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Abstract. We examine the use of randomness extraction and expansion in key agreement (KA) pro-
tocols to generate uniformly random keys in the standard model. Although existing works provide the
basic theorems necessary, they lack details or examples of appropriate cryptographic primitives and/or
parameter sizes. This has lead to the large amount of min-entropy needed in the (non-uniform) shared
secret being overlooked in proposals and efficiency comparisons of KA protocols. We therefore summa-
rize existing work in the area and examine the security levels achieved with the use of various extractors
and expanders for particular parameter sizes. The tables presented herein show that the shared secret
needs a min-entropy of at least 292 bits (and even more with more realistic assumptions) to achieve an
overall security level of 80 bits using the extractors and expanders we consider. The tables may be used
to find the min-entropy required for various security levels and assumptions. We also find that when
using the short exponent theorems of Gennaro et al., the short exponents may need to be much longer
than they suggested.
Key words: randomness extraction, randomness expansion, key agreement, key exchange protocols,
pseudorandom function (PRF), universal hash function, leftover hash lemma (LHL).

1 Introduction

In this paper we examine the techniques available for extracting and expanding randomness in the context
of key agreement (KA) protocols. In such protocols, an agreed secret key is often a random member of a
given group, and not a string of bits distributed uniformly at random. However, when the key is used, e.g. as
the key of a symmetric encryption scheme, it is likely that a key consisting of bits distributed uniformly at
random will be necessary, requiring the use of randomness extraction, and possibly randomness expansion
techniques.

Informally, a randomness extractor is a family of functions keyed by a random but public value, where
the input to each function is a value with high entropy, and the output is indistinguishable from a uniformly
random bit string. Unfortunately, the number of bits of entropy in the input must usually be much larger
than the number of bits in the output for practical security parameters.

A randomness expander, or pseudo-random function family (PRFF), is a family of functions keyed by
secret, uniformly random strings, with each function taking as input any publicly known value and outputting
a value indistinguishable from one distributed uniformly at random.

When only one relatively short uniformly random key is required of a KA protocol, the output of a
randomness extractor may be used as the required key. However, it is more likely that the output of the
extractor will be used to key a randomness expander, to provide a longer key or multiple keys, e.g. when
one random group member is used to derive a MAC (message authentication code) key for use in the KA
protocol, as well as the final agreed secret key.

This step of converting a randomly chosen group member to a uniformly random string or strings of
bits is often not discussed in papers proposing KA protocols. However, if the key derivation function is
not modelled with the random oracle model, this step has a significant impact on how large the security
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parameter of the KA protocol needs to be to achieve proven security of a given level. As noted by Gennaro
et al. [1, p.4] and Chevassut et al. [2, p.2], this point is often overlooked, particularly in protocol efficiency
comparisons.

One reason randomness extraction and expansion and their effect on security parameter sizes is often
overlooked may be the plethora of existing works that must be examined to obtain the necessary background
knowledge, and the dearth numerical examples. Therefore, this paper provides:

– a summary of existing results on randomness extraction and expansion, including relevant definitions
and theorems, and numerical examples,

– details of the short exponent discrete-log (DLSE) assumption and its use with randomness extraction
and expansion (including numerical examples),

– an analysis of why assumptions made by Dodis et al. [3] in some justifications of the use of HMAC and
cascade chaining (such as SHA) as randomness extractors are not realistic,

– a valuable resource for protocol designers and implementors to enable them to use security parameters
of an appropriate size in efficiency comparisons and implementations, without having to examine all of
the existing works,

– the observation, through the use of numerical examples for values of practical interest, that some of
the theoretical results available are of limited practical value, due to the non-existence of underlying
functions of an appropriate size or the availability of better methods,

– results for the standard model only; although use of a random oracle as a randomness extractor would
mean that shorter parameters would be required in a protocol to achieve the same security level, making
it more efficient, our aim is to describe solutions available for the standard model.

We will begin by examining the suitability of various candidates as randomness expanders, which will
tell us how large a key needs to be provided by the randomness extractor. We will then examine randomness
extractors, and the amount of entropy required for their input in order to extract a long enough key for the
randomness expander.

Prior work includes that of Dodis et al. [3], the first to attempt to justify the use of CBC-MAC, cascade
chaining and HMAC as randomness extractors in the standard model, and that of Gennaro et al. [1] who
examined the use of universal hash functions as randomness extractors in conjunction with the DDH (deci-
sional Diffie-Hellman) assumption and short exponents. Chevassut et al. [2] made some brief but interesting
observations on randomness extraction and expansion in general, before providing methods of randomness
extraction which are more efficient than those studied here, but are only applicable for groups of points over
an elliptic curve (EC), and the group of prime order q in Z∗p where p = 2q + 1 and is prime. Their method
for EC groups requires computations in the KA protocol to be carried out on an EC as well as its twist,
instead of just on the curve, and so increases the number of computations required. However, the method
may be advantageous as these computations on the EC and its twist will be in smaller groups than those
necessary when using the methods studied in this paper in conjunction with computations on the EC only.
Fouque et al. [4] showed that the lower order bits of a member of a subgroup of Z∗p may be considered random
in the right circumstances. Another work of Fouque et al. [5] examined the use of HMAC as a randomness
extractor when the randomness is extracted from the HMAC key, and included an analysis of the cascade
construction as a randomness extractor.

2 Notation and Basic Definitions

The notation mostly follows Dodis et al. [3] and Gennaro et al. [1]. For a probability distribution X over
a set A, the notation x ∈X A indicates that x is chosen from A according to the distribution X . The
notation x ∈R A indicates that x is chosen from A according to the uniform distribution. PrX [x] indicates
the probability that distribution X assigns to the value x ∈ A. In some cases, definitions taken from other
works have been modified to make the notation consistent.

This paper uses a concrete security approach, to allow determination of the size of the parameters needed
in a protocol to achieve a given level of security. Following Gennaro et al. [1], we speak of circuits of size S
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having a certain probability, ε of solving a particular problem. One may also think of a circuit of size S as a
programme running in time t, where ‘time’ actually includes the length of the description of the programme
(to avoid trivializing hard problems through the use of large precomputed tables), as well as the actual
execution time of that programme [6].

We now introduce computational indistinguishability, a refinement of the notion of statistical distance
(or variation distance) from probability theory. If two distributions are statistically close, they are compu-
tationally indistinguishable, although the converse is not true [7, Sect. 3.2.2].

Definition 1 ((S, ε)-indistinguishability [1, p.19]). Let X ,Y be two probability distributions over A.
Given a circuit D (called the distinguisher) consider the following quantities:

δD,X = Prx∈X [D(x) = 1] and δD,Y = Pry∈Y [D(y) = 1] (1)

We say that the probability distributions X and Y are (S, ε)-indistinguishable if for every circuit D of size
≤ S we have that |δD,X − δD,Y | ≤ ε .

Definition 2 (Statistical Distance [8, p.131]). The statistical distance between two probability distribu-
tions X and Y over a set A is defined to be1 ∆[X ;Y] = 1

2

∑
x∈A |PrX [x]− PrY [x]| .

Lemma 1 ([3, p.500]). If two distributions have statistical distance of (at most) ε, they are ε-close. Dis-
tributions that are ε-close cannot be distinguished with probability better than ε even by a computationally
unbounded adversary.

The following lemma has a proof [1] based on the triangle inequality or “hybrid argument.”

Lemma 2 ([1, p.19]). Let three probability distributions X ,Y,Z over a set A be such that (i) X is (S1, ε1)
indistinguishable from Y and (ii) Y is (S2, ε2) indistinguishable from Z. Then X is (S, ε) indistinguishable
from Z where S = min(S1, S2) and ε = ε1 + ε2.

We now focus on describing how much randomness is in a probability distribution, defining min-entropy
and its computational analogue.

Definition 3 (Min-entropy [1, p.9]). If X is a probability distribution over A, the min-entropy of X
is min- ent(X ) = minx∈A:PrX [x] 6=0(−log2(PrX [x])) . (Note that if X has min-entropy t then for all x ∈ A,
PrX [x] ≤ 2−t.)

Definition 4 (Computational entropy t [1, p.10]). A probability distribution Y has (S, ε) computational
entropy t if there exists a probability distribution X that is (S, ε) indistinguishable from Y and min-ent(X ) ≥ t.

Definition 5 (Function Family [6, adapted from full paper p.7]). A function family f : K ×D → R

(also denoted {fκ}κ∈K), where K is a non-empty set of keys, is a collection of functions, fκ(·) def= f(κ, ·)
for κ ∈ K, from a domain, D, to a range, R. We call f a permutation family if D = R, and for each key
κ ∈ K, fκ is a permutation on D.

Definition 6 (Truly Random Function (TRF) [5, 6]). Denote the set of all functions from M to {0, 1}L

with RandM→2L (there are 2L|M | such functions). A function chosen at random from RandM→2L is a truly
random function (TRF) with input domain M and output domain {0, 1}L.

A TRF may be implemented by an oracle that, for each new oracle query, generates an output selected at
random from {0, 1}L, and for oracle queries that are not new, replies with the same output as previously
given for that input.

1 Gennaro et al.’s definition [1] is twice this value, but seems erroneous when compared with others [8, 3, 7] .
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Definition 7 (Cascade Construction [5]). The cascade construction (also known as keyed Merkle-Damgard
cascade chaining) is the construction used for iterated hash functions. Let H : {0, 1}c×{0, 1}∗ → {0, 1}c de-
note an iterated hash function, and let h : {0, 1}c×{0, 1}b → {0, 1}c (the so-called compression function) be a
family with key space {0, 1}c. The cascade construction of h is the function h∗ : {0, 1}c×

(
{0, 1}b

)∗ → {0, 1}c
defined by:

y0 = a, yi = h(yi−1, xi) and h∗(a, x) = yn

where x = (x1, . . . , xn) is a n · b bit string and a ∈ {0, 1}c. To construct H, messages must be padded
to an exact multiple of b bits. The padding, denoted pad(|x|), is a function of the input length, |x|. Let
xpad = x ‖ pad(|x|). Then H is defined by H(a, x) = h∗(a, xpad).

Let 1 ≤ c′ ≤ c be an integer and let msbc′(·) denote the c′ most significant bits of a bit string. For
any function H with range {0, 1}c, we define for every input x the truncated iterated hash function H̃(x) =
msbc′(H(x)); e.g. SHA-384 has c′ = 384 and c = 512.

Definition 8 (NMAC [5]). Nmac : {0, 1}c × {0, 1}c × {0, 1}∗ → {0, 1}c′ is a hash function family con-
structed from a (possibly truncated) iterated hash function Hash : {0, 1}c × {0, 1}∗ → {0, 1}c′ . If (k1, k2) ∈
({0, 1}c)2 is a couple of keys and x ∈ {0, 1}∗ is the input, the definition of NMAC is NmacHash(k1, k2, x) =
Hash(k2,Hash(k1, x)).

Definition 9 (HMAC [5]). HMAC is a hash function from {0, 1}∗×{0, 1}∗ to {0, 1}c′ . Let ipad and opad
be two b-bit strings and IV be a c-bit string. Let Hash : {0, 1}c×{0, 1}∗ → {0, 1}c′ be the (possibly truncated)
iterated hash function with compression function h : {0, 1}c × {0, 1}b → {0, 1}c. If the key k is a bit string
from {0, 1}b, then

HmacHash
IV (ipad , opad ; k, x) = Hash (IV , [k ⊕ opad ] ‖ Hash (IV , [k ⊕ ipad ] ‖ x))

= NmacHash(h(IV , k ⊕ ipad), h(IV , k ⊕ opad), x).

If the key k is smaller than b bits, then it is first padded with ‘0’ bits to form a b-bit string, and this string is
used as the key. If the key k is larger than b bits, it is first hashed using Hash to obtain a c′-bit digest, then
padded with b− c′ ‘0’ bits to obtain a b-bit string, which is then used as the key.

3 Randomness Expansion

To ascertain the minimum output length required from the randomness extractor used, we begin by examining
the randomness expander—also known as a pseudorandom function (PRF) family, or PRFF—to be used,
since the output of the randomness extractor will be used as the key to the PRFF.

Definition 10 (Pseudorandom Function Family [9, 6]). A function family f = {fκ}κ∈K is a (S, q, ε)
pseudorandom function family (PRFF) if a circuit, A, of size S which is given oracle access to either fκ for
κ ∈R K or a TRF with the same domain and range as the functions in f , and makes at most q queries to
this oracle, has advantage at most ε in distinguishing whether it has access to a random member of f or a
TRF; i.e.:

ε ≥ Advprf
f (q, S) def= max

A

{
Advprf

f (A)
}

(2)

Advprf
f (A) def=

∣∣∣Pr[AO(·) = 1|O(·) ∈R f ]− Pr[AO(·) = 1|O(·) ∈R Rand]
∣∣∣ (3)

The values Advprp
f (q, S) and Advprp

f (A), may be defined similarly for an adversary A against a pseudoran-
dom permutation family, except that A attempts to tell the difference between the permutation family and
a truly random permutation, rather than a TRF.

When one PRFF is used with various different keys (e.g. each party from a number of parties may
use its own key to produce pseudorandom values from the PRFF), there is a linear decrease in security.
Furthermore, the key to a PRFF may be only computationally indistinguishable from random, in which
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case the level of security of the PRFF and the level computational indistinguishability must be combined.
Theorems 10 and 11 in Appendix B formally state and prove this.

Function families widely believed to be pseudorandom include CBC-MAC used in conjunction with a
block cipher, HMAC or the HMAC variant NMAC, and cryptographic hash functions such as SHA-1 or
SHA-256 based on the cascade construction, but with the fixed IV (initialization vector) replaced with a
random key. Appendix C discusses the merits of each of these options in turn. Here we overview the security
levels provided by each option. Some assumptions (described in the appendix) must be made on the security
level of the underlying block ciphers or compression functions to arrive at the below concrete security levels.

3.1 CBC-MAC

Bellare et al. [6] have proved that CBC-MAC is a secure PRFF if the underlying block cipher is a secure
pseudorandom permutation family and the input length is constant. The level of security provided depends
on the block length, number of queries, q, and number of blocks of input, l. When ql is small (e.g. 2), the
security level is about k = b−3 bits. Otherwise, if we have ql ≤ 2k (which we are assuming when we consider
a security level of 2k sufficient), then we will require k ≤ (b − 2)/2. If the block cipher to be used with
CBC-MAC is AES-128, AES-192, or AES-256, then the block length, b, will be 128 bits for each of these
ciphers [10]. Therefore, the level of security provided by CBC-MAC when used in conjunction with any of
these ciphers will be no greater than 125 bits, and will be less for values of q and l larger than 1. Hence,
CBC-MAC is likely to be an acceptable choice of randomness expander for security levels of 80 bits if the
number of queries to randomness expander with a single key is small and the length of each query is also
small, but inadequate for security levels of 128 bits and higher. If an unlimited number of queries or queries
with a very large length are able to be made by the adversary to the randomness expander with a single key,
the security level will only be (b− 2)/2 = 63 bits when b = 128.

3.2 HMAC

Bellare [11] has proven that HMAC is a secure pseudorandom function if the compression function of the
underlying hash function is a pseudorandom function. The analysis assumes that the key provided to HMAC
is the same length as a block for the underlying hash function (i.e. b bits). To achieve a shorter key of only
2c bits (where c is the length of the output of the compression function), NMAC may be used, which is
similar to HMAC but differs in its use of keying material. However, NMAC is generally used for analysis
of HMAC only, so availability of an existing implementation is unlikely. Any implementation of NMAC will
require access to the compression function underlying the hash function to be used, which may be difficult
to acquire.

Hash functions likely to be used with HMAC include MD5 [12], RIPEMD-160 [13], SHA-1, SHA-256,
SHA-384 and SHA-512 [14]. Table 1 shows the block size (b), compression function key and output length
(c), hash function output length (c′) and HMAC security level for each of these algorithms, where q is the
number of queries using the same key and l is the number of blocks per query. The traditional security level
is c/2 bits, due to the birthday based forgery attacks against iterated MACs [15] that require 2c/2 oracle
queries.

3.3 Cascade Construction

Bellare, Canetti and Krawczyk [9] have provided a proof of pseudorandom function family security for cryp-
tographic hash functions such as SHA-1 or SHA-256 based on the cascade construction, but with the fixed
IV (initialization vector) replaced with a random key, provided the input is prefix-free and the underlying
compression function used by the hash function is a pseudorandom function family. (It is possible to remove
the prefix-free requirement by using extra keying material, but it is unlikely to be necessary in our setting.
Belare et al. provided another construction to improve security using randomization, but if the extra ran-
domness is counted as part of the key, more keying material than HMAC is required for a similar security
level.)
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Algorithm b c′ c Security level (q, l ≤ 2) Security level (q is large)
for Hash for HMAC max. for conservative HMAC
(c− 2) (c− 4) Hash ( c−20

2
) Hash ( c−40

3
) ( c−2

2
)

MD5 512 128 128 126 124 54 29 63
RIPEMD-160 512 160 160 158 156 70 40 79
SHA-1 512 160 160 158 156 70 40 79
SHA-224 512 256 224 254 252 118 72 127
SHA-256 512 256 256 254 252 118 72 127
SHA-384 1024 512 384 510 508 246 157 255
SHA-512 1024 512 512 510 508 246 157 255

Table 1. Block and key size, output length, and hash and HMAC security level

Security Key Length
level CBC- Casc. Casc. NMAC HMAC
(bits) MAC min. consrv.

29 128
40 160
54 128
63 128 256 512
70 160
72 256

Security Key Length
level Casc. Casc. NMAC HMAC
(bits) min. consrv.

79 320 512
118 256
127 512 512
157 512
246 512
255 1024 1024

Table 2. Summary of required key lengths for a given security level when q large

Table 1 shows the security level of the cascade construction using the same notation as for HMAC.
Assumptions made to obtain the security levels are described in the appendix. The difference between the
maximum and conservative security levels for large q is due to different assumptions concerning the efficiency
of the best attack against the underlying compression function.

3.4 Key Length Summary

In summary, when q ≤ 2, a minimum of 128 bits will be needed to key the randomness expander, e.g. using
CBC-MAC or the cascade construction, achieving a security level around 125 bits. In this case, the cascade
construction allows the use of a key about two bits longer than the required security level, and requires fewer
key bits than using NMAC or HMAC for the same security level.

When there is no restriction on q, the cascade construction provides the lowest key length for a given
security level when we take the security level as being c−20

2 . However, if the more conservative security
level of c−40

3 bits is used, then NMAC may be better, depending on the level of security required. Table 2
summarizes the results.

4 Randomness Extraction

Let us consider a KA protocol that allows the participating parties to agree upon a secret value, called the
pre-secret, that an adversary cannot distinguish from a value drawn uniformly at random from a particular
distribution, e.g. from a group in which the DDH (Decisional Diffie-Hellman) assumption holds. Furthermore,
assume a randomness extractor and expander are used to derive a final key from the pre-secret, such that
the final key is indistinguishable from a uniformly random bit string. As will be seen in this section, when
using the techniques of randomness extraction and expansion considered in this paper, the entropy of the
pre-secret must be much larger than the security level required of the final key. Therefore, if the pre-secret
is from a suitable group, it may seem desirable to use the discrete-log short-exponent (DLSE) assumption
to enable calculations required by the KA protocol to be more efficient, by using exponents shorter than the
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group order. In addition, if the KA protocol is Diffie-Hellman (DH) based, it may be desirable to use the
t-DDH assumption (a relaxation of the DDH assumption) to allow the use of groups with non-prime order
with the protocol. These assumptions and theorems are therefore provided in Appendix A. Note that two
theorems of Gennaro et al. [1] regarding use of the DLSE assumption are incorrect in their original paper and
have been corrected in the appendix according to details supplied by Gennaro in a personal communication.

The most common existing randomness extractor definition is of a strong randomness extractor:

Definition 11 (Strong randomness extractor [16]). A family of efficiently computable hash functions
H = {hκ : {0, 1}n → {0, 1}c|κ ∈ {0, 1}d} is called a (t, ε) strong randomness extractor, if for any random
variable X over {0, 1}n that has min-entropy at least t, if κ is chosen uniformly at random from {0, 1}d and
R is chosen uniformly at random from {0, 1}c, the following two distributions are within statistical distance
ε from each other: (κ, hκ(X)) ∼=ε (κ,R) .

By Lemma 1, the above distributions are also computationally indistinguishable from each other. Notice that
the definition means that the key to the randomness extractor, κ, may be made public, yet the output of
the randomness extractor, given a secret input with sufficient min-entropy, is indistinguishable from a string
of bits distributed uniformly at random.

Since it is likely that X will only have computational entropy (not min-entropy) of a certain level, we
introduce the following definition (which is similar to a recent definition of Fouque et al. [5] in an independent
work).

Definition 12 (Strong computational randomness extractor). A family of efficiently computable
functions H = {hκ : A → {0, 1}c|κ ∈ {0, 1}d} is a (t, S, ε, S′, ε′) strong computational randomness extrac-
tor if given any probability distribution X over A such that X has (S, ε) computational entropy at least t, the
following two probability distributions are (S′, ε′)-indistinguishable:

H = {(κ, hκ(x)) for κ ∈R {0, 1}d and x ∈X A} (4)

Rh = {(κ, r) for κ ∈R {0, 1}d and r ∈R {0, 1}c} (5)

It is possible to show that a strong randomness extractor is also a strong computational randomness extractor
(see Theorem 12 in Appendix B). However, the converse is not necessarily true.

The above definitions assume that the key to the randomness extractor, κ, is generated afresh for each use
of the randomness extractor. This may be appropriate in some protocols, where parties may have exchanged
nonces with each other and can use these values to generate the key. However, it is imperative that any
such nonces be authenticated (i.e. unable to be influenced by the adversary) and not subject to replay by
the adversary. Otherwise, a key derived from these nonces may not be distributed uniformly at random over
{0, 1}d as required for these extractors.

When parties are unable to generate a new key, κ, each time they use a randomness extractor, the key
κ may be fixed as part of the system parameters. However, this requires multiple uses of the randomness
extractor with the one key. It turns out that the security of the randomness extractor decreases linearly
with the number of queries to it using the same key. Protocols using this approach may be proven secure
in one of two ways. As part of the proof of security of the protocol, one often focuses on the security of
one particular session chosen at random from all sessions. In the proof, it may be possible to use the above
definitions to prove the security of the protocol. The total number of sessions will appear as a factor in the
security reduction (due to focusing on one session chosen at random from all sessions), and this will cater for
the reduction in security due to multiple uses of the extractor with only one key. The other way to justify
the use of a single key to the randomness extractor is via Theorems 13, 17 and 18 in Appendix B.

4.1 Combining Extraction and Expansion

To ascertain the security of the overall key derivation function consisting of randomness extraction and
expansion, all of the relevant theorems must be combined (e.g. extractor reuse, Diffie-Hellman assumption,
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For EEDH and EER indistinguishable:

– S5
ε5
≥ 2k+1

– e ≥ k + 2 + log2(q1)
– t-DDH assumptions:

`
2k+4q1 + q1 + q2,

1
2

´
and“

q1 + q2 + 1, 1
2k+3q1

”
– s-DLSE assumptions:`

2i−1s ln (2s) (Y + 2Z) , 1
2

´
and`

Y is ln (s) (Z + 1) , 1
Y

´
where

Y
def
= (log2(m)− s) 2k+5q1, Z

def
= S3 + q1 + q2.

For EEDH∗ and EER∗ indistinguishable:

– S5−S8
ε5

≥ 2k+1q1 where S8 ≈ (q1 − 1)q2
– e ≥ k + 2 + 2 log2(q1)
– t-DDH assumptions:

`
2k+4q21 + q1q2,

1
2

´
and“

q1q2 + 1, 1
2k+3q21

”
– s-DLSE assumptions:

`
2i−1s ln (2s) (Y + 2Z) , 1

2

´
and`

Y is ln (s) (Z + 1) , 1
Y

´
where

Y
def
= (log2(m)− s) 2k+5q21 , Z

def
= S3 + q1q2.

In both cases i = 3 unless log2(m) > 2s− log2(ε1), in which case i = 2 and the smallest sensible value for ε1 is 1
Y

.
S3 is the cost of a multi-exponentiation in G.

Table 3. Requirements for the two cases to be indistinguishable from random

short exponent theorems, expander reuse etc.). As a useful example, we combine Theorems 10, 11, 9 and 17
in Theorem 19 in Appendix B. A summary of the results is as follows.

Let H = {hκ : {0, 1}n → {0, 1}c|κ ∈ {0, 1}d} be a (t, 2−e) strong randomness extractor, with a maximum
of q1 queries per (publicly known) randomness extractor key κ, and let f = {fλ}λ∈K be a (S5, q2, ε5) PRFF,
with a maximum of q2 queries per (secret) key λ. Suppose a security level of k bits is desired for the final
key(s) output by f . Let G be a cyclic group of order m generated by g, such that m is odd, or m/2 is odd.
We assume there are q1 publicly known pairs gai , gbi for 1 ≤ i ≤ q1, and that the gaibi are the inputs to
hκ(·).

We consider two cases. For the first, we require q1−1 outputs of H to be indistinguishable from random,
use the other output of H to key f , and require the q2 outputs of f using this key to be indistinguishable
from random. The indistinguishable distributions are labelled EEDH and EER.

In the second case, all q1 outputs of H are used to key f , giving a total of q1q2 outputs of f , and
all of these outputs must be indistinguishable from random. The indistinguishable distributions are labelled
EEDH∗ and EER∗. Which of these cases is appropriate will depend upon the protocol in question and its proof
of security. Table 3 shows the requirements in each case, where the distributions are to be indistinguishable
with a security level of k bits.

As an example putting it all together, suppose that a security level of k = 80 bits is required, we desire
that the EEDH and EER distributions are indistinguishable, q1 = 1 and q2 = 1. Furthermore, suppose that
m is prime. Then we need:

– a randomness expander with an 81 bit security level, e.g. CBC-MAC with a 128 bit key for its block
cipher or MD5 with a 128 bit key;

– a (t, 2−82) strong randomness extractor for some t that outputs enough bits to key the randomness
expander, e.g. a universal hash function—in that case t = 292 (see Sect. 4.2);

–
(
284, 1

2

)
and

(
3, 1

283

)
t-DDH assumptions on G, e.g. G could be of order 292 bits on an elliptic curve (292

is the maximum of t = 292 and 2 · 85);
– exponents of the full 292 bits since the short exponent assumption needs the short exponent to be longer

than 292 bits (probably around 600 bits).

Further details of the calculations are provided in Table 6 in Appendix B. This example contradicts the
statement by Gennaro et al. [1, Sect. 6] that exponents of length 2k may be used to achieve a security level
of k bits, since in our example, we need the exponent to be of length between 5k and 7.4k. It seems that
Gennaro et al. have not substituted actual values into their theorem stating that short exponents may be
used, and have thus come to an incorrect conclusion about how long the short exponents really need to be.
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4.2 Available Extractors

We now compare the available randomness extractors, focusing on output lengths of 128, 160, 256 and 512
bits, as these are the possible key lengths for the randomness expanders in Sect. 3.4. The reader may make
his own comparisons for other output lengths with the information provided.

We first discuss the use of the Leftover Hash Lemma (LHL) to show that a universal (or almost universal)
hash function may be used as a randomness extractor. Following this, we discuss the use of a PRFF as a
randomness extractor, as analysed by Chevassut et al. [2], and then summarize the results of Fouque et al. [4]
on deterministic extraction of lower order bits from subgroups of Z∗p. Then another work of Fouque et al. [5]
is summarized with several results on using HMAC to extract randomness from the HMAC key, and a result
on using the cascade construction as a randomness extractor. Appendix D provides an overview and detailed
comments on the problems with the first work [3] to consider the suitability of CBC-MAC, the cascade
construction, and HMAC for use as randomness extractors in the standard model.

We aim for the output of the extractor to be (S′, ε′) indistinguishable from uniform with S′

ε′ ≥ 281 as a
minimum requirement (this will achieve a security level no greater than k = 80 bits when the randomness
extractor and expander are used together). Theorem 19 (summarized in Table 3) will provide the basis for
our numerical analysis of the advantages of each extractor. We will use the notation of Sect. 4.1 and assume
(as was done there) that S4 ≈ q1, S6 ≈ q2 and S8 ≈ (q1 − 1)q2. Furthermore, we let c be the key length of
the expander, and hence the output length of the extractor; t be the min-entropy, b be the block size and L
be the number of blocks of the pre-secret (ps, e.g. the DH value) which is input to the extractor. We will
examine the parameters required of each extractor to achieve various security levels in the following cases
(notation is as in Sect. 4.1). In our examples, we use the cascade construction as the expander, since it is
the best (see Sect. 3.4). The parameters required to achieve other security levels or in other cases can be
derived by the reader.

1. Each extractor key is used only once (q1 = 1; this would be the case if the key is chosen afresh in each
protocol run); the expander is used only once or twice with each key (q2 ≤ 2); it is desired that EEDH
and EER are indistinguishable (the KA protocol’s security will be lower than k bits, since the total
number of sessions will appear as a factor in its security reduction).

2. The extractor key is a global parameter used up to 230 times (q1 ≤ 230); other requirements are as for the
previous case; e.g. many other applications use the extractor at a k-bit security level; the KA protocol
proof focuses on one session; that session’s two keys (output by the expander) have k bits of security
(again, the protocol’s overall security will be lower than k bits).

3. Each extractor key is used once (q1 = 1); the expander is used many times with each key (q2 > 2); other
requirements are the same as for the first case.

4. The extractor key is the same in all KA protocol sessions (but not used in other applications), and there
are up to 230 sessions (q1 ≤ 230); the expander is used many times with each key (q2 > 2); EEDH∗ and
EER∗ must be indistinguishable (so the number of sessions will not be an extra factor in the protocol
proof). We assume S2

8 ≈ q2
1q

2
2 ≤ 2k+1q1 so that a cascade construction security level of k + 1 + log2(q1)

bits (less conservative option) gives S5−S8
ε5
≥ 2k+1q1.2

Almost Universal Hash Functions The Leftover Hash Lemma (LHL) is well-known and allows the
use of a universal (or almost universal) hash function as an extractor which is probabilistic and optimal
in general [2]. There are several variations of the LHL in the literature; the one provided is mainly from
Chevassut et al. [2], and similar to Dodis et al. [3, p.501].

2 We want (S5 − S8) /ε5 ≥ 2k+1q1. When using the cascade construction (less conservative option) we have 1/ε5 ≥
2c/

`
220S2

5

´
(see the comments following Theorem 22), so we need ((S5 − S8) 2c) /

`
220S2

5

´
≥ 2k+1q1 where c is the

key length of the randomness extractor. When S5 = S8 + 1, we have ((S5 − S8) 2c) /
`
220S2

5

´
≥ 2k+1q1 implies

2c ≥ 2k+21q1S
2
8 . However, for a security level of s bits for the randomness expander, we require 2c ≥ 22s+20, and if

s = k + 1 + log2(q1), this will imply the first requirement when s ≥ 2 log2(S8). For values of S5 much larger than
S8, S5 − S8 ≈ S5 and so a security level of k + 1 + log2(q1) bits will be sufficient.
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Case t k e c
1 c+ 2e k k + 2 ≥ (k + 2) + 2
1 292 80 82 128
1 380 124 126 128
1 476 156 158 160
1 764 252 254 256
1 1532 508 510 512
2 c+ 2e k k + 32 ≥ (k + 32) + 2
2 352 80 112 128
2 476 126 158 160
2 704 192 224 256
2 764 222 254 256
2 1532 478 510 512

Case t k e c
3 c+ 2e k k + 2 ≥ 2(k + 2) + 20
3 420 80 82 256
3 492 116 118 256
3 900 192 194 512
3 1004 244 246 512

4 c+ 2e k k + 62 ≥ 2(k + 32) + 20
4 540 80 142 256
4 552 86 148 256
4 956 160 222 512
4 1020 192 254 512
4 1064 214 276 512

Table 4. Universal hash function parameter examples

Definition 13 (δ-AU (almost universal)). Let c and b be integers, and {hκ}κ∈K be a family of hash
functions with domain {0, 1}b, range {0, 1}c and key space K. We say that the family {hκ}κ∈K is δ-almost
universal (δ-AU)3 if for every pair of different inputs x, y from {0, 1}b it holds that Pr(hκ(x) = hκ(y)) ≤ δ,
where the probability is taken over κ ∈R K. For a given probability distribution X on {0, 1}b, we say that
{hκ}κ∈K is δ-AU w.r.t. X if Pr(hκ(x) = hκ(y)) ≤ δ where the probability is taken over κ ∈R K and x, y ∈R X
conditioned on x 6= y.

An example of a universal hash function is the function that multiplies a Toeplitz matrix (one with constant
diagonals) by the input to create the output [17]. Appendix E gives more details and examples of universal
hash functions.

Lemma 3 (LHL with δ-AU [2]). Let X be a probabilistic distribution over {0, 1}b with min-entropy at
least t. Let e be an integer and c ≤ α − 2e where α = min(t, log2(1/ξ)). Let H = {hκ}κ∈K, with hκ having
domain {0, 1}b and range {0, 1}c for any κ ∈ K, be a δ-AU hash function family with δ = 1

2c + ξ. Let H be
a random variable uniformly distributed on H, X denote a random variable taking values in {0, 1}b, and H
and X be independent. Then, (H,H(X)) is 2−e-uniform on H× {0, 1}c.

This lemma states that a δ-almost universal hash function is a (t, 2−e) strong randomness extractor. It was
used to generate Table 4, where we must have ξ ≤ 2−t. It shows that even the most basic requirements mean
a computational entropy of 292 bits in the input to the randomness extractor. More realistic requirements
may mean a much higher level of computational entropy is required. Because of their significant key size
requirements, and because other functions such as cryptographic hash functions are more readily available,
universal hash functions are often not used for key derivation.

PRFFs as Randomness Extractors Chevassut et al. [2] have shown that a PRFF may be used for
randomness extraction with a publicly known key.

Theorem 1 ([2]). If a family of functions, F , is a (S, 2, ξ)-PRFF with domain {0, 1}b and range {0, 1}c,
S is the size of a circuit that makes 2 oracle queries on an instance of F , then it is a ( 1

2c + ξ)-AU hash
function family.

By using Lemma 3, we can conclude that a PRFF can be a strong randomness extractor, although the
output of the PRF will generally need to be truncated to a length compatible with Lemma 3. Reuse of the

3 Being δ-AU in Dodis et al. [3] is the same as being ξ-AUH in Chevassut et al. [2] for δ = 1
2c

+ ξ where c is the
number of bits of output of the function. We use the notation of Dodis et al. in this paper. When δ = 1

2c
, the

function is universal.
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Case b t k e c
1 k k + 2 ≥ k + 4
1 1024 733 80 82 128
1 2048 1178 80 82 128
1 1024 777 124 126 128
1 1024 841 156 158 160
1 2048 1546 252 254 256
1 2048 2058 508 510 512
2 k k + 32 ≥ k + 34
2 1024 763 80 112 128
2 1024 841 126 158 160
2 1024 1003 192 224 256
2 2048 1546 222 254 256
2 2112 2091 478 510 512

Case b t k e c
3 k k + 2 ≥ 2(k + 2) + 20
3 1024 861 80 82 256
3 1024 897 116 118 256
3 2048 1742 192 194 512
3 2048 1794 244 246 512

4 k k + 62 ≥ 2(k + 32) + 20
4 1024 921 80 142 256
4 1024 927 86 148 256
4 2048 1770 160 222 512
4 2048 1802 192 254 512
4 2048 1824 214 276 512

Table 5. Parameter examples for least significant bits extraction

extractor can then be covered by Theorem 13 or 18. For example, to achieve a security level of k = 80 bits in
Case 1, as shown in Table 4, we will need ξ < 2−292. This rules out the use of CBC-MAC, since the block size
is only likely to be 128 bits, and so the security level will only be about 125 bits. The use of HMAC or the
cascade construction seems appropriate, provided we do not need ξ smaller than 2−508 or 2−510 respectively.
In our example, we could use SHA-384 or better, and would need to truncate the output to 128 bits.

Deterministic Extraction of Lower Order Bits The analysis of Fouque et al. [4] allows one to use the
lower or higher-order bits from subgroups of Z∗p.

Theorem 2. Let p be a b-bit prime, that is 2b−1 < p < 2b, G a subgroup of Z∗p of order q with q � √p, l
the integer such that 2l−1 ≤ q ≤ 2l and X a random variable uniformly distributed in G. Let lsbc(X) denote
the c least significant bits of X. Let e be a positive integer and let l > t = b/2 + c+ e+ log2(b) + 1. Then the
function lsbc(·) is a (t, 2−e)-deterministic extractor for the G-group distribution. If p1/2 ≤ q ≤ p2/3 then the
requirement on l may be refined to l > t = b/4 + 3l/8 + c+ e+ log2(b) + 3, and if 256 ≤ q ≤ p1/2, it may be
refined to l > t = b/8 + 5l/8 + c+ e+ log2(b) + 3. Let msbc(X) denote the c most significant bits of X and let
δ = (2n− p)/2n. If 3δ < 2−e−1 and l > t = n/2 + k+ e+ log2(n) + 1, then msbc(·) is a (t, 2−e)-deterministic
extractor.

Table 5 shows some parameter examples using Theorem 2 with the four cases under consideration. Comparing
it with Table 4, we can see that more computational entropy is generally required than when using a universal
hash function. Fouque et al. recommended the use of the DLSE assumption to shorten the exponents required
and thus improve efficiency. However, Sect. 4.1 indicates that much more than 2e bits will be required,
contrary the indication of Fouque et al. (summarizing Gennaro et al.’s work [1]). However, one advantage of
this method is that it is deterministic, and so does not require a key for the extractor.

HMAC Fouque et al. [5] have analysed the security of HMAC as a randomness extractor when the data
from which the randomness is to be extracted (pre-secret, ps) is used as the key of HMAC. Because the
pre-secret is used as the HMAC key, some other data (denoted label , of at most l blocks), which is possibly
adversarily generated, is used as the input to HMAC. There are two separate results, depending on whether
the pre-secret is longer than one block or not.

Theorem 3 ([5]). Using the notation of this section and Definition 9, let L = 1, let ipad and opad be chosen
uniformly at random and let IV be a fixed string. Let h′ be the hash function defined by h′IV (pad , ·) = h(IV , ·⊕
pad) where the key is pad. Let Sh be the circuit size for one computation of h. Let h′ be a (S′+2Sh, q = 2, ε1)
PRFF, and h be both a (S′, q = 1, ε2) and (O(l · Sh), q = 2, ε3) PRFF. Then HmacHash

IV (ipad , opad ; ps, label)

is a (t,∞, 0, S′, ε′) computational randomness extractor with ε′ ≤
√

22c(2−t+2ε1)

2 + 1
2c′

+ ε2 + 2lε3.
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This is only useful if b � 2c, since L = 1 implies t ≤ b and when t = 2c the term under the square
root is at least one. In the case of SHA-1, we have b = 512 and c = c′ = 160. To achieve a security
level of e bits for the output of HMAC, we want S′/ε′ ≥ 2e. If we assume ε1 ≤ (S′ + 2Sh)/(Sh2b), ε2 ≤
S′/(Sh2c), ε3 ≤ lSh/(Sh2c), and l � 2c, and consider the case where S′ = Sh = 1, we require e ≤
min

(
t−2c+1

2 , b−2c+1.6
2 , c′, c− 2 log2(l)− 1

)
. These conditions will also ensure that the conditions placed on

e when S′ = 2e−1, Sh = 1 and we want ε′ ≤ 1
2 , are met. Hence, when t = 512, we achieve the maximum

security level of e = 96 bits; for e = 82 bits, we need t = 483 bits min-entropy.
To overcome the problem of the above theorem only being useful when b � 2c, the assumptions on

the compression function can be modified. That is, it is assumed that h is a PRFF resistant to related key
attacks (RKA) when it is keyed with a bit string of min-entropy at least t (denoted t-RKA; t = c for classical
RKA). This assumption cannot be reduced to the h PRFF-security against RKA, since it is possible to have
a good PRFF for a uniformly distributed key that is not a good PRFF for a high-entropy key. We omit the
details of a RKA adversary used in the following theorems, but note that if the exhaustive search adversary
with circuit size S′ is the best known t-RKA adversary, its advantage is smaller than (S′/Sh)/2t. Fouque
et al. state their revised theorem in terms of HPRF, which is constructed from several concatenations and
iterations of HMAC (they do not describe HPRF in detail but refer the reader to TLS v1.2 [18]).

Theorem 4 ([5]). Let L = 1, let ipad and opad be two fixed strings and let IV be chosen uniformly
at random. Let h be a function family resistant to a t-RKA adversary with circuit size S′ that makes at
most 2 queries with advantage ε0. Let Sh be the circuit size for one computation of h. Let HPRF be a
concatenation of v HMAC, and Hash be truncated. Let h be both a (S′, q = 2v, ε1) and (O(l · Sh), q = 2, ε2)
PRFF. Then HprfHash

ipad,opad(IV ; ps, label) is a (t,∞, 0, S′, ε′) computational randomness extractor with ε′ ≤
ε0 + ε1 + 4v2lε2 + 2v2

2c′
+ v2

2c .

Assuming l = v = 1, ε0 ≤ S′/Sh
2t , ε1 ≤ (S′/Sh)

2c , and ε2 ≤ (lSh/Sh)
2c , we have S′/ε′ ≥ 2e when e ≤ t−3, e ≤ c−5

and e ≤ c′ − 4. Hence, we can extract almost all of the pre-secret’s entropy when it has less entropy than
the number of bits output by HPRF, and the pre-secret is only one block long.

When the pre-secret is longer than one block, it is first hashed and padded with ‘0’ bits to obtain a b-bit
string. The following theorem covers this case for HMAC. We omit the similar theorem for HPRF (when it
is constructed from several concatenations and iterations of HMAC) due to lack of space.

Theorem 5 ([5]). Let L ≥ 2, ipad and opad be fixed strings, and IV be a variable chosen uniformly at
random. Define ĥ : {0, 1}c′ × {0, 1}c → {0, 1}c as ĥ(x, y) = h(y, x ‖ 0b−c

′
). Let Sh be the circuit size for one

computation of h. Let Hash be truncated. Let ε2 be the RKA advantage of an adversary against ĥ making at
most 2 related key queries with circuit size S′. Let h be a (S′, q = 2, ε1), (S′, q = 1, ε3) and (O(l ·Sh), q = 2, ε4)
PRFF. Then HmacHash

IV (ipad , opad ; ps, label) is a (t,∞, 0, S′, ε′) computational randomness extractor with
ε′ ≤ 1

2c′
+ ε2 + ε3 + 2lε4 +

√
2c′ (3 · 2−t + 2Lε1).

Assuming ε1 ≤ S′/Sh
2c , ε2 ≤ (S′/Sh)

2c′
, ε3 ≤ (S′/Sh)

2c , and ε4 ≤ O(lSh)/Sh
2c , we have S′/ε′ ≥ 2e when e ≤ t−3.6−c′

2 ,

e ≤ c−c′−log2(L)−3
2 , e ≤ c′− 2 and e ≤ c− 2 log2(l)− 3. Hence, when L = 2, l = 1, and SHA-384 is used, only

e = 62 bits of security can be achieved for the output of HMAC, and this requires t ≥ 512. To achieve a value
of e close to a value of c′, we need c′ = e + 2 = c

3 . To achieve this we could further truncate the output of
SHA-384 to only c′ = 170 bits, and use this new hash function in the HMAC implementation. Then, provided
t ≥ 510, we would have e = 168. For e > 168, a new compression function h with output larger than 512
bits is needed. Alternatively, to achieve our minimum requirement for Case 1 described above, of e = 82 and
c′ = 128, we could use SHA-384 but further truncate the output to only c′ = 128 bits. In that case we would
only need t ≥ 296 bits. This is similar to using a universal hash function, which is not surprising, since the
analysis of Fouque et al. made use of the LHL.

Cascade Construction Fouque et al. [5] also analysed the use of the cascade construction as a randomness
extractor when the output is truncated to contain only c′ bits, instead of c bits. Assume the compression
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function h of hash function H (with key IV) is an (S, q = 2, ε) PRFF. Then H is a (t,∞, 0, S′, ε′) com-
putational randomness extractor for prefix free distributions of at most L blocks with S = O(S′) and
ε′ ≤

√
2c′ · (3 · 2−t + 2Lε). As before, assume ε ≤ S/2c. Hence, ε′ ≤

√
2c′ · (3 · 2−t + 21−cL ·O(S′)). To

achieve a security level of e bits for the output of H, we want S′/ε′ ≥ 2e. When O(S′) = 1, this equates to
requiring min

(
t−c′−3.6

2 , c−c
′−3−log2(L)

2

)
≥ e. When the requirements for O(S′) = 1 are met, those for when

O(S′) = 2e−1 will be met also. These restrictions on e are almost the same as for HMAC when the pre-secret
is more than one block long, and so similar comments to those made for HMAC apply here.

5 Conclusion

This paper examined the use of randomness extraction and expansion in key agreement protocols to generate
uniformly distributed keys. Although other works exist that provide the basic theorems necessary, they lack
details or examples of what cryptographic primitives are appropriate and/or how large the parameters of
those primitives must be. We have therefore summarized existing work in the area and examined the security
levels achieved with the use of various extractors and expanders for particular sizes of parameters.

As noted in some existing works ([1, p.4], [2, p.2]), the large amount of min-entropy needed in the pre-
secret is often overlooked in efficiency comparisons of KA protocols. In fact, using the tables presented in
this paper, one may conclude that this shared secret will need a min-entropy of at least 292 bits to achieve an
overall security level of 80 bits. More realistic assumptions on the number of times the randomness extractor
and expander are used may require a much higher min-entropy for this security level. The tables may be
used to find the min-entropy required for various security levels and assumptions on how the extractor and
expander will be used. We also found that when numbers are substituted into the short exponent theorems
of Gennaro et al., the exponents may need to be much longer than they suggested.
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A Diffie-Hellman and Short Exponent Assumptions

A.1 Diffie-Hellman Assumptions and Theorems

Assumption 1 (Decisional Diffie-Hellman (DDH) [1, p.5]) Let G be a cyclic group of order m gen-
erated by an element g. Consider the set G3 = G×G×G and the following two probability distributions over
it:

RG = {(ga, gb, gc) for a, b, c ∈R Zm} (6)

and
DHG = {(ga, gb, gab) for a, b ∈R Zm} (7)

We say the (S, ε) Decisional Diffie-Hellman (DDH) Assumption holds over G = 〈g〉 (alternatively, that G is a
(S, ε) DDH group) if the two distributions RG and DHG are (S, ε)-indistinguishable.

The t-DDH assumption makes clear how much computational entropy a DH value is assumed to hold. It is
equivalent to the DDH assumption for a subgroup of prime order t. However, for a groupG of non-prime order,
the t-DDH assumption allows one to make the DDH assumption on the large prime order subgroup(s), and
deduce the t-DDH assumption on the group G if certain conditions are met. The assumption and theorems
follow, but further details may be found in Gennaro et al. [1]. Making the t-DDH assumption is likely to
make the use of a randomness extractor necessary also.
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Assumption 2 (t-Decisional Diffie Hellman (t-DDH) [1, p.11]) We say that the (S, ε) t-DDH Assump-
tion holds over a group G if there exists a family of probability distributions X (ga, gb) over G (one distribution
for each pair ga, gb) such that:

– min- ent
(
X
(
ga, gb

))
≥ t

– The probability distribution DHG (where G is a cyclic group of order m generated by an element g; see
Assumption 1) is (S, ε) indistinguishable from the ensemble

R∗ = {(ga, gb, C) for a, b ∈R Zm and C ∈X (ga,gb) G} (8)

Theorem 6 ([1, p.12]). Let G be a cyclic group of order m = m1m2 where gcd(m1,m2) = 1, and G1 be
a subgroup of order m1 in G. If the (S, ε) DDH Assumption holds over G1 then the (S′, ε) log(m1)-DDH
Assumption holds in G, where S′ = S − 5 expG and expG is the circuit size required for one exponentiation
in G.

Theorem 7 ([1, p.14]). Let G be a cyclic group of order m =
∏l
i=1 p

ei
i where p1 < . . . < pl is the prime

decomposition of m. Thus G is the direct product of the subgroups Gi where each Gi has order peii . Fix an
(S, ε) security parameter and consider the subgroups {Gj1 , . . . , gjl′} which are (S, ε)-DDH. Then the orders
of the subgroups are relatively prime with each other and G is (S′, ε′) m′-DDH where: m′ =

∑l′

i=1 eji log(pji),
S′ = S − 14 expG, ε′ = l′ε and expG is the circuit size required for one exponentiation in G.

A.2 Short Exponent Assumptions and Theorems

The short-exponent discrete-log (DLSE) assumption allows the use of exponents much shorter than the size
of the group order, but with a similar level of security to the use of full-length exponents. This may greatly
increase the efficiency of the computations required. The assumption was first analysed by van Oorschot and
Wiener [19], and formalized by Patel and Sundaram [20]. We give the version provided by Gennaro et al.

Assumption 3 (s-DLSE[1, p.14]) Let G be a cyclic group generated by g and of order m. We say that the
(S, ε) s-DLSE Assumption holds in G if for every circuit I of size ≤ S, we have that Prx∈R[1...2s][I(g,m, s, gx) =
x] ≤ ε.

Gennaro et al. provide the following summary of the validity of this assumption:

Current knowledge points to the plausibility of the above assumption even for exponents s signifi-
cantly shorter than log(ord(g)). The exact values of s for which the assumption seems to hold depend
on the group generated by the element g. An obvious lower bound on s, if one wants to achieve se-
curity against 2k-complexity attacks, is s ≥ 2k which is necessary to thwart the usual square-root
attacks such as Shanks and Pollard methods. However, as pointed out in [19], there are cases where s
needs to be chosen larger than 2k. Specifically, they show how to use a Pohlig-Hellman decomposition
to obtain some of the bits of the exponent. The power of the attack depends on the (relatively) small
prime factors of the group order. For example, when working over Z∗p with a random prime p, the [19]
results indicate the use of s ≈ 4k (e.g., with a security parameter of 80 one should use s = 320 which
is much shorter than the 1024 or 2048 bits of p, yet twice as much as the bare minimum of s = 160).
If one wants to use s = 2k (i.e., assume the 2k-DLSE), it is necessary to work in special groups such
as those of prime order or Z∗p with p a safe prime (i.e., p = 2q + 1, and q prime).

Given the s-DLSE assumption, we may conclude that g raised to a short exponent is indistinguishable from
a randomly chosen member of G, and hence that the t-DDH assumption may be used with short exponents4:

4 Proposition 15 and Theorem 16 in the January 10, 2006 eprint version of Gennaro et al. (corresponding to Theo-
rems 8 and 9 here) are incorrect, and they are corrected here according to details supplied by Gennaro in a personal
communication. A new version of Gennaro et al.’s paper is yet to be provided.
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Theorem 8 ([1, p.15]). Let G be a cyclic group of order m generated by g, such that m is odd or m/2 is odd.
If the (S, ε) s-DLSE Assumption holds in G, then the following two distributions SG = {gx : x ∈R [1 . . . 2s]}
and UG = {gx : x ∈R Zm} are (S′, ε′) indistinguishable, where ε′ = ε (log2(m)− s) and S′ ≈ ε3

s ln( s
1−ε )

S

where ln(·) is the natural logarithm. If log2(m)− s+ log2(ε) > s then the expression for S′ may be refined to
S′ ≈ ε2

s ln( s
1−ε )

S ≥ ε2

(log2(m)−s) ln( s
1−ε )

S.

Theorem 9 ([1, p.15]). Let G be a cyclic group of order m generated by g, such that m is odd, or m/2 is
odd. Let s, t be such that the (S1, ε1) s-DLSE and the (S2, ε2) t-DDH Assumptions hold in G. Denote with
X (ga, gb) the family of distributions induced by the t-DDH assumption over G (see Assumption 2). Assume
that X (ga, gb) is S3-semi-samplable (i.e. there exists a circuit of size S3 which is run on input either a or b
and whose output distribution is X (ga, gb)). Then the following two distributions

SDH = {(ga, gb, gab) for a, b ∈R [1 . . . 2s]} and (9)
SR∗ = {(ga, gb, C) for a, b ∈R [1 . . . 2s] and C ∈X (ga,gb) G} (10)

are (S, ε) indistinguishable where ε = ε2 + 4 (log2(m)− s) ε1, S = min (S2, S
′ − S3) and S′ ≈ ε31

s ln
“

s
1−ε1

”S1

(or if log2(m) − s + log2(ε1) > s then the expression for S′ may be refined to S′ ≈ ε21

s ln
“

s
1−ε1

”S1 ≥

ε21

(log2(m)−s) ln
“

s
1−ε1

”S1).

Note that X (ga, gb) is semi-samplable given the factorization of m, and S3 will be the time required for
a multi-exponentiation in G. Therefore, the use of t-DDH with short exponents remains secure even if an
adversary knows the factorization of m (it is not assumed that honest parties know the factorization of m) [1,
p.13,18].

B Theorems and Proofs

This appendix provides theorems and proofs omitted from the main body due to lack of space. For com-
pleteness, we give the definition of Renyi entropy:

Definition 14 (Renyi (or collision) entropy [3, p.500]). Let X be a probability distribution over A. The
Renyi entropy of X is Renyi- ent(X ) = − log2(Col(X )) where Col(X ) = Prx,x′∈RX (x = x′) =

∑
x (PrX [x])2

.
Note: min- ent(X ) ≤ Renyi- ent(X ) ≤ 2 ·min- ent(X ) [3, p.500].

Now, we state Theorems 10 and 11 and provide their proofs. These theorems deal with the key to a PRFF
being only computationally indistinguishable from random, and the use of one PRFF with various different
keys.

Theorem 10. Suppose f = {fκ}κ∈K is a (S2, q, ε2) PRFF, κ is chosen from a distribution, X , that is
(S1, ε1) indistinguishable from the uniform distribution, U , over K, and S3 is the circuit size required to
evaluate fκ on q different inputs. Then a circuit, A, of size min(S1 − S3, S2), given oracle access to either
fκ or a TRF with the same domain and range, and making at most q oracle queries, has advantage at most
ε1 + ε2 in distinguishing whether its oracle is a random member of f or a TRF.

Proof. The (S1, ε1) indistinguishability of X and U means that if we try to construct a distinguisher, D, of
size ≤ S1 to tell apart X and U , it cannot succeed with probability better than ε1. We may construct such
a distinguisher (that uses A) by using the input, x, of D to key f , and then using this function as the oracle
used to reply to oracle queries by A. D outputs with whatever A outputs. Let δA,X = Prx∈X [Afx(·) = 1] and
let δA,U = Prx∈U [Afx(·) = 1]. Then we have |δA,X − δA,U | ≤ ε1. Now let δA,R = PrO(·)∈RRand[AO(·) = 1].
Then, by security of the pseudorandom function family, we have |δA,U − δA,R| ≤ ε2, since the size of A is no
greater than S2. Hence, |δA,X − δA,R| ≤ ε1 + ε2, and the theorem follows. ut
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Theorem 11. Suppose that κ1, κ2, . . . , κq are each chosen independently according to a distribution, X , that
is (S1, ε1) indistinguishable from the uniform distribution, U , over the set of keys, K, for a (S2, q2, ε2) PRFF
f = {fκ}κ∈K . Let S3 be the size of a circuit required to evaluate a member of f on a total of q2 different
inputs. For 0 ≤ j ≤ q−1, let S4 be the maximum size of a circuit required to generate j values independently
according to X , evaluate j members of f each on a total of q2 different inputs, and generate (q − 1 − j)q2

independent uniformly distributed values from the range of f . Then a circuit, A, of size min(S1−S3, S2)−S4

which is given oracle access to either fκ1 , . . . , fκq or q truly random functions with the same domain and
range as the functions in f , and makes at most q2 queries to each oracle, has advantage at most q (ε1 + ε2)
in distinguishing whether it has access to a random member of f or a truly random function.

Proof. We attempt to construct a distinguisher Dj for for some j such that 0 ≤ j ≤ q − 1 that breaks
Theorem 10. Dj runs a circuit A that is against Theorem 11. Dj uses its oracle to provide the j+ 1th oracle
to A. The other q−1 oracles that A needs are provided by Dj as follows. First, Dj chooses j keys, κ1, . . . , κj
independently according to distribution X . The first j oracles are provided as fκ1 , . . . , fκj . The remainder
of the oracles are provided as truly random functions. Now when j = 0 and D0 has a random function as
its oracle, the view of A is the same as in Theorem 10 when it is provided with all random functions for its
oracles. When j = q − 1 and Dq−1 is provided with a member of f as its oracle, the view of A is the same
as in Theorem 10 when it is provided with q members of f for its oracles. Let pj,i be the probability that
Dj answers 1 given that the correct answer is i, where i = 0 means a member of f and i = 1 means a truly
random function. Note that pk,0 = pk+1,1. Then we have:

Adv(A) = |p0,1 − pq−1,0| (11)
≤ |p0,1 − p0,0|+ |p1,1 − p1,0|+ . . .+ |pq−1,1 − pq−1,0| (12)

=
q−1∑
j=0

Adv(Dj) (13)

Hence, for at least one of the Dj , the advantage of that Dj is at least Adv(A)/q, and Theorem 11 follows. ut

Next, we justify the statement that a strong randomness extractor is also a strong computational ran-
domness extractor.

Theorem 12. A (t, ε2) strong randomness extractor H = {hκ : A → {0, 1}c|κ ∈ {0, 1}d} is a (t, S, ε1, S −
Sh, ε1 + ε2) strong computational randomness extractor for any S and ε1, where Sh is the maximum circuit
size required to generate a random key, κ, for the randomness extractor and compute hκ(·).

Proof. Let the input distribution for the extractor be X over A, and let this distribution be (S, ε1) indistin-
guishable from distribution Y over B which has min-entropy t. Then the distributions {(κ, hκ(x)) for κ ∈R

{0, 1}d and x ∈X A} and {(κ, hκ(y)) for κ ∈R {0, 1}d and y ∈Y B} are (S − Sh, ε1) indistinguishable. Oth-
erwise, a distinguisher for these distributions can be used to distinguish whether a value z is from X or Y
by giving it (κ, hκ(z)) for κ ∈R {0, 1}d.

By the security of H and Lemma 1, the distributions {(κ, hκ(y)) for κ ∈R {0, 1}d and y ∈Y B} and
{(κ,R) for κ ∈R {0, 1}d and R ∈R {0, 1}c} are (∞, ε2) indistinguishable, and therefore, by Lemma 2 the
theorem holds. ut

The following theorems justify using a single key with an extractor.

Theorem 13 (Strong randomness extractor reuse). Let H = {hκ : {0, 1}n → {0, 1}c|κ ∈ {0, 1}d}
be a (t, ε) strong randomness extractor, let X1, X2, . . . , Xq denote random variables taking values in {0, 1}n,
each having min-entropy at least t, let κ denote a random variable with uniform distribution in {0, 1}d, and let
R1, R2, . . . , Rq be chosen uniformly at random from {0, 1}c. Let the random variables hκ, X1, X2, . . . , Xq, R1, R2, . . . , Rq
be mutually independent. Then the following distributions are within statistical distance ε′ from each other:

(κ, hκ(X1), hκ(X2), . . . , hκ(Xq), ) ∼=ε′ (κ,R1, R2, . . . , Rq) where ε′ = qε.
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The following theorems are used in the proof of Theorem 13.

Theorem 14 ([8, Theorem 6.14]). For random variables X,Y, Z, we have ∆[X;Z] ≤ ∆[X;Y ] +∆[Y ;Z]

Theorem 15 ([8, Theorem 6.16]). Let X,Y be random variables taking values on a set V and let f be a
function from V into a set W. Then ∆[f(X); f(Y )] ≤ ∆[X;Y ].

Theorem 16 ([8, Theorem 6.17]). Let X,Y be random variables taking values on a set V and let W be
a random variable taking values on a set W. Further, suppose that X and W are independent and that Y
and W are independent. Then the statistical distance between (X,W ) and (Y,W ) is equal to the statistical
distance between X and Y . That is, ∆[(X,W ); (Y,W )] = ∆[X;Y ].

We can now give the proof of Theorem 13:

Proof. The theorem may be proven in exactly the same way as Shoup’s Theorem 6.22 [8], which is a special
case of the above theorem for when the strong randomness extractor is a universal hash function. Shoup’s
proof is given below, slightly modified for the general case.

We make a hybrid argument. Define random variables W0,W1, . . . ,Wq as follows:

W0 = (hκ, hκ(X1), hκ(X2), . . . , hκ(Xq))
Wi = (hκ, R1, . . . , Ri, hκ(Xi+1), . . . , hκ(Xq))
Wq = (hκ, R1, . . . , Rq)

We have:

ε′ = ∆[W0;Wq]

≤
l∑
i=1

∆[Wi−1;Wi] (by Theorem 14)

≤
q∑
i=1

∆[ hκ, R1, . . . , Ri−1, hκ(Xi), Xi+1, . . . , Xq);
hκ, R1, . . . , Ri−1, Ri, Xi+1, . . . , Xq)]

(by Theorem 15)

=
q∑
i=1

∆[hκ, hκ(Xi);hκ, Ri] (by Theorem 16)

≤ qε (by Definition 11)

ut

Theorem 17 (Strong computational randomness extractor reuse). Let H = {hκ : {0, 1}n →
{0, 1}c|κ ∈ {0, 1}d} be a (t, S, ε, S′, ε′) strong computational randomness extractor, let X1, X2, . . . , Xq de-
note random variables taking values in {0, 1}n, each having (S, ε) computational entropy at least t, let κ
denote a random variable with uniform distribution in {0, 1}d, and let R1, R2, . . . , Rq be chosen uniformly at
random from {0, 1}c. Let the random variables hκ, X1, X2, . . . , Xq, R1, R2, . . . , Rq be mutually independent.
Let S1 be the size of a circuit that generates up to q − 1 values from {0, 1}n that are mutually independent
and have (S, ε) computational entropy t, generates up to q − 1 values uniformly at random from {0, 1}c,
and evaluates hκ on up to q − 1 inputs for a given κ. Then the following distributions are (S′ − S1, qε

′)
indistinguishable from each other:

(κ, hκ(X1), hκ(X2), . . . , hκ(Xq)) and (κ,R1, R2, . . . , Rq)

Proof. We use a hybrid argument. Let W0,W1, . . . ,Wq be defined as follows:

W0 = (κ, hκ(X1), hκ(X2), . . . , hκ(Xq))
Wi = (κ,R1, . . . , Ri, hκ(Xi+1), . . . , hκ(Xq))
Wq = (κ,R1, . . . , Rq)
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Then Wi and Wi−1 for 1 ≤ i ≤ q are (S′ − S1, ε
′) indistinguishable, otherwise a distinguisher for these

distributions may be used to distinguish (κ, hκ(X)) and (κ,R), where X ∈ {0, 1}n has (S, ε) computational
entropy t and R ∈R {0, 1}c, contrary to the definition of the strong computational randomness extractor.
By applying Lemma 2, the theorem follows. ut

Theorem 18 (Strong randomness extractor reuse with computationally indistinguishable dis-
tributions). Let H = {hκ : {0, 1}n → {0, 1}c|κ ∈ {0, 1}d} be a (t, ε2) strong randomness extractor, let
X1, X2, . . . , Xq denote random variables taking values in {0, 1}n, each having (S, ε) computational entropy at
least t, let κ denote a random variable with uniform distribution in {0, 1}d, and let R1, R2, . . . , Rq be chosen
uniformly at random from {0, 1}c. Let the random variables hκ, X1, X2, . . . , Xq, R1, R2, . . . , Rq be mutually
independent. Let S1 be the size of the circuit that generates up to q− 1 values from {0, 1}n that are mutually
independent and have (S, ε) computational entropy t, and generates up to q−1 values from {0, 1}n that have
min-entropy t. Then the following distributions are (S − S1, q (ε+ ε2)) indistinguishable from each other:

(κ, hκ(X1), hκ(X2), . . . , hκ(Xq)) and (κ,R1, R2, . . . , Rq)

Proof. Let Yi for 1 ≤ i ≤ q be random variables taking values in {0, 1}n, each having min-entropy t. We may
use a hybrid argument to show that the distributions (X1, X2, . . . , Xq) and (Y1, Y2, . . . , Yq) are (S − S1, qε)
indistinguishable from one another, since each of the Xi have (S, ε) computational entropy t and are mutually
independent. Then we may apply Theorem 13 and Lemmas 1 and 2 to derive the theorem. ut

Here we combine Theorems 10, 11, 9 and 17 as a useful example.

Theorem 19.

– Let G be a cyclic group of order m generated by g, such that m is odd, or m/2 is odd.
– Let s, t be such that the (S1, ε1) s-DLSE and the (S2, ε2) t-DDH Assumptions hold in G. Denote with
X (ga, gb) the family of distributions induced by the t-DDH assumption over G and assume that X (ga, gb)
is S3-semi-samplable

– Let:

ε = ε2 + 4 (log2(m)− s) ε1 (14)
S = min (S2, S

∗ − S3) where (15)

S∗ ≈ ε31

s ln
(

s
1−ε1

)S1 unless log2(m)− s+ log2(ε1) > s; then (16)

S∗ ≈ ε21

s ln
(

s
1−ε1

)S1 ≥
ε21

(log2(m)− s) ln
(

s
1−ε1

)S1 (17)

– Let H = {hκ : {0, 1}n → {0, 1}c|κ ∈ {0, 1}d} be a (t, S, ε, S′, ε′) strong computational randomness
extractor.

– Let κ denote a random variable with uniform distribution in {0, 1}d.
– Let S4 be the size of a circuit that generates up to q1−1 values from {0, 1}n that are mutually independent

and have (S, ε) computational entropy t, generates up to q1− 1 values uniformly at random from {0, 1}c,
and evaluates hκ on up to q1 − 1 inputs for a given κ.

– Let f = {fκ}κ∈K be a (S5, q2, ε5) PRFF.
– Let S6 be the size of a circuit required to evaluate a function from f on a total of q2 different inputs.
– Let a1, a2, . . . , aq1 , b1, b2, . . . , bq1 ∈R [1 . . . 2s] and mutually independent.
– Let S7 = min(S′ − S4 − S6, S5) and let ε7 = q1ε

′ + ε5.
– Let Z1,1, . . . , Zq1,q2 be any publicly known values in the domain of f .
– Let R1, R2, . . . , Rq1 be randomly chosen from the range of h.
– Let T1,1, . . . , Tq1,q2 be randomly chosen from the range of f .

19



– For 0 ≤ j ≤ q1 − 1, let S8 be the maximum size of a circuit required to generate j mutually independent
values of the form gab where a, b ∈R [1 . . . 2s], evaluate j members of f each on a total of q2 different
inputs, and generate (q1 − 1− j)q2 independent uniformly distributed values from the range of f .

– Let S9 = S7 − S8 = min(S′ − S4 − S6, S5)− S8 and let ε9 = q1ε7 = q1 (q1ε
′ + ε5).

– Let the notation〈η(i)〉βi=α denote the sequence η(α), η(α+ 1), . . . , η(β) where η is some function of i.

Then for any j such that 1 ≤ j ≤ q1, the following two distributions are (S7, ε7) indistinguishable:

EEDH =(
κ, 〈gai , gbi〉q1i=1, 〈hκ(gaibi)〉j−1

i=1 , 〈hκ(gaibi)〉q1i=j+1, 〈Zi,j , fhκ(gajbj ) (Zi,j)〉q2i=1

)
EER =

(
κ, 〈gai , gbi〉q1i=1, 〈Ri〉

j−1
i=1 , 〈Ri〉

q1
i=j+1, 〈Zi,j , Ti,j〉

q2
i=1

)
Furthermore, the following two distributions are (S9, ε9) indistinguishable:

EEDH∗ =
(
κ, 〈gai , gbi〉q1i=1, 〈〈Zi,j , fhκ(gajbj ) (Zi,j)〉q2i=1〉

q1
j=1

)
EER∗ =

(
κ, 〈gai , gbi〉q1i=1, 〈〈Zi,j , Ti,j〉

q2
i=1〉

q1
j=1

)
From the above theorem we may see what it is that influences the level of security provided by the

outputs of the randomness expander. The main ones are how many times the randomness extractor is used
with the one key (q1), how good the output of the randomness extractor is (measured by (S′, ε′)), and how
good the randomness expander is (measured by (S5, ε5)).

If we require a security level of k bits, and wish EEDH and EER to be indistinguishable, then we require
S7
ε7
≥ 2k. We may achieve this by requiring S′−S4−S6

ε′ ≥ 2k+1q1 and S5
ε5
≥ 2k+1 since these conditions imply

that S7
ε7
≥ min(2k+1q1ε

′, 2k+1ε5)
q1ε′+ε5

, for any values of ε′ and ε5 and by setting q1ε
′ = ε5 we achieve the desired

result.
Similarly, if we require a security level of k bits, and wish EEDH∗ and EER∗ to be indistinguishable,

then we require S9
ε9
≥ 2k. This may be achieved by requiring S′−S4−S6−S8

ε′ ≥ 2k+1q2
1 and S5−S8

ε5
≥ 2k+1q1.

Let us assume that S4 ≈ q1, S6 ≈ q2 and S8 ≈ q1q2. If h is a (t, 2−e) strong randomness extrac-
tor instead of a (t, S, ε, S′, ε′) strong computational randomness extractor, then by Theorem 12 (and ig-
noring the time to generate a key for h) we have S′−S4−S6

ε′ ≈ S−q1−q2
ε+2−e which we require ≥ 2k+1q1 or

S′−S4−S6−S8
ε′ ≈ S−q1−q2−q1q2

ε+2−e which we require ≥ 2k+1q2
1 . These requirements are satisfied with either

e ≥ k + 2 + log2(q1) and S−q1−q2
ε ≥ 2k+2q1 or e ≥ k + 2 + 2 log2(q1) and S−q1q2

ε ≥ 2k+2q2
1 . The requirement

on e must be met by choosing an appropriate randomness extractor, and the other requirement may be
met by requiring either S2−q1−q2

ε2
≥ 2k+3q1 and S∗−S3−q1−q2

ε1
≥ (log2(m)− s) 2k+5q1 or S2−q1q2

ε2
≥ 2k+3q2

1

and S∗−S3−q1q2
ε1

≥ (log2(m)− s) 2k+5q2
1 . The requirement on S2 and ε2 may be met by choosing G such

that the
(
2k+4q1 + q1 + q2,

1
2

)
and

(
q1 + q2 + 1, 1

2k+3q1

)
t-DDH assumptions hold or the

(
2k+4q2

1 + q1q2,
1
2

)
and

(
q1q2 + 1, 1

2k+3q21

)
t-DDH assumptions hold. Let Y def= (log2(m)− s) 2k+5q1 or (log2(m)− s) 2k+5q2

1 ,

whichever is appropriate, let Z def= S3+q1+q2 or S3+q1q2, whichever is appropriate, and let S∗ = εi1

s ln
“

s
1−ε1

”S1

for i = 2 or 3, whichever is appropriate. Then for a large value of ε1, e.g. 1
2 , we require:

S∗ − Z
ε1

≥ Y (18)

S1

2i−1s ln (2s)
≥ Y + 2Z for ε1 =

1
2

(19)

S1 ≥ 2i−1s ln (2s) (Y + 2Z) (20)

However, for a small value of ε1, the requirement is much stronger. We consider ε1 = 1
Y to be the smallest

sensible value of ε1, since we are in effect requiring a security level of log2(Y ) bits for this part. Then we
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have:

S∗ − Z
ε1

≥ Y (21)

Y S1

Y is ln (s)
≥ Y + Y Z for ε1 =

1
Y

(22)

S1 ≥ Y is ln (s) (Z + 1) (23)

Hence G must be chosen such that the
(
2i−1s ln (2s) (Y + 2Z) , 1

2

)
and

(
Y is ln (s) (Z + 1) , 1

Y

)
s-DLSE as-

sumptions hold.
These requirements are summarized in Sect. 4.1. The theorem may be used to prove security in a variety

of situations; for example, to create two or more keys from a shared secret Diffie-Hellman value, the holders
of the value may use a randomness extractor to extract some random bits from the Diffie-Hellman value,
and then use the extracted bits to key a pseudorandom function family. Finally, the value of the function at
two or more points may be evaluated to generate the values of the required secret keys. Alternatively, the
randomness extracted using the randomness extractor may be used directly for keying material (i.e. the use
of a randomness expander may be omitted). However, this approach is unlikely to be attractive unless only
one key is required, since a large amount of min-entropy is required of the DH value to be able to extract a
sufficient number of bits to be used as the keying material. Table 6 provides further details of the example
in Sect. 4.1 applying Theorem 19.

C Pseudorandom Function Family Choices and Security Levels

This appendix discusses the merits of the available pseudorandom function family options. We observe that
because a pseudorandom function family is a secure MAC, the security of a MAC scheme (such as CBC-MAC
or HMAC) may be proven by showing that it is a secure pseudorandom function family. This means that
any attacks against the MAC are also attacks against the pseudorandomness of the function family, and thus
the complexity of such attacks is of interest when evaluating the security level of the MAC when used as a
pseudorandom function family; see Bellare et al. [6, Prop. 2.7] for details.

The security of some of the options below is based on the assumption that the compression function,
h : {0, 1}c × {0, 1}b → {0, 1}c, with block length b and key length c, of the underlying hash function used
with the option is itself a pseudorandom function family. That is, we are assuming that Advprf

h (q, S) is
small. However, if we are to find the security level in bits provided by the options below, we must make an
assumption on how small Advprf

h (q, S) is.
Let hR be a family of 2c functions where each function is chosen at random from the set of all functions

with the same domain and range. Then Bellare et al. [9, Sect. 6] claim that when an adversary is given black
box access to the function family hR (i.e. the adversary does not have a description of hR, but can request
the function output for a particular key and input pair), Advprf

hR
(q, S) ≤ c′S

2c where q ≤ S for some c′ > 0. In
the analysis that follows, we therefore use the assumption that Advprf

h (q, S) ≤ S
2c as a minimum assumption.

However, when q is not small (e.g. > 2), it seems prudent to assume that it might be possible to attack the
compression function, h, of an actual cryptographic hash function more efficiently than the function family
hR. Therefore, we examine how the results are altered when the assumption that Advprf

h (q, S) ≤ S2

2c is made
instead, and regard this as a more conservative option.

C.1 CBC-MAC

Bellare et al. [6] have provided a proof that CBC-MAC is a secure pseudorandom function family if the
underlying block cipher is a secure pseudorandom permutation family and the input length is constant. One
of a number of slight modifications can be made to cater for the case where the input length is not constant.
Their main theorem states:
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Security level k = 80
(S5, q2, ε5) PRFF f = {fλ}λ∈K

with q2 queries per (secret) λ q2 = 1

and S5/ε5 ≥ 2k+1 ⇒ f has 81 bit security level, e.g. CBC-MAC with 128 bit key
(t, 2−e) strong rand. ext. H = {hκ}κ∈{0,1}d

with q1 queries per (public) κ q1 = 1
and e ≥ k + 2 + log2(q1) ⇒ e ≥ 82; e.g. H a universal hash function with 128 bits output;

in that case,
Min-entropy of pre-secret is at least t = 292

Value of Y Y = (log2(m)− s) 2k+5q1
≤ 293.2 (obtained by ignoring s and approximating log2(m)

with 292)
Value of Z Z = S3 + q1 + q2 ≈ 1

t-DDH assumption one
`
2k+4q1 + q1 + q2,

1
2

´
=(284, 1

2
) t-DDH assumption

t-DDH assumption two
“
q1 + q2 + 1, 1

2k+3q1

”
=
`
3, 1

283

´
t-DDH assumption

Order of cyclic group G m = 2max(t,2·85) (where 85 is from t-DDH assumptions)

= 2max(292,2·85) = 2292

To use short exponents with i = 3 (optional):
•
`
2i−1s ln (2s) (Y + 2Z) , 1

2

´
≈ (295.2s ln (2s) , 1

2
) s-DLSE assumption ⇒ s ≥ 2 log2

`
296.2s ln(2s)

´
⇒ s ≥ 213

•
`
Y is ln (s) (Z + 1) , 1

Y

´
≈
`
23·93.2+1s ln(s), 1

293.2

´
=
`
2280.6s ln(s), 1

293.2

´
s-DLSE assumption

⇒ s > 2 log2

`
2280.6s ln(2s)

´
⇒ s > 585, but s would probably need to be even larger, as we have not taken into

account the 1
293.2 value in this calculation; since 585 > log2(m) = 292, it is better not to use short exponents.

To use short exponents with i = 2 (optional):
•We need log2(m) > 2s− log2(ε1)⇒ m ≥ 2679 (because s ≥ 292 and ε1 ≥ 2−95)

• Y ≈ 295 since Y = (log2(m)− s) 2k+5q1 (ignore s; assume log2(m) ≥ 679)
•
`
2i−1s ln (2s) (Y + 2Z) , 1

2

´
≈
`
296s ln (2s) , 1

2

´
s-DLSE assumption ⇒ s ≥ 2 log2

`
297s ln(2s)

´
•
`
Y is ln (s) (Z + 1) , 1

Y

´
≈
“

(log2(m)− s) 285s ln (s) , 1
(log2(m)−s)285

”
s-DLSE assumption; To satisfy the weaker`

(log2(m)− s) 285s ln (s) , 1
2

´
s-DLSE assumption, we need s ≥ 399 which requires m ≥ 892. If we consider the`

Y is ln (s) , 1
Y

´
≈
`
Y i+1s ln (s) , 1

2

´
s-DLSE assumption, we need m ≥ 1276 and s ≥ 2 log2

`
2255(1276− s)3s ln(s)

´
,

which needs s ≥ 591. Hence, G needs an order at least 896 bits, but probably 1276 bits, and short exponents
must be at least 399 bits, but probably 591 bits, depending on whether a better analysis of how to satisfy the`
Y is ln (s) , 1

Y

´
s-DLSE assumption is available for the group under consideration. In this example it is better to

use a group with order 292 bits and full length exponents, since 292 < s.
Table 6. Example combining randomness extraction and expansion
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Theorem 20. Let f be a block cipher with block length b and CBCl-f be the family of CBC-MAC functions
constructed using that block cipher on inputs of l blocks. Then

Advprf
CBCl-f (q, S) ≤ Advprp

f (q′, S′) +
q2l2

2b−1
(24)

where q′ = lq and S′ = S +O(lqb) and the output length of the CBC-MAC is b bits.

If the block cipher to be used with CBC-MAC is AES-128, AES-192, or AES-256, then the block length,
b, will be 128 bits for each of these ciphers [10]. For CBC-MAC to provide a security level of k bits as a
pseudorandom function family, we will require that S/Advprf

CBCl-f (q, S) ≥ 2k for all S, q, l ≥ 1 and assume

S ≥ ql. We then require Advprf
CBCl-f (q, S)/S ≤ 1/2k which will be satisfied if Advprp

f (q′, S′)/S ≤ 1/2k+1

and q2l2

2b−1 /S ≤ 1/2k+1. We then have

q2l2

2b−1
/S ≤ q2l2

2b−1ql
=

ql

2b−1
(25)

and so want
ql

2b−1
≤ 1

2k+1
(26)

⇒ ql ≤ 2b−k−2 (27)

We consider it likely that when (27) is satisfied, then we will also have Advprp
f (q′, S′)/S ≤ 1/2k+1.

Therefore, when ql is small (e.g. 2), we have a security level of about k = b − 3 bits. Otherwise, if we have
ql ≤ 2k (which we are assuming when we consider a security level of 2k sufficient), then we will require
k ≤ (b− 2)/2.

The level of security provided by CBC-MAC when used in conjunction with any of these ciphers will
therefore be no greater than 125 bits, and will be less for values of q and l larger than 1. Hence, CBC-MAC
is likely to be an acceptable choice of randomness expander for security levels of 80 bits if the number of
queries to randomness expander with a single key is small and the length of each query is also small, but
inadequate for security levels of 128 bits and higher. If an unlimited number of queries or queries with a very
large length are able to be made by the adversary to the randomness expander with a single key, the security
level will only be (b− 2)/2 = 63 bits when b = 128. A security level of only (b− 2)/2 bits is consistent with
the complexities of known forgery attacks against CBC-MAC provided by Brincat and Mitchell [21], since
their attacks require q ≥ 2b/2.

C.2 HMAC

The security of HMAC has been analysed by Bellare [11], who has proven that HMAC is a secure pseudo-
random function if the compression function of the underlying hash function is a pseudorandom function.
Here we provide a summary of the combination of Theorem 3.3 and Lemmas 5.1 and 5.2 from that paper
which shows the level of security provided by HMAC.

Theorem 21. Let h : {0, 1}c × B → {0, 1}c be the compression function of the hash function used in
conjunction with HMAC. Let h̄ : B × {0, 1}c → {0, 1}c be defined as h̄(m,κ) = h(κ,m). Assume b ≥ c and
let B = {0, 1}b. Let A be a PRF adversary against HMAC : {0, 1}b × B+ → {0, 1}c that has circuit size at
most S and makes q ≥ 2 oracle queries, each of at most l blocks. Let IV be the fixed initialization vector
specified by the hash function used in conjunction with HMAC for use with its compression function. Then
there exists a related-key-advantage (RKA) adversary Ah̄ against h̄, a PRF adversary A′

h̄
against h̄, and

PRF adversaries A1 and A2 against h such that:

Advprf
HMAC(A) ≤ Advrka

h̄ (Ah̄) + 2 ·Advprf

h̄
(A′h̄)

+Advprf
h (A1) +

(
q
2

)[
2l ·Advprf

h (A2) +
1
2c

]
(28)
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Adversary Ah̄ has circuit size at most S and makes only 2 oracle queries which return Oh̄(κ ⊕ opad, IV)
and Oh̄(κ ⊕ ipad, IV), where κ is unknown to Ah̄, opad and ipad are bit strings specified in the HMAC
description, and the objective of Ah̄ is to determine whether Oh̄ is h̄ or a truly random function (i.e. Ah̄ is
essentially a PRF adversary that is able to make a related key query).

Adversary A′
h̄

has circuit size at most S and makes only 1 oracle query, this being IV. Adversary A1

has circuit size at most S and makes at most q oracle queries and A2 has circuit size at most O(mSh) and
makes at most 2 oracle queries, where Sh is the circuit size for one computation of h.

For HMAC to provide a security level of k bits as a pseudorandom function family, we will require that
Advprf

HMAC(A)/S ≤ 1/2k for all S, q, l ≥ 1 and assume S ≥ qm.
We will assume Advrka

h̄ (Ah̄) and Advprf

h̄
(A′

h̄
) are no more than S

2c , and Advprf
h (A2) is no more than mSh

2c ,
since only one or two oracle queries can be made by these adversaries (the assumption on h was discussed
previously; we assume that it is reasonable to make a similar assumption on h̄). We will assume Advprf

h (A1)
is no more than S2

2c since A1 may make q oracle queries, with no restriction on q other than the requirement
that qm ≤ S. We also assume Sh = 1 unit. Combining these assumptions with (28) we find that:

Advprf
HMAC(A)
S

≤ S

S2c
+ 2 · S

S2c
+

S2

S2c
+
(
q
2

)[
2l · mSh

S2c
+

1
S2c

]
(29)

≤ 3
2c

+
S

2c
+
q2l2

S2c
+

q2

S2c+1
(30)

By requiring that each term in (30) be no more than 1
2k+2 , we can achieve a security level of k bits. This

translates to the following requirements:

3
2c ≤

1
2k+2

1 ≤ 2c−k−4

S
2c ≤

1
2k+2

S ≤ 2c−k−2

q2l2

S2c ≤
1

2k+2

q2l2

qm2c ≤
1

2k+2

qm ≤ 2c−k−2

q2

S2c+1 ≤ 1
2k+2

q2

q2c+1 ≤ 1
2k+2

q ≤ 2c−k−1

Hence, when k ≤ c−4 and S ≤ 2c−k−2, we assume k bits of security for HMAC. In assuming a k-bit security
level is adequate, we assume that S > 2k is infeasible. Hence, we may refine the requirement S ≤ 2c−k−2 to
be k ≤ c−2

2 . However, if q and l are small (e.g. 2), and if we estimate Advprf
h (A1) with S

2c , we may achieve
a security level of around c− 4 bits instead of c−2

2 bits.
We observe that if the usual implementation of HMAC is used, the above analysis assumes that the key

provided to HMAC is the same length as a block for the underlying hash function (i.e. b bits). To achieve
a shorter key, the function NMAC may be used, which is similar to HMAC but differs in how the keying
material is used. In that case only 2c bits of key are required, where c is the length of the output of the
hash function. However, NMAC is generally used for analysis of HMAC only, and availability of an existing
implementation is therefore unlikely. If it is decided to implement NMAC, the implementation will require
access to the compression function underlying the hash function to be used, and such access may be difficult
to acquire. The security of NMAC as a PRF is given by the second line of the right hand side of (28).

Hash functions likely to be used with HMAC include MD5 [12], RIPEMD-160 [13], SHA-1, SHA-256,
SHA-384 and SHA-512 [14]. Table 1 shows the block size, output length and HMAC security level for each of
these algorithms. The traditional security level is c/2 bits, due to the existence of the birthday based forgery
attacks against iterated MACs [15] that require 2c/2 oracle queries.

C.3 The Cascade Construction

Bellare, Canetti and Krawczyk [9] have provided a proof of pseudorandom function family security for cryp-
tographic hash functions such as SHA-1 or SHA-256 based on the cascade construction, but with the fixed
IV (initialization vector) replaced with a random key, provided the input is prefix-free and the underlying
compression function used by the hash function is a pseudorandom function family. A proof of the pseu-
dorandomness of another construction (F acsc) to remove the prefix-free requirement is also provided in the
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same paper, but this construction requires extra keying material and is not considered further here, since
inputs to the randomness expander are likely to be of a fixed length in our setting. Another construction was
provided to improve the security of the cascade construction using randomization (F rcsc), but if the extra
randomness required is counted as part of the key, then this construction requires more keying material than
HMAC for a similar security level5.

The theorem stating the security of the cascade construction may be summarized as follows:

Theorem 22. Let h : {0, 1}c × {0, 1}b → {0, 1}c be a compression function with key length c bits and block
length b bits. Let H be the hash function built from h using the cascade construction, and let the number of
blocks input to H be l, and let the queries to H are prefix-free. Then:

Advprf
H (q, S) ≤ qlAdvprf

h (q, S′) (31)

where S′ = S + c′q(l+ c+ b)(Sh + log(q)), Sh is the size of a circuit evaluating h and c′ is a small constant.

We will assume S ≥ lq and S′ ≤ S + 220q, since if c′ = 1, c = 512, b = 1024, l = 10, log(q) ≤ 512, Sh = 1
then we have c′q(l+c+b)(Sh+log(q)) < 220q). As discussed above, we then assume Advprf

h (q, S′) ≤ S+220q
2c ,

and so have Advprf
H (q, S)/S ≤ qlS+220q

S2c ≤ 220S
2c , which we want to be no more than 1

2k
for a security level

of k bits. This translates to requiring k ≤ c−20
2 . However, when q, l ≤ 2, it would be possible to achieve a

security level of k = c− 2 bits with the same assumption on Advprf
h (q, S′), provided c is larger than 20.

Alternatively, if we make the more conservative assumption that Advprf
h (q, S′) ≤ (S+220q)2

2c , then we

have Advprf
H (q, S)/S ≤ ql (S+220q)2

S2c , giving a security level of k ≤ c−40
3 bits. Table 1 shows the security levels

achieved for various hash functions under these assumptions.

C.4 Other Alternatives

Another pseudorandom function family that has recently been proposed is called 3C. Its proposal includes a
proof of security [22], and it allows the input to be of variable length. It is similar to the cascade construction,
but processes an extra block of data at the end which is dependent on all of the previous outputs of the
compression function. It is a useful way to remove the prefix-free requirement from the cascade construction,
but the level of security proven for 3C is worse than that of the cascade construction when all hash queries
are prefix-free. Therefore, we do not discuss 3C any further.

An alternative to using functions like CBC-MAC and SHA256 to provide PRFFs is to use a crypto-
graphically secure pseudorandom bit generator instead, such as the Blum-Blum-Shub pseudorandom bit
generator [23] with its efficiency improvement [24]. Sidorenko and Schoenmakers [25] have analysed the con-
crete security of this generator, showing how to select the size of the modulus and number of bits extracted
to reach a desired security level with minimum computational effort. (Other cryptographically secure pseu-
dorandom bit generators are also available; see Menezes et al. [26].) However, such a strategy requires a key
or seed of size around 1024 bits, if one desires to achieve security similar to 1024-bit RSA. Furthermore, since
there are two parties who need to use the generator, they must share two secret 512-bit primes in addition
to the seed. Hence this option is not considered further here due to the large amount of keying material
that would need to be generated by the randomness extractor, even though its security assumptions (e.g.
integer factorization being intractable) may have withstood more scrutiny than the assumptions of the other
schemes above (e.g. that the compression function of a particular hash function is pseudorandom).

D Extractor Results of Dodis et al. and their Problems

Dodis et al. [3] have analysed the security of CBC-MAC, the cascade construction and HMAC, and were
the first to do so in the standard model. Their results for CBC-MAC are of little practical use, since a
5 Assuming Advprf

h (q, S) ≤ S
2c

we would have Advprf
F rcsc(q, S)/S ≤ S

2c
which we would want no greater than 1

2k
for

a security level of k bits. This translates to requiring k ≤ c/2. However, F rcsc would require b + c bits of keying
material, whereas HMAC requires only b bits.
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security level of only e = 62 bits can be achieved using existing AES block ciphers, which all have a block
size of 128 bits. To achieve a security level of e = 82 bits for the extractor, a block size of at least 169 bits
would be required. Their other results either use the random oracle model (which we wish to avoid) or have
unreasonable assumptions or lemmas/propositions. The unreasonable assumptions or lemmas/propositions
are (using the same notation as Sect. 4.2):

– in an analysis of the cascade construction, that the cascade construction is δ-almost universal (with
δ ≤ 1

2c + L
2c+ω +O

(
L2

22c

)
where ω is the min-entropy of the last block of the input to the hash function)

when defined over a family of compression functions that are random;
– in an alternative analysis of cascade construction, that the family of compression functions are δ-almost

universal (with δ ≤ 1
2c + 1

22c which, because the key length and output length of the compression functions
are equal, equates to assuming δ ≤ 1

2c , i.e. the family of compression functions is a universal hash function
family);

– in an analysis of HMAC, that the cascade construction is δ-almost universal with δ ≤ L
2c +O

(
L3

22c

)
, and

that the truncated compression function family is universal.

We note that other authors have briefly mentioned that the work of Dodis et al. is problematic: Fouque et
al. [4] mentioned that Dodis et al. assume that the compression functions of the hash-based constructions
under review are a family of almost universal hash functions, which is not realistic; Chevassut et al. [2] note
that the analysis of Dodis et al. is incomplete because of the problem of assuming the compression functions
are universal.

E Universal Hash Function Examples

Nevelsteen and Preneel [27] have provided a survey of universal hash functions (UHFs). Examples of UHFs
include the following:

– [8, p.127, Ex.6.30] Let A be Z×(t+1)
n and Z be Zn where n is prime. Let H = {hx1,...,xt : x1, . . . , xt ∈ Zn}

be a family of hash functions from A to Z, where for hx1,...,xt ∈ H, and for (a0, a1, . . . , at) ∈ A we define

hx1,...,xt(a0, a1, . . . , at) = a0 + a1x1 + · · ·+ atxt. (32)

Show that H is universal, but not pairwise independent.
– [8, p.127, Ex.6.31]Let k be a prime and let n be any positive integer. Let A = {0, . . . , k − 1} and
Z = {0, . . . , n − 1}. Let H = {hx,y : x = 1, . . . , k − 1, y = 0, . . . , k − 1} be a family of hash functions
from A to Z, where for hx,y ∈ H and for a ∈ A we define

hx,y(a) = ((ax+ y) (mod k)) (mod n). (33)

Show that H is universal. (A hint is included in the original.)
– Multiplying a Toeplitz matrix (one with constant diagonals) by the input to create the output [17] is a

UHF. Let the key be κ = (rc 1, rc−1 1, . . . , r2 1, r1 1, r1 2, . . . , r1 b−1, r1 b) (having b + c − 1 bits), defining
matrix

R =


r1 1 r1 2 . . . r1 b

r2 1 r1 1 . . . r1 b−1

...
...

. . .
...

rc 1 rc−1 1 . . . r1 b−c+1

 (34)

Then multiplying this matrix by the input as a column vector of b bits to produce a column vector of c
bits is a universal hash function.

Examples of these UHFs are shown in Tables 7 and 8.
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Shoup Ex. 6.30; n = 3, t = 1
hx1(a0, a1) = a0 + a1x1 (mod 3)

a1 0 0 0 1 1 1 2 2 2
a0 0 1 2 0 1 2 0 1 2

x1

0 0 1 2 0 1 2 0 1 2
1 0 1 2 1 2 0 2 0 1
2 0 1 2 2 0 1 1 2 0

Toeplitz example»
r1 1 r1 2

r2 1 r1 1

– »
a1

a2

–
=

»
b1
b2

–
Output is 2b1 + b2

a1 0 0 1 1
a2 0 1 0 1

r2 1 r1 1 r1 2

0 0 0 0 0 0 0
0 0 1 0 2 0 2
0 1 0 0 1 2 3
0 1 1 0 3 2 1
1 0 0 0 0 1 1
1 0 1 0 2 1 3
1 1 0 0 1 3 2
1 1 1 0 3 3 0

Shoup Ex. 6.31; k = 5, n = 3
hx,y(a) = ((ax+ y) (mod 5)) (mod 3)

a 0 1 2 3 4
x y
1 0 0 1 2 0 1
1 1 1 2 0 1 0
1 2 2 0 1 0 1
1 3 0 1 0 1 2
1 4 1 0 1 2 0
2 0 0 2 1 1 0
2 1 1 0 0 2 1
2 2 2 1 1 0 0
2 3 0 0 2 1 1
2 4 1 1 0 0 2
3 0 0 0 1 1 2
3 1 1 1 2 0 0
3 2 2 0 0 1 1
3 3 0 1 1 2 0
3 4 1 2 0 0 1
4 0 0 1 0 2 1
4 1 1 0 1 0 2
4 2 2 1 0 1 0
4 3 0 2 1 0 1
4 4 1 0 2 1 0

Table 7. Universal Hash function examples
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Toeplitz example»
r1 1 r1 2 r1 3 r1 4

r2 1 r1 1 r1 2 r1 3

–2664
a1

a2

a3

a4

3775 =

»
b1
b2

–
Output is 2b1 + b2

a1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
a2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
a3 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
a4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

r2 1 r1 1 r1 2 r1 3 r1 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
0 0 0 1 0 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 0 0 1 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1
0 0 1 0 0 0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3
0 0 1 0 1 0 2 1 3 2 0 3 1 0 2 1 3 2 0 3 1
0 0 1 1 0 0 1 3 2 2 3 1 0 0 1 3 2 2 3 1 0
0 0 1 1 1 0 3 3 0 2 1 1 2 0 3 3 0 2 1 1 2
0 1 0 0 0 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 1 0 0 1 0 2 0 2 1 3 1 3 2 0 2 0 3 1 3 1
0 1 0 1 0 0 1 2 3 1 0 3 2 2 3 0 1 3 2 1 0
0 1 0 1 1 0 3 2 1 1 2 3 0 2 1 0 3 3 0 1 2
0 1 1 0 0 0 0 1 1 3 3 2 2 2 2 3 3 1 1 0 0
0 1 1 0 1 0 2 1 3 3 1 2 0 2 0 3 1 1 3 0 2
0 1 1 1 0 0 1 3 2 3 2 0 1 2 3 1 0 1 0 2 3
0 1 1 1 1 0 3 3 0 3 0 0 3 2 1 1 2 1 2 2 1
1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 0 0 0 1 0 2 0 2 0 2 0 2 1 3 1 3 1 3 1 3
1 0 0 1 0 0 1 2 3 0 1 2 3 1 0 3 2 1 0 3 2
1 0 0 1 1 0 3 2 1 0 3 2 1 1 2 3 0 1 2 3 0
1 0 1 0 0 0 0 1 1 2 2 3 3 1 1 0 0 3 3 2 2
1 0 1 0 1 0 2 1 3 2 0 3 1 1 3 0 2 3 1 2 0
1 0 1 1 0 0 1 3 2 2 3 1 0 1 0 2 3 3 2 0 1
1 0 1 1 1 0 3 3 0 2 1 1 2 1 2 2 1 3 0 0 3
1 1 0 0 0 0 0 0 0 1 1 1 1 3 3 3 3 2 2 2 2
1 1 0 0 1 0 2 0 2 1 3 1 3 3 1 3 1 2 0 2 0
1 1 0 1 0 0 1 2 3 1 0 3 2 3 2 1 0 2 3 0 1
1 1 0 1 1 0 3 2 1 1 2 3 0 3 0 1 2 2 1 0 3
1 1 1 0 0 0 0 1 1 3 3 2 2 3 3 2 2 0 0 1 1
1 1 1 0 1 0 2 1 3 3 1 2 0 3 1 2 0 0 2 1 3
1 1 1 1 0 0 1 3 2 3 2 0 1 3 2 0 1 0 1 3 2
1 1 1 1 1 0 3 3 0 3 0 0 3 3 0 0 3 0 3 3 0

Table 8. Universal Hash function example constructed using a Toeplitz matrix
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