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Abstract. Gathering and processing sensitive data is a difficult task. In fact, there
is no common recipe for building the necessary information systems. In this pa-
per, we present a provably secure and efficient general-purpose computation sys-
tem to address this problem. Our solution—SHAREMIND—is a virtual machine
for privacy-preserving data processing that relies on share computing techniques.
This is a standard way for securely evaluating functions in a multi-party computa-
tion environment. The novelty of our solution is in the choice of the secret sharing
scheme and the design of the protocol suite. We have made many practical de-
cisions to make large-scale share computing feasible in practice. The protocols
of SHAREMIND are information-theoretically secure in the honest-but-curious
model with three computing participants. Although the honest-but-curious model
does not tolerate malicious participants, it still provides significantly increased
privacy preservation when compared to standard centralised databases.

1 Introduction

Recent years have significantly altered the methodology of collecting and processing
information. The large-scale adoption of online information systems has made both the
use and abuse of personal data easier than before. This has caused an increased aware-
ness about privacy issues among individuals. In many countries, databases containing
personal, medical or financial information about individuals are classified as sensitive
and the corresponding laws specify who can collect and process sensitive information
about a person.

On the other hand, the usage of sensitive information plays an essential role in
medical, financial and social studies. Thus, one needs a methodology for conducting
statistical surveys without compromising the privacy of individuals. The corresponding
research area is commonly known as privacy-preserving data mining. So far the focus
has been on randomised response techniques [AS00,AA01,ESAGO02]. In a nutshell, re-
cipients of the statistical survey apply a fixed randomisation method on their responses.
As a result, each individual reply is erroneous, whereas the global statistical properties
of the data are preserved. Unfortunately, such transformations can preserve privacy only
on average and randomisation reduces the precision of the outcomes. Also, we cannot
give security guarantees for individual records. In fact, the corresponding guarantees
are rather weak and the use of extra information might significantly reduce the level of
privacy.



Another option is to consider the problem as a multi-party computation task, where
the data donors want to securely aggregate data without revealing their private in-
puts. However, the corresponding cryptographic solutions quickly become practically
intractable when the number of participants grows beyond few hundreds. Moreover,
data donors are often unwilling to stay online during the entire computation and their
computers can be easily taken over by adversarial forces. As a way out, we propose a
hierarchical solution, where all computations are done by dedicated miner parties who
are less susceptible for external corruption. More precisely, we assume that only a few
miner parties can be corrupted during the computation. Consequently, we can use se-
cret sharing and share computing techniques for privacy-preserving data aggregation.
In particular, data donors can safely submit their inputs by sending the corresponding
shares to the miners. As a result, the miners can securely evaluate any aggregate statistic
without further interaction with the data donors.

Our contribution. The presented theoretical solution does not form the core of this pa-
per. Share computing techniques have been known for decades [BOGW88,CCD88,Beadl]
and thus all important results are well established by now. Hence, we focused mainly
on practical aspects and developed the SHAREMIND framework for privacy-preserving
computations. The SHAREMIND framework is designed to be an efficient and easily
programmable platform for developing and testing various privacy-preserving algo-
rithms. More precisely, it consists of the computation runtime environment and a pro-
gramming library for creating private data processing applications. As a result, one can
develop secure multi-party protocols without the explicit knowledge of all implementa-
tion details. On the other hand, it is also possible to test and add your own protocols to
the library, since the source code of SHAREMIND is freely available [SM0O07].

To assure maximal efficiency, we have made some non-standard choices. First, the
SHAREMIND framework uses an additive secret sharing scheme over the ring Zos2.
Besides the direct computational gains, such a choice also simplifies many share com-
puting protocols. When a secret sharing protocol is defined over a finite field Z,,, then
any overflow in computations causes modular reductions that corrupt the end result. In
the SHAREMIND framework, all modular reductions occur modulo 232 and thus results
always coincide with the standard 32-bit integer arithmetic. On the other hand, standard
share computing techniques are not applicable for the ring Zos=. In particular, we were
forced to roll out our own multiplication protocol, see Sect. 4.

Secondly, the current implementation of SHAREMIND supports the computation-
ally most efficient setting, where only one of three miner nodes can be semi-honestly
corrupted. As discussed in Sect. 3, the corresponding assumption can be enforced with
a reasonable practical effort. Additionally, we discuss extending the system to more
complex settings in Sect. 7.

To make the presentation more fluent, we describe the SHAREMIND framework step
by step. Sect. 2 covers all essential cryptographic notions starting from secret sharing
and ending with the necessary composability results. Sect. 3 gives a high-level descrip-
tion of the framework. Details of share computing are explained in Sect. 4. Next, Sect. 5
gives a brief overview of how the framework is implemented and how one could use it
in privacy-preserving computations. In Sect. 6, we present and analyse the performance



results. In particular, we compare our results with other implementations of privacy-
preserving computations [MNPS04,BDJ*06,YWS06]. Finally, we conclude our pre-
sentation with some improvement plans for future, see Sect. 7.

2 Cryptographic Preliminaries

Theoretical attack model. In this article, we state and prove all security guarantees
in the information-theoretical setting, where each participant pair is connected with a
private communication channel that provides asynchronous communication. In other
words, a potential adversary can only delay or reorder messages without reading them.
We also assume that the communication links are authentic, i.e., the adversary cannot
send messages on behalf of non-corrupted participants. The adversary can corrupt par-
ticipants during the execution of a protocol. In the case of semi-honest corruption, the
adversary can only monitor the internal state of a corrupted participant, whereas the
adversary has full control over maliciously corrupted participants. We consider only
threshold adversaries that can adaptively corrupt up to ¢ participants. Such an attack
model is well established, see [BOCG93,BOKR94,HMOO0] for further details.

As a second restriction, we consider only self-synchronising protocols, where the
communication can be divided into distinct rounds. A protocol is self-synchronising
if the adversary cannot force (semi-)honest participants to start a new communication
round until all other participants have completed the previous round. As a result, we
can analyse the security of these protocols in the standard synchronised setting with a
rushing adversary [CCD88,Bea91], where all communication rounds take place at pre-
agreed time intervals and the corrupted participants can send out their messages after
receiving messages form honest participants.

Secure multi-party computation. Assume that participants Py, ..., P, want to com-
pute outputs y; = fi(x1,...,x,) where x1,...,x, are corresponding private inputs.
Then the security of a protocol 7 that implements the described functionality is defined
by comparing the protocol with the ideal implementation 7°, where all participants sub-
mit their inputs x4, . . . , x,, securely to the trusted third party T that computes the neces-
sary outputs y; = fi(x1,...,,) and sends y1, ..., y, securely back to the respective
participants. A malicious participant P; can halt the ideal protocol 7° by submitting
x; = L. Then the trusted third party J sends L as an output for all participants. Now
a protocol 7 is secure if for any plausible attack A against the protocol 7 there exists a
plausible attack A° against the protocol 7° that causes comparable damage.

For brevity, let us consider only the stand-alone setting, where only a single protocol
instance is executed and all honest participants carry out no side computations. Let
¢; = (0;,x;) denote the entire input state of P; and let ¢»; = (¢;, y;) denote the entire
output state. Similarly, let ¢, and 1, denote the inputs and outputs of the adversary
and ¢ = (¢1,...,0n, Pa), ¥ = (Y1,...,%Un,1,) the corresponding input and output
vectors. Then a protocol 7 is perfectly secure if for any plausible 7,.-time real world
adversary A there exists a plausible 7;4-time ideal world adversary A° such that for any
input distribution ¢ < © the corresponding output distributions 1) and 1)° in the real
and ideal world coincide and the running times 7, and 7iq are comparable.



The efficiency constraint has several interpretations. In the asymptotic setting, the
running times are comparable if T;4 is polynomial in 7. For fixed time bound 7., one
must decide an acceptable time bound 74 by herself. In either case, all security proofs
in this article are suitable, since they assure that 734 < ¢ - 7, Where c is relatively small
constant.

In our setting, a real world attack A is plausible if it corrupts up to ¢ partici-
pants. The corresponding ideal world attack A° is plausible if it corrupts the same
set of participants as the real world attack. For further details and standard results,
see [Bea91,DMO00,Can00,Can01].

Universal composability. Complex protocols are often designed by combining several
low level protocols. Unfortunately, the stand-alone security is not enough to prove the
security of the compound protocol and we must use more stringent security definitions.
More formally, let o(-) be a global context that uses the functionality of a protocol 7.
Then we can compare real and ideal world protocols o(w) and o{(7°). Let ¢, 9, ¥°
denote the input and output vectors of the compound protocols g(m) and o(7°). Then
a protocol 7 is perfectly universally composable if for any plausible 7,-time attack A
against o(m) there exists a plausible 74-time attack A° against o(7°) such that for any
input distribution ¢ < ® the output distributions 1) and 1° coincide and the running
times 7., and T;q are comparable. See the manuscript [Can01] for a more formal and
precise treatment.

Secret sharing schemes. Many solutions for secure multiparty computations are based
on secret sharing. A secret sharing scheme is determined by a randomised sharing al-
gorithm Deal : M — &; X ... x §,, and a recovery algorithm Rec : §; x ... x S, —
MU{ L} where M is the set of possible secrets and Sy, . . ., S,, are the sets of possible
shares. For brevity, we use a shorthand [s] to denote the shares [s1, ..., s,| generated
by the sharing algorithm Deal(s).

A k-out-of-n threshold secret sharing scheme must satisfy two additional require-
ments. First, the reconstruction algorithm must output a correct value for all shares
[31,...,8,] that are obtained from a valid sharing [s1, ..., s,] by altering at most n — k
original shares. Second, the distribution of k£ — 1 shares s;,,...,s;, , must be always
independent of the secret s, i.e., a collection of £ — 1 shares reveals no information
about the secret s.

3 Privacy-Preserving Data Aggregation

As already emphasised in the introduction, one often needs to gather and process sen-
sitive data that belongs to other persons or organisations. The latter can lead to serious
security issues, as the organisations who collect and process the data may abuse it or
reveal the data to third parties. As a result, people are unwilling to reveal sensitive infor-
mation without strong security guarantees. In many countries, this issue is regulated by
laws that specify who and how can gather and process sensitive data. Although proper
legislation and auditing reduce the corresponding risks, data donors must still uncon-
ditionally trust government institutions that gather and process data. In the following,



we introduce a framework for privacy-preserving computations that eliminates the need
for unconditional trust. Our SHAREMIND framework uses secret sharing to split con-
fidential information between several nodes (miners). As a result, data donors do not
have to trust any of them. Instead, it is sufficient to believe that the number of collab-
orating corrupted nodes is below the prescribed threshold ¢. The latter can be achieved
with physical and organisational security measures such as dedicated server rooms and
software auditing.

By sending the shares of the data to the miners, data donors effectively delegate
all rights over the data to the consortium of miners. Furthermore, it is relatively easy
to assure that a set of miners fulfils the necessary security requirements, whereas it is
essentially impossible to make justified assumptions about all data donors. As a re-
sult, protocols without trust transfer must be secure even if the majority of data donors
are malicious. Although such protocols for honest minority do exist [Yao86,GL90],
they have many drawbacks [CK89,CKLO03]. First, we cannot construct protocols, where
data donors just submit their inputs. Instead, they have to be active throughout the en-
tire computational process. Secondly, we must use computationally expensive crypto-
graphic primitives to assure provable security. Therefore, the corresponding protocols
quickly become practically intractable if the number of analysed data items grows be-
yond few thousand records.

Note that physical and organisational security measures are sufficient to assure
semi-honest behaviour if there are only a few miners. Indeed, it is not too far-fetched to
assume that potential adversaries can install only passive logging programs into well-
protected miner nodes. Classical limits proved by Chor and Kushilevitz [CK89] indicate
that the use of computationally slow cryptographic primitives is unavoidable if semi-
honestly corrupted participants are in majority. Hence, it is advantageous to consider
settings, where the total number of miners n is larger than 2¢. Analogous theoretical
limits for malicious corruption [CCD88,BOGW88] imply that n > 3¢ or we again have
to use relatively slow cryptographic primitives.

Although a larger number of miner nodes increases the level of tolerable corruption,
it also makes assuring semi-honest behaviour much more difficult. In the reality, it is
difficult to find more than five independent organisations that can provide adequate
protection measures and are not motivated to collaborate with each other. Also, note
that the communication complexity of multi-party computation protocols is roughly
quadratic in the number of miners n. For these reasons, only models with three to five
miner nodes are relevant in practice.

The main goal of the SHAREMIND framework is to provide efficient protocols for
basic mathematical operations so that we could easily implement more complex tasks.
In particular, one should be able to construct such protocols without any knowledge
about underlying cryptographic techniques. For that reason, all implementations of ba-
sic operations in the SHAREMIND framework are universally composable. Secondly,
many design choices are made to assure maximal efficiency. For instance, the cur-
rent implementation of SHAREMIND consists of three miner nodes, as it is the most
communication-efficient model that can handle semi-honest corruption of a single node.

To achieve maximal efficiency, we also use non-orthodox secret sharing and share
computing protocols. Recall that most classical secret sharing schemes work over finite
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Fig. 1. Deployment diagram of Sharemind. The input data and instructions are delivered to miner
nodes that use multi-party computation techniques to execute programs step by step and finally
return the end results.

fields. As a result, it is easy to implement secure addition and multiplication modulo
prime p or in the Galois field GF(2¥). However, the integer arithmetic in modern com-
puters is done modulo 232, Hence, the most space- and time-efficient solution is to use
additive secret sharing schemes over Zos2. There is no need to implement modular arith-
metic and we do not have to compensate the effect of modular reductions. On the other
hand, we have to use non-standard methods for share computing, since Shamir secret
sharing scheme does not work over Zos2. We discuss these issues further in Sect. 4.

The high level description of the SHAREMIND framework is depicted in Fig. 1. Es-
sentially, one can view SHAREMIND as a virtual processor that provides secure storage
for shared inputs and performs privacy-preserving operations on them. Each miner node
P, has a local database for persistent storage and a local stack for storing intermediate
results. All values in the database and stack are shared among all miners Py, ..., P, by
using an additive secret sharing over Zgs2. That is, each miner P; has a local share s;
of a secret value s such that

S14+So4---+8, =5 mod 232
and any n — 1 element subset {s;,,...,s;, ,} is uniformly distributed. Initially, the
database is empty and data donors have to submit their inputs by sending the corre-
sponding shares privately to miners who store them in the database. We describe this
issue more thoroughly in Sect. 4.2.

After the input data is collected, a data analyst can start privacy-preserving compu-
tations by sending instructions to the miners. Each instruction is a command that either
invokes a share computing protocol or just reorders shares. The latter allows a data ana-
lyst to specify complex algorithms without thinking about implementation details. More
importantly, the corresponding complex protocol is guaranteed to preserve privacy, as
long as the execution path in the program itself does not reveal private information.
This restriction must be taken into account when choosing data analysis algorithms for
implementation on SHAREMIND.

Each arithmetic instruction invokes a secure multi-party protocol that provides new
shares. These shares are then stored on the stack. For instance, a unary stack instruction



f takes the top shares [u] of the stack and pushes the resulting shares [f(u)] to the
stack top. Analogously, a binary stack instruction ® takes two top most shares [u] and
[v] and pushes [u ® v] to the stack. For efficiency reasons, we have also implemented
vectorised operations to perform the same protocol in parallel with many inputs at once.
This significantly reduces the number of rounds required for applying similar operations
on large quantities of data.

The current implementation of SHAREMIND framework provides privacy preserv-
ing addition, multiplication and greater-than-or-equal comparison of two shared values.
It can also multiply a shared value with a constant and extract its bits as shares. Share
conversion from Zs to Z,s2 and bitwise addition are mostly used as components in
other protocols, but they are also available to the programmer. We emphasise here that
many algorithms for data mining and statistical analysis do not use other mathematical
operations and thus this instruction set is sufficient for most applications. Moreover,
note that bit extraction and arithmetic primitives together are sufficient to implement
any Boolean circuit with a linear overhead and thus the SHAREMIND framework is also
Turing complete. We acknowledge here that there are more efficient ways to evaluate
Boolean circuits like Yao circuit evaluation [ Yao86,L.LP04] and we plan to include pro-
tocols with similar properties in the future releases of SHAREMIND.

We analyse the security of all share manipulation protocols in the information-
theoretical attack model that was specified in Sect. 2. In particular, we assume that
miners are connected to each other via secure channels. We can use strong symmetric
encryption and authentication primitives to achieve a similar level of security in prac-
tical applications. As a result, we obtain only computational security guarantees in the
real world. The latter is unavoidable if we want to achieve a cost-efficient and universal
solution, as building dedicated secure channels is currently expensive. As a final detail,
note that asynchronous communication allows us to omit the central synchronisation
service and thus reduce network delays that have significant impact on the overall effi-
ciency.

4 Share Computing Protocols

All computational instructions in the SHAREMIND framework are either unary or bi-
nary operations over unsigned integers represented as elements of Zos2 or their vec-
torised counterparts. Hence, all protocols described in this section have the following
structure. Each miner P; uses shares u; and v; as inputs to the protocol to obtain a new
share w; such that Jw] is a valid sharing of f(u) or u®v. In the corresponding idealised
implementation, all miners send their input shares to the trusted third party T who re-
stores all inputs, computes the corresponding output w and sends back newly computed
shares Jw] < Deal(w). Hence, the output shares [w] are independent of input shares
and thus no information is leaked about the input shares if we publish all output shares
[w].

Since the current implementation of SHAREMIND framework consists of three miner
nodes, we present here only three-party protocols that are secure against a semi-honest
corruption of a single node. Similar constructions are possible for other settings, see [CFIK03]
for a generic solution.



Although share computing protocols are often used as elementary steps in more
complex protocols, they themselves can be composed from even smaller atomic oper-
ations. Many of these atomic sub-protocols produce output shares that are never pub-
lished. Hence, it makes sense to introduce another security notion that is weaker than
universal composability. We say that a share computing protocol is perfectly simulat-
able if there exists an efficient universal non-rewinding simulator S that can simulate all
protocol messages to any real world adversary A so that for all input shares the output
distributions of A and S(A) coincide. Most importantly, perfect simulatability is closed
under concurrent composition. The corresponding proof is straightforward.

Lemma 1. A protocol is perfectly simulatable if all its sub-protocols are perfectly sim-
ulatable.

Proof (Sketch). Since all simulators S; of sub-protocols are non-rewinding, we can
construct a single compound simulator S, that runs simulators S; in parallel to provide
the missing messages to A. As each simulator S; is perfect, the final view of A is also
perfectly simulated. a

However, perfect simulatability alone is not sufficient for universal composability.
Namely, output shares of a perfectly simulatable protocol may depend on input shares.
As aresult, published shares may reveal more information about inputs than necessary.
Therefore, we must often re-share the output shares at the end of each protocol. The
corresponding ideal functionality is modelled as follows. Initially, the miners send their
shares [u] to the trusted third party J. Then the party T recovers v < Rec([u]) and
sends new shares Jw] < Deal(u) back to the miners.

For the basic setting with three miners, the simplest re-sharing protocol is the fol-
lowing. First, each miner P; generates a random mask r; < Zo32 and sends it to the
right neighbour P;;; (the miner P3 sends r3 to P;). Next, each miner P; outputs
w; < u; + ri—1 — r;. As a result, the output shares have indeed the correct distri-
bution Deal(u). Moreover, for fixed values u;, w;, 7;, there is only a single consistent
value r;_1 in the real execution. Hence, we can construct a non-rewinding interface Z,
between the ideal world and a real world adversary A. The interface Z, forwards the
input share u; of corrupted miner P; to the trusted third party T, provides randomness
r; «— Zg32 to P;, and given w; form T sends ;1 «— w; — u; + r; to the corrupted party
P;. As the trusted third party T draws the output shares from the correct distribution,
the simulation is perfect and the output distributions ) and 1)° in the real and the ideal
world coincide. Moreover, the output distributions v and 1° remain identical even if
we execute the re-sharing protocol as a sub-task in larger computational context o(-),
as the interface Z is non-rewinding (see the manuscript [Can01] for further details.).
Also, note that the construction of the interface makes sense only in the semi-honest
model, where the adversary cannot alter the value of ;.

The next lemma shows that perfect simulatability together with re-sharing assures
universal composability in the semi-honest model. In the malicious model, one needs
extractability of inputs and additional correctness guarantees against malicious behaviour.

Lemma 2. A perfectly simulatable share computing protocol that ends with perfectly
secure re-sharing of output shares is perfectly universally composable.



Proof. Let S be the perfect simulator for the share computing phase and 7, the interface
for the re-sharing protocol. Then we can construct a new non-rewinding interface Z for
the whole protocol:

1. Tt first submits the inputs of the corrupted miners P; to the trusted third party T and
gets back the output shares w;.

2. Next, it runs possibly in parallel the simulator S and the interface Z, with the output
shares w; to simulate the missing protocol messages.

Now the output distributions %) and 1° coincide, since the sub-routines S and Z; per-
fectly simulate protocol messages and Z assures that the output shares of corrupted par-
ties are indeed w;. The latter assures that the adversarial output 15 is correctly matched
together with the outputs of honest parties. Since the interface 7 is non-rewinding, the
claim holds even if the protocol is executed in a larger computational context o(-). O

4.1 Protocols for Atomic Operations

As the SHAREMIND framework is based on additive sharing, it is straightforward to
implement share addition and multiplication with a public constant ¢ by doing only
local operations, since [u1 + v1,...,un + v,] and [cuy, ..., cuy,] are valid shares of
u + v and cu. However, note that these operations are only perfectly simulatable, since
the output shares depend on input shares.

A share multiplication protocol is another important atomic primitive. Unfortu-
nately, we cannot use the standard solutions based on polynomial interpolation and
re-sharing, since Shamir secret sharing scheme fails in the ring Z,32. Hence, we must
roll out our own multiplication protocol. By the definition of the additive secret sharing
scheme

UV = Zuivi + Zuwi mod 232 D
i=1 i

and thus we need sub-protocols for computing shares of w;v;. For clarity and brevity,
we consider only a sub-protocol, where P; has an input 1 and P2 has an input x5 and
the miner P3 helps the others to obtain shares of x;x5. Du and Atallah were the first to
publish the corresponding protocol [DA0O] although similar reduction techniques have
been used earlier. Fig. 2 depicts the corresponding protocol. Essentially, the correctness
of the protocol relies on the observation

T1Toy = —(331 + 051)($2 + 0(2) + xl(l‘g + 042) + (Il + ()11).1‘2 + s .

The security follows from the fact that for uniformly and independently generated
Q1, iy «— Zio32 the sums x1 + a7 and x2 + a5 have also uniform distribution.

Lemma 3. The Du-Atallah protocol depicted in Fig. 2 is perfectly simulatable.

Proof. Let us fix inputs z; and x5. Then P; receives two independent uniformly dis-
tributed values and P5 receives two independent uniformly distributed values. P35 re-
ceives no values at all. Hence, it is straightforward to construct a simulator S that sim-
ulates the view of a semi-honest participant. a



1. P35 generates a1, g < Zgs2 and sends o to Py and avg to Po.
2. Py computes 1 + «1 and sends the result to Po.
P2 computes 2 + a2 and sends the result to P;.
3. Parties compute shares of xqx2:
(a) P1 computes its share w1 = —(x1 + 1) (x2 + a2) + z1(x2 + a2)
(b) P2 computes its share wo = (z1 + a1)x2
(c) P3 computes its share ws = a1z

Fig. 2. Du-Atallah multiplication protocol

Execute the following protocols concurrently:

e Compute locally shares u1v1, u2v2 and uzvs.
e Use six instances of the Du-Atallah protocol for computing shares of u;v; where ¢ # j.
e Re-share the final sum of all previous sub-output shares.

Fig. 3. High-level description of the share multiplication protocol.

Fig. 3 depicts a share multiplication protocol that executes six instances of the Du-
Atallah protocol in parallel to compute the right side of the equation (1). Since the
protocols are executed concurrently, the resulting protocol has only three rounds, see
App. B for the explicit description.

Theorem 1. The multiplication protocol depicted in Fig. 3 is perfectly universally com-
posable.

Proof. Lemma 1 assures that the whole protocol is perfectly simulatable, as the local
computations and the instances of Du-Atallah protocol are perfectly simulatable. Since
the output shares are re-shared, Lemma 2 assures that the protocol is also universally
composable. a

The described multiplication protocol requires a total of three rounds and 27 mes-
sages. For comparison, note that the classical multiplication protocol based on Shamir
secret sharing has two rounds and 9 messages. On the other hand, recall that Shamir
secret sharing is not possible over Zgys2 and computing over Z, requires additional
safeguarding measures against modular reductions. Moreover, the first round of our
multiplication protocol is independent of inputs and can be precomputed. Hence, the
effective round complexity of both protocols is still comparable.

4.2 Protocol for Input Gathering

Many protocols can be directly built on the atomic operations described in the previous
sub-section. As the first example, we discuss methods for input validation. Recall that
initially the database of shared inputs is empty in the SHAREMIND framework and
the data donors have to fill it. There are two aspects to note. First, the data donors
might be malicious and try to construct fraudulent inputs to influence data aggregation
procedures. For instance, some participants of polls might be interested in artificially



increasing the support of their favourite candidate. Secondly, the data donors want to
submit their data as fast as possible without extra work. In particular, they are unwilling
to prove that their inputs are in the valid range.

There are two principal ways to address these issues. First, the miners can use multi-
party computation protocols to detect and eliminate fraudulent entries. This is compu-
tationally expensive, since the evaluation of correctness predicates is a costly operation.
Hence, it is often more advantageous to use such an input gathering procedure that guar-
antees validity by design. For instance, many data tables consist of binary inputs (yes-no
answers). Then we can gather inputs as shares over Zs to avoid fraudulent inputs and
later use share conversion to get the corresponding shares over Zgs2.

Let [u1, uz, ug) be a valid additive sharing over Z,. Then we can express the shared
value u through the following equation over integers:

flug,ug,uz) :=uy + ug + uz — 2ugug — 2uiug — 2usus + dujusuz = u .

Consequently, if we treat u, us, ug as inputs and compute the shares of f (w1, usg, ug)
over Zos2, then we obtain the desired sharing of u. More precisely, we can use the
Du-Atallah protocol to compute the shares [ujus], [uius], Juaus] over Zss2. To get
the shares [ujugus], we use the share multiplication protocol to multiply [u;us] and
the shares [ug] created by Ps. Finally, all parties use local addition and multiplication
routines to obtain the shares of f(u1,u2,us) and then re-share them to guarantee the
universal composability. The resulting protocol has only four rounds, since we can start
the first round of all multiplication protocols simultaneously, see App. C for further
details. The total number of exchanged messages is 50.

Theorem 2. The share conversion protocol is perfectly universally composable.

Proof. The proof follows again directly from Lemmata 1 and 2, since all sub-protocols
are perfectly simulatable and the output shares are re-shared at the end of the protocol.
O

As a final detail, note that input gathering can even be an off-line event, if we make
use of public-key encryption. Namely, if everybody knows the public keys of the miners,
then they can encrypt the shares with the corresponding public keys and then store them
in a public database. Later miners can fetch and decrypt their individual shares and fill
their input database.

4.3 Protocols for Bit Extraction and Comparison

Various routines for bit manipulations form another set of important operations. In par-
ticular, note that for signed representation of Zgs2 = {—231 ...,0,...,23 — 1} the
highest bit indicates the sign and thus the evaluation of greater-than-or-equal (GTE)
predicate can be reduced to bit extraction operations. In the following, we mimic the
generic scheme proposed by Damgérd et al [DFK06] for implementing bit-level op-
erations. As this construction is given in terms of atomic primitives, it can be used also
for settings where there are more than three miners.



As the first step, note that it is easy to generate shares of a random number r «— Zgs2
such that we also know the corresponding bit shares [r®V], ..., [r]. Each miner P;
first chooses 32 random bits 7{*", ..., 7{”. After that the miners use the share con-
version protocol to convert the corresponding shares [F*V], ..., [F*°] over Zs to the
shares of [r®V], ..., [r®] over Zys2. Finally, the miners use local operations to com-

pute shares
[[7,]] _ 231 . [[7,(31)]] + 230 . II,r,(Bl)]] L 21 A II,,,(I)]] 4 20 5 [[T(O)]] .

As the second step, we construct a bit extraction protocol that given input shares
[u] produces shares of its bits [u®V], ..., [u'®]. This is a versatile operation that can
be used as a building block for many bit-based operations. The corresponding protocol
is following. First, the miners generate shares [r] of a random number with known bit
decomposition. Then they compute the difference [a] = [u] — [r] and publish the
corresponding shares. Since the difference has uniform distribution, the value a leaks
no information about inputs. As a result, we have reduced the problem of extracting the
bits of u to computing the bitwise sum of a + r, as each miner knows the public value
a and has the shares of random bits 7@V, ... r©,

Computing bitwise sum is a more complicated procedure, since we need to take care
of carry bits. The bitwise addition protocol takes in k element share vectors [u™], ..., [u‘]
and [v™®],. .., [v®] and outputs shares [w™], ..., [w®] such that w is the i-th bit
of the sum u + v. As all inputs are bits, we can iteratively compute the shares [w®]
using the classical addition algorithm. However, the corresponding protocol has O(k)
rounds, since we cannot compute carry bits locally.

A more round efficient alternative is to use the standard look-ahead carry construc-
tion to perform the carry computations in parallel. By the recursive application of the
carry look-ahead principle, we can reduce the number of rounds to ©(log k). The cor-
responding iterative algorithm together with the explanation of the carry look-ahead
principle is given in App. A

Again, we can execute some of the sub-protocols in parallel and thus save some
rounds. Namely, the resulting bitwise addition protocol has 8 rounds and 87 messages.
The corresponding bit extraction protocol has 12 rounds and sends out 139 messages.
Note that although each of these messages contains more than one value, we can con-
sider them as a single message for performance considerations. Both protocols are also
universally composable, since all sub-protocols are universally composable. Hence we
can see that the following theorem holds.

Theorem 3. The bitwise addition protocol is perfectly universally composable. The
share extraction protocol is perfectly universally composable.

Our approach has many virtues compared to solutions using Shamir scheme. For
example, the solution presented in [DFK+06] requires a complex sampling procedure to
construct uniformly chosen values r < Z,, which still have a known bit decomposition.
Also, we do not have to eliminate the effects of modular reduction when the variables
are shared over Zss2. In particular, we can safely compute the bitwise sum of a 4+ — p,
even if a + r > p. Hence, our share extraction protocol is simpler than the protocol
proposed in [DFKT06].



Finally, we describe how to implement GTE predicate if both arguments are guar-
anteed to be in Zgsr C Zsgs2. The latter allows us to define the predicate GTE
Zgs1 X Zasr — {0, 1} as follows:

1, if the last bit of the difference x — y is 1,
0, otherwise.

GTE(z,y) = {
It is straightforward to see that the definition is correct for unsigned and signed inter-
pretation of the arguments as long as both arguments are in the range Zss:. Since the
range Zsa1 is sufficient for most practical computations, we have not implemented the
extended protocol yet.

Theorem 4. The greater-than-or-equal protocol is perfectly universally composable.

Proof. The protocol is universally composable, since the bit extraction protocol that is
used to split x — y into bit shares is universally composable. a

5 Practical Implementation

The main goal of the SHAREMIND project is to provide an easily programmable and
flexible platform for developing and testing various privacy preserving algorithms based
on share computing. The implementation of the SHAREMIND framework provides a li-
brary of the most important mathematical primitives described in the previous section.
Since these protocols are universally composable, we can use them in any order, possi-
bly in parallel, to implement more complex algorithms. These algorithms remain secure
as long as the execution path is independent from input data. Hence, one cannot use ex-
plicit if-then constructions. However, this shortcoming is not essential, since all if-then
constructions can be rewritten using the following oblivious selection technique:

ifathenz —yelsez — 2 <= z—a-y+(1—a) -z.

As aresult, one can implement a wide range of algorithms.

The software implementation of SHAREMIND is written in the C++ programming
language and is tested on Linux, Mac OS X and Windows XP. The “virtual processor”
of SHAREMIND consists of the miner application which performs the duties of a se-
cure multiparty computation party and the controller library for developing controller
applications that work with the miners.

In SHAREMIND development environment the miners start with a minimal configu-
ration. The identities of the miners are decided when a controller application connects
to them. The controller application will have to know the addresses of the miners and
the miners will have to know nothing, as the controller will configure them automati-
cally. All parties know how to exchange messages over a computer network and per-
form secret sharing operations. Additionally, the miner application knows how to run
privacy preserving operations. The controller application executes a program by asking
the miners to sequentially execute operations described by the program.



Miners have an operation scheduler for ordering and executing received operations.
When a computational operation is requested from the miner, it is scheduled for execu-
tion. When the operation is ready to be executed, the miners run the secure multi-party
computation protocols necessary for completing the operation. Like in a standard stack
machine, all operations read their input data from the stack and write output data to the
stack upon completion.

We stress that the described way of running programs on SHAREMIND is perfect for
testing and developing algorithms. For real-world applications, we propose a slightly
different architecture. To avoid unauthorised commands, the miners must be configured
with the identities of each other and all possible controllers. This can be achieved by
using public-key infrastructure.

In the development scenario, the controller library interprets programs and passes
each subsequent command to the miners. In a real-world application, programs will be
signed by an appropriate authority and run by the miners. The controller will request a
complete analysis instead of a single operation. This gives the miners more control over
program execution and publication of aggregation results and avoids attacks, where the
controller can construct malicious queries from basic operations.

6 Performance Results

To evaluate the limitations and bottlenecks of share computing, we have measured
the performance of the SHAREMIND framework on various computational tasks. In
the following, we present the performance results for scalar product and vectorised
comparison. These tests are chosen for two reasons. First, together these benchmarks
cover the most important primitives of SHAREMIND: addition, multiplication and com-
parison. More importantly, scalar product is one of the most fundamental operations
used in data mining algorithms. Second, other secure multi-party computation sys-
tems [MNPS04,BDJT06,YWS06] have also implemented at least one of these bench-
marks.

Both tests got two n-element vectors aq,...,a, and by, ...,b, as inputs. In the
scalar product test, we computed the sum a1b; + asbs + - - - + a,by,. In the compari-
son test, we evaluated comparisons a; > b; for i = 1,...,n. All input datasets were

randomly generated and the corresponding shares were stored in the share databases
of SHAREMIND. For each chosen vector size, we performed a number of experiments
and measured the results. To identify performance bottlenecks, we measured the time
complexity in these three computation phases:

1. the local computation time including scheduling overhead;
2. time spent while sending data to other parties;
3. time spent while waiting for data from other parties.

During the analysis, the timing results were grouped and added to produce the ex-
perimental data in this section. The timings were determined at the miners to minimise
the impact of the overhead, like arranging input and output data on the stack. This al-
lows us to determine exactly, how long an operation runs before another operation can



be executed after it. The tests were performed on four desktop computers in a comput-
ing cluster. Each machine contained a dual-core Opteron 175 processor and 2 GB of
RAM, and ran Scientific Linux CERN 4.5. The computers were connected by a local
switched network allowing communication speeds up to 1 gigabit per second.

As one would expect, the initial profiling results showed that network delays have
significant impact on the performance. In fact, the number of rounds almost completely
determines the running time provided that the messages sent over the network have rea-
sonable size. Consequently, it is advantageous to execute as many operations in parallel
as possible.

The SHAREMIND framework allows the developer to perform several instances of
the same operation at once. For example, the developer can multiply or compare two
vectors elementwise. The messages exchanged by the parties will be larger, but the com-
putation will be more efficient, because the networking layer can send larger packages
with relative ease. Still, vectors may sometimes become too large and this may start to
hinder the performance of the networking layer. To balance the effects of vectorisation,
we implemented a load balancing system into the SHAREMIND framework. We fixed a
certain threshold after which miners start batch processing of large vectorised queries.
In each sub-round, a miner processes a fragment of its inputs and sends the results to
the other miners before continuing with the next fragment of input data.

Vectorisation and batch processing decrease the time which would otherwise be
spent waiting for inputs from the other miners. Note that this does not cause any addi-
tional security issues as the composition theorems that apply to our protocols also cover
parallel executions. Fig. 4 shows how the optimisations have minimised the penalty
caused by network delays.

As seen on Fig. 4 the impact of network delay during scalar product computation
is already small—the miners do not waste too many CPU cycles while waiting for
inputs. Note, that the performance of the scalar product operation depends directly on
the multiplication protocol, because addition is a local operation and therefore very fast.
Further optimisations to the implementation of the multiplication protocol can only lead
to marginal improvements. For the parallel comparison, the effect of network delay is
more important and further scheduling optimisations may decrease the time wasted
while waiting for messages. In both benchmarks, the time required to send and receive
messages is significant and thus the efficiency of networking can significantly influence
performance results.

6.1 Experimental Results and Analysis

The performance data was gathered by running a series of experiments on a data ta-
ble of the given size. Fig. 4 depicts average running times for test vectors with up to
100, 000 elements in 10, 000-element increments. For the comparison protocol the run-
ning times were rather stable, the average standard deviation was approximately 6%
from the mean running time. The scalar computation execution time was significantly
more unstable, as the average standard deviation over all experiments was 24% of the
mean. As most of the variation was in the network delay component of the timings, the
fluctuations can be attributed to low-level tasks of the operating system. This is further
confirmed by the fact that all scalar product timings are smaller than a second so even
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Fig. 4. Performance of the SHAREMIND framework.

relatively small delays made an impact on our execution time. We remind here that the
benchmark characterises near-ideal behaviour of the SHAREMIND framework, since no
network congestion occurred during the experiments and the physical distance between
the computers was small. In real world applications, the effect of network delays and
the variance of running times can be considerably larger.

We compared the performance of SHAREMIND with some known implementations
of privacy-preserving computations [MNPS04,BDJ+06,YWS06]. The FAIRPLAY sys-
tem [MNPS04] is a general framework for secure function evaluation with two parties
that is based on garbled circuit evaluation. According to the authors, single compari-
son operation for 32-bit integers takes 1.25 seconds. A single SHAREMIND comparison
takes, on average, 500 milliseconds. If we take into account the improvements in hard-
ware we can say that the performance is similar when evaluating single comparisons.
The authors of FAIRPLAY noticed that parallel execution gives a speedup factor of up
2.72 times in a local network. Experiments with SHAREMIND have shown that paral-
lel execution can increase execution up to 27 times. Hence, SHAREMIND can perform
parallel comparison more efficiently. The experimental scalar product implementation
in [YWSO06] also works with two parties. However, due to the use of more expensive
cryptographic primitives, it is slower than SHAREMIND even with precomputation. For
example, computing scalar product of two 100000-element binary vectors takes a min-
imum of 5 seconds without considering the time of precomputation.

The SCET system used in [BDJT06] is similar to SHAREMIND as it is also based on
share computing. Although SCET supports more than three computational parties, our
comparison is based on results with three parties. The authors have presented perfor-
mance results for multiplication and comparison operations as fitted linear approxima-
tions. The approximated time for computing products of z inputs is 3x+41 milliseconds
and the time for evaluating comparisons is 674z 4+ 90 milliseconds (including precom-
putation). The performance of SHAREMIND can not be easily linearly approximated,
because for input sizes up to 5000 elements parallel execution increases performance
significantly more than for inputs with more than 5000 elements. However, based on
the presented approximations and our own results we claim that SHAREMIND achieves



better performance with larger input vectors in both scalar product and vectorised com-
parison. A SHAREMIND multiplication takes, on the average, from 0.006 to 57 mil-
liseconds, depending on the size of the vector. More precisely, multiplication takes less
than 3 milliseconds for every input vector with more than 50 elements. The timings for
comparison range from 3 milliseconds to about half a second which is significantly less
than 674 milliseconds per operation.

From the results we see that vectorisation significantly improves the throughput of
the system. Performing many similar operations in parallel is more optimal than per-
forming the same number of individual operations. The multiplication protocol scales
better than the GTE protocol because of the smaller round and message count. We ac-
knowledge that it might not be possible to rewrite all algorithms to perform operations
in parallel, but we note that algorithms which make use of vectorisation will run faster
when implemented in the SHAREMIND framework.

7 Conclusion and Future Work

In this paper, we have proposed a novel approach for developing privacy-preserving ap-
plications. The SHAREMIND framework relies on secure multi-party computation, but
it also introduces several new ideas for improving the efficiency of both the applications
and their development process. The main theoretical contribution of the framework is
a suite of computation protocols working over elements in the ring of 32-bit integers
instead of the standard finite field. This non-standard choice allowed us to build simple
and efficient protocols.

We have also implemented a fully functional prototype of SHAREMIND and showed
that it offers enhanced performance when compared to other similar frameworks. Be-
sides that, SHAREMIND also has an easy to use application development interface al-
lowing the programmer to concentrate on the implementation of data mining algorithms
and not to worry about the privacy issues.

However, the current implementation has several restrictions, most notably it can
use only three computing parties and can deal with just one semi-honest adversary.
Hence the main direction for future research is relaxing these restrictions by develop-
ing computational primitives for more than three parties. We will also need to study
the possibilities for providing security guarantees against active adversaries. Another
aspect needing further improvement is the application programmer’s interface. A com-
piler from a higher-level language to our current assembly-like instruction set is defi-
nitely needed. Implementing and benchmarking a broad range of existing data-mining
algorithms will remain the subject for further development as well.
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A Fast Bitwise Addition Algorithm

The main drawback of the textbook addition algorithm is slow propagation of car-
ries. Let u® ... u® and v™ ... v® be the bit representations of k-bit integers and let
c®™ ..., represent the corresponding carry bits. The textbook addition algorithms
computes carries iteratively

¢ @ (1 — @ @) D () 4 )

with the base case ¢® «— 0. However, carries do not always propagate through the ad-
dition. In fact, a pair «” = 0 and v = 0 always kills the propagating carry. Similarly,
the carry bit is propagated further only if one of the digits is 1. Therefore, we can sig-
nificantly speed up the carry computations if we split the number into smaller chunks
and use flags p™™, ..., p® that indicate whether the next carry update can propagate to
the carry ¢.

In a nutshell, the carry look-ahead algorithm computes set and propagate flags by
recursively merging adjacent blocks of bits until we get a single block. Let ¢®, ... ¢®
and ¢~V ... ¢ denote carry bits set so far. Let p*? denote that the carry propa-
gates from the beginning of the block ¢ | ... ¢ to the ith position, i.e., u 4T~ . uP4
plati-b  p@ = 2¢ _ 1 Then we must set

S(i+q) — S(i+q) +p(i+q)8(41*1) and p(i+q) — p(i+q)p(Q*1)

to merge the corresponding blocks. In the base case, blocks are one bit wide and we
must set

5 y® and POy 4y 9250
If the carry bits are known then computing the corresponding bit representation is easy:

w(z‘) — u(z‘) _|_v(z‘) _ 25(1‘) + s(i—l) )



The corresponding share computing algorithm is depicted below.

Algorithm 1: Protocol for the bitwise addition of two vectors

Data: Shared bit vectors [u™="], ..., [u®®] and Ju~], ..., [u®].
Result: Shared bit vector [w™=V], ..., [w™] such that w = u + v.
Round 1

for j — Oton —1do
Compute shares [p@] « [u®] + [v@].
Compute shares [s?] — [u®] - [vP].
Rounds 2...logogn +1
for £ «— 0 tologyn — 1 do
for / — 0 to 2" — 1 do
for m — 0to 5% — 1do
Compute shares
[[5<2k+e+z’“+1m>]] - [[S(z’f+e+2k+1m>]] + [[p(zk+z+2k+1m)]] g@F+2kttm-n]
Compute shares [p>* ++2" 1 m]  [p@trer2tTim] L [pehe2t T imon],
Compute shares [w®] «— [u®] 4+ [v©] — 2 - [s”].
for j — 1ton —1do
Compute shares [w?] — [u?] + [o@] 4 [s¥=V] — 2 - [s“].




B Share multiplication protocol

Algorithm 2: Protocol for multiplying two shared values

Data: Shared values [u] and [v].
Result: Shared value [w] such that w = uw.
Round 1
P1 generates 712,713, S12, S13, t12 < Zo32.
Pa generates a3, 721, S23, S21, tag «— Zos2.
P3 generates 131, 732, S31, S32,t31 < Zos2.
All values *;; are sent from P; to P;.
Round 2 .
P1 computes @12 «— uy + 731, b1z < v1 + S31, d1z — u1 + 721,
b1z« v1 + s01. .
P2 computes ao3 < uz + 712, bag «— v2 + S12, o1 — U2z + 732,
b1 < vg + s30. R
933 computes &31 “— Uz + 123, b31 «— VU3 + S23, &32 “— usz + ri3,
b3a < v3 + 513.
All values *;; are sent from P; to P;.
Round 3
P, computes:
= R R .
Uu1ba1 +u1b31 +v1G21 +v1G31 —G12b21 —bi2G21 +712813 512713 —t12+131,
Wy < €1 + uvy.
P, computes:
C2 — R R .
Ugbza +ugb1o+v2a032 +V2h12 — G23b32 —ba3az2 + 123521 + 823721 —t23+112,
Wy < C2 + uU2v2.
P3 computes:
€3 = R . .
ugb13+uzbaz +v3a13+v3a23 —a31013—b31G13+731532+ 531732 — 31 + 123,
W3 +— €3 + u3vs3.




C Share conversion protocol

Algorithm 3: Protocol for converting shares from Zg to Zgs»

Data: Bit shares [u] of a bit u over Zs.
Result: Shares [w] of u over Zgs:.
Round 1
P1 generates 712,713, S12, S13, t12 < Zo32.
P1 computes sy «— 112713 — S12 — S13-
P, generates o3, 121, S23, S21, tag «— Zos2.
Py computes sg «— 793721 — So3 — So1.
P3 generates 31,732, S31, S32,t31 «— Zos2.
Ps computes S3 «— 131732 — S31 — S32.
All values *;; are sent from P; to P;.
Round 2
:Pl computes i)lg «— r3; +ug, 613 — To1 + Ut.
P, computes 523 — Tr19 + Uo, 321 — 39 + Us.
Ps computes 631 «— 1oz + us, 832 — 113 + us.
Additionally, P53 shares usz: 31, c3o «— Zga2, C33 < Uz — €31 — C32.
All values #;;, ¢ # j are sent from P; to P;.
Round 3
(Pl computes ab1 «— S31 — T311A721, acy < 631613 + S21 — 3317’21, bCl — 81,
C1 < C31.
332 computes CLbQ — 612621 + S32 — 6127“32, acy <— Sog, b02 — S12 — Tlgi)gg,
Co < C39.
iP3 computes ab3 < 83, AC3 <— S93 — T23813, ng — 623632 + S13 — 623’/‘13,
C3 < C33.
Multiply shares of [ab] and [c] to get [abc].
Round 4
Py computes wy «— u; — 2ab; — 2bc; — 2acy + 4abey — tio + t31
P, computes wy «— us — 2abs — 2bcos — 2ace + 4abey — tag + t1o
?3 computes w3 < U3z — 20,1)3 — 2b63 — 2(163 + 4(1[)63 — t31 + t23




D Bit extraction protocol

Algorithm 4: Protocol for extracting bit shares from a shared value

Data: Shared value [u].
Result: Shares [u®V],. .., [u] of all bits of w.

Round 1
P1 generates 71", ..., TP — Zo.
Py generates 7y, . .., 7o)« Zs.
Ps generates Ty, ..., T — Zo.

Convert shares [7"] over Zs to shares [r”] over Zgsz.
Round 2

Compute shares [r] « 231 - [r@D] 4230 . [rCO] 4 ... 420 [r@].

Compute shares [v] < [u] — [r] and broadcast shares v1, va, v3.
Round 3

P1 computes a; < vy + vo + v3 and finds its bits al”, ..., a{’".
Py initialises az « 0 and sets @), ..., a5" « 0.
P3 initialises a3 < 0 and sets ay’, ..., a5" « 0.
Add [a®V],. .., [a] and [r©V],. .., [r‘®] bitwise to compute

[ueo], .. ., [u®].

E Greater-than-or-equal comparison protocol

Algorithm 5: Protocol for evaluating the greater-than predicate.

Data: Shared values [u] and [v].

Result: Shares [w] such that w = GTE(u, v).

All parties P; compute d; «— u; — v;.

All parties extract bits [d], . .., [d®"] of [d].

All parties P; learn the result share Jw] «— 1 — [d®V].




