraries, compiled our own programs and made a
disk image containing our code, to launch subsequent instances with. When an instance terminates, its
disk space is freed, making it necessary to save results to some permanent storage means. We simply
rsync’ed results to a machine of ours. Note that Amazon also charges for network bandwidth but data
transmission costs were negligible in our case.

All in all, we used about 1,100 instance running hours (including setup and tweaks) during a little
more than two days. While we found the service to be rather reliable, one instance failed halfway through
the computation, and its intermediate results were lost.
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6.2 The Experiment: Outline, Details and Results

The attack can be broken down into the following elementary steps, which we shall review in turn:

1. Determining the constants a, b, x, µ(x, 0) for the rsa-2048 challenge modulus N .
2. Computing the product of the first ℓ primes, for a suitable choice of ℓ.
3. Computing the integers ti = bN−aµ(mi), and hence the sha-1 digests, for sufficiently many messages
mi.

4. Finding the smooth and semi-smooth integers amongst the ti’s.
5. Factoring the smooth integers, as well as the colliding pairs of semi-smooth integers, obtaining the

sparse, singular matrix of exponents, with ℓ rows and more than ℓ columns.
6. Reducing this matrix modulo e = 2, with possible changes in the first row (corresponding to the

prime 2) depending on the Jacobi symbols (2|ti) and (2|a).
7. Finding nontrivial vectors in the kernel of this reduced matrix and inferring a forgery.

Steps 2–4 were executed on the Amazon ec2 grid, whereas all other steps were run on one offline pc.
Steps 3–4, and to a much lesser extent step 7, were the only steps that claimed a significant amount of
cpu time.

Determining the constants. The attack’s complexity doesn’t depend on the choice of N . Since N
has to be congruent to 5 mod 8 for Rabin-Williams signatures, we used the rsa-2048 challenge. The
resulting constants were computed in sage [50]. We found the smallest {a, b} pair to be {625, 332}, and
the µ(x, 0) value given in Appendix G. The integers ti = bN − aµ(x, hi) are thus at most 170-bits long.

Product of the first primes. The optimal choice of ℓ for 170 bits is about 221. Since the Amazon
instances are memory-constrained (less than 1gb of ram per core), we preferred to use ℓ = 220. This
choice had the additional advantage of making the final linear algebra step faster, which is convenient
since this step was run on a single off-line pc. Computing the product of primes itself was done once
and for all in a matter of seconds using mpir.

Hashing. Since the attack’s smoothness detection part works on batches of ti’s (in our cases, we chose
batches of 219 integers), we had to compute digests of messages mi in batches as well. The messages
themselves are 2048-bit long, i.e. as long as N , and comply with the structure indicated in Appendix J:
a constant 246-byte prefix followed by a 10-byte seed. The first two bytes identify a family of messages
examined on a single core of one Amazon instance, and the remaining eight bytes are explored by
increments of 1 starting from 0.

Messages were hashed using Openssl’s sha-1 implementation. For each message, we only need to
compute one sha-1 block, since the first three 64-byte blocks are fixed. This computation is relatively
fast compared to Bernstein’s algorithm, so we have a bit of leeway for exhaustive search. We can compute
a large number of digests, keeping the ones likely to give rise to a smooth ti. We did this by selecting
digests for which the resulting ti would have many zeroes as leading and trailing bits.

More precisely, we looked for a particular bit pattern at the beginning and at the end of each digest
hi, such that finding n matching bits results in n null bits at the beginning and at the end of ti. The
probability of finding n matching bits when we add the number of matches at the beginning and at the
end is (1 + n/2) · 2−n, so we expect to compute 2n/(1 + n/2) digests per selected message. We found
n = 8 to be optimal: on average, we need circa 50 digests to find a match, and the resulting ti is at most
170− 8 = 162 bit long (once powers of 2 are factored out).
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Note that faster (e.g. hardware-enhanced) ways to obtain digests can significantly reduce the attack’s
complexity (cf. Appendix M). We considered for example an fpga-based solution called copacobana
[46], which could in principle perform a larger amount of exhaustive search, and accelerate the attack
dramatically. It turned out that our attack was fast enough, hence pursuing the hardware-assisted search
idea further proved unnecessary, but a practical attack on emv (cf. section 8) could certainly benefit
from hardware acceleration.

Finding smooth and semi-smooth integers Once a batch of 219 appropriate ti’s is generated, we
factor out powers of 2, and feed the resulting odd numbers into our C++ implementation of Bernstein’s
algorithm. This implementation uses the mpir multi-precision arithmetic library [26], which we chose
over vanilla gmp because of a number of speed improvements, including J.W. Martin’s patch for the
Core2 architecture. We further applied Gaudry, Kruppa and Zimmermann’s fft patch,2 mainly for their
implementation of Mersenne fft multiplication, which is useful in the scaled remainder tree [9].

We looked for B-smooth as well as for (B,B2)-semi-smooth ti’s, where B = 16,290,047 is the 220-th
prime, and B2 = 227. Each batch took ≃ 40 seconds to generate and to process, and consumed about
500mb of memory. We ran 8 such processes in parallel on each instance to take advantage of the 8 cores,
and 19 instances simultaneously.

The entire experiment can be summarized as follows:

16,230,259,553,940

digest computations

↓
339,686,719,488 ti’s in

647,901 batches of 219 each

ւ ց
684,365 366,302 collisions between

smooth ti’s 2,786,327 semi-smooth ti’s
ց ւ

1,050,667-column matrix

↓
algebra on 839,908 columns

having > 1 nonzero entry

↓
124 kernel vectors

↓
forgery involving 432,903 signatures

Finding the 1,050,667 columns (slightly in excess of the ℓ = 220 = 1,048,576 required) took a little
over 2 days.

Factoring and finding collisions. The output of the previous stage is a large set of text files containing
the smooth and semi-smooth ti’s together with the corresponding message numbers. Turning this data

2 A colleague suggested [41] that our implementation could be further improved by using the floating-point dwt multipli-
cation algorithm described in [20] and implemented in gimps, which is reportedly up to 5 or 10 times faster than integer
dwt depending on the architecture.
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into a matrix suitable for the linear algebra stage mostly involved text manipulation in Perl to convert
it to commands that could be piped into pari/gp [47]. The resulting 1,048,576 × 1,050,667 matrix had
14,215,602 non-zero entries (13.5 per column on average, or 10−5 sparsity; the columns derived from the
large prime variant tend to have twice as many non-zero entries, of course).3

Linear algebra. We found non-zero kernel elements of the final sparse matrix over GF(2) using Cop-
persmith’s block Wiedemann algorithm [13] implemented in wlss2 [33, 39], with parameters m = n = 4
and κ = 2. The whole computation took 16 hours on one 2.7ghz personal computer, with the first (and
longest) part of the computation using 2 cores, and the final part using 4 cores.

The program discovered 124 kernel vectors with Hamming weights ranging from 337,458 to 339,641.
Since columns obtained from pairs of semi-smooth numbers account for two signatures each, the number
of signature queries required to produce the 124 corresponding forgeries is slightly larger, and ranges
between 432,903 and 435,859.

Being written with the quadratic sieve in mind, the block Wiedemann algorithm in wlss2 works over
GF(2). There exist, however, other implementations for different finite fields.

Evidencing forgery. An interesting question is that of exhibiting a compact evidence of forgery.
In Appendix J we exhibit statistical evidence that a multiplicative relation between iso/iec 9796-2
signatures, (i.e. a forgery) was indeed constructed.

Fewer signature queries In Appendix K we address the question of reducing the number of signature
queries in the attack.

7 Cost Estimates

The experiment described in the previous section can be used as a benchmark to estimate the attack’s
cost as a function of the size of the ti’s, denoted a; this will be useful for analyzing the security of the
emv specifications, where a is bigger (204 bits instead of 170 bits).

a = log
2
ti log

2
ℓ Estimated TotalTime log

2
τ Amazon ec2 cost (us$)

64 11 15 seconds 20 negligible
128 19 4 days 33 10

160 21 6 months 38 470

170 22 1.8 years 40 1,620

176 23 3.8 years 41 3,300

204 25 95 years 45 84,000

232 27 19 centuries 49 1,700,000

256 30 320 centuries 52 20,000,000

Table 1. Bernstein+Large prime variant. Estimated parameter trade-offs, running times and costs, for various ti sizes.

3 This matrix actually contained a number of rows with only one nonzero entry or less. Those rows and the corresponding
columns can be safely removed, and the process can be repeated on the resulting matrix until a fix-point is reached (cf.
Appendix L for details). This reduction process is frequently the first operation carried out by linear algebra packages when
searching for kernel vectors. When applied to our matrix, it produced a reduced matrix of dimension 750,031× 839,908.
We found it most convenient to leave any such reduction step to the linear algebra package itself.
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Results are summarized in Table 1. We assume that the ti’s are uniformly distributed a-bit integers
and express costs as a function of a. Cost figures do not include the linear algebra step whose computa-
tional requirements are very low compared to the smoothness detection step. Another difference with our
experiment is that here we do not assume any exhaustive search on the ti’s; this is why the cost estimate
for a = 170 in Table 1 is about the double of the cost of our experimental iso/iec 9796-2 forgery.

Running times are given for a single 2.4ghz pc. Costs correspond to the Amazon ec2 grid, as in the
previous section. Estimates show that the attack is feasible up to ≃ 200 bits, but becomes infeasible for
larger values of a. We also estimate log2 τ , where τ is the number of messages in the forgery.

8 Application to emv Signatures

emv is a collection of industry specifications for the inter-operation of payment cards, pos terminals
and atms. The name emv is the acronym of the initial letters of Europay, MasterCard and Visa, the
three companies which originally cooperated to develop the specifications. Europay International sa
was absorbed into Mastercard in 2002. jcb (formerly Japan Credit Bureau) joined the organization in
December 2004, and American Express joined in February 2009.

The emv specifications [23] rely on iso/iec 9796-2 signatures to certify public-keys and to authen-
ticate data. For instance, when an Issuer provides application data to a Card, this data must be signed
using the Issuer’s private key Si. The corresponding public-key Pi must be signed by a Certification Au-
thority (ca) whose public-key is denoted Pca. The signature algorithm is rsa with e = 3 or e = 216 + 1.
The bit length of all moduli is always a multiple of 8.

emv uses special message formats; 7 different formats are used, depending on the message type. We
first describe one of these formats: the Static Data Authentication, Issuer Public-key Data (sda-ipkd),
and adapt our attack to it. We then consider the other six formats.

8.1 emv Static Data Authentication, Issuer Public-key Data (sda-ipkd)

We refer the reader to §5.1, Table 2, page 41 in emv [23]. sda-ipkd is used by the ca to sign the issuer’s
public-key Pi. The message to be signed is as follows:

m = 0216‖X‖Y ‖Ni‖0316

where X represents 6 bytes that can be controlled by the adversary and Y represents 7 bytes that cannot
be controlled. Ni is the Issuer’s modulus to be certified. More precisely, X = id‖date where id is the
issuer identifier (4 bytes) and date is the Certificate Expiration Date (2 bytes); we assume that both can
be controlled by the adversary. Y = csn‖C where csn is the 3-bytes Certificate Serial Number assigned
by the ca and C is a constant. Finally, the modulus to be certified Ni can also be controlled by the
adversary.

With iso/iec 9796-2 encoding, this gives:

µ(m) = 6A0216‖X‖Y ‖Ni,1‖hash(m)‖BC16

where Ni = Ni,1‖Ni,2 and the size of Ni,1 is k − kh − 128 bits. k denotes the modulus size and kh = 160
as in iso/iec 9796-2.



12

8.2 Attacking sda-ipkd

To attack sda-ipkd write:

µ(X,Ni,1, h) = 6A0216 · 2k1 +X · 2k2 + Y · 2k3 +Ni,1 · 2k4 + h

where Y is constant and h = hash(m)‖BC16. We have:















k1 = k − 16
k2 = k1 − 48 = k − 64
k3 = k2 − 56 = k − 120
k4 = kh + 8 = 168

Generate a random ka-bit integer a, where 36 ≤ ka ≤ 72, and consider the equation:

b ·N − a · µ(X, 0, 0) = b ·N − a ·X · 2k2 − a · (6A0216 · 2k1 + Y · 2k3)

If we can find integers X and b such that 0 ≤ X < 248 and:

0 ≤ b ·N − a · µ(X, 0, 0) < a · 2k3 (5)

then as previously we can compute Ni,1 by Euclidean division:

b ·N − a · µ(X, 0, 0) = (a · 2k4) ·Ni,1 + r (6)

where 0 ≤ Ni,1 < 2k3−k4 as required, and the resulting b ·N − a · µ(X,Ni,1, h) value will be small for all
values of h.

In the above we assumed Y to be a constant. Actually the first 3 bytes of Y encode the csn assigned
by the ca, and may be different for each new certificate (see Appendix H). However if the attacker can
predict the csn, then he can compute a different a for every Y and adapt the attack by factoring a into
a product of small primes.

Finding small X and b so as to minimize the value of

|b ·N − a ·X · 2k2 − a · (6A0216 · 2k1 + Y · 2k3)|

is a Closest Vector Problem (cvp) in a bi-dimensional lattice; a problem that can be easily solved using
the lll algorithm [35]. We first determine heuristically the minimal size that can be expected; we describe
the lll attack in Appendix H.

Since the a · 6A0216 · 2k1 is an (k + ka)-bit integer, with X ≃ 248 and b ≃ 2ka , odds are heuristically
reasonable to find X and b such that:

0 ≤ b ·N − a · µ(X, 0, 0) < 2(k+ka)−48−ka = 2k−48 ≃ a · 2k−48−ka = a · 2k3+72−ka

which is (72 − ka)-bit too long compared to condition (5). Therefore, by exhaustive search we will need
to examine roughly 272−ka different integers a to find a pair (b,X) that satisfies (5); since a is ka-bits
long, this can be done only if 72− ka ≤ ka, which gives ka ≥ 36. For ka = 36 we have to exhaust the 236

possible values of a.
Once this is done we obtain from (6):

t = b ·N − a · µ(X,Ni,1, h) = r − a · h
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with 0 ≤ r < a · 2k4 . This implies that the final size of t values is 168 + ka bits. For ka = 36 this gives
204 bits (instead of 170 bits for pure iso/iec 9796-2). The attack’s complexity will hence be higher than
for plain iso/iec 9796-2.

In Appendix H we exhibit concrete (a, b,X) values for ka = 52 and for the rsa-2048 challenge; this
required ≃ 223 trials (109 minutes on a single pc). We estimate that for ka = 36 this computation will
take roughly 13 years on a single pc, or equivalently us$11,000 using the ec2 grid.

Table 1 shows that attacking 204-bit ti’s would cost ≃ us$84,000. As for the iso/iec 9796-2 attack,
we can decrease this cost by first doing exhaustive search on the bits of hash(m) to obtain a smaller
t-value. We found that with 8 bits of exhaustive search cost drops to ≃ us$45,000 (without the matrix
step, but in our attack algebra takes a relatively small amount of time).

8.3 Summary

In Appendix I we provide an analysis of the other formats in the emv specifications, with corresponding
attacks when such attacks exist. We summarize results in Table 2 where an X represents a string that
can be controlled by the adversary, while Y cannot be controlled. The size of the final t-value to be
smooth is given in bits. Note that cost estimates are cheaper than Table 1 because we first perform
exhaustive search on 8 bits of hash(m) = sha-1(m); however here we do take into account the cost of
computing these sha-1(m) values.

emv mode Format Size of X Size of Y Size of t ec2 cost (us$)

sda-ipkd 0216‖X‖Y ‖Ni‖0316 48 56 204 45,000

sda-sad Y - k − 176 - -

odda-ipkd 0216‖X‖Y ‖Ni‖0316 48 56 204 45,000

odda-icc-pkd 0416‖X‖Y ‖Nicc‖0316‖data 96 56 204 45,000

odda-dad1 Y - k − 176 - -

odda-dad2 Y - k − 176 - -

icc-pin 0416‖X‖Y ‖Nicc‖0316 96 56 204 45,000

Table 2. Various emv message formats. X denotes a data field controllable by the adversary. Y is not controllable. Data
sizes for X, Y and t are expressed in bits.

Table 2 shows that only four of the emv formats can be attacked, with the same complexity as the
sda-ipkd format. The other formats seem out of reach because the non-controllable part Y is too large.

Note that these attacks do not threaten any of the 730 million emv payment cards in use worldwide
for operational reasons: the Issuer and the ca will never accept to sign the chosen messages necessary
for conducting the attack.

9 Conclusion

This paper exhibited a practically exploitable flaw in the currently valid iso/iec 9796-2 standard and
a conceptual flaw in emv signatures. The authors recommend the definite withdrawal of the ad-hoc

encoding mode in iso/iec 9796-2 and its replacement by a provably secure encoding function such as
pss.
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A Rabin-Williams Signatures

Rabin-Williams signatures use an encoding function µ(m) such that for all m, µ(m) = 12 mod 16.

– In contrast with rsa, it is required that p = 3 mod 8 and q = 7 mod 8.

Since e = 2, the private key is d = (N − p− q + 5)/8.

– To sign a message m, compute the Jacobi symbol

J =

(

µ(m)

N

)

The signature of m is s = min(σ,N − σ), where:

σ =

{

µ(m)d mod N if J = 1

(µ(m)/2)d mod N otherwise
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– To verify the signature σ compute ω = s2 mod N and check that:

µ(m)
?
=















ω if ω = 4 mod 8
2 · ω if ω = 6 mod 8
N − ω if ω = 1 mod 8
2 · (N − ω) if ω = 7 mod 8

We recall here some known facts about Legendre and Jacobi symbols.

The Legendre symbol with respect to an odd prime p is defined by:

(

x

p

)

=







1 if x 6= 0 mod p and x is a square modulo p
0 if x = 0 mod p
−1 otherwise.

Lemma 1. Let p 6= 2 be a prime. For any integer x,

(

x

p

)

= x
p−1

2 mod p

The Jacobi symbol with respect to an odd integer n =
∏

pei

i is defined from Legendre symbols as
follows:

(x

n

)

=
∏

i

(

x

pi

)ei

The Jacobi symbol can be computed without knowing the factorization of n; we refer the reader to [51]
for more details.

The following lemma shows that the Rabin-Williams signature verification works. In particular, the
fact that

(

2
N

)

= −1 ensures that either µ(m) or µ(m)/2 has a Jacobi symbol equal to 1.

Lemma 2. Let N be an rsa-modulus with p = 3 mod 8 and q = 7 mod 8. Then
(

2
N

)

= −1 and
(

−1
N

)

= 1. Let d = (N − p − q + 5)/8. Then for any integer x such that
(

x
N

)

= 1, we have that x2d = x
mod N if x is a square modulo N , and x2d = −x mod N otherwise.

We refer the reader to [40, 8] for more details on Rabin-Williams signatures.

B Desmedt and Odlyzko’s Attack for Rabin-Williams Signatures

Let J(x) denote the Jacobi symbol of x with respect to N . For Rabin-Williams (e = 2), we distinguish
two sub-cases:

J(δ) = 1: we have δ2d = ±δ mod N , which gives from (2) the forgery equation:

µ(mτ )
d = ±δ ·

τ−1
∏

i=1

(

µ(mi)
d
)βi

mod N
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J(δ) = −1: letting u = δ2d mod N we have:

u2 = δ2 mod N ⇒ (u− δ)(u + δ) = 0 mod N

Since J(δ) = − J(u) we have δ 6= ±u mod n and gcd(u± δ,N) will factor N . The attacker can therefore
submit the τ messages for signature, recover u = δ2d, factor N and subsequently sign any message.

Note that in both cases we have assumed that the signature is always σ = µ(m)d mod N , whereas
by definition a Rabin-Williams signature is σ = (µ(m)/2)d mod N when J(µ(m)) = −1. A possible
work-around consists in discarding messages for which J(µ(m)) = −1 but it is also easy to adapt the
attack to handle both cases.

C Desmedt-Odlyzko’s Attack: Complexity Analysis

The attack’s complexity depends on ℓ and on the probability that the integers µ(mi) are y-smooth.
We define ψ(x, y) = #{v ≤ x, such that v is y-smooth}. It is known [22] that, for large x, the ratio
ψ(x, t

√
x)/x is equivalent to Dickman’s function defined by :

ρ(t) =















1 if 0 ≤ t ≤ 1

ρ(n)−
∫ t

n

ρ(v − 1)

v
dv if n ≤ t ≤ n+ 1

ρ(t) is thus an approximation of the probability that a u-bit number is 2u/t-smooth; Table 3 gives the
numerical value of ρ(t) (on a logarithmic scale) for 1 ≤ t ≤ 10.

t 1 2 3 4 5 6 7 8 9 10

− log
2
ρ(t) 0.0 1.7 4.4 7.7 11.5 15.6 20.1 24.9 29.9 35.1

Table 3. The value of Dickman’s function for 1 ≤ t ≤ 10.

One can use the following theorem [12] to estimate the average number of y values tried before such
a factorization is obtained.

Theorem 2. Let x be an integer and let Lx[β] = exp
(

β ·
√

log x log log x
)

. Let t be an integer randomly

distributed between zero and xγ for some γ > 0. Then for large x, the probability that all the prime

factors of t are less than Lx[β] is given by :

Lx

[

− γ

2β
+ o(1)

]

Using this theorem, an asymptotic analysis of Desmedt and Odlyzko’s attack is given in [17]. The
analysis yields a time complexity of:

Lx[
√

2 + o(1)]

where x is a bound on µ(m). This complexity is sub-exponential in the size of the integers µ(m).
Therefore, without any modification, Desmedt and Odlyzko’s attack will be practical only if µ(m) is
small.
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D Optimizing Bernstein’s Batch Size

We assume that for a single batch the algorithm runs in time:

BatchTime(n′t, a, ℓ) = c · b′ · log2 b′ · log log b′

where c is a constant and:
b′ = n′t · a+ u (7)

is the bit-length of the batch, and u = ℓ · log2 ℓ is the pi-list’s size in bits. The total running time is then:

TotalTime(nt, a, ℓ, n
′

t) =
nt

n′t
· c · b′ · log2 b′ · log log b′

The running time of a single batch only depends on b′. Hence, as a first approximation one could
select an n′t equating the sizes of the ti-list and the pi-list; this yields n′t ·a = u. A more accurate analysis
(see below) reveals that TotalTime is minimized for a slightly larger n′t value; more precisely for an n′t
such that:

n′t · a =
u log u

2
Using (7) this gives b′ = (u log u)/2 and a total running time of:

TotalTime(nt, a, ℓ) ≃ c · nt · a · log2 b′ · log log b′

We now proceed with the analysis of the optimal n′t. For the sake of clarity we temporarily denote b′

by b. Let u = ℓ · log2 ℓ and

n′t =
u

a
· α

for some parameter α. We look for the optimal α. We have b = u · (α+ 1) and:

TotalTime(nt, a, ℓ, α) =
nt · a
u · α · c · b · log

2 b · log log b

We neglect the log log b term and consider the function:

f(u, α) =
b · log2 b

α
where b = u · (α+ 1)

Setting:
∂f(u, α)

∂α
= 0

we get:
u · (log2 b+ 2 log b) · α− b log2 b = 0 i.e. (log b+ 2) · α = (α+ 1) log b

and then:
2α = log b

which gives:
2α = log u+ log(α+ 1)

Neglecting the log(α+ 1) term, we finally get:

α ≃ log u

2

as the optimal α. This translates into running time as:

TotalTime(nt, a, ℓ) ≃ c · nt · a · log2 b log log b

where b = (u log u)/2 and u = ℓ · log2 ℓ.
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E Large Prime Variant: Complexity Analysis

In this appendix we provide an accurate analysis of the large prime variant in the context of our attack.
Assume that we check our ti-list for (B,B2)-semi-smoothness (instead of B-smoothness) and detect

η semi-smooth numbers. Amongst those, we expect to find ηλ numbers that are actually B-smooth,
for some λ ∈ [0, 1] that can be expressed in terms of ρ and σ functions. If we further assume that the
η(1 − λ) remaining numbers, which are semi-smooth but non-smooth, have their largest prime factors
uniformly distributed amongst the h primes between B and B2, we expect to find about η2(1−λ)2/(2h)
“collisions” between them, that is, about η2(1− λ)2/(2h) pairs of numbers with the same largest prime
factor.

Note that:

h ≃ B2

logB2
−B

Let ℓ be the number of primes less than B. The smooth numbers in the list yield a total of ηλ
exponent vectors over the first ℓ primes, and each of the collisions between the remaining semi-smooth
numbers yields such an additional exponent vector. Since we need (slightly more than) ℓ vectors to forge
a signature, we should examine enough ti’s to find η semi-smooth numbers, where η satisfies:

ℓ = ηλ+
η2(1− λ)2

2h

Solving for η, we get:

η =
2ℓ

λ+
√

2ℓ · (1− λ)2/h+ λ2

The probability β that a random a-bit integer is semi-smooth with respect to B2 and B ≃ ℓ · log ℓ is:

β = σ

(

a log 2

log(ℓ log ℓ)
,
a log 2

logB2

)

and if α denotes the probability that a random a-bit integer is B-smooth, we have:

λ =
α

β
=

ρ
(

a log 2
log(ℓ log ℓ)

)

σ
(

a log 2
log(ℓ log ℓ) ,

a log 2
log B2

)

In this large prime variant, we only need to generate n′t = η/β numbers to find enough exponent
vectors, as opposed to nt = ℓ/α previously. Therefore, the large prime variant improves upon simple
smoothness by a factor of roughly:

ϑ =
nt

n′t
=
ℓ/α

η/β
=

1

λ
· ℓ
η

=
1

2



1 +

√

1 +
2ℓ

h

(

1

λ
− 1

)2


 ≥ 1 (8)

ϑ is always greater than 1, and for the sizes we are interested in, say 100 ≤ a ≤ 200, we find ϑ ≃ 1.5
for the best choice of B, and B2 & 7B.4 The reader is referred to Table 4 for precise figures.

4 According to formula (8), ϑ increases until B2 reaches ≃ 7B, and decreases slowly thereafter. This is actually not the case:
finding a larger ti population to be semi-smooth can only produce more collisions. The decrease suggested by formula
(8) stems from the assumption that the largest prime factors of the ti’s are uniformly distributed amongst the h primes
between B and B2, which is only approximately true. The imprecision grows with h (a larger B2 doesn’t spread the
largest prime factors more thinly). Choosing a very large B2 is not advisable, however, because it produces considerable
extra output (searching for collisions becomes cumbersome) with negligible returns in terms of actual collisions. In the
practical attack, we selected ℓ = 220 and B2 = 227 ≃ 9B.
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a 128 144 160 176 192

Optimal log
2
(ℓ) 19 20 21 23 24

Best ϑ 1.43 1.46 1.49 1.43 1.45

Table 4. Improvement factors due to the large prime variant.

F iso/iec 9796-2 Attack: Optimal {a, b} Pairs

We provide in Table 5 the optimal {a, b} pairs for for several rsa challenge moduli.

Challenge rsa-704 rsa-768 rsa-896 rsa-1024 rsa-1536 rsa-2048

a 481 251 775 311 581 625

b 228 132 412 172 316 332

Table 5. {a, b} values for several rsa challenge moduli.

G µ(x, 0) for rsa-2048 iso/iec 9796-2 Forgery

µ(x, 0) = 6a05b0daa253785bc8ab962c6047d6171eab4429160aa5defc7ff64bcc0a1de4

6b48a5c79a4e3394a66da695bb972de0be0bd94e40e8bad820b2b942aa8e71db

bca41cb3c2e7f2a68c88f4aa47a70a491199ef13b6a75b0650b22b4b2547f72e

f607c019702fdaa4f406a00cee511fcc5dd67dc2cd52c519976bb74971974b40

cf0e5459b5d18b7e15f338db671eb02f5ea32db8bc4a0bcf5cc896894fe1e738

6395f2f6f5c76ff7b6056ab5a5dfa84c95a117316615586bffb701d8716fd0bd

2712ada91a94d2d516246b3910d717cc9de96c48d2bc825994af77d0c283b93f

67f3c8256aeb45bab7037c0000000000000000000000000000000000000000bc16

A chunk of µ(x, 0) was underlined for the ease of further reference.

H lll Attack on emv sda-ipkd Encoding

H.1 The lll Attack

Given a, N we must minimize the value of:

∣

∣

∣
b ·N − a ·X · 2k2 − a · (6A0216 · 2k1 + Y · 2k3)

∣

∣

∣

We show how this can be done using lll. We write:

u = a · 2k2

v = a · (6A0216 · 2k1 + Y · 2k3)

where N ≃ 2k, X ≃ 248, a ≃ 2ka , u ≃ 2k−64+ka and v ≃ 2k+ka.



21

Hence we must minimize the absolute value of:

t = b ·N − x · u− v
Consider the lattice of column vectors:

L =





2k−48

2k−96

N − u − v





As seen previously, heuristically, we can obtain t ≃ 2k−48; therefore the coefficients in L are chosen so
as to obtain a short vector of norm ≃ 2k−48. More precisely, we look for a short column vector c ∈ L of
the form:

c =





2k−48

x · 2k−96

b ·N − u · x− v





Theorem 3 (LLL). Let L be a lattice spanned by (u1, . . . , uω). The lll algorithm, given the vectors

(u1, . . . , uω), finds in polynomial time a vector b1 such that:

‖b1‖ ≤ 2(ω−1)/4 det(L)1/ω

Therefore, using lll we can find a short vector of norm:

‖b1‖ ≤ 2 · (detL)1/3 ≤ 2 · (23k−144)1/3 ≤ 2k−47

Heuristically we hope that b1 = c, which allows solving for the values of b and X. The attack is heuristic
but it works very well in practice, as shown in the next section.

H.2 Practical Value for emv sda-ipkd

Consider again the sda-ipkd emv format; we write:

µ(X,Ni,1, h) = 6A0216 · 2k1 +X · 2k2 + Y · 2k3 +Ni,1 · 2k4 + h

where the constant Y is taken to be:

Y = 010203 0101 F8 0116

The first 3 bytes correspond to the csn assigned by the ca (we took 01020316), 010116 corresponds
to the hash algorithm indicator and to the public-key algorithm indicator. F816 = 248 is the issuer
public-key length (in bytes) and 0116 is the length of the public exponent (e = 3).

Taking the rsa-2048 challenge for N , we have run the attack (Appendix H.1) for ka = 52 and found
the following values after 8,303,995 ≃ 223 iterations:

a = 4127135343129068 b = 2192055331476458 X = 66766242156276

which are such that 0 < X < 248 and:

0 ≤ b ·N − a · µ(X, 0, 0) < a · 2k3 (9)

as required.
The computation took ≃ 109 minutes on a single 2ghz pc. Therefore, for ka = 36 we expect that

236 trials to yield a triple {a, b,X} satisfying condition (9) such that |a| ≤ 236, within a running time
of ≃ 109 · 236−20 = 4.3 · 108 minutes = 13 years on a single pc, or equivalently for us$11,000 using the
ec2 grid.
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I emv Signature Encoding Formats

emv specifies the following encoding formats, based on the iso/iec 9796-2 standard. The new attack
applies to modes preceded by the sign � and does not apply to modes preceded by a ♦.

1. � Static Data Authentication, Issuer Public Key Data

emv sda-ipkd §5.1, Table 2, page 41.
The signing entity is the ca. The signed message is the Issuer’s public-key Pi.

m = 0216‖X‖Y ‖Ni‖0316
While being operationally debatable we assume that X (the concatenation of the Issuer’s Identifier

(4 bytes) and the Certificate Expiration Date (2 bytes)) and Ni (the Issuer’s modulus to be certified)
can be both controlled by the attacker. Y (7 bytes) cannot be controlled by the adversary.

2. ♦ Static Data Authentication, Static Application Data

emv sda-sad §5.1, Table 3, page 42.
The signing entity is the Issuer. The signed message is the Issuer’s public-key Pi. As the first part of the
message m is fixed, the attack does not apply.

3. � Offline Dynamic Data Authentication, Issuer Public-Key Data

emv odda-ipkd §6.1, Table 10, page 57.
The signing entity is the ca. The signed message is the Issuer’s public-key Pi. The message format is
identical to sda-ipkd.

4. � Offline Dynamic Data Authentication, icc Public-Key Data

emv sda-icc-pkd §6.1, Table 11, page 58.
The signing entity is the Issuer. The signed message is the Card’s public-key Pi.

m = 0416‖X‖Y ‖Nicc‖0316‖data

While being operationally debatable we assume that X (12 bytes) and Nicc (the Card’s modulus to
be certified) can be both controlled by the attacker. Y (7 bytes) cannot be controlled by the adversary.
Here data is static data to be authenticated, as specified in Section 10.3, Book 3, emv specifications;
data can only appear in the non-recoverable part of the message in the iso/iec 9796-2 standard.

5. ♦ Offline Dynamic Data Authentication, Dynamic Application Data

emv odda-dad1 §6.5, Table 15, page 67.
The signing entity is the Card. As the first part of the message m is fixed (BB16 padding), the attack
does not apply.

6. ♦ Offline Dynamic Data Authentication, Dynamic Application Data

emv odda-dad2 §6.6, Table 18, page 73.
The signing entity is the Card. As the first part of the message m is fixed5, the attack does not apply.

5 Here m = 050116‖Y ‖X where Y is a 32 + 1 = 33 bytes string that cannot be controlled by the adversary (32 leftmost
bytes of icc Dynamic Data). X can be controlled by the adversary.
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7. � Personal Identification Number Encipherment, icc pin Encipherment Public Key Data

emv icc pin §7.1, Table 23, page 83.
The signing entity is the Issuer.

m = 0416‖X‖Y ‖Nicc‖0316
While being operationally debatable we assume that X (12 bytes) and Nicc (the Card’s modulus to

be certified) can be both controlled by the attacker. Y (7 bytes) cannot be controlled by the adversary.

Commercial impact. It is very fortunate that odda-dad1 and odda-dad2 do not lend themselves
to the new attack. Indeed, in the odda-dad modes the signing device is the payment card, which is
supposedly in the opponent’s hands. In addition, the signing capacity of emv cards is limited by a
ratification counter restricting the number of signatures performed by the card during its lifetime.

J Evidencing Forgery - Experimental Results

Let:

HashList(mi) = sha-1(vi,1, . . . , vi,ℓ) where µ(mi) =

ℓ
∏

j=1

p
vi,j

j

To evidence forgery it suffices to exhibit a handful of mi such that HashList(mi) < 2160−w for some
bound w. Given that vi,1, . . . , vi,ℓ cannot be determined before actually factoring µ(mi), it is easy to
estimate6 the probability p(a, b) of discovering a solutions of the inequality

HashList(x) < 2160−w

before trying b successful factorizations. The number of such solutions follows a Poisson distribution
λke−λ/k! of mean λ = 2−wb. Hence:

1− p(a, b) ≃ Γ (a, 2−wb)

(a− 1)!

where:

Γ (x, y) =

∫ +∞

y
tx−1e−t dt

is the incomplete Gamma function.

Let:

m• = ψ‖a730b8f5b3bfaf619ad3cc18‖∆•

Here ψ represents the digits underlined in Appendix G, the bullet symbol (•) stands for either a
single digit i or a couple of digits of the form {i, 1} or {i, 2} and:

6 Under proper randomness assumptions.
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∆1,1 = 0056000f88dd857016 ∆1,2 = 0080000b9c26d0eb16

∆2,1 = 00530013cf47845a16 ∆2,2 = 0053000fdc84e93f16

∆3,1 = 001000102c6c2b5016 ∆3,2 = 01d2000959b3fe6716

∆4,1 = 01720003b13b774a16 ∆4,2 = 00b90005f7322db016

∆5,1 = 016c00023dfe3e5116 ∆5,2 = 007600120351e25016

∆6,1 = 00c0000e367388fc16 ∆6,2 = 01cf000978d5b91916

∆7,1 = 00800003d69f1d8f16 ∆7,2 = 0190000171baf33f16

∆8 = 00730011166d31ca16 ∆9 = 008500069b2f2c2416 ∆10 = 0130000976d3e84716

∆11 = 016a0006a13b914716 ∆12 = 016d0004e0c4a39316 ∆13 = 0005000ce308540016

∆14 = 0048000a6b9e765a16 ∆15 = 0051000cf1f5f33d16 ∆16 = 005500124f563dab16

The {mi,1,mi,2}’s represent semismooth message-pairs whereas mi’s stand for smooth messages. Let
N denote the rsa-2048 challenge module, for which {a, b} = {625, 332}, and define (vi,1, . . . , vi,ℓ) as
follows:

ℓ
∏

j=1

p
vi,j

j =











bN − aµ(mi) if • is a single digit i

bN−aµ(mi,1)
bN−aµ(mi,2) if • is a couple of digits of the form {i, 1} or {i, 2}

Form an ascii string si of decimal digits separated by comas representing the indices of the nonzero
coordinates of (vi,1 mod 2, . . . , vi,ℓ mod 2):

s1 = "1,2,12,16,21,50,143,150,1188,5610,23440,45965,73835,211017,249051,665273,719577,757330,1044994"

s2 = "1,5,6,8,16,40,68,524,5831,7882,7935,40769,53518,248737,357717,410827,490213,500776,722037"

s3 = "6,10,12,16,19,21,40,46,92,110,189,241,779,1031,1681,2311,3495,3787,4183,8262,123354,162437,846636"

s4 = "5,6,8,9,10,44,186,329,371,538,1081,2927,7396,12857,63132,126069,166154,521440,560769"

s5 = "4,5,13,48,83,161,218,284,370,2555,3667,11247,14293,164010,206877,239786,306991,605844,800833"

s6 = "1,2,6,7,25,886,1831,4144,13634,27788,30584,38351,47012,122884,170598,361555,573756,743547"

s7 = "6,25,62,81,119,267,330,3275,3567,4351,9761,19676,29917,60169,73891,131694,589244,876506"

s8 = "2,7,17,32,56,379,579,7145,17165,18312,128999,605951"

s9 = "1,31,80,125,5680,7782,19807,28271,37153,600595,856133"

s10 = "1,9,17,791,3062,3745,7809,51989,272289,290253,413869"

s11 = "1,6,7,9,14,429,1076,19665,20226,33554,43469,59463,179807"

s12 = "1,5,8,93,266,46588,69875,95818,225171,462306,567353"

s13 = "13,32,1287,2620,5387,7457,98930,165992,434883,447877"

s14 = "4,11,19,152,1321,3752,14469,30192,75013,182786,1028476"

s15 = "1,6,21,431,3562,15278,42172,117602,199652,514092,721130"

s16 = "34,342,584,621,636,1588,2198,2503,17225,53374,145619"

and define: HashList(mi) = sha-1(si).

We have:
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message(s) HashList(mi) or HashList({mi,1,mi,2})
{m1,1,m1,2} 0000803c0b8d1e00a35d52fe2dac52c3c3ad99dd16

{m2,1,m2,2} 00005d4a8f8e2fe787d4771dfd18ed763ee0ed8d16

{m3,1,m3,2} 0000567540f6e3e377c708ba423f70ab7fcbae8d16

{m4,1,m4,2} 0000a9e0b8a80f8db3a98af7b231d362d2e425ed16

{m5,1,m5,2} 0000feb689f4b32fe20de83a0a25fd0e3288484b16

{m6,1,m6,2} 0000775083325da0234d34b652d23ac500631a9716

{m7,1,m7,2} 0000f5a3e13aa3569bde1755ec4aa6358ccb351116

m8 0000b864ed46151c824ef412fb6d2de4df5d8c7416

m9 0000466f85211cd79a73f8b6afa6a7912d8ac13f16

m10 0000c339f0ea8b8a108b25d16a54d3c8203c30c816

m11 00007f89d2d05f1e0b08730a18466bcb454c417616

m12 00000cf8807e716f305bc0ea47e7664d3bb4917e16

m13 0000ef3c35c43074e8fea95b7d4a496430686acf16

m14 0000d64a56a66619879b313ffed1a200d64223ed16

m15 0000e5b867f4d70f61f586ca3df6b5893370e84716

m16 0000356512c0c73ac4235447793af436247d02c616

The probability to obtain a = 16 digests smaller than 2160−w = 2160−16 = 2144 without being in
actual possession of a 219-column forgery matrix is smaller than 1%. 650,000 columns are necessary to
reach 5%. Hence, one can conclude with 95% confidence, that the authors possess at least 63% of the
digests allowing to forge iso/iec 9796-2 signatures. The evidence (set of ∆i) is indeed very compact.

We do not know how to generate compact evidence in support of the algebraic phase. However, since
the algebraic phase is much easier, it is safe to assume that he who can do more, can do less. In any
case, a compact proof, rather than statistical evidence, would of course be desirable.

K Fewer Queries

The number of signatures actually used by the forger is not τ but the number of nonzero βi values in
the formula:

µ(mτ ) =





ℓ
∏

j=1

p
γj

j





e

·
τ−1
∏

i=1

µ(mi)
βi

Assuming that (β1, . . . , βτ−1) is a random vector of Z
τ−1
e only τ(e − 1)/e of the signatures will be

actually used to compute the forgery. The gain is significant when e is a very small exponent (e.g. 2 or 3).
However, one can try to generate more than τ candidates but select the subset of signatures minimizing
the number of nonzero βi values. Such a sparse β-vector may allow to reduce the number of queries and
defeat ratification counters meant to restrict the number of authorized signature queries.

In essence, we are looking at a random [ℓ, k] code: a kernel vector has ℓ components which, for e = 2,
can be regarded as a set of independent unbiased Bernoulli variables. The probability that such a vector

has weight less than w =
τ−1
∑

i=1
βi is thus:

w
∑

j=1

(

ℓ

j

)

2−ℓ ≃ 1

2

(

1 + erf

(

w − ℓ/2
√

ℓ/2

))
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We have 2k such vectors in the kernel, hence the probability that at least one of them has a Hamming
weight smaller than w is surely bounded from above by:

2k × 1

2

(

1 + erf

(

w − ℓ/2
√

ℓ/2

))

= 2k−1

(

1 + erf

(

w − ℓ/2
√

ℓ/2

))

Let c denote the density bias of w i.e., w = (1/2 − c)ℓ. The previous bound becomes:

p(c) = 2k−1
(

1 + erf
(

−c
√

2ℓ
))

= 2k−1
(

1− erf
(

c
√

2ℓ
))

= 2k−1 erfc(c
√

2ℓ) ∼
ℓ→+∞

2k−1 exp(−2ℓc2)

c
√

2πℓ

For ℓ = 220, even if we take k as large as 210 (the largest subspace dimension considered tractable,
even in much smaller ambient spaces), we get p(1/50) ≃ 10−58, so the probability that there exists a
kernel vector of weight w < 500,000 is negligible. In addition, even if such a vector existed, techniques
for actually computing it, e.g. [10], seem to lag far behind the dimensions we deal with.

It follows that a better strategy to diminish w is to simply decrease ℓ. The expected payoff might not
be that bad: If the attacker is limited to, say, 216 signatures, then he can pick ℓ = 217, and for 196-bit
numbers (204 bits minus 8 bits given by exhaustive search), the attack becomes about 15 times slower
than the optimal choice, ℓ = 224 (note as well that more exhaustive search becomes possible in that
case). That’s slow, but perhaps not excruciatingly so.

L Expected Number of Queries

A further question that arises when studying the problem of minimizing the number of signature queries
in the attack is that of evaluating the expected Hamming weight of the nullspace vectors returned by the
linear algebra step, with or without the large prime variant. The problem is nontrivial and still open. For
simplicity we only consider the GF(2) case (e = 2) the following, but the problem is not fundamentally
different for other exponents.

Some primes can never appear as components of nullspace vectors. That is the case, in particular,
when the corresponding row of the matrix contains only one nonzero element (i.e. if the prime divides
only one of our smooth or semismooth numbers to an odd power): indeed, the column containing that
nonzero element is clearly linearly independent from all other columns. Hence, we may as well remove
that row and column from the matrix, and do so for every similar pair of rows and columns.

Additional rows of weight 1 may turn up after those removals, so we need to repeat the process
recursively. A fix-point is reached (i.e. the algorithm stops) when there is no singleton row left in the
reduced matrix.

Let ℓ0 denote the total number of rows in this reduced matrix. It seems reasonable to conjecture
that (in the case of a square matrix at least) the expected weight of nullspace vectors is of the order of
ℓ0/2. In other words, the primes that can appear as components of nullspace vectors are likely to do so
randomly. The question then reduces to evaluating ℓ0.

All this prompts us to estimate how many rows in the original matrix contain exactly one nonzero
entry, or more generally exactly n nonzero entries for small n. We expected this variable to follow a
Poisson distribution, or perhaps a sum of Poisson distributions, but experiments appear to challenge
this expectation: the empirical distribution does not have exponential decay but a fat tail, as evidenced
by the following plots. Finding a simple description of this distribution seems like a rather difficult open
problem in itself.



27

Fig. 1. Distribution of row weights for a smooth matrix of size 216. Linear scale (left) and log-log scale (right).
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Fig. 2. Distribution of row weights (log-log scale) for a smooth matrix of size 216 and the first four iterations of the reduction
step applied to it. Lighter curves correspond to further iterations.

M Faster Hashing Options

Evaluating the practical impact of the attacks described in this paper requires estimating the speed at
which ti inputs can be fed into the smoothness detection phase. Creating a ti candidate is in essence as
fast as hashing a single sha-1 message block.

A standard pc (single amd core in a quad-core Opteron 8356 running Openssl’s sha-1 implementation
compiled in 64-bit mode) can perform 223.3 sha-1 compression function evaluations per second. We refer
the reader to [5] for a systematic performance study of diverse hash-functions on a variety of x86 and
x86-64 platforms.

fpga clusters : copacobana [46] is an optimized fpga machine developed for cryptanalytic purposes.
The device consists of 120 Xilinx Spartan 3 fpgas, clocked at 40mhz. A sha-1 compression function
evaluation on copacobana claims 40 clock cycles [38] (i.e. 230 digests/fpga/second). In other words,
the machine achieves an overall hashing throughput of ≃ 237 digests/second. A device costs ≃ us$12,000.
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Video cards start being used for cryptographic calculations. Dedicated programming languages for
nvidia’s cuda [44] allow to offload computationally intensive tasks onto graphic cards. Pyrit project7

data allows to estimate that ≃ 227 digests/second are achievable on a high-end nvidia gtx 280 graphics
card (the gtx 280 card, costing us$280 offers the best price/performance as we write these lines). The
high-end nvidia Tesla machine (us$10,000) operated by the sage project [50] is faster but features a
worse price/performance ratio than an equivalent-cost cluster of nvidia gtx 280 cards.

PlayStation 3s: The Cell Broadband Engine provides excellent parallel processing. Blade cell clusters
are one option. A much cheaper option consists in using Sony PlayStations (3s model, us$400/unit). A
cluster of these devices was successfully used to find chosen-prefix md5 collisions [52]. A single PlayStation
3s is capable of hashing (sha-1) at a throughput of 45Gb/second, i.e. ≃ 226 digests/second [45].

Other hashing solutions exist: the via c3 and various other risc cpus (e.g. UltraSparc t2 or various
arm processors) contain a cryptographic co-processor that can efficiently used to hash. We did not
investigate these options in further detail.

7 Pyrit – Advances in attacking wpa-psk: http://code.google.com/p/pyrit


