
New Collision attacks Against Up To 24-step SHA-2

Somitra Kumar Sanadhya⋆ and Palash Sarkar

Applied Statistics Unit,
Indian Statistical Institute,
203, B.T. Road, Kolkata,

India 700108.
somitra r@isical.ac.in, palash@isical.ac.in

Abstract. In this work, we provide new and improved attacks against 22, 23 and 24-step SHA-2 family
using a local collision given by Sanadhya and Sarkar (SS) at ACISP ’08. The success probability of our
22-step attack is 1 for both SHA-256 and SHA-512. The computational efforts for the 23-step and 24-
step SHA-256 attacks are respectively 211.5 and 228.5 calls to the corresponding step reduced SHA-256.
The corresponding values for the 23 and 24-step SHA-512 attack are respectively 216.5 and 232.5 calls.
Using a look-up table having 232 (resp. 264) entries the computational effort for finding 24-step SHA-256
(resp. SHA-512) collisions can be reduced to 215.5 (resp. 222.5) calls. We exhibit colliding message pairs
for 22, 23 and 24-step SHA-256 and SHA-512. This is the first time that a colliding message pair for
24-step SHA-512 is provided. The previous work on 23 and 24-step SHA-2 attacks is due to Indesteege
et al. and utilizes the local collision presented by Nikolić and Biryukov (NB) at FSE ’08. The reported
computational efforts are 218 and 228.5 for 23 and 24-step SHA-256 respectively and 243.9 and 253 for 23
and 24-step SHA-512. The previous 23 and 24-step attacks first constructed a pseudo-collision and later
converted it into a collision for the reduced round SHA-2 family. We show that this two step procedure
is unnecessary. Although these attacks improve upon the existing reduced round SHA-2 attacks, they do
not threaten the security of the full SHA-2 family.

Keywords: Cryptanalysis, SHA-2 hash family, reduced round attacks

1 Introduction

Cryptanalysis of SHA-2 family has recently gained momentum due to the important work of Nikolić
and Biryukov [5]. Prior work on finding collisions for step reduced SHA-256 was done in [3, 4] and
[7]. These earlier works used local collisions valid for the XOR linearized version of SHA-256 from [1]
and [6]. On the other hand, the work [5] used a local collision which is valid for the actual SHA-256.

The authors in [5] developed techniques to handle nonlinear functions and the message expansion
of SHA-2 to obtain collisions for up to 21-step SHA-256. The 21-step attack of [5] succeeded with
probability 2−19. Using similar techniques, but utilizing a different local collision, [9] showed an
attack against 20-step SHA-2 which succeeds with probability one and an attack against 21-step
SHA-256 which succeeds with probability 2−15. Further work [8] developed collision attacks against
21-step SHA-2 family which succeeds with probability one. Very recently, Indesteege et al. [2] have
developed attacks against 23 and 24 step SHA-2 family. They utilize the local collision from [5] in
these attacks.

Our Contributions. Our contributions in terms of the number of steps attacked and the success
probability of these attacks are as follows.

– We describe the first deterministic attack against 22-step SHA-256 and SHA-512.

– We describe new attacks against 23 and 24-step SHA-256 and SHA-512.

• The complexity of the 23-step attack for both SHA-256 and SHA-512 is improved in compar-
ison to the existing 23-step attacks of [2].

⋆ This author is supported by the Ministry of Information Technology, Govt. of India.

• The complexity of 24-step SHA-512 attack is improved in comparison to the existing attack
of [2]. In fact, improving the complexity to 232.5 from the earlier reported 253 allows us to
provide the first message pair which collides for 24-step SHA-512.

• Using a table lookup, the complexity of the 24-step SHA-256 attack is improved in comparison
to the existing 24-step attack of [2]. The table contains 232 entries with each entry of size 8
bytes. Similary, the complexity of the 24-step SHA-512 attack is also improved using a table
lookup. For this case, the table lookup has 264 entries each entry of 16 bytes.

• Examples of Colliding message pairs are provided for 22, 23 and 24-step SHA-256 and SHA-
512.

Our contributions to the methodology of the attacks are as follows.

– We use a different local collision for our 22, 23 and 24-step attacks. The earlier work [2] uses the
local collision from [5] while we use a local collision from [9].

– The work in [2] describes 23 and 24-step collisions as a two-part procedure– first obtain a pseudo-
collision and then convert it into a collision. In contrast, our analysis is direct and shows that
such a two-part description is unnecessary.

– Details of a required “guess-then-determine algorithm” to solve a non-linear equation arising
in the 24-step attack are provided in this work. A suggestion for a similar algorithm is given
in [2] but no details are provided. There are two algorithms– one for SHA-256 and the other for
SHA-512.

A summary of results on collision attacks against reduced SHA-2 family is given in Table 1.

Table 1. Summary of results against reduced SHA-2 family. Effort is expressed as either the probability of success or
as the number of calls to the respective reduced round hash function.

Work Hash Function Steps Effort Local Collision Attack Type Example
Prob. Calls utilized provided

[3, 4] SHA-256 18 ∗ GH [1] Linear yes

[7] SHA-256 18 ∗∗ SS5 [6] ” yes

[5] SHA-256 20 1

3
NB [5] Non-linear yes

21 2−19 ” ” yes

[9] SHA-256/SHA-512 18,20 1 1 SS [9] ” yes
SHA-256 21 2−15 ” ” yes

[8] SHA-256/SHA-512 21 1 1 ” ” yes

[2] SHA-256 23 218 NB [5] ” yes
24 228.5 ” ” yes

SHA-512 23 243.9 ” ” yes
24 253 ” ” no

This work SHA-256/SHA-512 22 1 1 SS [9] ” yes
SHA-256 23 211.5 ” ” yes

24 228.5 ” ” yes

24 215.5 † ” ” no
SHA-512 23 216.5 ” ” yes

24 232.5 ” ” yes

24 222.5 ‡ ” ” no
∗ It is mentioned in [3, 4] that the effort is 20 but no details are provided.

∗∗ Effort is given as running a C-program for about 30–40 minutes on a standard PC.
† A table containing 232 entries, each entry of size 8 bytes, is required.
‡ A table containing 264 entries, each entry of size 16 bytes, is required.

2 Preliminaries

In this paper we use the following notation:
• Message words: Wi ∈ {0, 1}n, W ′

i ∈ {0, 1}n; n is 32 for SHA-256 and 64 for SHA-512.
• Colliding message pair: {W0, W1, W2, . . .W15} and {W ′

0, W ′

1, W ′

2, . . . W ′

15}.
• Expanded message pair: {W0, W1, W2, . . .Wr−1} and {W ′

0, W ′

1, W ′

2, . . .W ′

r−1}.
The number of steps r is 64 for SHA-256 and 80 for SHA-512.

• The internal registers for the two messages at step i: REGi = {ai, . . . , hi} and
REG′

i = {a′i, . . . , h
′

i}.
• ROTRk(x): Right rotation of an n-bit string x by k bits.
• SHRk(x): Right shift of an n-bit string x by k bits.
• ⊕: bitwise XOR; +,−: addition and subtraction modulo 2n.
• δX = X ′ − X where X is an n-bit quantity.
• δΣ1(x) = Σ1(e

′

i) − Σ1(ei) = Σ1(ei + x) − Σ1(ei).
• δΣ0(x) = Σ0(a

′

i) − Σ0(ai) = Σ0(ai + x) − Σ0(ai).
• δf i

MAJ(x, y, z) = fMAJ(ai + x, bi + y, ci + z) − fMAJ(ai, bi, ci).
• δf i

IF (x, y, z) = fIF (ei + x, fi + y, gi + z) − fIF (ei, fi, gi).

2.1 SHA-2 Hash Family

Eight registers are used in the evaluation of SHA-2. In Step i, the 8 registers are updated from (ai−1,
bi−1, ci−1, di−1, ei−1, fi−1, gi−1, hi−1) to (ai, bi, ci, di, ei, fi, gi, hi). For more details, see § A.

By the form of the step update function, we have the following relation.

Cross Dependence Equation (CDE).

ei = ai + ai−4 − Σ0(ai−1) − fMAJ(ai−1, ai−2, ai−3). (1)

Later, we make extensive use of this relation. Note that a special case of this equation was first
utilized in §6.1 of [9]. The equation in the form above was used in [8]. This equation can be used
to show that the SHA-2 state update can be rewritten in terms of only one state variable. This fact
was later observed in [2] independently.

3 Nonlinear Local Collision for SHA-2

We use two variations of a 9-step non-linear local collision for our attacks. This local collision was
given recently by Sanadhya and Sarkar [9]. This local collision starts by introducing a perturbation
message difference of 1 in the first message word. Next eight message words are chosen suitably
to obtain the desired differential path. Table 2 shows the local collision used. The message word
differences are different for the two variations of the local collision. Columns headed I and II under
δWi in Table 2 show the message word differences for the first and the second variations of the local
collision respectively.

In the local collision, the registers (ai−1, . . . , hi−1) and Wi are inputs to Step i of the hash
evaluation and this step outputs the registers (ai, . . . , hi).

3.1 Conditions on the Differential Path of Column I of Table 2

The message word differences are computed from the following equations:

δWi+1 = −1 − δf i
IF (1, 0, 0) − δΣ1(1), (2)

δWi+2 = −1 − δf i+1

IF (−1, 1, 0) − δΣ1(−1), (3)

Table 2. The 9-step Sanadhya-Sarkar local collision [9] used in the present work. Our deterministic 22-step attack and
the probabilistic 23 and 24-step attacks use unequal message word differences to achieve the same differential path.

Step δWi Register differences
I II δai δbi δci δdi δei δfi δgi δhi

i − 1 0 0 0 0 0 0 0 0 0 0

i 1 1 1 0 0 0 1 0 0 0

i + 1 −1 δWi+1 0 1 0 0 −1 1 0 0

i + 2 δWi+2 0 0 0 1 0 −1 −1 1 0

i + 3 δWi+3 δWi+3 0 0 0 1 0 −1 −1 1

i + 4 0 0 0 0 0 0 1 0 −1 −1

i + 5 0 0 0 0 0 0 0 1 0 −1

i + 6 0 0 0 0 0 0 0 0 1 0

i + 7 δWi+7 0 0 0 0 0 0 0 0 1

i + 8 −1 −1 0 0 0 0 0 0 0 0

δWi+3 = −δf i+2

IF (−1,−1, 1) − δΣ1(−1), (4)

δWi+7 = −δf i+6

IF (0, 0, 1), (5)

δWi+4 = δWi+5 = δWi+6 = 0. (6)

Further, we will require that the value of δWi+1 is −1 and the value of δWi+7 is either 0 or 1.
Intermediate registers need to satisfy conditions given in Table 3. These conditions can be derived

in the same way as in [5]. The same differential path has also been used by Sanadhya and Sarkar
recently to attack 20-step SHA-256/512 in [9] and 21-step SHA-256/512 in [8], both the attacks
holding with probability one.

Table 3. Values of a and e register for the δW s given by Column (I) of Table 2 to hold. We have β = α and using
CDE, λ = β +α−Σ0(β)− fMAJ (β,−1, α) = −Σ0(α). The value of u is either 0 or 1. Thus, the independent quantities
are α, γ and µ.

index i − 2 i − 1 i i + 1 i + 2 i + 3 i + 4 i + 5 i + 6

a α α −1 β β

e γ γ + 1 −1 µ λ λ − 1 −1 −1 −1 − u

The values shown in Table 3 have been chosen so that the conditions on δWi+1 and δWi+5 to
δWi+7 hold with probability one. Consider, for example, δWi+1. From (2), we have

δWi+1 = −1 − δΣi
1(1) − δf i

IF (1, 0, 0)

= x − (Σ1(ei + 1) − Σ1(ei)) − (fIF (ei + 1, ei−1, ei−2) − fIF (ei, ei−1, ei−2))

= −1 − (0 − (−1)) − (ei−2 − ei−1)

= −2 − γ + γ + 1

= −1.

Similarly, conditions on δWi+5, δWi+6 and δWi+7 can be verified. Conditions on δWi+2, δWi+4 and
δWi+5 cannot be satisfied in the manner described above. A special method to satisfy these conditions
is described in § 5.1 later.

3.2 Conditions on the Differential Path of Column II of Table 2

The message word differences, δWi+1 and δWi+3 are computed from the following equations:

δWi+1 = −1 − δf i
IF (1, 0, 0) − δΣ1(1), (7)

δWi+3 = −δf i+2

IF (−1,−1, 1) − δΣ1(−1). (8)

Intermediate registers need to satisfy the following conditions:

ai−3 = −2, ai−2 = ai−1 = ai = −1, ai+1 = ai+2 = 0,

ei+1 = 0, ei+2 = 0, ei+3 = ei+4 = ei+5 = ei+6 = −1,

ei − ei−1 + 1 = 0. (9)

All the conditions in (9) can be deterministically satisfied by choosing message words carefully. This
ensures the success probability of 1 for this local collision. These conditions can be derived in the
same way as in [5].

Satisfying the Conditions. Note that, using (22) in § A, the message word Wk can be chosen to
set either ak or ek to a desired value. Therefore the conditions on ai−3, ai−2, ai−1, ai, ai+2, ei+3, ei+4,
ei+5 and ei+6 can be satisfied deterministically. After this, we are left with conditions on ei+1, ei+2

and ei only. Two out of these three conditions are satisfied automatically as shown next.

From (1), we get:

ei+1 = ai−3 + ai+1 − Σ0(ai) − fMAJ(ai, ai−1, ai−2)

= −2 + 0 − Σ0(−1) − fMAJ(−1,−1,−1)

= 0.

Similarly, we get ei+2 = 0. Now we consider the last remaining condition ei − ei−1 +1 = 0. Using (1),
we get:

0 = 1 + ei − ei−1

= 1 + (ai−4 + ai − Σ0(ai−1) − fMAJ(ai−1, ai−2, ai−3))

−(ai−5 + ai−1 − Σ0(ai−2) − fMAJ(ai−2, ai−3, ai−4))

= ai−4 − ai−5 + 2 + fMAJ(−1,−2, ai−4).

This implies,

ai−5 = ai−4 + 2 + fMAJ(−1,−2, ai−4). (10)

Equation (10) defines the register value ai−5 in terms of the register value ai−4. But ai−4 will be
computed only after ai−5 is available. To resolve this, we first choose any arbitrary value for ai−4

and then compute the required value of ai−5. From (22), we can ensure the deterministic success of
the required condition using the free words Wi−5 and Wi−4.

4 The Deterministic 22-step SHA-2 Attack

In [5], a single local collision spanning from Step 6 to Step 14 is used and a 21-step collision for SHA-
256 is obtained probabilistically. We use a similar method for our attack but this time we use the
local collision of Table 2 spanning from Step 7 to Step 15. Message words are given by Column (II).
The SHA-2 design has freedom of message words W0 to W15. Since the local collision spans this
range only, we can deterministically satisfy all the conditions from (9). The message words after
Step 16 are generated by message expansion. The local collision is chosen in such a way that the
message expansion produces no difference in words Wi and W ′

i for i ∈ {16, 17, . . . 21}. This results
in a deterministic 22-step attack. We explain this fact below.

First of all, note that the local collision starts from Step 7. It can be seen from the structure of
the local collision that δW7 = 1 and δW9 = δW11 = δW12 = δW13 = δW14 = 0. In addition, δW15

is −1. Messages outside the span of the local collision are taken to have zero differentials. Therefore
δWi = 0 for i ∈ {0, 1, 2, 3, 4, 5, 6}. Consider the first 6 steps of message expansion for SHA-2 next.

W16 = σ1(W14) + W9 + σ0(W1) + W0,
W17 = σ1(W15) + W10 + σ0(W2) + W1,

W18 = σ1(W16) + W11 + σ0(W3) + W2,
W19 = σ1(W17) + W12 + σ0(W4) + W3,

W20 = σ1(W18) + W13 + σ0(W5) + W4,
W21 = σ1(W19) + W14 + σ0(W6) + W5.



































(11)

Terms which may have non-zero differentials in the above equations are underlined. To obtain
22-step collisions in SHA-2, it is sufficient to ensure that δ{σ1(W15) + W10} = 0 so that δW17 = 0.
This also ensures that next 4 steps of the message expansion do not produce any difference, and we
have a 22-step collision.

4.1 Ensuring δ{σ1(W15) + W10} = 0

Since δW15 = −1, we need the following condition to be satisfied:

σ1(W15) − σ1(W15 − 1) = δW10. (12)

The local collision defines the register values as per (9). The message word difference δW10 is defined
by (8). Simplifying this expression (where the starting step i = 7), we get:

δW10 = −δf9
IF (−1,−1, 1) − δΣ1(−1)

= −fIF (e9 − 1, f9 − 1, g9 + 1) + fIF (e9, f9, g9) − Σ1(e9 − 1) + Σ1(e9)

= −fIF (e9 − 1, e8 − 1, e7 + 1) + fIF (e9, e8, e7) − Σ1(e9 − 1) + Σ1(e9)

= −fIF (−1,−1, e7 + 1) + fIF (0, 0, e7) − Σ1(−1) + Σ1(0)

= −(−1) + e7 − (−1) + 0

= e7 + 2.

Using the CDE, we can express the right hand side of the above expression as:

e7 + 2 = a3 + a7 − Σ0(a6) − fMAJ(a6, a5, a4) + 2

= a3 + (−1) − Σ0(−1) − fMAJ(−1,−1,−2) + 2

= a3 − 1 − (−1) − (−1) + 2

= a3 + 3.

In satisfying (10), we needed to choose any arbitrary value of ai−4 = a3 first. The above analysis
implies that we can deterministically satisfy δ(σ1(W15) + W10) as follows:

1. Choose any arbitrary value for W15. This defines the difference σ1(W15)− σ1(W15 − 1). Let it be
called “DELTA”.

2. From (12), δW10 must take the value DELTA. This can be obtained by setting a3 = DELTA− 3.

4.2 Algorithm to Obtain 22-step Collisions

Note that (22) in § A is used at Step i of the hash evaluation. Registers (ai−1, bi−1, . . . hi−1) are
available at this step and the output register ai or ei can be controlled by selecting Wi suitably. For
instance, if we wish to make ai to be zero, then we can calculate the suitable value of Wi from (22)
which will make this happen. We define two functions which return the required message word Wi to
set the register value ai or ei to desired values, say desired a and desired e, at Step i. Equation 22
provides the definitions of these two functions.

1. W to set register A(Step i, desired a, Current State {ai−1, bi−1, . . . hi−1}) :
= (desired a −Σ0(ai−1)− fMAJ(ai−1, bi−1, ci−1)−Σ1(ei−1)− fIF (ei−1, fi−1, gi−1)−hi−1 −Ki)

2. W to set register E(Step i, desired e, Current State {ai−1, bi−1, . . . hi−1}) :
= (desired e −di−1 − Σ1(ei−1) −fIF (ei−1, fi−1, gi−1) − hi−1 − Ki)

The algorithm to obtain message pairs leading to deterministic 22-step collisions for SHA-2 family
in described in Table 15.

5 A General Idea for Obtaining 23 and 24-Step SHA-2 Collisions

Obtaining deterministic collisions up to 22 steps did not require the (single) local collision to extend
beyond step 15. For obtaining collisions for more number of steps, we will need to start the local
collision at Step 8 (or farther) and hence the local collision will end at Step 16 (or farther). This will
require us to analyze the message expansion more carefully.

For obtaining collisions up to 22 steps, we also needed to consider message expansion. But,
following Nikolić and Biryukov, we ensured that there were no differences in message words from
Step 16 onwards. However, now that we consider the local collision to end at Step 16 (or farther),
this will necessarily mean that one or more δWi (for i ≥ 16) will be non-zero. This will require
a modification of the Nikolić-Biryukov strategy. Instead of requiring δWi = 0 for i ≥ 16, we will
require δWi = 0 for a few i’s after the local collision ends. So, supposing that the local collision
ends at Step 16 and we want a 23-step collision, then δW16 is necessarily −1 and we will require
δW17 = · · · = δW22 = 0.

5.1 Satisfying Conditions on the Differential Path

In § 3.1, we saw that some of the conditions on δW ’s of Column (I) of Table 2 can be satisfied easily.
However, conditions on δWi+2, δWi+3 and δWi+4 give rise to the following conditions on the values
of λ, γ and µ.

δWi+2 = δ1 = −1 − Σ1(µ − 1) + Σ1(µ) − fIF (µ − 1, 0, γ + 1) + fIF (µ,−1, γ + 1)
δWi+3 = δ2 = −Σ1(λ − 1) + Σ1(λ) − fIF (λ − 1, µ − 1, 0) + fIF (λ, µ,−1)

1 = −fIF (λ − 1, λ − 1, µ − 1) + fIF (λ − 1, λ, µ).







(13)

Similar equations for the Nikolić-Biryukov differential path have been reported in [2] and a method
for solving them has been discussed. The method to solve these equation is different for SHA-256
and for SHA-512. We discuss the exact details about solving them later. In describing our attacks
on the SHA-2 family, we assume that some solutions to these equations have been obtained. These
solutions are required to obtain colliding message pairs for the hash functions.

6 23-Step SHA-2 Collisions

We show that by suitably placing a local collision of the type described in Column (I) of Table 2 and
using proper values for α, γ and µ, it is possible to obtain 23-step collisions for SHA-2.

6.1 Case i = 8

The local collision is started at i = 8 and ends at i = 16. Setting β = α, u = 0 and δ1 = 0, we need
to choose a suitable value for δ2 which is the value of δWi+3 = δW11. For this case, we let δ = δ2.

Since the local collision ends at Step 16, it necessarily follows that δW16 = −1. Consequently,
we need to consider δW18 to ensure that it is zero. Since the collision starts at i = 8, all δWj

for 0 ≤ j ≤ 7 are zero. Consequently, we can write δW18 = δσ1(W16) + δW11, where δσ1(W16) =

σ1(W16 − 1) − σ1(W16). So, for δW18 to be zero, we need δW11 = −δσ1(W16), so that δW11 should
be one of the values which occur in the distribution of σ1(W) − σ1(W − 1) for some W .

Obtaining proper values for the constants only ensures that the local collision holds from Steps
i to i + 8 as expected. It does not, however, guarantee that the reduced round collision holds. In
the present case, we need to have δW18 to be zero. This will happen only if W16 takes a value such
that σ1(W16 − 1) − σ1(W16) is equal to −δ. This can be ensured probabilistically in the following
manner. Let the frequency of δ used in the attack be freqδ. This means that trying approximately
freqδ possible random choices of W0 and W1, we expect a proper value of W16 and hence, a 23-step
collision for SHA-2. We discuss the cases of SHA-256 and SHA-512 separately later.

Since i = 8, from Table 3, we see that a6 to a10 get defined and e6 to e14 get defined. Using CDE,
the values of e9 down to e6 is set by fixing values of a5 down to a2. In other words, the values of a2

to a10 are fixed. Now, consider

e14 = Σ1(e13) + fIF (e13, e12, e11) + a10 + e10 + K14 + W14.

Note that in this equation all values other than W14 have already been fixed. So, W14 and hence
σ1(W14) is also fixed. Now, from the update function of the a register, we can write

W9 = a9 − Σ0(a8) − fMAJ(a8, a7, a6) − Σ1(e8) − fIF (e8, e7, e6) − e5 − K9.

On the right hand side, all quantities other than e5 have fixed values. Using CDE,

e5 = a5 + a1 − Σ0(a4) − fMAJ(a4, a3, a2).

Again in the right hand side, all quantities other than a1 have fixed values. So, we can write W9 =
C − a1, where C is a fixed value. (This relation has already been observed in [2].)

Now,

a1 = Σ0(a0) + fMAJ(a0, b0, c0) + Σ1(e0) + fIF (e0, f0, g0) + h0 + K1 + W1

where a0 and e0 depend on W0 whereas b0, c0, f0, g0 and h0 depend only on IV and hence are constants.
Thus, we can write a1 = Φ(W0) + W1, where

Φ(W0) = Σ0(a0) + fMAJ(a0, b0, c0) + Σ1(e0) + fIF (e0, f0, g0) + h0 + K1.

We write Φ(W0) to emphasize that this depends only on W0. At this point, we can write

W16 = σ1(W14) + W9 + σ0(W1) + W0

= σ1(W14) + C − Φ(W0) − W1 + σ0(W1) + W0

= D − Φ(W0) − W1 + σ0(W1) + W0.

Estimate of Computation Effort. Let there be freqδ values of W16 for which σ(W16−1)−σ(W16)
equals δ. So, we have to solve this equation for W0 and W1 such that W16 is one of these freqδ possible
values. The simplest way to do this is to try out random choices of W0 and W1 until W16 takes one
of the desired values. On an average, success is obtained after freqδ trials. Each trial corresponds to
about a single step of SHA-2 computation. So, the total cost of finding suitable W0 and W1 is about
freqδ

24.5 tries of 23-step SHA-2 computations.

For each such solution (W0,W1) and an arbitrary choice of W15 we obtain a 23-step collision for
SHA-2. Note that after W0 and W1 has been obtained everything else is deterministic, i.e., no random
tries are required. The task of obtaining a suitable W0 and W1 can be viewed as a pre-computation of
the type required to find the values of α, γ and µ. Then, the actual task of finding collisions becomes
deterministic.

6.2 Case i = 9

It is possible to place the local collision from Step 9 to Step 17 and then perform an analysis to show
that it is possible to obtain 23-step collisions for the Sanadhya-Sarkar differential path. We do not
provide these details, since essentially the same technique with an additional constraint is required
for 24-step collision for which we provide complete details.

6.3 Relation to the 23-Step Collision from [2]

The NB local collision has been used in [2]. The local collision was placed from Step 9 to Step 17. In
comparison, we have shown that the SS local collision gives rise to two kinds of 23-step collision. The
first one is obtained by placing the local collision from Steps 8 to 16, and the second one is obtained
by placing the local collision from Steps 9 to 17.

The description of the attack in [2] is quite complicated. First they consider a 23-step pseudo-
collision which is next converted into 23-step collision. This two-step procedure is unnecessary. Our
analysis allows us to directly describe the attacks.

7 24-Step Collisions

The local collision described in Column (I) of Table 2 is placed from Step i = 10 to Step i + 8 = 18
with u = 1. The values of δ1, δ2 as well as suitable values of α, γ and µ need to be chosen.

Since, the collision ends at Step 18 and u = 1, we will have δW17 = 1 and δW18 = −1. As a
result, to ensure δW19 = δW20 = 0, we need to have δ1 = δW12 = −(σ1(W17 + 1) − σ1(W17)) and
δ2 = δW13 = −(σ1(W18 −1)−σ1(W18)). Based on the differential behaviour of σ1 described in § A.1,
we should try to choose δ1 and δ2 such that freq

−δ1
and freqδ2

are as high as possible. (Here −δ1

denotes −δ1 mod 2n, where n is the word size 32 or 64.) But, at the same time, the chosen δ1 and δ2

must be such that (13) are satisfied.
Now we consider Table 3. This table tells us what the values of the different a and e-registers

need to be. Since messages up to W15 are free, we can set values for a and e registers up to Step 15.
But, we see that e16 = −1 − u = −2. This can be achieved by setting W16 to

W16 = e16 − Σ1(e15) − fIF (e15, e14, e13) − a12 − e12 − K16. (14)

Since we want e16 = −2 and all other values on the right hand side are constants, we have that W16

is a constant value. On the other hand, W16 is defined by message recursion. So, we have to ensure
that W16 takes the correct value. In addition, we need to ensure that W17 and W18 take values such
that σ1(W17 + 1) − σ1(W17) = −δ1 and σ1(W18 − 1) − σ1(W18) = −δ2.

Since i = 10, from Table 3, we see that a8 to a12 have to be set to fixed values and e8 to e16 have
to be set to fixed values. Using CDE, the values of e11 down to e8 are determined by a7 to a4. So,
the values of a0 to a3 are free and correspondingly the choices of words W0 to W3 are free.

We have already seen that W16 is a fixed value. Note that

W14 = e14 − Σ1(e13) − fIF (e13, e12, e11) − a10 − e10 − K14

W15 = e15 − Σ1(e14) − fIF (e14, e13, e12) − a11 − e11 − K15.

}

(15)

Since for both equations, all the quantities on the right hand side are fixed values, so are W14 and
W15.

Using CDE twice, we can write

W9 = −W1 + C4 + fMAJ(a4, a3, a2) − Φ0

W10 = −W2 + C5 + fMAJ(a5, a4, a3) − Φ1

W11 = −W3 + C6 + fMAJ(a6, a5, a4) − Φ2







(16)

where

Ci = ei+5 − Σ1(ei+4) − fIF (ei+4, ei+3, ei+2) − 2ai+1 − Ki+5 + Σ0(ai)
Φi = Σ0(ai) + fMAJ(ai, bi, ci) + Σ1(ei) + fIF (ei, fi, gi) + hi + Ki+1.

}

(17)

Using the expressions for W9,W10 and W11 we obtain the following expressions for W16,W17 and
W18.

W16 = σ1(W14) + C4 − W1 + fMAJ(a4, a3, a2) − Φ0 + σ0(W1) + W0

W17 = σ1(W15) + C5 − W2 + fMAJ(a5, a4, a3) − Φ1 + σ0(W2) + W1

W18 = σ1(W16) + C6 − W3 + fMAJ(a6, a5, a4) − Φ2 + σ0(W3) + W2.







(18)

We need to ensure that W16 has the desired value given by (14) and that W17 and W18 take values
which lead to desired values for δσ1(W17) and δσ1(W18) as explained above.

The only free quantities are W0 to W3 which determine a0 to a3. The value of C4 depends on e8,
e7 and e6, where e8 has a fixed value and e7 and e6 are in turn determined using CDE by a3 and
a2. Similarly, C5 is determined by e9, e8 and e7; where e9, e8 have fixed values and e7 is determined
using a3. The value of C6 on the other hand is fixed. Coming to the Φ values, Φ0 is determined only
by W0; Φ1 determined by W0 and W1; and Φ2 determined by W0,W1 and W2. Let

D = W16 − (σ1(W14) + C4 + fMAJ(a4, a3, a2) − Φ0 + W0). (19)

If we fix W0 and a3, a2, then the value of D gets fixed and we need to find W1 such that the following
equation holds.

D = −W1 + σ0(W1). (20)

A guess-then-determine algorithm can be used to solve this equation. This algorithm will be different
for SHA-256 and for SHA-512 since the σ0 function is different for the two. The guess-then-determine
algorithms for both SHA-256 and SHA-512 are described in § B.

Solving (20) Using Table Look-Up. An alternative approach would be to use a pre-computed
table. For each of the 2n possible W1s (n is the word size 32 or 64), prepare a table of entries
(W1,−W1 + σ0(W1)) sorted on the second column. Then all solutions (if there are any) for (20)
can be found by a simple look-up into the table using D. The table would have 2n entries and if a
proper index structure is used, then the look-up can be done very fast. We have not implemented
this method.

Given a1, b1, . . . , h1 and a2 the value of W2 gets uniquely defined; similarly, given a2, b2, . . . , h2

and a3, the value of W3 gets uniquely defined. The equations are the following.

W2 = a2 − (Σ0(a1) + fMAJ(a1, b1, c1) + h1 + Σ1(e1) + fIF (e1, f1, g1) + K2)
W3 = a3 − (Σ0(a2) + fMAJ(a2, b2, c2) + h2 + Σ1(e2) + fIF (e2, f2, g2) + K3)

}

(21)

The strategy for determining suitable W0, . . . ,W3 is the following.

1. Make random choices for W0 and a2, a3.
2. Run SHA-2 with W0 and determine Φ0.
3. From a3 and a2 determine e7 and e6 using CDE.
4. Determine C4 using (17) and then D using (19).
5. Solve (20) for W1 using the guess-then-determine algorithm.
6. Run SHA-2 with W1 to define a1, . . . , h1.
7. Determine Φ1 using (17) and then W2 using (21).
8. Run SHA-2 with W2 to define a2, . . . , h2.
9. Determine Φ2 using (17) and then W3 using (21).
10. Compute W17 and W18 using (18).
11. If σ1(W17 + 1) − σ1(W17) = −δ1 and σ1(W18 − 1) − σ1(W18) = δ2, then return W0,W1,W2 and W3.

The values of W0,W1,W2 and W3 returned by this procedure ensure that the local collision ends
properly at Step 18 and that δWj = 0 for j = 19, . . . , 23. This provides a 24-step collision.

Estimate of Computation Effort. Let Step 5 involve a computation of g operations, where each
operation is much faster than a single step of SHA-2; by our assessment the time for each operation
is around 2−4 times the cost of a single step of SHA-2. Thus, the time for Step 5 is about g

24 single
SHA-2 steps. Further, let the success probability of the guess-then-determine attack be p. Then
Step 5 needs to be repeated roughly 1

p
times to obtain a solution.

By the choice of δ1, the equality σ1(W17 + 1) − σ1(W17) = −δ1 holds roughly with probability
freqδ1

2n while by the choice of δ2 the equality σ1(W18−1)−σ1(W18) = δ2 holds roughly with probability
freqδ2

2n and we obtain success in Step 11 with roughly
freqδ1

×freqδ2

22n probability. So, the entire procedure

needs to be carried out around 22n

freqδ1
×freqδ2

times to obtain a collision.

The guess-then-determine step takes about g/24 single SHA-2 steps. The time for executing the
entire procedure once is about (g

24 + 3) single SHA-2 steps which is about 2−4.5 × (g
24 + 3) 24-step

SHA-2 computations. Since the entire process needs to be repeated many times for obtaining success,
the number of 24-step SHA-2 computations till success is obtained is about (22n

freqδ1
×freqδ2

)× (2−4.5 ×

(g
24 + 3) × 1

p
).

If (20) is solved using a table look-up, then the cost estimate changes quite a lot. The cost of

Step 5 reduces to about a single SHA-2 step so that the overall cost reduces to about (22n

freqδ1
×freqδ2

)×

(2−4.5 × 3 × 1

p
) 24-step SHA-2 computations. The trade-off is that we need to use a look-up table

having 2n entries.

8 Exhibiting Colliding Message Pairs

The first step in producing colliding pair of messages for different number of rounds is to solve
equations (13). For the case of the Sanadhya-Sarkar differential path, the following strategy (which
is somewhat similar to the case given in [2]) can be used to solve equations (13).

– The third equation holds with probability 1 if both λ and µ are odd.
– Given that λ and µ are odd, the second equation simplifies to δ2 = −Σ1(λ−1)+Σ1(λ)+(λ − 1).

For a given odd value of δ occurring in the distribution of σ1(W) − σ1(W − 1), it is possible to
solve this equation for odd λ.

– Given such a λ, it is easy to solve the equation λ = −Σ0(α) to obtain a suitable value of α, since
Σ0 is an invertible mapping for both SHA-256 and SHA-512.

– For the first equation, the term −fIF (µ− 1, 0, γ + 1)+ fIF (µ,−1, γ + 1) is equal to µ, if γ is odd.
This term is equal to µ− 1 if γ is even. Further, we note that −Σ1(µ− 1) + Σ1(µ) is always even
for both SHA-256 and SHA-512. Thus taking an arbitrary odd value of γ, the first equation is in
the single variable µ and can be solved easily for a given δ1.

Now we provide proofs of the observations above.

Lemma 1 The third equation is satisfied for any odd λ and odd µ.

Proof. We have to show that

1 = −fIF (λ − 1, λ − 1, µ − 1) + fIF (λ − 1, λ, µ).

The quantities λ and λ − 1 differ only in their least significant bit since λ is odd. Similarly, µ
and µ − 1 differ only in their least significant bit since µ is odd. Let xi denote the ith bit of x, then
λ0=1, (λ − 1)0 = 0, µ0 = 1 and (µ − 1)0 = 0. Let (λ − 1)i = λi = 1 and (λ − 1)j = λj = 0 for some
non-zero indices i and j. Also, let µi = b1 and µj = b2 for these bit positions i and j. Now we are
ready to write the bit patterns of the quantities occuring in the third equation.

bit 63 . . . i . . . j . . . 0

λ − 1 1 . . . 0 . . . 0
λ 1 . . . 0 . . . 1
µ b1 . . . b2 . . . 1

fIF (λ − 1, λ, µ) 1 . . . b2 . . . 1

Similarly,

bit 63 . . . i . . . j . . . 0

λ − 1 1 . . . 0 . . . 0
λ − 1 1 . . . 0 . . . 0
µ − 1 b1 . . . b2 . . . 0

fIF (λ − 1, λ − 1, µ − 1) 1 . . . b2 . . . 0

From the two bit patterns above, we get that

fIF (λ − 1, λ, µ) − fIF (λ − 1, λ − 1, µ − 1) = 1.

⊓⊔

Lemma 2 For odd λ and odd µ, the second equation simplifies to δ2 = −Σ1(λ−1)+Σ1(λ)+(λ − 1).

Proof. Consider the following expression

−fIF (λ − 1, µ − 1, 0) + fIF (λ, µ,−1).

Similar to the proof of the previous lemma, we consider the bit patterns of the quantities occuring
in the above equation. Let λi = 1 and λj = 0 for some non-zero i, j. Also, let µi = b1 and µj = b2.
Then the following bit patterns can be seen for the various quantities.

bit 63 . . . i . . . j . . . 0

λ 1 . . . 0 . . . 1
µ b1 . . . b2 . . . 1
−1 1 . . . 1 . . . 1 . . . 1

fIF (λ, µ,−1) b1 . . . 1 . . . 1

Similarly,

bit 63 . . . i . . . j . . . 0

λ − 1 1 . . . 0 . . . 0
µ − 1 b1 . . . b2 . . . 0
0 0 . . . 0 . . . 0 . . . 0

fIF (λ − 1, µ − 1, 0) b1 . . . 0 . . . 0

From the two bit patterns above, we get that fIF (λ, µ,−1) and fIF (λ−1, µ−1, 0) will have the same
bit value whenever the corresponding bit of λ is 1 and different bit value whenever the corresponding
bit of λ is 0, except the least significant bit which will always be different. Comparing this difference
with the bit pattern λ − 1, we obtain

fIF (λ, µ,−1) − fIF (λ − 1, µ − 1, 0) = λ − 1.

This completes the proof.

⊓⊔

Lemma 3 For odd µ and odd γ, the first equation simplifies to δ1 = −1 − Σ1(µ − 1) + Σ1(µ) + µ.

Proof. By considering the bit patters of µ, µ− 1 and γ + 1 the following can be proved in a manner
similar to the previous two lemmas.

fIF (µ,−1, γ + 1) − fIF (µ − 1, 0, γ + 1) =

{

µ if γ is odd.
µ − 1 if γ is even.

Substituting the above value in the equation for δ1 gives the required proof.
⊓⊔

8.1 SHA-256

– For SHA-256 we did not solve the second equation explicitly since random search is itself good
enough, producing a solution in few seconds. The maximum value of freqδ for odd δ is 216. One
example is δ = ff006001 as shown in Table 6.

– Given such a λ, we obtain α = Σ−1
0

(−λ).
– Now, we choose any arbitrary odd γ and solve for an odd µ such that the first equation holds.

Solving all the three equations for α, γ and µ can be done in a few seconds on a current PC for step
reduced SHA-256. Examples are provided in Table 4.

Table 4. Values leading to collisions for different number of steps of SHA-256. The value of i denotes the start point
of the local collision, i.e., the local collision is placed from Step i to i + 8.

(# rnds, i) δ1 δ2 u α λ γ µ

(23, 8) 0 ff006001 0 32b308b2 051f9f7f 684e62b7 041fff81

(23, 9)
(24, 10)

00006000 ff006001 1 32b308b2 051f9f7f 98e3923b fbe05f81

23-step Collision. The δ = δ2 that we have used (shown in Table 4) is such that freqδ = 216 and
so by trying approximately 216 possible random choices of W0 and W1 we expect a proper value for
W16 and hence, a 23-step collision. Following the analysis of computation effort in § 6.1, the effort
required is about freqδ

24.5 = 216

24.5 = 211.5 trials of 23-step SHA-256. In [2], the corresponding probability
is 2−19 and the computaional effort is 214.5 trials. So, our technique is an improvement. A message
pair colliding for 23-step SHA-256 is given in § C.

24-step Collision. As mentioned in § A.1, if we choose δ2 such that freqδ2
> 216, then it is not

possible to solve (13). So we choose δ2 = ff006001 with freqδ2
= 216. Also, we choose δ1 = 00006000

so that −δ1 = ffffa000 and freq
−δ1

= 229 + 226. For these values of δ1 and δ2, it is possible to
solve (13) to obtain suitable α, γ and µ, which in turn determine β = α and λ. An example of these
values is shown in Table 4. The same values also hold for obtaining 23-step collision by placing a
local collision from Step 9 to 17. Message pair colliding for 24-step SHA-256 is given in § C.

Guess-Then-Determine Algorithm. In § 7, it was mentioned that a guess-then-determine algo-
rithm is used to solve (20). We discuss this algorithm for SHA-256. By guessing a total of 18 bits
(15 least significant bits of W1 and three other possible carry bits), it is possible to reconstruct the
entire W1 and then determine whether the reconstructed value is correct. Thus, by trying a total of
218 combinations, it is possible to determine whether (20) has a solution and if so to find all possible
solutions. The algorithm is given in § B. (We note that in [2], it has been remarked that “by guessing

the least 15 bits of W1 the entire W1 can be reconstructed and with probability 2−14 it is going to be

correct”. No details are provided. In particular, the guess-then-determine algorithm that we provide
in § B is not present in [2].)

In our experiments with SHA-256, we found that for almost every other value of D, (20) has
solutions, the number of solutions being one or two. So, for a random choice of D, we consider (20)
to hold with probability p ≈ 1.

Complexities of The Attacks. As already mentioned, our 23-step SHA-256 attack succeeds with
probability 2−16, i.e., about 216 random trials are required to obtain colliding message pairs. This
corresponds to roughly 211.5 23-step SHA-256 computations.

For the 24-step attack, the values of g, freqδ1
and freqδ2

are 218, 229 and 216 respectively. From
the cost analysis done in § 7, we obtain success in about 228.5 24-step SHA-256 computations. In our
experiments, we found that the computation effort required to find W0, . . . ,W3 actually turns out to
be less than the estimated effort of 228.5 24-step SHA-256 computations. The value of 228.5 matches
the figure given in [2], but [2] does not provide the detailed analysis of their cost.

As already explained in § 7, if (20) is solved using a table look-up, then the cost reduces to about
215.5 24-step SHA-256 computations. This constitutes an improved attack on 24-step SHA-256.

8.2 SHA-512

As in the case of SHA-256, we first need to solve (13) to obtain values of α, λ, γ and µ. For the
23-step attack, these equations are solved for δ1 = 0 and δ2 being one of the high frequency values in
the distribution σ1(W)−σ1(W −1). For the 24-step attack, we need some frequently occurring δ1 and
δ2 values. This distribution can not be computed completely as the word size is 64 bits in this case.
However, a smaller distribution (of size much lesser than 264 entries) can be constructed by randomly
selecting W ’s and tabulating σ1(W)−σ1(W−1). This distribution can then be extrapolated to obtain
approximate frequencies of the actual distribution. This idea is mentioned in [2]. More details about
the process of estimation of the frequencies is provided in § A.1.

It is possible to solve (13) for SHA-512 as well, although we require a slighly different approach
than SHA-256. The main difference is in solving the second equation. We describe the method to
solve this equation with the aid of an example. Suitables values of the constants for reduced SHA-512
attacks are given in Table 5.

Table 5. Values leading to collisions for different number of steps of SHA-512. The value of i denotes the start point
of the local collision, i.e., the local collision is placed from Step i to i + 8.

(# rnds, i) δ1 δ2 u α λ γ µ

(23, 8) 0 600000000237 0 7201b90f9f8df85e 3e000007ffdc9 1 43fffff800001

(23, 9)
(24, 10)

200000000008 600000000237 1 7201b90f9f8df85e 3e000007ffdc9 1 45fffff800009

Solving the Second Equation For SHA-512. As remarked earlier, for odd λ the second equation
simplifies to

δ2 = −Σ1(λ − 1) + Σ1(λ) + (λ − 1).

We need to get an odd λ satisfying the above equation for a given value of δ2. Since −Σ1(λ−1)+Σ1(λ)
is always even and (λ − 1) is odd due to our choice of odd λ, we require δ2 to be odd. This equation
can be solved by hand. We explain the method to solve this equation for δ2 = 600000000237.

First note that Σ1(x) is the XOR addition of 3 n-bit quantities which are rotated/shifted forms
of x. If λ is odd, then λ and λ − 1 differ only in the least significant bit. Therefore, the bit patterns
of Σ1(λ) and Σ1(λ − 1) will be same except at 3 bit positions. These 3 bit positions are indexed by
23, 46 and 50. By the structure of Σ1 function and using the fact that λ is odd (i.e. λ0 = 1), we have
the following

b1 = (Σ1(λ))23 = λ0 ⊕ λ37 ⊕ λ41 = 1 ⊕ λ37 ⊕ λ41,

b2 = (Σ1(λ))46 = λ0 ⊕ λ23 ⊕ λ60 = 1 ⊕ λ23 ⊕ λ60,

b3 = (Σ1(λ))50 = λ0 ⊕ λ4 ⊕ λ27 = 1 ⊕ λ4 ⊕ λ27.

Also, because (λ − 1)0 = 0, we have (Σ1(λ − 1))23 = b1, (Σ1(λ − 1))46 = b2 and (Σ1(λ − 1))60 = b3.
Now consider the bit pattern of various quantities as follows.

bit 63 . . . 50 . . . 46 . . . 23 . . . 0

A = Σ1(λ − 1) b3 . . . b2 . . . b1
B = Σ1(λ) b3 . . . b2 . . . b1

A − B 1 0. . . 0
δ2

A − B + δ2

We require the quantity (A − B + δ2) to be equal to (λ − 1). It is clear from the bit pattern above
that the lowest 23 bits (indexed from 0 to 22) of (A − B + δ2) will be same as those of δ2. Equating
these bits to corresponding bits of (λ − 1), we immediately get the lowest 23 bits of λ.

Now consider the bits between 23 and 46 of (A − B). It is clear that all these bits will be equal.
Further, all these bits will be equal to 1 if b1 = 1 due to the borrow while subtracting B from A
at bit position 23. Similarly, all these bits of (A − B) will be equal to 0 if b1 = 0. Our choice of δ2

has all these bits equal to zero, hence the term (A − B + δ2) will too have all these bits equal. But
since this term is equal to (λ − 1), all these bits of (λ − 1) will also be equal. Finally, note that λ
and (λ − 1) differ only in the lowest bit position, hence all the bits between 23 and 46 of λ will also
be equal. In particular, we will have λ37 = λ41, hence we have that b1 = 1 ⊕ λ37 ⊕ λ41 = 1.

Continuing reasoning on bit positions in this way, for any given δ2, either we can solve for
λ or determine that a solution does not exist. For δ2 = 600000000237 we obtained the solution
λ = 3e000007ffdc9. Note that the method explained above does not require any particular structure
of the bits of δ2. As another example, we also solved for δ2 = 19ffffffffdd9 and obtained the
solution as λ = 2200000800227.

Note: The first equation can be solved in a similar manner for µ for a given δ1.

23-step Collision. The δ = δ2 used (shown in Table 5) has frequency freqδ ≈ 243 and so by trying

approximately 264

243 = 221 possible random choices of W0 and W1 we expect a proper value for W16 and
hence, a 23-step collision. Following the analysis of computation effort in § 6.1, the effort required is
about freqδ

24.5 = 221

24.5 = 216.5 trials of 23-step SHA-512. In [2], the corresponding effort is 243.9. Message
pair colliding for 23-step SHA-512 is given in § C.

Guess-Then-Determine Algorithm For SHA-512. In § 7, a guess-then-determine algorithm
was mentioned to solve (20). We discuss the case of this algorithm for SHA-512 now. By guessing
a total of 15 bits (8 least significant bits of W1 and 7 other possible carry bits), it is possible to
reconstruct the entire W1 and then determine whether the reconstructed value is correct. Thus, by
trying a total of 215 combinations, it is possible to determine whether (20) has a solution and if so, to
find all possible solutions. The algorithm is given in § B. (We note that in [2], it has been remarked

that by guessing the least 8 bits of W1 the entire W1 can be reconstructed and with probability 2−8

it is going to be correct. No details are provided; in particular, the guess-then-determine algorithm
that we provide in § B is not present in [2].)

In our experiments with SHA-512, we found that, on average, for one in every six values of D, (20)
has solutions, the number of solutions being between one and four. So, for a random choice of D, we
consider (20) to hold with probability p ≈ 2−2.5.

24-step Collision. We choose δ2 = 600000000237 with freqδ2
= 243. Also, we choose δ1 =

200000000008 so that freq
−δ1

= 261.5. For these values of δ1 and δ2, it is possible to solve (13)
to obtain suitable α, γ and µ, which in turn determine λ and β = α. An example of these values is
shown in Table 5. The same values also hold for obtaining 23-step collision by placing a local collision
from Step 9 to 17.

The guess-then-determine attack for SHA-512 case requires g = 215 operations, hence following
the analysis of computation effort in § 7, the effort required for 24-step SHA-512 attack is about
(22×64

261.5×243) × (2−4.5 × (215

24 + 3) × 1

2−2.5) = 232.5 trials of 24-step SHA-512. In [2], the corresponding

effort is 253 trials of 24-step SHA-512. This significant improvement in the attack complexity allows
us to provide the first example of a colliding message pair for 24-step SHA-512. The message pair
colliding for 24-step SHA-512 is given in § C.

Note that using a table having 264 entries to solve (20) will reduce the computational effort to
about 222.5 trials of 24-step SHA-512.

9 Some Concluding Remarks

In this work we have presented a deterministic attack against 22-step SHA-2 and probabilistic attacks
against 23 and 24-step SHA-2. Hopefully this work will help understand SHA-2 family better and
help in devising new attacks on longer round versions of SHA-2 family.

References

1. Henri Gilbert and Helena Handschuh. Security Analysis of SHA-256 and Sisters. In Mitsuru Matsui and Robert J.
Zuccherato, editors, Selected Areas in Cryptography, 10th Annual International Workshop, SAC 2003, Ottawa,

Canada, August 14-15, 2003, Revised Papers, volume 3006 of Lecture Notes in Computer Science, pages 175–193.
Springer, 2003.

2. Sebastiaan Indesteege, Florian Mendel, Bart Preneel, and Christian Rechberger. Collisions and other Non-Random
Properties for Step-Reduced SHA-256. Cryptology eprint Archive, April 2008. Available at http://eprint.iacr.

org/2008/131, Accepted in Selected Areas in Cryptography, 2008.
3. Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Analysis of Step-Reduced SHA-

256. In Matthew J. B. Robshaw, editor, Fast Software Encryption, 13th International Workshop, FSE 2006, Graz,

Austria, March 15-17, 2006, Revised Selected Papers, volume 4047 of Lecture Notes in Computer Science, pages
126–143. Springer, 2006.

4. Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Analysis of Step-Reduced SHA-
256. Cryptology eprint Archive, March 2008. Available at http://eprint.iacr.org/2008/130.

5. Ivica Nikolić and Alex Biryukov. Collisions for Step-Reduced SHA-256. In Kaisa Nyberg, editor, Fast Software

Encryption, 15th International Workshop, FSE 2008, Lausanne, Switzerland, March 26-28, 2008, volume Pre-
proceedings version of Lecture Notes in Computer Science, pages 1–16. Springer, 2008.

6. Somitra Kumar Sanadhya and Palash Sarkar. New Local Collisions for the SHA-2 Hash Family. In Kil-Hyun Nam
and Gwangsoo Rhee, editors, Information Security and Cryptology - ICISC 2007, 10th International Conference,

Seoul, Korea, November 29-30, 2007, Proceedings, volume 4817 of Lecture Notes in Computer Science, pages 193–205.
Springer, 2007.

7. Somitra Kumar Sanadhya and Palash Sarkar. Attacking Reduced Round SHA-256. In Steven Bellovin and Rosario
Gennaro, editors, Applied Cryptography and Network Security - ACNS 2008, 6th International Conference, New

York, NY, June 03-06, 2008, Proceedings, volume 5037 of Lecture Notes in Computer Science. Springer, 2008.
8. Somitra Kumar Sanadhya and Palash Sarkar. Deterministic Constructions of 21-Step Collisions for the SHA-2

Hash Family. In Editors, editor, Information Security, 11th International Conference, ISC 2008, Taipei, Taiwan,

September 2008, Proceedings, volume To be published of Lecture Notes in Computer Science. Springer, 2008.

9. Somitra Kumar Sanadhya and Palash Sarkar. Non-Linear Reduced Round Attacks Against SHA-2 Hash family. In
Yi Mu and Willy Susilo, editors, Information Security and Privacy - ACISP 2008, The 13th Australasian Confer-

ence, Wollongong, Australia, 7-9 July 2008, Proceedings, volume To appear of Lecture Notes in Computer Science.
Springer, 2008.

A Details of the SHA-2 Hash Family

Eight registers are used in the evaluation of SHA-2. The initial value in the registers is specified by
an 8 × n bit IV, n=32 for SHA-256 and n = 64 for SHA-512. In Step i, the 8 registers are updated
from (ai−1, bi−1, ci−1, di−1, ei−1, fi−1, gi−1, hi−1) to (ai, bi, ci, di, ei, fi, gi, hi) according to the
following Equations:

ai = Σ0(ai−1) + fMAJ(ai−1, bi−1, ci−1) + Σ1(ei−1)
+fIF (ei−1, fi−1, gi−1) + hi−1 + Ki + Wi

bi = ai−1

ci = bi−1

di = ci−1

ei = di−1 + Σ1(ei−1) + fIF (ei−1, fi−1, gi−1)
+hi−1 + Ki + Wi

fi = ei−1

gi = fi−1

hi = gi−1































































(22)

The functions fIF and the fMAJ are three variable boolean functions defined as:

fIF (x, y, z) = (x ∧ y) ⊕ (¬x ∧ z),
fMAJ(x, y, z) = (x ∧ y) ⊕ (y ∧ z) ⊕ (z ∧ x).

For SHA-256, the functions Σ0 and Σ1 are defined as:

Σ0(x) = ROTR2(x) ⊕ ROTR13(x) ⊕ ROTR22(x),
Σ1(x) = ROTR6(x) ⊕ ROTR11(x) ⊕ ROTR25(x).

For SHA-512, the corresponding functions are:

Σ0(x) = ROTR28(x) ⊕ ROTR34(x) ⊕ ROTR39(x),
Σ1(x) = ROTR14(x) ⊕ ROTR18(x) ⊕ ROTR41(x).

Given the message words W0,W1, . . . ,W15, for i ≥ 16, Wi is computed as follows.

Wi = σ1(Wi−2) + Wi−7 + σ0(Wi−15) + Wi−16 (23)

For SHA-256, the functions σ0 and σ1 are defined as:

σ0(x) = ROTR7(x) ⊕ ROTR18(x) ⊕ SHR3(x),
σ1(x) = ROTR17(x) ⊕ ROTR19(x) ⊕ SHR10(x).

And for SHA-512, they are defined as:

σ0(x) = ROTR1(x) ⊕ ROTR8(x) ⊕ SHR7(x),
σ1(x) = ROTR19(x) ⊕ ROTR61(x) ⊕ SHR6(x).

A.1 Differential Properties of σ1

The linear function σ1 of SHA-256 used in the message expansion has very poor differential properties
with respect to modular addition. Consider the distribution of δ = σ1(W)− σ1(W − 1) as W ranges
over all 232 values. The highly skewed nature of the distribution of δ was first mentioned in § 7.1
in [9], where it was utilized in improving the success probability of the 21-step SHA-256 NB attack.
Later, it has been independently observed in [2] that δ takes only 6181 values and there are several
values of δ which occur for more than 229 or more values of W .

Let freqδ be the number of W such that δ = σ1(W)−σ1(W − 1). It is quite easy to prepare a list
of (δ, freqδ) values. For each of the 232 values of W , compute δ = σ1(W) − σ1(W − 1). If this δ has
been obtained earlier, then increment the frequency for this δ; else insert (δ, freqδ = 1) into the list.
To do this efficiently, we need a suitable index structure for searching and inserting into the list. A
height balanced tree (or AVL tree) is the optimal solution; but, for the current application, a simple
(data structure) hash technique is good enough and is the technique we implemented.

Some values of (δ, freqδ) are given in Table 6. Interestingly, we have observed that if freqδ is
greater than 216, then δ is always even.

Table 6. Some examples of high frequency values of δ = σ1(W) − σ1(W − 1) for SHA-256.

δ freq
δ

δ freq
δ

ffff6000 229 + 226 + 225 0000a000 229 + 226 + 225

ffffa000 229 + 226 00006000 229 + 226

ff006001 216 ff005fff 216

Similar distribution for SHA-512 can also be computed by generating a list of δ = σ1(W) −
σ1(W − 1) for random W ’s. We created a list of 225 entries and extrapolated the distribution to get
some high frequency values for SHA-512. The extrapolation is done in the following manner. If a
particular difference δ occurs r times in 225 random trials, then we expect it to have a frequency freqδ

of about r × 264/225. Some of the observed and the extrapolated frequencies are shown in Table 7.

Table 7. Some examples of high frequency values of δ = σ1(W) − σ1(W − 1) for SHA-512. The column freqo denotes
the observed frequencies among 225 random trials of computing δ. The column freqδ contains the extrapolated values
of the frequencies for the complete search space of 264.

δ freqo freq
δ

δ freqo freq
δ

200000000008 4795491 261.5 8e000000003a9 22 243.5

ffffdffffffffff8 4793201 261.5 fff26000000000c9 22 243.5

1ffffffffff8 4792982 261.5 600000000237 18 243.5

B Guess-Then-Determine Algorithm for Solving (20)

For the ease of notation, in this section we will use W instead of W1.

B.1 For SHA-256

Consider Table 1 where the structure of W and σ0(W) is shown for SHA-256. We have −W +σ0(W) =
D, where D = (d31, . . . , d0) is a 32-bit constant. For 31 ≥ k ≥ l ≥ 0, we will use the notation X[k, l]
to denote bits xk, . . . , xl of the 32-bit quantity X.

We explain how the guess-then-determine algorithm proceeds. Suppose that we guess W [14, 0].
Let X = D+W and Y = (W [14, 0] ≫ 3)⊕ (W [14, 0] ≫ 7). Then W [25, 18] = (X ⊕Y)&(ff). Having
determined W [25, 18] we next determine W [29, 26] using positions 22 to 19 of Table 1. This time,
however, there may have been a possible carry into the 19th bit and we need to account for that. Let
c0 be a bit. Define X = (D ≫ 19)+ (W [25, 18] ≫ 1)+ c0 and Y = (W [14, 0] ≫ 5)⊕ (W [25, 18] ≫ 4).
Then W [29, 26] = (X⊕Y)&(f). This illustrates the general idea and can be extended to determine the
other bits. Once the entire W has been determined we need to determine whether −W +σ0(W) = D.
The entire algorithm is shown in Figure 2. This algorithm involves guessing W [14, 0] and bits c0, c1, c2,

Fig. 1. Structure of W and σ0(W) for SHA-256.

W w31 w30 w29 w28 w27 w26 w25 w24 w23 w22 w21 w20 w19 w18 w17 w16

W ≫ 3 0 0 0 w31 w30 w29 w28 w27 w26 w25 w24 w23 w22 w21 w20 w19

W ≫ 7 w6 w5 w4 w3 w2 w1 w0 w31 w30 w29 w28 w27 w26 w25 w24 w23

W ≫ 18 w17 w16 w15 w14 w13 w12 w11 w10 w9 w8 w7 w6 w5 w4 w3 w2

W w15 w14 w13 w12 w11 w10 w9 w8 w7 w6 w5 w4 w3 w2 w1 w0

W ≫ 3 w18 w17 w16 w15 w14 w13 w12 w11 w10 w9 w8 w7 w6 w5 w4 w3

W ≫ 7 w22 w21 w20 w19 w18 w17 w16 w15 w14 w13 w12 w11 w10 w9 w8 w7

W ≫ 18 w1 w0 w31 w30 w29 w28 w27 w26 w25 w24 w23 w22 w21 w20 w19 w18

Fig. 2. A guess-then-determine algorithm for solving D = −W + σ0(W) for SHA-256.

1. Guess W [14, 0].
2. Let X = D + W and Y = (W [14, 0] ≫ 3) ⊕ (W [14, 0]) ≫ 7

and set W [25, 18] = (X ⊕ Y)&(ff).
3. Guess c0.
4. Let X = (D ≫ 19) + (W [25, 18] ≫ 1) + c0 and Y = (W [14, 0] ≫ 5) ⊕ (W [25, 18] ≫ 4)

and set W [29, 26] = (X ⊕ Y)&(f).
5. Guess c1.
6. Let X = (D ≫ 23) + (W [25, 18] ≫ 6) + c1 and Y = (W [14, 0] ≫ 9) ⊕ (W [29, 26] ≫ 4)

and set W [31, 20] = (X ⊕ Y)&(3).
7. Guess c2.
8. Let X = (D ≫ 8) + (W [14, 0] ≫ 8) + c2 and Y = (W [14, 0] ≫ 11) ⊕ (W [29, 26])

and set W [31, 20] = (X ⊕ Y)&(7).
9. If −W + σ0(W) = D, then output W as one solution.

which is a total of 18 bits. If the equation D = −W + σ0(W) does not have any solution, then none
will be returned by this algorithm; on the other hand, if there is a solution or there are more than
one solutions, then all solutions will be returned. A total of 218 operations are required. The time for
each operation is significantly less than the time for a single SHA-256 step and by our assessment it
is about 2−4 times the time for a single SHA-256 step.

B.2 For SHA-512

Consider Table 3 where the structure of W and σ0(W) is shown for SHA-512. We have −W +σ0(W) =
D, where D = (d63, . . . , d0) is a 64-bit constant. For 63 ≥ k ≥ l ≥ 0, we will use the notation X[k, l]
to denote bits xk, . . . , xl of the 64-bit quantity X.

We explain how the guess-then-determine attack proceeds. Suppose that we guess W [7, 0]. So we
know the 7 bits W [7, 1] and W [6, 0]. Now, consider the lowest 7 bits of D + W . We need D + W
to be equal to σ0(W). The term σ0(W) consists of 3 quantities XOR’ed, one of which, W [7, 1],
is already known. The other two quantities are W [13, 7] and W [14, 8]. So we can compute X =

W [13, 7] ⊕ W [14, 8] = (D + W) ⊕ W [7, 1]. Now, consider the least significant bit of X. This is the
XOR of W [7] and W [8]. We already know W [7], so it is possible to compute W [8]. Once W [8] is
known, we can compute W [9] by considering the second least significant bit of X. Continuing this
way, we can get W [14, 7].

Now consider the quantity (D + W) ⊕ (W ≫ 1) for bit positions 7 to 13. If the possible carry
bit into the addition D + W at bit position 7 can be guessed, then W [21, 15] can be determined.
Extending this reasoning further, we need to guess 7 carry bits and the initial 8 bits of W to
completely determine W . If the obtained value of W satisifies −W + σ0(W) = D, then we have the
correct solution. The entire algorithm is shown in Figure 4.

In the algorithm, we use a function GTD, which takes low order 7i bits of W as input and
produces low order 7i + 7 bits of W . This function is described at the end of the figure.

Fig. 3. Structure of W and σ0(W) for SHA-512.

W w63 w62 w61 w60 w59 w58 w57 w56 w55 w54 w53 w52 w51 w50 w49 w48

W ≫ 7 0 0 0 0 0 0 0 w63 w62 w61 w60 w59 w58 w57 w56 w55

W ≫ 1 w0 w63 w62 w61 w60 w59 w58 w57 w56 w55 w54 w53 w52 w51 w50 w49

W ≫ 8 w7 w6 w5 w4 w3 w2 w1 w0 w63 w62 w61 w60 w59 w58 w57 w56

W w47 w46 w45 w44 w43 w42 w41 w40 w39 w38 w37 w36 w35 w34 w33 w32

W ≫ 7 w54 w53 w52 w51 w50 w49 w48 w47 w46 w45 w44 w43 w42 w41 w40 w39

W ≫ 1 w48 w47 w46 w45 w44 w43 w42 w41 w40 w39 w38 w37 w36 w35 w34 w33

W ≫ 8 w55 w54 w53 w52 w51 w50 w49 w48 w47 w46 w45 w44 w43 w42 w41 w40

W w31 w30 w29 w28 w27 w26 w25 w24 w23 w22 w21 w20 w19 w18 w17 w16

W ≫ 7 w38 w37 w36 w35 w34 w33 w32 w31 w30 w29 w28 w27 w26 w25 w24 w23

W ≫ 1 w32 w31 w30 w29 w28 w27 w26 w25 w24 w23 w22 w21 w20 w19 w18 w17

W ≫ 8 w39 w38 w37 w36 w35 w34 w33 w32 w31 w30 w29 w28 w27 w26 w25 w24

W w15 w14 w13 w12 w11 w10 w9 w8 w7 w6 w5 w4 w3 w2 w1 w0

W ≫ 7 w22 w21 w20 w19 w18 w17 w16 w15 w14 w13 w12 w11 w10 w9 w8 w7

W ≫ 1 w16 w15 w14 w13 w12 w11 w10 w9 w8 w7 w6 w5 w4 w3 w2 w1

W ≫ 8 w23 w22 w21 w20 w19 w18 w17 w16 w15 w14 w13 w12 w11 w10 w9 w8

Fig. 4. A guess-then-determine algorithm for solving D = −W + σ0(W) for SHA-512.

1. Guess W [7, 0] and carry bits c1, c2, c3, c4, c5, c6, c7.
2. Let c0 = 0.
3. for(i = 0; i ≤ 7; i++)
4. W [7i + 7, 0] = GTD(W [7i, 7i − 6],ci);
5. If −W + σ0(W) = D, then output W as one solution.

1. function GTD(W [7i, 7i − 6],ci){
2. X = (((D ≫ (7i − 7))&(7f)) + ci + (W ≫ (7i − 7))&(7f)) ⊕ ((W ≫ (7i − 6))&(7f));
3. T1 = (X&1) ⊕ ((W ≫ (7i))&1);
4. T2 = ((X ≫ 1)&1) ⊕ T1;
5. T3 = ((X ≫ 2)&1) ⊕ T2;
6. T4 = ((X ≫ 3)&1) ⊕ T3;
7. T5 = ((X ≫ 4)&1) ⊕ T4;
8. T6 = ((X ≫ 5)&1) ⊕ T5;
9. T7 = ((X ≫ 6)&1) ⊕ T6;
10. temp = T1 ⊕ (T2 ≪ 1) ⊕ (T3 ≪ 2) ⊕ (T4 ≪ 3) ⊕ (T5 ≪ 4) ⊕ (T6 ≪ 5) ⊕ (T7 ≪ 6);
11. W [7i + 7, 0] = W [7i, 7i − 6] ⊕ (temp ≪ (7i + 1));
12. Return W [7i + 7, 0].

This algorithm involves guessing W [7, 0] and bits c1, c2, . . . c7, which is a total of 15 bits. If the
equation D = −W +σ0(W) does not have any solution, then none will be returned by this algorithm;
on the other hand, if there is a solution or there are more than one solutions, then all solutions will
be returned. A total of 215 operations are required. The time for each operation is significantly less
than the time for a single SHA-512 step and by our assessment it is about 2−4 times the time for a
single SHA-512 step.

C Colliding Message Pairs

Colliding message pairs for 22-step SHA-512 and 22-step SHA-256 generated by the algorithm of
Table 15 are provided in Tables 8 and 9 respectively. Examples of colliding message pairs for 23-step
and 24-step SHA-256 are shown in Tables 10, 11 and 12.

Table 8. Colliding message pair for 22-step SHA-512 with standard IV. These messages have been generated using the
algorithm of Table 15.

W1 0-3 0000000000000000 0000000000000000 c2bc8e9a85e2eb5a 6d623c5d5a2a1442

4-7 cd38e6dee1458de7 acb73305cddb1207 148f31a512bbade5 ecd66ba86d4ab7e9

8-11 92aafb1e9cfa1fcb 533c19b80a7c8968 e3ce7a41b11b4d75 aef3823c2a004b20

12-15 8d41a28b0d847692 7f214e01c4e96950 0000000000000000 0000000000000000

W2 0-3 0000000000000000 0000000000000000 c2bc8e9a85e2eb5a 6d623c5d5a2a1442

4-7 cd38e6dee1458de7 acb73305cddb1207 148f31a512bbade5 ecd66ba86d4ab7ea

8-11 90668fd7ec6718ee 533c19b80a7c8968 dfce7a41b11b4d76 aef3823c2a004b20

12-15 8d41a28b0d847692 7f214e01c4e96950 0000000000000000 ffffffffffffffff

Table 9. Colliding message pair for 22-step SHA-256 with standard IV. These messages have been generated using the
algorithm of Table 15.

W1 0-7 00000000 00000000 0be293bf 99c539c9 1c672194 99b6a58a 5bf1d0ae 0a9a18d3

8-15 0c18cf1c 329b3e6e dc4e7a43 ab33823f 8d41a28d 7f214e03 00000000 00000000

W2 0-7 00000000 00000000 0be293bf 99c539c9 1c672194 99b6a58a 5bf1d0ae 0a9a18d4

8-15 07d56809 329b3e6e dc0e7a44 ab33823f 8d41a28d 7f214e03 00000000 ffffffff

Table 10. Colliding message pair for 23-step SHA-256 with standard IV. These messages utilize a single local collision
starting at Step i = 8.

W1 0-7 122060e3 000f813f d92d3fc6 ea4a475f fb0c6581 dc4558c4 d86428b4 6e2ca576

8-15 c8d597bf 6372d4c2 ddbd721c 79d654c4 f0064002 a894b7b6 91b7628e 3224db20

W2 0-7 122060e3 000f813f d92d3fc6 ea4a475f fb0c6581 dc4558c4 d86428b4 6e2ca576

8-15 c8d597c0 6372d4c1 ddbd721c 78d6b4c5 f0064002 a894b7b6 91b7628e 3224db20

Table 11. Colliding message pair for 23-step SHA-256 with standard IV. These messages utilize a single local collision
starting at Step i = 9.

W1 0-7 c201bef2 14cc32c9 3b80da44 d8212037 8987161d a790cb4a 53b8d726 89e9a288

8-15 3edd76e0 05f41ddc 9ebc0fc3 e099698a 2eaec58f e7060b78 95d7030d 6bf777c0

W2 0-7 c201bef2 14cc32c9 3b80da44 d8212037 8987161d a790cb4a 53b8d726 89e9a288

8-15 3edd76e0 05f41ddd 9ebc0fc2 e099c98a 2daf2590 e7060b78 95d7030d 6bf777c0

Table 12. Colliding message pair for 24-step SHA-256 with standard IV. These messages utilize a single local collision
starting at Step i = 10.

W1 0-7 657adf63 06c066d7 90f0b709 95a3e1d1 c3017f24 fad6c2bf dff43685 6abff0da

8-15 e6cfc63f de8fb4c1 c20ca05b f74815cc c2e789d9 208e7105 cc08b6cf 70171840

W2 0-7 657adf63 06c066d7 90f0b709 95a3e1d1 c3017f24 fad6c2bf dff43685 6abff0da

8-15 e6cfc63f de8fb4c1 c20ca05c f74815cb c2e7e9d9 1f8ed106 cc08b6cf 70171840

Table 13. Colliding message pair for 23-step SHA-512 with standard IV. These messages utilize a single local collision
starting at Step i = 8.

W1 0-3 b9fa6fc4729ca55c 8718310e1b3590e1 1d3d530cb075b721 99166b30ecbdd705

4-7 27ed55b66c090b62 754b2163ff6feec5 6685f40fd8ab08f8 590c1c0522f6fdfd

8-11 b947bb4013b688c1 d9d72ca8ab1cac04 69d0e120220d4edc 30a2e93aeef24e3f

12-15 84e76299718478b9 f11ae711647763e5 d621d2687946e862 0ee57069123ecc8b

W2 0-3 b9fa6fc4729ca55c 8718310e1b3590e1 1d3d530cb075b721 99166b30ecbdd705

4-7 27ed55b66c090b62 754b2163ff6feec5 6685f40fd8ab08f8 590c1c0522f6fdfd

8-11 b947bb4013b688c2 d9d72ca8ab1cac03 69d0e120220d4edc 30a3493aeef25076

12-15 84e76299718478b9 f11ae711647763e5 d621d2687946e862 0ee57069123ecc8b

Table 14. Colliding message pair for 24-step SHA-512 with standard IV. These messages utilize a single local collision
starting at Step i = 10.

W1 0-3 dedb689cfc766965 c7b8e064ff720f7c c136883560348c9c 3747df7d0cf47678

4-7 855e17555cfedc5f 88566babccaa63e9 5dda9777938b73cd b17b00574a4e4216

8-11 86f3ff48fd12ea19 cd15c6f8d6da38ce 5e2c6b7b0411e70b 36ed67e93a794e66

12-15 1b65e96b02767821 04d0950089db6c68 5bc9b9673e38eff3 b05d879ad024d3fa

W2 0-3 dedb689cfc766965 c7b8e064ff720f7c c136883560348c9c 3747df7d0cf47678

4-7 855e17555cfedc5f 88566babccaa63e9 5dda9777938b73cd b17b00574a4e4216

8-11 86f3ff48fd12ea19 cd15c6f8d6da38ce 5e2c6b7b0411e70c 36ed67e93a794e65

12-15 1b66096b02767829 04d0f50089db6e9f 5bc9b9673e38eff3 b05d879ad024d3fa

Table 15. Deterministic algorithm to obtain message pairs leading to collisions for 22-step SHA-2.

external W to set register A(Step i, desired a, Current State {ai−1, bi−1, . . . hi−1}) :
Returns the required message Wi to be used in step i so that ai is set to the given value.

external W to set register E(Step i, desired e, Current State {ai−1, bi−1, . . . hi−1}) :
Returns the required message Wi to be used in step i so that ei is set to the given value.

First Message words:
1. Select W0, W1, W14 and W15 randomly.
2. Set DELTA = σ1(W15) − σ1(W15 − 1).
3. Run Steps 0 and 1 of hash evaluation to define {a1, b1, . . . h1}.
4. Choose W2 = W to set register A(2, DELTA− 1 + fMAJ (−1,−2, DELTA− 3), {a1, b1, . . . h1}).
5. Run Step 2 of hash evaluation to define {a2, b2, . . . h2}.
6. Choose W3 = W to set register A(3, DELTA− 3, {a2, b2, . . . h2}).
7. Run Step 3 of hash evaluation to define {a3, b3, . . . h3}.
8. Choose W4 = W to set register A(4, −2, {a3, b3, . . . h3}).
9. Run Step 4 of hash evaluation to define {a4, b4, . . . h4}.
10. Choose W5 = W to set register A(5, −1, {a4, b4, . . . h4}).
11. Run Step 5 of hash evaluation to define {a5, b5, . . . h5}.
12. Choose W6 = W to set register A(6, −1, {a5, b5, . . . h5}).
13. Run Step 6 of hash evaluation to define {a6, b6, . . . h6}.
14. Choose W7 = W to set register A(7, −1, {a6, b6, . . . h6}).
15. Run Step 7 of hash evaluation to define {a7, b7, . . . h7}.
16. Choose W8 = W to set register A(8, 0, {a7, b7, . . . h7}).
17. Run Step 8 of hash evaluation to define {a8, b8, . . . h8}.
18. Choose W9 = W to set register A(9, 0, {a8, b8, . . . h8}).
19. Run Step 9 of hash evaluation to define {a9, b9, . . . h9}.
20. Choose W10 = W to set register E(10, −1, {a9, b9, . . . h9}).
21. Run Step 10 of hash evaluation to define {a10, b10, . . . h10}.
22. Choose W11 = W to set register E(11, −1, {a10, b10, . . . h10}).
23. Run Step 11 of hash evaluation to define {a11, b11, . . . h11}.
24. Choose W12 = W to set register E(12, −1, {a11, b11, . . . h11}).
25. Run Step 12 of hash evaluation to define {a12, b12, . . . h12}.
26. Choose W13 = W to set register E(13, −1, {a12, b12, . . . h12}).

Second message words:
27. Define δWi = 0 for i ∈ {0, 1, 2, 3, 4, 5, 6, 9, 11, 12, 13, 14}.
28. Define δW7 = 1 and δW15 = −1.
29. Define δW8 = −1 − fIF (e7 + 1, f7, g7) + fIF (e7, f7, g7) − Σ1(e7 + 1) + Σ1(e7). (Refer (7))
30. Define δW10 = −fIF (e9 − 1, f9 − 1, g9 + 1) + fIF (e9, f9, g9) − Σ1(e9 − 1) + Σ1(e9). (Refer (8))
31. Compute W ′

i = Wi + δWi for 0 ≤ i ≤ 15.

