
Public Key Encryption that Allows PIR Queries

Dan Boneh∗ Eyal Kushilevitz† Rafail Ostrovsky‡

William E. Skeith III§

Abstract

Consider the following problem: Alice wishes to maintain her email using a storage-
provider Bob (such as a Yahoo! or hotmail e-mail account). This storage-provider should
provide for Alice the ability to collect, retrieve, search and delete emails but, at the same time,
should learn neither the content of messages sent from the senders to Alice (with Bob as an
intermediary), nor the search criteria used by Alice. A trivial solution is that messages will
be sent to Bob in encrypted form and Alice, whenever she wants to search for some message,
will ask Bob to send her a copy of the entire database of encrypted emails. This however is
highly inefficient. We will be interested in solutions that are communication-efficient and, at
the same time, respect the privacy of Alice. In this paper, we show how to create a public-
key encryption scheme for Alice that allows PIR searching over encrypted documents. Our
solution provides a theoretical solution to an open problem posed by Boneh, DiCrescenzo,
Ostrovsky and Persiano on “Public-key Encryption with Keyword Search”, providing the first
scheme that does not reveal any partial information regarding user’s search (including the ac-
cess pattern) in the public-key setting and with non-trivially small communication complexity.
The main technique of our solution also allows for Single-Database PIR writing with sublinear
communication complexity, which we consider of independent interest.

KEYWORDS: Searching on encrypted data, Database security, Public-key Encryption with
special properties, Private Information Retrieval.

∗Stanford Department of Computer Science. E-mail: dabo@theory.stanford.edu. Supported by NSF and the
Packard foundation.

†Department of Computer Science, Technion. E-mail: eyalk@cs.technion.ac.il. Partially supported by BSF grant
2002-354 and by Israel Science Foundation grant 36/03.

‡Department of Computer Science, University of California, Los Angeles. E-mail: rafail@cs.ucla.edu. Supported
in part by Intel equipment grant, NSF Cybertrust grant No. 0430254, OKAWA research award, B. John Garrick
Foundation and Xerox Innovation group Award.

§Department of Mathematics, University of California, Los Angeles. E-mail: wskeith@math.ucla.edu,
wskeith@ucla.edu.

1 Introduction

Problem Overview Consider the following problem: Alice wishes to maintain her email using a
storage-provider Bob (such as Yahoo! or hotmail e-mail account). She publishes a Public Key for
a semantically-secure Public-Key Encryption scheme, and asks all people to send their e-mails’
encrypted under her Public Key to the intermediary Bob. Bob (the storage-provider) should allow
Alice to collect, retrieve, search and delete emails at her leisure. In known implementations of
such services, either the content of the emails is known to the storage-provider Bob (and then the
privacy of both Alice and the senders is lost) or the senders can encrypt their messages to Alice, in
which case privacy is maintained, but sophisticated services (such as search by keyword) cannot be
easily performed and, more importantly leak information to Bob, such as Alice’s access pattern. Of
course, Alice can always ask Bob, the storage-provider, to send her a copy of the entire database of
emails. This however is highly inefficient in terms of communication, which will be a main focus
in this work. In all that follows, we will denote the number of encrypted documents that Bob stores
for Alice by the variablen.

In this paper, we will be interested in solutions that are communication-efficient and, at the
same time, respect the complete privacy of Alice. A seemingly related concept is that ofPrivate
Information Retrieval (PIR)(e.g., [13, 23, 10]). However, existing PIR solutions either allow only
for retrieving a (plain or encrypted) record of the database by address, or allow for search by
keyword [12, 23, 25] in a non-encrypted data. The challenge of creating a Public-Key Encryption
that allows for keyword search, where keywords are encrypted in a probabilistic manner, remained
an open problem prior to this paper.

In our solution, Alice creates a public key that allows arbitrary senders to send her encrypted
e-mail messages. Each such messageM is accompanied by an “encoded” list of keywords in
response to whichM should be retrieved. These email messages are collected for Alice by Bob,
along with the “encoded” keywords. When Alice wishes to search in the database maintained by
Bob for e-mail messages containing certain keywords, she is able to do so in a communication-
efficient way and does not allow Bob to learnanythingabout the messages that she wishes to
read, download or erase. In particular, Alice is not willing to reveal what particular messages she
downloads from the mail database, from which senders these emails are originating and/or what is
the search criterion, including the access pattern.

Furthermore, our solution allows the communication from any sender to Bob to benon-interactive
(i.e. just a single message from the sender to Bob), and allow a single round of communication
from Alice to Bob and back to Alice, with total communication complexity sublinear inn. Fur-
thermore, we show a simple extension that allows honest-but-curious Bob to tolerate malicious
senders, who try to corrupt messages that do not belong to them in Bob’s database, and reject all
such messages with overwhelming probability.

Comparison with Related Work Recently, there was a lot of work onsearching on encrypted
data(see [7, 6] and references therein). However, all previous solutions either revealed some partial
information about the data or about the search criterion, or work only inprivate-keysettings. In
such settings, only entities who have access to the private key can do useful operations; thus, it is
inappropriate for our setting, where both the storage-provider and the senders of e-mail messages
for Alice have no information on her private key. We emphasize that, in settings that include only a
user Alice and a storage-provider, the problem is already solved; for example, one can apply results
of [17, 27, 9, 7]. However, the involvement of the senders who are also allowed toencryptdata for
Alice (but are not allowed to decrypt data encrypted by other senders) requires using public-key

1

encryption. In contrast to the above work, we show how to search, in a communication-efficient
manner, on encrypted data in apublic-key setting, where those who store data (encrypted with a
public key of Alice) do not need to know the private key under which this data is encrypted. The
only previous results for such a scenario in the public-key setting, is due to Boneh et al. [6] and
Abddalla et al. [1] who deal with the same storage-provider setting we describe above; however,
their solutionrevealspartial information; namely, the particular keyword that Alice is searching
for is given by her, in the clear, to Bob (i.e., only the content of the email messages is kept private
while the information that Alice is after is revealed). This, in particular, reveals theaccess pattern
of the user. The biggest problem left was creating a scheme that hides the access pattern as well.
This is exactly what we achieve in this paper. That is, we show how to hideall information in a
semantically-secure way.

As mentioned, private information retrieval (PIR) is a related problem that is concerned with
communication-efficient retrieval ofpublic (i.e., plain) data. Extensions of the basic PIR primitive
(such as [12, 23], mentioned above, and, more recently, [22, 15, 25]) allow more powerful key-
word searchun-encrypteddata. Therefore, none of those can directly be used to solve the current
problem.

It should also be noted that our paper is in some ways only a partial solution to the problem.
Specifically, we put the following constraint in our model: the number of total messages associated
to each keyword is bounded by a constant. It is an interesting question as to whether this condition
can be relaxed, while keeping communication non-trivially small and maintaining the strict notions
of security presented here.

Our Techniques We give a short overview of some of the tools that we use. The right combina-
tion of these tools is what allows for our protocol to work.

As a starting point, we examineBloom filters(see Section 2.1 for a definition). Bloom filters
allow us to use space which is not proportional to the number of all potential keywords (which is
typically huge) but rather to the maximal number of keywords which are in use at any given time
(which is typically much smaller). That is, the general approach of our protocols is that the senders
will store in the database of the storage-provider some extra information (in encrypted form) that
will later allow the efficient search by Alice.Bloom filters, allow us to keep the space that is used
to store this extra information “small”. The approach is somewhat similar to Goh’s use of Bloom
filters [16]; the important difference is that in our case we are looking for a public-key solution,
whereas Goh [16] gives a private-key solution. This makes our problem more challenging, and
our use Bloom filter is somewhat different. Furthermore, we require the Bloom filters in our
application to encode significantly more information than just set membership. We modify the
standard definitions of Bloom filters to accommodate the additional functionality.

Recall that the use of Bloom filters requires the ability to flip bits in the array of extra in-
formation. However, the identity of the positions that are flipped should be kept secret from the
storage-provider (as they give information about the keywords). This brings us to an important
technical challenge in this work: we need a way to specify an encrypted length-n unit vectorei

(i.e., a lengthn vector with1 in its i-th position and0’s elsewhere) while keeping the valuei secret,
and having a representation that is short enough to get communication-efficiency beyond that of
the trivial solution. We show that a recent public-key homomorphic-encryption scheme, due to
Boneh, Goh and Nissim [5], allows us to obtain just that. For example, one can specify such a
length-n unit vector using communication complexity which is

√
n times a security parameter.

Finally, for Alice to read information from the array of extra information, she applies efficient
PIR schemes, e.g. [23, 10], that, again, allow keeping the keywords that Alice is after secret.

2

We emphasize that all the communication in the protocol is sub-linear inn. This includes both
the communication from the senders to the storage-provider Bob (when sending email messages)
and the communication from Alice to Bob (when she retrieves/searches for messages). Further-
more, we allow Alice todeletemessages from Bob’s storage in a way that hides from Bob which
messages have been deleted. Our main theorem is as follows:

MAIN THEOREM (informal): There exists Public-Key Encryption schemes that support send-
ing, reading and writing into remote server (honest-but-curious Bob) with the following commu-
nication complexity:

• O(
√

n log3 n) for sending a message from any honest-but-curious Sender to Bob. In case
the sender is malicious, the communication complexity for sending a message becomes
O(
√

n log n · polylog(n))

• O(polylog(n)) for reading by Alice from Bob’s (encrypted) memory.

• O(
√

n log3 n) for deleting messages by Alice from Bob’s memory.

Organization: In Section 2, we explain and develop the tools needed for our solutions. Section
3 defines the properties we want our protocols to satisfy. Finally, Section 4 gives the construction
and its analysis.

2 Ingredients

We will make use of several basic tools, some of which are being introduced for the first time in
this paper. In this section, we define (and create, if needed) these tools, as well as outline their
utility in our protocol.

2.1 Bloom Filters

Bloom filters [4] provide a way to probabilistically encode set membership using a small amount
of space, even when the universe set is large. The basic idea is as follows:

Choose an independent set of hash functions{hi}ki=1, where each functionhi : {0, 1}∗ −→ [m].
SupposeS = {ai}li=1 ⊂ {0, 1}∗. We set an arrayT = {ti}mi=1 such thatti = 1 ⇐⇒ ∃j ∈ [k]
andj′ ∈ [l] such thathj(aj′) = i. Now to test the validity of a statement like “a ∈ S”, one simply
verifies thatthi(a) = 1,∀i ∈ [k]. If this does not hold, then certainlya 6∈ S. If the statement does
hold, then there is still some probability thata 6∈ S, however this can be shown to be negligible.
Optimal results are obtained by havingm proportional tok; in this case, it can be shown that
the probability of an inaccurate positive result is negligible ask increases, as will be thoroughly
demonstrated in what follows.

This work will use a variation of a Bloom filter, as we require more functionality. We would
like our Bloom filters to not just store whether or not a certain element is in a set, but also to
store some valuesv ∈ V which are associated to the elements in the set (and to preserve those
associations).

3

Definition 2.1 LetV be a finite set. A(k, m)-Bloom Filter with Storageis a collection{hi}ki=1 of
functions, withhi : {0, 1}∗ −→ [m] for all i, together with a collection of sets,{Bj}mj=1, where
Bj ⊆ V . If a ∈ {0, 1}∗ and v ∈ V , then to insert a pair(a, v) into this structure,v is added
to Bhi(a) for all i ∈ [k]. Then, to determine whether or nota ∈ S, one examines all of the sets
Bhi(a) and returns true if all are non-empty. The set of values associated witha ∈ S is simply⋂

i∈[k] Bhi(a).

Note: every inserted value is assumed to have at least one associated value.

Next, we analyze the total size of a(k,m)-Bloom filter with storage. For the purpose of
analysis, the functionshi will as usual, be modeled as uniform, independent randomness. For
w ∈ {0, 1}∗, defineHw = {hi(w) | i ∈ [k]}.

Claim 2.2 Let ({hi}ki=1, {Bj}mj=1) be a (k, m)-Bloom filter with storage as described in Defini-
tion 2.1. Suppose the filter has been initialized to store some setS of sizen and associated values.
Suppose also thatm = dcnke wherec > 1 is a constant. Denote the (binary) relation of element-
value associations byR(·, ·). Then, for anya ∈ {0, 1}∗, the following statements hold true with
probability 1 − neg(k), where the probability is over the uniform randomness used to model the
hi:

1. (a ∈ S) ⇐⇒ (Bhi(a) 6= ∅ ∀i ∈ [k])

2.
⋂

i∈[k] Bhi(a) = {v | R(a, v) = 1}

Proof: (1.,⇒) Certainly if Bhi(a) = ∅ for somei ∈ [k], thena was never inserted into the
filter, anda /∈ S. (⇐) Now suppose thatBhi(a) 6= ∅ for everyi ∈ [k]. We’d like to compute the
probability that for an arbitrarya ∈ {0, 1}∗,

Ha ⊂
⋃
w∈S

Hw

i.e., a random element will appear to be inS by our criteria. We model each evaluation of the
functionshi as independent and uniform randomness. There were a total ofnk (not necessarily
distinct) random sets modified to insert then values ofS into the filter. So, we only need to
compute the probability that allk functions placea in this subset of theBj ’s. By assumption, there
are a total ofdcnke sets wherec > 1 is a constant. LetXk,k′ denote the random variable that models
the experiment of throwingk balls intodcnke bins and counting the number that land in the firstk′

bins. For a fixed insertion of the elements ofS into our filter and lettingk′ be the number of distinct
bins occupied,Xk,k′ represents how close a random element appears to being inS according to our
Bloom filter. More precisely,Pr[Xk,k′ = k] is the probability that a random element will appear
to be inS for this specific situation. Note thatXk,k′ is a sum of independent (by assumption)
Bernoulli trials, and hence is distributed as a binomial random variable with parameters,(k, k′

cnk
),

wherek′ ≤ nk. Hence,

Pr[Xk,k′ = k] =
(k′

cnk

)k

≤
(1

c

)k

So, we’ve obtained a bound that is negligible ink, independent ofk′. Hence, if we letYk be the
experiment of samplingk′ by throwingnk balls intodcnke bins and counting the distinct number of
bins, then taking a random sample from the variableXk,k′ and returning 1 if and only ifXk,k′ = k,
thenYk is distributed identically to the variable that describes whether or not a randoma ∈ {0, 1}∗
will appear to be inS according to our filter. Now, since we havePr[Xk,k′ = k] < neg(k) and

4

the bound was independent ofk′, it is a trivial exercise to see thatPr[Yk = 1] < neg(k) which is
exactly what we wanted to show.

(2.) This argument is quite similar to part 1.(⊇) If R(a, v) = 1, then the valuev has been
inserted and associated witha and by definition,v ∈ Bhi(a) for everyi ∈ [k]. (⊆) Now suppose
a ∈ S and v ∈ Bhi(a) for every i ∈ [k]. The probability of this event randomly happening
independent of the relationR is maximized if every other element inS is associated with the same
value. And in this case, the problem reduces to a false positive for set membership with(n − 1)k
writes if a ∈ S, or the usualnk if a /∈ S. This has already been shown to be negligible in part 1.
�

In practice, we will need some data structure to model the sets of our Bloom filter with storage,
e.g. a linked list. However, in this work we will be interested inobliviouswriting to the Bloom fil-
ter, in which case a linked list seems quite inappropriate as the dynamic size of the structure would
leak information about the writing. So, we would like to briefly analyze the total space required
for a Bloom filter with storage if it is implemented with fixed-length buffers to represent the sets.
Making some needed assumptions about uniformity of value associations, we can show that with
overwhelming probability (exponentially close to 1 as a function of the size of our structure) no
buffer will overflow.

Claim 2.3 Let ({hi}ki=1, {Bj}mj=1) be a(k,m)-Bloom filter with storage as described in Definition
2.1. Suppose the filter has been initialized to store some setS of sizen and associated values.
Again, suppose thatm = dcnke wherec > 1 is a constant, and denote the relation of element-
value associations byR(·, ·). Let λ > 0 be any constant. If for everya ∈ S we have that
|{v |R(a, v) = 1}| ≤ λ then

Pr
[
max
j∈[m]
{|Bj|} > σ

]
< neg(σ)

Again, the probability is over the uniform randomness used to model thehi.

Proof: To begin, let us analyze the case ofλ = 1, so there will be a total ofnk values placed
randomly into thedcnke buffers. LetXj be the random variable that counts the size ofBj after the
nk values are randomly placed.Xj of course has a binomial distribution with parameters(nk, 1

cnk
).

HenceE[Xj] = (1/c). If (1 + δ) > 2e, we can apply a Chernoff bound to obtain the following
estimation:

Pr[Xj > (1 + δ)/c] < 2−δ/c

Now, for a givenσ we’d like to computePr[Xj > σ]. So, set(1 + δ)/c = σ and henceδ/c =
σ − 1/c. The bound then gives us:

Pr[Xj > σ] < 2−σ+1/c = 2−σ2(1/c) = neg(σ)

Then by the union bound, the probability thatany Xj has more values thanσ is also negligible
in σ. Now in the case ofλ > 1, what has changed? Our analysis above treated the functions as
uniform randomness, but to associate additional values to a specific element ofa ∈ S the same
subset of buffers (Ha in our notation) will be written to repeatedly- there is no more randomness to
analyze. Each buffer will have at most a factor ofλ additional elements in it, so our above bound
becomesneg(σ/λ) which is stillneg(σ) asλ is an independent constant.�

5

So, we can implement a(k,m)-Bloom filter with storage using fixed-length buffers. However,
the needed length of such buffers depends on the maximum number of values that could be asso-
ciated to a specifica ∈ S. A priori, this is bounded only by|V |, the size of the value universe: for
it could be the case that all values are associated to a particulara ∈ S, and hence the buffers of
Ha would need to be as large as this universe. But, since we wanted fixed-length buffersahead of
time, we can’t assume that we can get away with smaller buffers at any location. In our eventual
application of these structures, the(k, m)-Bloom filter with storage would be of no utility without a
bound on the number of associated values to a particulara ∈ S. So, we will enforce a “uniformity”
constraint; namely, that the number of values associated to each word is bounded by a constant.
We summarize with the following observation.

Observation 2.4 One can implement a(k, m)-Bloom filter with storage by using fixed-length ar-
rays to store the setsBj, with the probability of losing an associated value negligible in the length
of the arrays. The total size of such a structure is linear in the following constants and variables:

1. n — The maximum number of elements that the filter is designed to store.

2. k — The number of functions (hi) used, which serves as a correctness parameter.

3. σ — The size of the buffer arrays, which serves as a correctness parameter. Note thatσ
should be chosen to exceedλ, the maximum number of values associated to any single ele-
ment of the set.

4. l — The storage size of an associated value.

5. c — Any constant greater than 1.

So, for our application of public-key storage with keyword search, if we assume that there
are as many keywords as there are messages, then we have created a structure of sizeO(n · l) =
O(n log n) to hold the keyword set and the message references. However, the correctness parame-
terσ has logarithmic dependence onn, leaving us withO(n log2 n).

2.1.1 Oblivious Modification

For our application, we will need message senders to update the contents of a Bloom filter with
storage. However, all data is encrypted under a key which neither they, nor the storage provider
has. So, they must write to the buffers in a somewhat oblivious way- they will not (and cannot)
know what areas of a buffer are already occupied, as this will reveal information about the user’s
data, and the message-keyword associations. One model for such a writing protocol has been
explored by Ostrovsky and Skeith, in their work on private keyword searches [25]. They provide
a method for obliviously writing to a buffer which with overwhelming probability in independent
correctness parameters, is completely correct: i.e., there is a method for extracting documents from
the buffer which outputs exactly the set of documents which were put into it.

In [25], the method for oblivious buffer writing is simply to write messages at uniformly ran-
dom addresses in a buffer, except to ensure that data is recoverable with very high probability,
messages are written repeatedly to an appropriately sized buffer, which has linear dependence on a
correctness parameter. And to ensure that no additional documents arise from collisions, a “colli-
sion detection string” is appended to each document from a special distribution which is designed
to not be closed under sums. We can apply these same methods here, which will allow message

6

senders to update an encrypted Bloom filter with storage, without knowing anything about what
is already contained in the encrypted buffers. For more details on this approach, see the appendix
(Section 5). Another approach to this situation was presented in the work of Bethencourt, Song,
and Waters [3], which solves a system of linear equations to recover buffer contents. These meth-
ods may also be applicable, but require additional interaction to evaluate a pseudo-random function
on appropriate input.

So, with an added factor of a correctness parameter to the buffer lengths, one can implement
andobliviously updatean encrypted Bloom filter with storage, using the probabilistic methods of
[25], or [3].

As a final note on our Bloom filters with storage, we mention that in practice, we can replace
the functionshi with pseudo-random functions in which case our claims about correctness are still
valid, only with a computational assumption in place of the assumption about thehi being truly
random, provided that the participating parties are non-adaptive1.

So, we now have an amicable data structure to work with, but there is a piece of the puzzle
missing: this data structure will be held by a central storage provider that we’d like to keep in
the dark regarding all operations performed on the data. We need to give message senders a way
to update this data structure without revealing to the storage provider any information about the
update,and to do so with small communication. This brings us to our next ingredient:

2.2 Modifying Encrypted Data in a Communication Efficient Way

Our next tool is that of encrypted database modification. This will allow us to privately manipulate
the Bloom filters that we constructed in the preceding section. The situation is as follows:

• A database owner holds an array of ciphertexts{ci}ni=1 where the ciphertextsci = E(vi) are
encrypted using a public-key for which he does not have the private key.

• A user would like to modify one plaintext valuevi in some way, without revealing to the
database owner which value was modified, or how it was modified.

Furthermore, we would like to minimize the communication between the parties beyond the trivial
O(n) solution which could be based on any group homomorphic encryption. Using the cryptosys-
tem of Boneh, Goh, and Nissim [5], we can accomplish this with communicationO(

√
n), where

n is the size of the database.
The important property of the work of [5], for our paper, is the additional homomorphic prop-

erty of the cryptosystem: specifically, in their system, one can compute multivariate polynomials
of total degree 2 on ciphertexts. i.e., ifE is the encryption map and if

F =
∑

1≤i≤j≤u

aijXiXj

1In the case of malicious message senders, we cannot reveal the seeds to the random functions and still guarantee
correctness, however, we can entrust the storage provider with the seeds, and have the message senders execute a
protocol for secure two-party computation with the storage provider to learn the value of the functions. This can be
accomplished without the storage provider learning anything, and with the message sender learning onlyhi(w) and
nothing else. An example of such a protocol can be found in the work of Katz and Ostrovsky [20] if we disallow
concurrency, and the work of Canetti, Lindell, Ostrovsky, and Sahai [11] to allow concurrency. Here, the common
reference string can be provided as part of the public key. These solutions, of course, require additional rounds of
communication between the senders and the storage provider, and additional communication. However, the size of the
communication is proportional to the security parameter and is independent of the size of the database. We defer this
and other extensions to the full version of the paper.

7

then from an array of ciphertexts,{cl = E(xl)}ul=1, then there exists some functioñF on ciphertexts
(which can be computed using public information alone) such that

D(F̃ (c1, ..., cu)) = F (x1, ..., xu)

Applying such a cryptosystem to encrypted database modification is trivial. Suppose{xij}
√

n
i,j=1

is our database (not encrypted). Then to increment the value of a particular element at position
(i∗, j∗) by some valueα, we can proceed as follows: Create two vectorsv, w of length

√
n where,

vi = δii∗ and wj = αδjj∗

(hereδk` = 1 whenk = ` and0 otherwise). Then

viwj =

{
α if (i = i∗ ∧ j = j∗)
0 otherwise

Then, we wish to add this valueviwj to thei, j position of the database. Note that, for eachi, j, we
are just evaluating a simple polynomial of total degree two onvi, wj and the data elementxij. So, if
we are given any cryptosystem that allows us to compute multivariate polynomials of total degree
two on ciphertexts, then we can simply encrypt every input (the database, and the vectorsv, w) and
perform the same computation which will give us a private database modification protocol with
communication complexityO(

√
n).

We formalize as follows. Suppose(K, E ,D) is a CPA-secure public-key encryption scheme
that allows polynomials of total degree two to be computed on ciphertexts, as described above.
Suppose also that an array of ciphertexts{cl = E(xl)}nl=1 is held by a partyS, which have been
encrypted under some public key,Apublic. Suppose thatn is a square (if not, it can always be
padded by< 2

√
n + 1 extra elements to make it a square). DefineF (X,Y, Z) = X + Y Z. Then

by our assumption, there exists someF̃ such thatD(F̃ (E(x), E(y), E(z))) = F (x, y, z) for any
plaintext valuesx, y, z. We define a two party protocolModifyU ,S(l, α) by the following steps,
wherel andα are private inputs toU :

1. U computesi∗, j∗ as the coordinates ofl (i.e., i∗ andj∗ are the quotient and remainder of
l/n, respectively).

2. U sends{vi = E(δii∗)}
√

n
i=1, {wj = E(αδjj∗)}

√
n

j=1 to S where all values are encrypted under
Apublic.

3. S computesF̃ (cij, vi, wj) for all i, j ∈ [
√

n], and replaces eachcij with the corresponding
resulting ciphertext.

By our remarks above, this will be a correct database modification protocol. It is also easy to
see that it is private, in that it resists a chosen plaintext attack. In a chosen plaintext attack, an
adversary would ask many queries consisting of requests for the challenger to execute the protocol
to modify positions of the adversary’s choice. But all that is exchanged during these protocols is
arrays of ciphertexts for which the plaintext is known to the adversary. Distinguishing two different
modifications is precisely the problem of distinguishing two finite arrays of ciphertexts, which is
easily seen to be infeasible assuming the CPA-security of the underlying cryptosystem and then
using a very standard hybrid argument.

8

3 Definitions

In what follows, we will denote message sending parties byX , a message receiving party will be
denoted byY, and a server/storage provider will be denoted byS.

Definition 3.1 A Public Key Storage with Keyword Searchconsists of the following probabilistic
polynomial time algorithms and protocols:

• KeyGen(1s): Outputs public and private keys,Apublic andAprivate of lengths.

• SendX ,S(M, K,Apublic) This is either a non-interactive or interactive two-party protocol
that allowsX to send the messageM to a serverS, encrypted under some public keyApublic,
and also associatesM with each keyword in the setK. The valuesM, K are private inputs
that only the message-sending partyX holds.

• RetrieveY,S(w, Aprivate): This is a two party protocol between a userY and a serverS that
retrieves all messages associated with the keywordw for the userY. The inputsw,Aprivate

are private inputs held only byY. This protocol also removes the retrieved messages from
the server and properly maintains the keyword references.

We now describe correctness and privacy for such a system.

Definition 3.2 LetY be a user,X be a message sender and letS be a server/storage provider. Let
Apublic, Aprivate ←− KeyGen(1s). Fix a finite sequence of messages and keyword sets:

{(Mi, Ki)}mi=1 .

Suppose that, for alli ∈ [m], the protocolSendX ,S(Mi, Ki, Apublic) is executed byX and S.
Denote byRw the set of messages thatY receives after the execution ofRetrieveY,S(w,Aprivate).
Then, a Public Key Storage with Keyword Search is said to becorrect on the sequence{(Mi, Ki)}mi=1

if

Pr
[
Rw = {Mi | w ∈ Ki}

]
> 1− neg(1s)

for everyw, where the probability is taken over all internal randomness used in the protocolsSend
andRetrieve. A Public Key Storage with Keyword Search is said to becorrectif it is correct on all
such finite sequences.

Definition 3.3 A Public Key Storage with Keyword Search is said to be(n, λ, θ)-correctif when-
ever{(Mi, Ki)}mi=1 is a sequence such that

• m ≤ n

• |Ki| < θ, for everyi ∈ [m], and

• for everyw ∈
⋃

i∈[m] Ki, at mostλ messages are associated withw

then, it is correct on{(Mi, Ki)}mi=1 in the sense of Definition 3.2.

For privacy, there are several parties involved, and hence there will be several definitional
components.

9

Definition 3.4 We defineSender-Privacyin terms of the following game between an adversaryA
and a challengerC. A will play the role of the storage provider andC will play the role of a
message sender. The game consists of the following steps:

1. KeyGen(1s) is executed byC who sends the outputApublic toA.

2. A asks queries of the form(M, K) whereM is a message string andK is a set of keywords,
andC answers by executing the protocolSend(M, K, Apublic) withA.

3. A now chooses two pairs(M0, K0), (M1, K1) and sends this toC, where both the messages
and keyword sets are of equal size, the latter being measured by set cardinality.

4. C picks a bitb ∈ {0, 1} at random and executes the protocolSend(Mb, Kb, Apublic) withA.

5. Amay ask more queries of the form(M, K) andC responds by executingSend(M, K, Apublic)
withA.

6. A outputs a bitb′ ∈ {0, 1}.

We define the adversary’s advantage as

AdvA(1s) =
∣∣∣Pr[b = b′]− 1

2

∣∣∣.
We say that a Public-Key Storage with Keyword Search isCPA-Sender-Privateif, for all A ∈ PPT,
we have thatAdvA(1s) is a negligible function.2

Definition 3.5 We defineReceiver-Privacyin terms of the following game between an adversary
A and a challengerC. A will again play the role of the storage provider, andC will play the role
of a message receiver. The game consists of the following steps:

1. KeyGen(1s) is executed byC who sends the outputApublic toA.

2. A asks queries of the formw, wherew is a keyword, andC answers by executing the protocol
RetrieveC,A(w,Aprivate) withA.

3. A now chooses two keywordsw0, w1 and sends both toC.

4. C picks a bitb ∈ {0, 1} at random and executes the protocolRetrieveC,A(wb, Aprivate) with
A.

5. A may ask more keyword queriesw andC responds by executingRetrieveC,A(w, Aprivate)
withA.

6. A outputs a bitb′ ∈ {0, 1}.

We define the adversary’s advantage as

AdvA(1s) =
∣∣∣Pr[b = b′]− 1

2

∣∣∣.
We say that a Public Key Storage with Keyword Search isCPA-Receiver-Privateif, for all A ∈
PPT, we have thatAdvA(1s) is a negligible function.

2“PPT” stands forProbabilistic Polynomial Time. We use the notationA ∈ PPT to denote thatA is a probabilistic
polynomial-time algorithm.

10

3.1 Extensions

The reader may have noted that from the sender’s point of view, this protocol deviates from the
usual view of sending mail in that the process requires interaction between a message sender and
a server. For simplicity, this point is not addressed in the main portion of the paper, however, it
is quite easy to remedy. The source of the problem is that the mail server must communicate the
internal address of the new message back to the sender so that the sender can update the Bloom
filter with storage to contain this address at the appropriate locations. However, once again, using
probabilistic methods from [25], we can solve this problem. As long as the address space is
known (which just requires knowledge of the database size, which could be published) the mail
sender can simply instruct the server to write the message to a number of random locations, and
simultaneously send modification data which would update the bloom filter accordingly. There are
of course, prices to pay for this, but they will not be so significant. The bloom filter with storage
now has addresses of sizelog2(n), since there will be a logarithmic number of addresses instead
of just one, and furthermore, to ensure correctness, the database must also grow by a logarithmic
factor. A detailed analysis follows in Section 5.

Another potential objection to this construction is that mail senders are somewhat free to ac-
cess and modify the keyword-message associations. Hence, a malicious message sender could of
course invalidate the message-keyword associations, which is another way that this protocol differs
from what one may expect from a mail system. (We stress however, that an arbitrary sender has
no means of modifying other senders’ mail data- only the keyword association data can be ma-
nipulated.) However, this too can be solved by an application of ”off the shelf” protocols, namely
non-interactive efficient zero knowledge proof systems of Groth, Ostrovksy and Sahai [18]. In par-
ticular, the receiver publishes a common reference string of [18] (based on the same cryptography
assumption as used in this paper, namely, [5] The mail sender is now required to include a NIZK
proof that the data for updating the Bloom filter is correct according to the protocol specification.
The main point to observe is that the theorem size isO(

√
n log n) and the circuit that generated it

(and its witness) areO(
√

n log n · polylog(n)). The [18] NIZK size is proportional to the circuit
size times the security parameter. Thus, assuming poly-logarithmic security parameter the result
follows.

4 Main Construction

We present a construction of a public-key storage with keyword search that is(n, λ, θ)-correct,
where the maximum number of messages to store isn, and the total number of distinct keywords
that may be in use at a given time is alson (however, the keyword universe consists of arbitrary
strings of bounded length, say proportional to the security parameter). Correctness will be proved
under a computational assumption in a “semi-honest” model, and privacy will be proved based
only on a computational assumption. In our context, the term “semi-honest party” will refer to a
party that correctly executes the protocol, but may collect information during the protocol’s exe-
cution. We will assume the existence of a semantically secure public-key encryption scheme with
homomorphic properties that allow the computation of polynomials of total degree two on cipher-
texts, e.g., the cryptosystem of [5]. The key generation, encryption and decryption algorithms of
the system will be denoted byK, E , andD respectively. We define the required algorithms and
sub-protocols below. First, let us describe our assumptions about the parties involved:X ,Y andS.
Recall thatX will always denote a message sender. Note that, in general, there could be many dif-
ferent senders but, for the purposes of describing the protocol, we need only to name one. Sender

11

X is assumed to hold a message, keyword(s) and the public key. ReceiverY holds the private
key. S has a storage buffer forn encrypted messages, and it also has a(k,m)-Bloom filter with
storage, as defined in Definition 2.1, implemented with fixed-length buffers and encrypted under
the public key distributed byY. Here,m = dcnke, wherec > 1 is a constant. The functions
and buffers will be denoted by{hi}ki=1 and{Bj}mj=1, as usual. The buffers{Bj} will be initialized
to 0 in every location.S maintains in its storage space encryptions of the buffers, and not the
buffers themselves. We denote these encryptions{B̂j}mj=1. The functionshi are implemented by
pseudo-random functions, which can be published byY. Recall that forw ∈ {0, 1}∗, we defined
Hw = {hi(w) | i ∈ [k]}.

• KeyGen(k): RunK(1s), the key generation algorithm of the underlying cryptosystem to
create public and private keys, call themApublic andAprivate respectively. Private and public
parameters for a PIR protocol will also be generated by this algorithm.

• SendX ,S(M, K,Apublic): SenderX holds a messageM , keywordsK andApublic and wishes
to send the message toY via the serverS. The protocol consists of the following steps:

1. X modifiesM to haveK appended to it, and then sendsE(M), an encryption of the
modifiedM to S.

2. S receivesE(M), and stores it at an available addressρ in its message buffer.S then
sendsρ back toX .

3. For everyj ∈
⋃

w∈K Hw, senderX writes γ copies of the addressρ to B̂j, using
the probabilistic methods from [25], which are discussed in Section 2 and Section 5.
However, the information of which buffers were written needs to be hidden fromS.
So, to accomplish the buffer writing in an oblivious way,X repeatedly executes the
protocol ModifyX ,S(x, α) for appropriate(x, α), in order to update the Bloom filter
buffers. To write a single address may take several executions of theModify protocol
depending on the size of the plaintext set in the underlying cryptosystem. Also, if
|
⋃

w∈K Hw| < k|K|, execute additionalModify(r, 0) protocols (for any randomr) so
that the total number of times that theModify protocol is invoked is uniform among all
keyword sets of equal size.

• RetrieveY,S(w, Aprivate): Y wishes to retrieve all messages associated with the keywordw,
and erase them from the server. The protocol consists of the following steps:

1. Y repeatedly executes an efficient PIR protocol (e.g., [23, 10]) withS to retrieve the
encrypted buffers{B̂j}j∈Hw which are the Bloom filter contents corresponding tow. If
|Hw| < k, thenY executes additional PIR protocols for random locations and discards
the results so that the same number of protocols are invoked regardless of the keyword
w. Recall thatY possesses the seeds used for the pseudo-random functionshi, and
hence can computeHw without interacting withS.

2. Y decrypts the results of the PIR queries to obtain{Bj}j∈Hw , using the keyAprivate.
ReceiverY then computesL =

⋂
j∈Hw

Bj, a list of addresses corresponding tow, and
then executes PIR protocols again withS to retrieve the encrypted messages at each
address inL. Recall that we have bounded the maximum number of messages associ-
ated with a keyword. We refer to this value asλ. ReceiverY will, as usual, execute
additional random PIR protocols so that it appears as if every word hasλ messages

12

associated to it. After decrypting the messages,Y will obtain any other keywords asso-
ciated to the message(s) (recall that the keywords were appended to the message during
theSend protocol). Denote this set of keywordsK.

3. Y first retrieves the additional buffers{B̂j}, for all j ∈
⋃

w′ 6=w∈K Hw′, using PIR
queries withS. Note that the number of additional buffers is bounded by the con-
stantθt. Once again,Y executes additional PIR protocols withS so that the number
of PIR queries in this step of the protocol is uniform for everyw. Next,Y modifies
these buffers, removing any occurrences of any address inL. This is accomplished
via repeated execution ofModifyY,S(x, α) for appropriatex andα. AdditionalModify
protocols are invoked to correspond to the maximumθk buffers.

Theorem 4.1 The Public-Key Storage with Keyword Search from the preceding construction is
(n, λ, θ)-correct according to Definition 3.3, under the assumption that the functionshi are pseudo-
random.

Proof sketch: This is a consequence of Claim 2.2, Claim 2.3, and Observation 2.4. The pre-
ceding claims were all proved under the assumption that the functionshi were uniformly random.
In our protocol, they were replaced with pseudo-random functions, but since we are dealing with
non-adaptive adversaries, the keywords are chosen before the seeds are generated. Hence they are
independent, and if any of the preceding claims failed to be true with pseudo-random functions
in place of thehi, our protocol could be used to distinguish thehi from the uniform distribution
without knowledge of the random seed, violating the assumption of pseudo-randomness. As we
mentioned before, we can easily handle adaptive adversaries, by implementinghi using PRF’s,
where the seeds are kept by the service provider, and users executing secure two-party computa-
tion protocols to gethi(w) for anyw using [20] or, in the case of concurrent users, using [11] and
having the common random string required by [11] being part of the public key.�

We also note that in a model with potentially malicious parties, we can apply additional ma-
chinery to force “malicious” behavior using [18] as discussed above.

Theorem 4.2 Assuming CPA-security of the underlying cryptosystem (and therefore the security
of our Modify protocol as well), the Public Key Storage with Keyword Search from the above
construction is sender private, according to Definition 3.4.

Proof sketch: Suppose that there exists an adversaryA ∈ PPT that can succeed in breaking the
security game, from Definition 3.4, with some non-negligible advantage. So, under those condi-
tions,A can distinguish the distribution ofSend(M0, K0) from the distribution ofSend(M1, K1),
where the word “distribution” refers to the distribution of the transcript of the interaction between
the parties. A transcript ofSend(M, K) essentially consists of justE(M) and a transcript of
severalModify protocols that update locations of buffers based onK. Label the sequence ofMod-
ify protocols used to update the buffer locations forKi by {Modify(xi,j, αi,j)}νj=1. Note that by
our design, if|K0| = |K1|, then it will take the same number ofModify protocols to update the
buffers, so the variableν does not depend oni in this case. Now consider the following sequence
of distributions:

E(M0) Modify(x0,0, α0,0) · · · Modify(x0,ν , α0,ν)
E(M0) Modify(x0,0, α0,0) · · · Modify(x1,ν , α1,ν)

...
...

...
...

E(M0) Modify(x1,0, α1,0) · · · Modify(x1,ν , α1,ν)
E(M1) Modify(x1,0, α1,0) · · · Modify(x1,ν , α1,ν)

13

The first line of distributions in the sequence is the transcript distribution forSend(M0, K0)
and the last line of distributions is the transcript distribution forSend(M1, K1). We assumed
that there exists an adversaryA that can distinguish these two distributions. Hence, not all of the
adjacent intermediate distributions can be computationally indistinguishable since computational
indistinguishability is transitive. So, there exists an adversaryA′ ∈ PPT that can distinguish
between two adjacent rows in the sequence. IfA′ distinguishes within the firstν + 1 rows, then
it has distinguishedModify(x0,j, α0,j) from Modify(x1,j, α1,j) for somej ∈ [ν] which violates
our assumption of the security ofModify. And if A′ distinguishes the last two rows, then it has
distinguishedE(M0) from E(M1) which violates our assumption on the security of the underlying
cryptosystem. Either way, a contradiction. So we conclude that no suchA exists in the first place,
and hence the system is secure according to Definition 3.4.�

Theorem 4.3 Assuming CPA-security of the underlying cryptosystem (and therefore the security
of our Modify protocol as well), and assuming that our PIR protocol is semantically secure, the
Public Key Storage with Keyword Search from the above construction is receiver private, according
to Definition 3.5.

Proof sketch: Again, assume that there existsA ∈ PPT that can gain a non-negligible ad-
vantage in Definition 3.5. Then,A can distinguishRetrieve(w0) from Retrieve(w1) with non-
negligible advantage. The transcript of aRetrieve protocol consists a sequence of PIR protocols
from steps 1, 2, and 3, followed by a number ofModify protocols. For a keywordwi, denote the
sequence of PIR protocols that occur inRetrieve(wi) by {PIR(zi,j)}ζj=1, and denote the sequence
of Modify protocols by{Modify(xi,j, αi,j)}ηj=1. Note that by the design of theRetrieve protocol,
there will be equal numbers of these PIR queries andModify protocols regardless of the keyword
w, and henceζ andη are independent ofi. Consider the following sequence of distributions:

PIR(z0,0) · · · PIR(z0,ζ) Modify(x0,0, α0,0) · · · Modify(x0,η, α0,η)
PIR(z1,0) · · · PIR(z0,ζ) Modify(x0,0, α0,0) · · · Modify(x0,η, α0,η)

...
...

...
...

...
PIR(z1,0) · · · PIR(z1,ζ) Modify(x0,0, α0,0) · · · Modify(x0,η, α0,η)
PIR(z1,0) · · · PIR(z1,ζ) Modify(x1,0, α1,0) · · · Modify(x0,η, α0,η)

...
...

...
...

...
PIR(z1,0) · · · PIR(z1,ζ) Modify(x1,0, α1,0) · · · Modify(x1,η, α1,η)

The first line is the transcript distribution ofRetrieve(w0) and the last line is the transcript dis-
tribution of Retrieve(w1). Since there existsA ∈ PPT that can distinguish the first distribution
from the last, then there must exist an adversaryA′ ∈ PPT that can distinguish a pair of adjacent
distributions in the above sequence, due to the transitivity of computational indistinguishability.
Therefore, for somej ∈ [ζ] or j′ ∈ [η] we have thatA′ can distinguish PIR(z0,j) from PIR(z1,j) or
Modify(x0,j′ , α0,j′) from Modify(x1,j′ , α1,j′). In both cases, a contradiction of our initial assump-
tion. Therefore, it must be the case that no suchA ∈ PPT exists, and hence our construction is
secure according to Definition 3.5.�

Theorem 4.4 (Communication Complexity) We claim that the Public Key Storage with Keyword
Search from the preceding construction has sub-linear communication complexity inn, the number
of documents held by the storage providerS.

14

Proof: This can be seen as follows: from Observation 2.4, we see that a(k,m)-Bloom filter
with storage that is designed to storen different keywords is of linear size in

1. n — The maximum number of elements that the filter is designed to store.

2. k — The number of functions (hi) used, which serves as a correctness parameter.

3. σ — The size of the buffer arrays, which serves as a correctness parameter. Note thatσ
should be chosen to exceedλ, the maximum number of values associated to any single
element of the set.

4. l = log n — The storage size of an associated value.

5. c — Any constant greater than 1.

However, all the buffers in our construction have been encrypted, giving an extra factor ofs,
the security parameter. Additionally, there is another correctness parameter,γ coming from our use
of the methods of [25], which writes a constant number copies of each document into the buffer.
Examining the proof of Theorem 2.2, we see that the parametersk andc are indeed independent
of n. However,{s, l, γ} should have logarithmic dependence onn.

So, the total size of the encrypted Bloom filter with storage is

O(n · k · σ · l · c · s · γ) = O(n log3 n)

as all other parameters are constants or correctness parameters independent ofn (i.e., their value
in preserving correctness does not deteriorate asn grows).

Therefore the communication complexity of the protocol is

• O(
√

n log3 n) for sending a message assuming honest-but-curious sender.

• O(
√

n log3 n · polylog(n)) for any malicious poly-time bounded sender.

• O(polylog(n)) for reading using anypolylog(n) PIR protocol, e.g. [8, 10, 24].

• O(
√

n log3 n) for deleting messages.

�

References

[1] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-Lee, G. Neven,
P. Paillier, H. Shi. Searchable Encryption Revisited: Consistency Properties, Relation to
Anonymous IBE, and Extensions. InProc. of CRYPTO, pp. 205-222, 2005.

[2] B. Barak, O. Goldreich. Universal Arguments and their Applications. IEEE Conference on
Computational Complexity 2002: 194-203

[3] J. Bethencourt, D. Song, and B. Waters. New techniques for private stream searching. Tech-
nical Report CMU-CS-06-106, Carnegie Mellon University, March 2006.

[4] B. Bloom. Space/time trade-offs in hash coding with allowable errors. Communications of
the ACM, pages 13(7):422-426, July 1970.

15

[5] D. Boneh, E. Goh, K. Nissim. Evaluating 2-DNF Formulas on Ciphertexts. TCC 2005:
325-341

[6] D. Boneh, G. Crescenzo, R. Ostrovsky, G. Persiano. Public Key Encryption with Keyword
Search. EUROCRYPT 2004: 506-522

[7] R. Curtmola, J. Garay, S. Kamara, R. Ostrovsky Searchable symmetric encryption: improved
definitions and efficient constructions. CCS-2006: ACM Conference on Computer and Com-
munications Security 2006. pp 79-88

[8] Y. C. Chang. Single Database Private Information Retrieval with Logarithmic Communica-
tion. ACISP 2004

[9] Y. C. Chang, M. Mitzenmacher. Privacy Preserving Keyword Searches on Remote Encrypted
Data. InProc. of 3rd Applied Cryptography and Network Security Conference (ACNS), pp.
442-455, 2005.

[10] C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval with
polylogarithmic communication. In J. Stern, editor,Advances in Cryptology – EUROCRYPT
’99, volume 1592 ofLecture Notes in Computer Science, pages 402–414. Springer, 1999.

[11] R. Canetti, Y. Lindell, R. Ostrovsky, A. Sahai. Universally composable two-party and multi-
party secure computation. InProc. of the thiry-fourth annual ACM symposium on Theory of
computing, pp. 494-503, 2002.

[12] B. Chor, N. Gilboa, M. Naor Private Information Retrieval by Keywords in Technical Report
TR CS0917, Department of Computer Science, Technion, 1998.

[13] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval. InProc.
of the 36th Annu. IEEE Symp. on Foundations of Computer Science, pages 41–51, 1995.
Journal version:J. of the ACM, 45:965–981, 1998.

[14] G. Di Crescenzo, T. Malkin, and R. Ostrovsky. Single-database private information retrieval
implies oblivious transfer. InAdvances in Cryptology - EUROCRYPT 2000, 2000.

[15] M. Freedman, Y. Ishai, B. Pinkas and O. Reingold. Keyword Search and Oblivious Pseudo-
random Functions. InProc. of 2nd Theory of Cryptography Conference (TCC ’05), 2005.

[16] E.J. Goh. Secure indexes. 2003, available athttp://eprint.iacr.org/2003/216

[17] O. Goldreich, R. Ostrovsky. Software Protection and Simulation on Oblivious RAMs. In J.
ACM 43(3): 431-473 (1996)

[18] J. Groth, R. Ostrovsky, A. Sahai Perfect Non-interactive Zero Knowledge for NP. EURO-
CRYPT 2006: 339-358

[19] S. Goldwasser and S. Micali. Probabilistic encryption. In J. Comp. Sys. Sci, 28(1):270–299,
1984.

[20] J. Katz, R. Ostrovsky. Round-Optimal Secure Two-Party Computation. in CRYPTO 2004:
335-354

16

[21] J. Kilian. A Note on Efficient Zero-Knowledge Proofs and Arguments (Extended Abstract)
In Proc. of STOC 1992: 723-732

[22] K. Kurosawa, W. Ogata. Oblivious Keyword Search. Journal of Complexity, Volume 20 ,
Issue 2-3 April/June 2004 Special issue on coding and cryptography Pages: 356–371

[23] E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database,
computationally-private information retrieval. InProc. of the 38th Annu. IEEE Symp. on
Foundations of Computer Science, pages 364–373, 1997.

[24] H. Lipmaa. An Oblivious Transfer Protocol with Log-Squared Communication. IACR ePrint
Cryptology Archive 2004/063

[25] R. Ostrovsky and W. Skeith. Private Searching on Streaming Data. InAdvances in Cryptology
– CRYPTO 2005

[26] T. Sander, A. Young, M.Yung. Non-Interactive CryptoComputing For NC1 FOCS 1999:
554-567

[27] D. X. Song, D. Wagner, A. Perrig. Practical Techniques for Searches on Encrypted Data. In
Proc. of IEEE Symposium on Security and Privacy, pp. 44-55, 2000.

5 Appendix

5.1 Some Probabilistic Methods from [25]

In the work of [25], a number of probabilistic methods were employed to achieve the oblivious
writing of documents into an encrypted buffer using homomorphic encryption. Some of these
methods are perfectly applicable to this work as well, and are used to update the Bloom filters with
storage. We’ll briefly explain such methods here.

The basic idea is that for simple, non-interactive oblivious writing, a uniform method should
be applied, or else information will be obtainable from what addresses are written to. So, a method
is devised in which messages can be written to a buffer uniformly at random, but still keeping the
property that as long as the buffer in question is of appropriate size (O(n log n), wheren is the
total number of documents written), then with overwhelming probability all documents can still be
recovered from the buffer. The authors of [25] make use of the following lemmas, which we state
here without proof, as such proof is easily obtained in the original work.

The first lemma describes and proves correct the method for buffer writing. As discussed,
documents are written uniformly at random to buffer addresses. But if documents are written to
the same place, one or more of the documents at that address may be lost. The following lemma
says that if you write each documentγ times to random locations, and make your buffer of size
linear in this parameter, then with overwhelming probability inγ, you’ll be able to recover at least
one copy of every document, even when you assume buffer collisions to be a complete catastrophe,
from which nothing can be recovered. (This is not necessarily the case, see [3].)

Color-survival game: Letm, γ ∈ Z+, and suppose we havem different colors, call them{colori}mi=1,
andγ balls of each color. We throw theγm balls uniformly at random into2γm bins, call them
{binj}2γm

j=1 . We say that a ball “survives” inbinj, if no other ball (of any color) lands inbinj.
We say thatcolori “survives” if at least one ball of colorcolori survives. We say that the game
succeedsif all m colors survive, otherwise we say that itfails.

17

Lemma 5.1 The probability that thecolor-survival game failsis negligible inγ.

To ensure correctness, i.e., to ensure that precisely the documents put into the buffer are those
that are extracted, [25] makes use of a “collision detection string” which can be appended to
each document to distinguish genuine documents from documents that arise from collisions in the
buffer. (Recall that items are added to the buffer uniformly at random.) These strings are selected
uniformly at random from a certain, contrived distribution which is very unlikely to be preserved
under sums. (I.e., the sum of two elements from the distribution will not be in the distribution with
overwhelming probability). This is formalized for addition modulo 2 as follows.

Lemma 5.2 Let {ei}3i=1 be the three unit vectors inZ3
2, i.e., (ei)j = δij. Letn be an odd integer,

n > 1. For v ∈ Z3
2, denote byTn(v) the number ofn-element sequences{vj}nj=1 in theei’s, such

that
∑n

j=1 vj = v. Then,

Tn((1, 1, 1)) =
3n − 3

4

For the proof of this lemma, we direct the reader to the original work of [25]. Given this result,
it is easy to see that with overwhelming probability in the length, strings of this format will not
sum to another. Hence, if they are appended to each document, they will be able to distinguish
collisions from originals.

5.2 Non-Interactive Message Sending

As mentioned in the main text, using probabilistic techniques, we can eliminate interaction from
the process of message sending. The idea is quite simple, and very similar to the work of [25]. The
basic idea is to have message senders randomly choose several locations in the database in which
to store their message. This information, along with the description of the modification that is to
be done to the Bloom filter can now all be sent simultaneously to the server, which will simply
store the message at the locations requested by the sender. The same analysis from [25] shows
correctness of such a protocol. Now, let us analyze the cost we must pay in space, and hence
communication. The database of mail messages now has sizen log(n), and hence addresses to the
database are of sizelog(n log(n)) = log(n)+ log2(n). Furthermore, the analysis above shows that
we must write the message to a logarithmic number of locations in order to preserve correctness.
So, our Bloom filter units will now contain a block of a logarithmic number of addresses of size
log(n) + log2(n), as opposed to just one address as was the case in the original design. Hence, the
total Bloom filter size changes fromO(n log3 n) to O(n(log3 n + log4 n)) = O(n log4 n). And
thus, we still have provided a construction with non-trivial (sub-linear) communication complexity.

18

