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Abstract

We present a method for constructing new quadratic APN functions from known
ones. Applying this method to the Gold power functions we construct an APN
function x3 + tr(x9) over F2n . It is proven that in general this function is CCZ-
inequivalent to the Gold functions (and therefore EA-inequivalent to power func-
tions), to the inverse and Dobbertin mappings, and in the case n = 7 it is CCZ-
inequivalent to all power mappings.

Key words: Affine equivalence, Almost bent, Almost perfect nonlinear,
CCZ-equivalence, Differential uniformity, Nonlinearity, S-box, Vectorial Boolean
function

1 Introduction

A function F : F
n
2 → F

n
2 is called almost perfect nonlinear (APN) if, for every

a 6= 0 and every b in F
n
2 , the equation F (x)+F (x+a) = b admits at most two

solutions (it is also called differentially 2-uniform). Vectorial Boolean functions
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used as S-boxes in block ciphers must have a low differential uniformity to
allow a high resistance to the differential cryptanalysis (see [3,34]). In this
sense APN functions are optimal. The notion of the APN function is closely
connected to the notion of the almost bent (AB) function. A function F : F

n
2 →

F
n
2 is called AB if the minimum Hamming distance between all the Boolean

functions v · F , v ∈ F
n
2 \{0} (called the component functions of F ), and all

affine Boolean functions on F
n
2 is maximal. Here, “·” denotes the usual inner

product in F
n
2 . Any other choice of an inner product would lead to the same

notion. For instance, the vector space F
n
2 can be identified to the field F2n and

we can then take for inner product x ·y = tr(xy) where tr is the absolute trace
function. The minimum Hamming distance between all component functions
of F and all affine Boolean functions on F

n
2 is called the nonlinearity of F and

its maximum equals 2n−1 − 2
n−1

2 (see [18]). AB functions exist for n odd only
and oppose an optimum resistance to the linear cryptanalysis (see [32,18]).
Besides, every AB function is APN [18], and in the n odd case, any quadratic
function is APN if and only if it is AB [17].

The APN and AB properties are preserved by some transformations of func-
tions [17,34]. If F is an APN function, A1, A2 are affine permutations and A
is affine then the function F ′ = A1 ◦ F ◦ A2 + A is also APN (the functions
F and F ′ are called extended affine equivalent (EA-equivalent)). Besides, the
inverse of any APN permutation is APN too. Until recently, the only known
constructions of APN and AB functions were EA-equivalent to power func-
tions F (x) = xd over finite fields (F2n being identified with F

n
2 ). Table 1 gives

all known values of exponents d (up to multiplication by a power of 2 modulo
2n − 1, and up to taking the inverse when a function is a permutation) such
that the power function xd over F2n is APN. For n odd the Gold, Kasami,
Welch and Niho APN functions from Table 1 are also AB (for the proofs of
AB property see [14,15,27,28,30,34]).

Table 1

Known APN power functions xd on F2n .

Functions Exponents d Conditions References

Gold 2i + 1 gcd(i, n) = 1 [27,34]

Kasami 22i − 2i + 1 gcd(i, n) = 1 [29,30]

Welch 2t + 3 n = 2t + 1 [24]

Niho 2t + 2
t

2 − 1, t even n = 2t + 1 [23]

2t + 2
3t+1

2 − 1, t odd

Inverse 22t − 1 n = 2t + 1 [2,34]

Dobbertin 24t + 23t + 22t + 2t − 1 n = 5t [25]
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In [17], Carlet, Charpin and Zinoviev introduced an equivalence relation of
functions, more recently called CCZ-equivalence, which corresponds to the
affine equivalence of the graphs of functions and preserves APN and AB prop-
erties. EA-equivalence is a particular case of CCZ-equivalence and any per-
mutation is CCZ-equivalent to its inverse [17]. In [11,12], it is proven that
CCZ-equivalence is more general, and applying CCZ-equivalence to the Gold
mappings classes of APN functions EA-inequivalent to power functions are
constructed in [5,11,12]. These classes are presented in Table 2. When n is
odd, these functions are also AB. Besides, for n = 5 the first of these AB
functions is EA-inequivalent to any permutation and disproves the conjecture
from [17] about nonexistence of such AB mappings (see [11,12]).

Table 2

Known APN functions EA-inequivalent to power functions on F2n .

Functions Conditions d◦(F )

n ≥ 4

x2i+1 + (x2i

+ x + tr(1) + 1) tr(x2i+1 + x tr(1)) gcd(i, n) = 1 3

n divisible by 6
(

x + trn/3(x
2(2i+1) + x4(2i+1)) + tr(x) trn/3(x2i+1 + x22i(2i+1))

)2i+1

gcd(i, n) = 1 4

n divisible by 3
(

x
1

2i+1 + trm/3(x + x22i

)

)

−1

gcd(2i, n) = 1 4

m 6= n

x2i+1 + trn/m(x2i+1) + x2i

trn/m(x) + x trn/m(x)2
i

n odd

+

(

trn/m(x)2
i+1 + trn/m(x2i+1) + trn/m(x)

) 1

2i+1
(x2i

+ trn/m(x)2
i

+ 1) n divisible by m m + 2

+

(

trn/m(x)2
i+1 + trn/m(x2i+1) + trn/m(x)

) 2i

2i+1
(x + trn/m(x)) gcd(i, n) = 1

These new results on CCZ-equivalence have raised several interesting ques-
tions. One of them is whether the known classes of APN power functions are
CCZ-inequivalent. Partly the answer is given in [8]: it is proven that in general
the Gold functions are CCZ-inequivalent to the Kasami and Welch functions,
and that for different parameters 1 ≤ i, j ≤ n−1

2
the Gold functions x2i+1

and x2j+1 are CCZ-inequivalent. Another interesting question is the existence
of APN polynomials CCZ-inequivalent to power functions. In [26] it is shown
that one of the ways to construct such polynomials is to consider linear combi-
nations of two different Gold power functions. Using this approach they have
introduced two quadratic APN binomials on F210 and F212 which are CCZ-
inequivalent to power maps. After that, two infinite classes of quadratic APN
binomials CCZ-inequivalent to power functions have been constructed in [7–
9]. These classes are presented in Table 3 (this table gives all known classes of
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APN functions CCZ-inequivalent to power functions) by cases 1 and 2. When
n is odd these functions are AB permutations and this disproves the conjec-
ture from [17] about nonexistence of AB functions CCZ-inequivalent to the
Gold maps [8,9]. Another approach for constructing quadratic APN polyno-
mials CCZ-inequivalent to power functions is introduced in [20]: the idea is to
consider quadratic hexanomials of a certain type over F22m as good candidates
for being differentially 4-uniform 1 . This method has been generalized in [6].
Following the methods from [6,20] classes of APN trinomials and hexanomials
(see cases 3 and 4 in Table 3) have been introduced in [6]. This functions are
conjectured to be CCZ-inequivalent to power functions and this conjecture
was confirmed for n = 6 (see [6]).

Table 3

Known APN functions CCZ-inequivalent to power functions on F2n .

No Functions Conditions References

n = 3k, gcd(k, 3) = gcd(s, 3k) = 1

1 x2s+1 + wx2ik+2mk+s

k ≥ 4, i = sk mod 3, m = 3 − i [8,9]

w has the order 22k + 2k + 1

n = 4k, gcd(k, 2) = gcd(s, 2k) = 1

2 x2s+1 + wx2ik+2mk+s

k ≥ 3, i = sk mod 4, m = 4 − i [7]

w has the order 23k + 22k + 2k + 1

n = 2m, m ≥ 3, q = 2m

3 x22i+2i

+ bxq+1 + cxq(22i+2i) cq+1 = 1, c 6∈ {λ(2i+1)(q−1), λ ∈ F2n} [6]

gcd(i, m) = 1, cbq + b 6= 0

n = 2m, m ≥ 3, q = 2m

4 x(x2i

+ xq + cx2iq) gcd(i, m) = 1, s /∈ Fq [6]

+x2i

(cqxq + sx2iq) + x(2i+1)q x2i+1 + cx2i

+ cqx + 1 is irreducible over F2n

n ≥ 7 Corollary 1

5 x3 + tr(x9) n > 2p for the smallest possible p > 1 of the present

such that p 6= 3, gcd(p, n) = 1 paper

All constructions of APN polynomials CCZ-inequivalent to power functions
mentioned above have not given new APN polynomials with coefficients in
F2. A natural question is whether all APN polynomials with coefficients in

1 Similar approach for constructing differentially 4-uniform functions was proposed
in [33]: they consider quadratic quadrinomials of a certain type over F22m .
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F2 are CCZ-equivalent to power functions. In the present paper we show
that the answer to this question is negative. We give a new approach for
constructing quadratic APN functions and using it we construct a class of
quadratic APN polynomials with coefficients in F2. We prove that the func-
tion F (x) = x3+tr(x9) is APN over F2n for any n, and that for almost all n ≥ 7
it is CCZ-inequivalent to the Gold functions (and therefore EA-inequivalent
to power functions), to the inverse and Dobbertin functions. Obviously, this
function is AB for all odd n. We conjecture that for n ≥ 7 the function F
is CCZ-inequivalent to any power function. This conjecture is confirmed for
the case n = 7. Further we show that applying CCZ-equivalence to quadratic
APN functions, it is possible to construct classes of nonquadratic APN map-
pings CCZ-inequivalent to power functions. Note that the existence of APN
functions CCZ-inequivalent to power functions and to quadratic functions is
still an open problem.

2 Preliminaries

Let F
n
2 be the n-dimensional vector space over the field F2. Any function F

from F
n
2 to itself can be uniquely represented as a polynomial on n variables

with coefficients in F
n
2 , whose degree with respect to each coordinate is at most

one:

F (x1, ..., xn) =
∑

u∈Fn
2

c(u)
(

n
∏

i=1

xui
i

)

, c(u) ∈ F
n
2 .

This representation is called the algebraic normal form of F and its degree
d◦(F ) the algebraic degree of the function F .

Besides, the field F2n can be identified with F
n
2 as a vector space. Then, viewed

as a function from this field to itself, F has a unique representation as a
univariate polynomial over F2n of degree smaller than 2n:

F (x) =
2n−1
∑

i=0

cix
i, ci ∈ F2n .

For any k, 0 ≤ k ≤ 2n − 1, the number w2(k) of the nonzero coefficients
ks ∈ {0, 1} in the binary expansion

∑n−1
s=0 2sks of k is called the 2-weight of k.

The algebraic degree of F is equal to the maximum 2-weight of the exponents i
of the polynomial F (x) such that ci 6= 0, that is, d◦(F ) = max0≤i≤n−1,ci 6=0 w2(i)
(see [17]).

A function F : F
n
2 → F

n
2 is linear if and only if F (x) is a linearized polynomial

over F2n , that is,
n−1
∑

i=0

cix
2i

, ci ∈ F2n .
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The sum of a linear function and a constant is called an affine function.

Let F be a function from F2n to itself and A1, A2 : F2n → F2n be affine
permutations. The functions F and A1◦F ◦A2 are then called affine equivalent.
Affine equivalent functions have the same algebraic degree (i.e. the algebraic
degree is affine invariant).

As recalled in the Introduction, we say that the functions F and F ′ are ex-

tended affine equivalent if F ′ = A1 ◦ F ◦ A2 + A for some affine permutations
A1, A2 and an affine function A. If F is not affine, then F and F ′ have again
the same algebraic degree.

Two mappings F and F ′ from F2n to itself are called Carlet-Charpin-Zinoviev
equivalent (CCZ-equivalent) if the graphs of F and F ′, that is, the subsets
GF = {(x, F (x)) | x ∈ F2n} and GF ′ = {(x, F ′(x)) | x ∈ F2n} of F2n × F2n ,
are affine equivalent. Hence, F and F ′ are CCZ-equivalent if and only if there
exists an affine automorphism L = (L1, L2) of F2n × F2n such that

y = F (x) ⇔ L2(x, y) = F ′(L1(x, y)).

Note that since L is a permutation then the function L1(x, F (x)) has to be a
permutation too (see [8]). As shown in [17], EA-equivalence is a particular case
of CCZ-equivalence and any permutation is CCZ-equivalent to its inverse.

For a function F : F2n → F2n and any elements a, b ∈ F2n we denote

δF (a, b) = |{x ∈ F
n
2 : F (x + a) + F (x) = b}|.

F is called a differentially δ-uniform function if maxa∈F
∗

2n ,b∈F2n δF (a, b) ≤ δ.
Note that δ ≥ 2 for any function over F2n . Differentially 2-uniform mappings
are called almost perfect nonlinear.

For any function F : F2n → F2n we denote

λF (a, b) =
∑

x∈F2n

(−1)tr(bF (x)+ax), a, b ∈ F2n ,

where tr(x) = x + x2 + x4 + ... + x2n−1
is the trace function from F2n into F2

(and for any divisor m of n we also denote trn/m(x) = x+x2m
+...+x2m(n/m−1)

).
The set ΛF = {λF (a, b) : a, b ∈ F2n , b 6= 0} is called the Walsh spectrum of
the function F and the multiset {|λF (a, b)| : a, b ∈ F2n, b 6= 0} is called the
extended Walsh spectrum of F . The value

NL(F ) = 2n−1 −
1

2
max

a∈F2n ,b∈F
∗

2n

|λF (a, b)|

equals the nonlinearity of the function F . The nonlinearity of any function F
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satisfies the inequality

NL(F ) ≤ 2n−1 − 2
n−1

2

([18,36]) and in case of equality F is called almost bent or maximum nonlinear.

Obviously, AB functions exist only for n odd. It is proven in [18] that every AB

function is APN and its Walsh spectrum equals {0,±2
n+1

2 }. If n is odd, every
APN mapping which is quadratic (that is, whose algebraic degree equals 2)
is AB [17], but this is not true for nonquadratic cases: the Dobbertin and the
inverse APN functions are not AB (see [15,17]). When n is even, the inverse
function x2n−2 is a differentially 4-uniform permutation [34] and has the best
known nonlinearity [31], that is 2n−1−2

n
2 (see [15,22]). This function has been

chosen as the basic S-box, with n = 8, in the Advanced Encryption Standard
(AES), see [19]. A comprehensive survey on APN and AB functions can be
found in [16].

It is shown in [17] that, if F and G are CCZ-equivalent, then F is APN (resp.
AB) if and only if G is APN (resp. AB). More generally, CCZ-equivalent
functions have the same differential uniformity and the same extended Walsh
spectrum (see [11]). Further invariants for CCZ-equivalence are given in [26]
(see also [20]) in terms of group algebras. Let G = F2[F2n ×F2n ] be the group
algebra of F2n ×F2n over F2. It consists of the formal sums

∑

g∈G

agg

where ag ∈ F2. If S is a subset of F2n ×F2n then it can be identified with the
element

∑

s∈S s of G. For any APN mapping F we denote

∆F = {(a, b) : F (x) + F (x + a) = b has 2 solutions} ⊂ F2n ×F2n .

The dimensions of the ideals of G generated by ∆F and by the graph GF of
F are called ∆- and Γ-ranks, respectively. According to [26] (and also [20]),
∆- and Γ-ranks of a function are CCZ-invariant.

3 Construction of new quadratic APN functions

In the theorem below we give a general approach for constructing new quadratic
APN functions from known ones.

Theorem 1 Let F be a quadratic APN function from F2n to itself, let f be a

quadratic Boolean function on F2n and

ϕF (x, a) = F (x) + F (x + a) + F (a) + F (0),

ϕf (x, a) = f(x) + f(x + a) + f(a) + f(0).
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Then the function F (x) + f(x) is APN if for every nonzero a ∈ F2n there

exists a linear Boolean function ℓa satisfying the conditions

1) ϕf(x, a) = ℓa(ϕF (x, a)),
2) if ϕF (x, a) = 1 for some x ∈ F2n then ℓa(1) = 0.

Proof. Since the function F (x)+f(x) is quadratic, it is APN if and only if, for
every nonzero a ∈ F2n , the equation ϕF (x, a)+ϕf (x, a) = 0 admits at most two
solutions (see e.g. [16]). According to the hypothesis on ℓa, a solution to this
equation must be such that ϕf(x, a) = 0 and therefore such that ϕF (x, a) = 0.
Then, F being quadratic APN, this equation admits at most two solutions.2

The same principle as in Theorem 1 allows generating a large variety of differ-
entially 4-uniform functions from APN functions as it is shown in the propo-
sition below.

Proposition 1 For any APN function F the following functions are differ-

entially 4-uniform over F2n

1) F (x) + tr(G(x)) for any function G;

2) F (x) + x2n−1;

3) F ◦ A and A ◦ F for any affine function A which is 2-to-1;
4) any function F ′ such that L(GF ) = GF ′ for some affine 2-to-1 mapping L

of F2n × F2n.

Remark 1 Note that, in the situation of Theorem 1, a linear function la
satisfying ϕf(x, a) = ℓa(ϕF (x, a)) always exists. This is due to the fact that,
by the assumption F is APN and then the kernel of ϕF (x, a) equals {0, a}. This
set is always a subset of the kernel of ϕf (x, a), which is indeed the necessary
and sufficient condition for the existence of la. 2

A direct consequence of Theorem 1 is that, if F is APN and if ℓ is a linear form
such that ℓ(1) = 0, then the function F (x)+ℓ(F (x)) is APN. But this function
is affine equivalent to F since it is equal to L ◦ F where L(x) = x + ℓ(x), and
the condition that ℓ(1) = 0 is equivalent to saying that L is a permutation.

We give now an example where Theorem 1 leads to a function which is CCZ-
inequivalent to the original function F .

Corollary 1 Let n be any positive integer. Then the function x3 + tr(x9) is

APN on F2n.

Proof. We can apply Theorem 1 with F (x) = x3, ϕF (x, a) = a2x + ax2,
f(x) = tr(x9), ϕf(x, a) = tr(a8x + ax8) and ℓa(y) = tr(a6y + a3y2 + a−3y4).
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Indeed, we have then

ℓa(ϕF (x, a)) = tr
(

a6(a2x + ax2) + a3(a4x2 + a2x4) + a−3(a8x4 + a4x8)
)

= ϕf(x, a)

and if there exists x ∈ F
n
2 such that ϕF (x, a) = 1 then

ℓa(1) = tr
(

a−3
)

= tr

(

x

a
+
(

x

a

)2
)

= 0.

2

Remark 2 The APN property of the function x3 + tr(x9) can be proven also
with the following arguments due to Dillon [21]. If F is a quadratic function
then for any nonzero a and for ϕF (x, y) = F (x + y) + F (x) + F (y) + F (0)
there exists a linear function La such that ϕF (ax, a) = La(x + x2). Indeed, if
F (x) =

∑

i≤j ci,jx
2i+2j

then La(z) =
∑

i≤j ci,ja
2i+2j

(Tj−i(z))2i
, where Tk(z) =

z + z2 + ... + z2k−1
. Thus, F is APN if and only if for any nonzero a and z

the equality La(z) = 0 implies tr(z) = 1. In the case when F (x) = x3 + tr(x9)
we have La(z) = a3z + tr(a9T3(z)) and if La(z) = 0 for some z 6= 0 then
1 = a3z = tr(a9T3(z)) which implies 1 = tr(z−3(z + z2 + z4)) = tr(z). 2

Another class of APN functions, to which the construction of Theorem 1 can
be applied, is a class of trinomial APN functions described in [6] (see case 3 in
Table 3). However, for this class of functions we were able to construct only
functions that are EA-equivalent to the original trinomial. More precisely we
have the following proposition.

Proposition 2 Let m be a positive odd integer, n = 2m, α a primitive ele-

ment of F2n. Then the functions F, G : F2n → F2n with

F (x) = x6 + x2m+1 + α2m−1x6·2m

and

G(x) = F (x) + tr(α2m−1+1x3)

are EA-equivalent.

Proof. Let

t =
α2m+1+1

α2m−1 + 1

and L(x) = x + tr(tx). We claim that L(F (x)) = G(x).

First note that t ∈ F2m , which in particular implies that L is bijective. Fur-
thermore we have
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L(F (x)) =F (x) + tr(tx2m+1) + tr(tx6) + tr(tα2m−1x6∗2m

)

=F (x) + 0 + tr(t2
m

x3∗2m+1

) + tr(tα2m−1x3∗2m+1

)

=F (x) + tr(t(1 + α2m−1)x3∗2m+1

)

=F (x) + tr(α2m+1+1x3∗2m+1

)

=F (x) + tr
(

(

α2m−1+1x3
)2m+1

)

=G(x)

2

3.1 An algorithmic approach

Below we describe an algorithmic approach to search for functions fulfilling
the conditions of Theorem 1 when F is a Gold function. The first step will be
to find an explicit description of the linear function la used in Theorem 1. Let
F (x) = x2r+1 and f(x) = tr(x2i+1). Then

ϕF (x, a) = a2r+1

(

(

x

a

)

+
(

x

a

)2r)

and

ϕf(x, a) = tr

(

a2i+1

(

(

x

a

)

+
(

x

a

)2i))

.

If we define t = (ir−1 − 1) mod n we get

ϕf(x, a) = tr

(

a2i+1

(

(

x

a

)

+
(

x

a

)2i))

= tr



a2i+1





t
∑

j=0

[

(

x

a

)

+
(

x

a

)2r
]2jr









= tr



a2i+1





t
∑

j=0

[

ϕF (x, a)

a2r+1

]2jr







= tr





t
∑

j=0

a2i+1−(2r+1)2jr

ϕF (x, a)2j





= tr









t
∑

j=0

a2i−jr+2−jr−(2r+1)



ϕF (x)



 .

Thus denoting

T r
i (a) =

t
∑

j=0

a2i−jr+2−jr−(2r+1)
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we get
ϕf(x, a) = tr(T r

i (a)ϕF (x, a)).

In general for g(x) =
∑

i αix
2i+1 we get

ϕg(x, a) = tr

((

∑

i

αiT
r
i (a)

)

ϕF (x, a)

)

.

Following Theorem 1, the condition for F+g to be APN is that, if tr(a−(2r+1)) =
0 then

tr

(

∑

i

αiTi(a)

)

=
∑

i

tr (αiT
r
i (a)) = 0.

Fixing a base (bj)j of F2n over F2 we can consider the set of vectors

{

tr(bjT
r
i (a))a∈F2n ,tr(a−3)=0 | i, j ∈ {0 . . . n − 1}

}

.

Given F , finding a quadratic function g such that the conditions of Theorem
1 are fulfilled is equivalent to finding a set of linearly dependent vectors in this
set. We computed these vectors and all linear dependent sets up to dimension
15. The only examples in addition to x3 + tr(x9) are listed below.

(1) If n is even, then the function tr ◦T r
n/2 is constant zero. Thus in this case

we can always add tr(x2n/2+1). However this function is constant zero.
(2) For n = 5 the function x5 + tr(x3) is APN.
(3) For n = 8 the function x9 + tr(x3) is APN.

4 CCZ-inequivalence of the new APN function to power mappings

Theorem 2 The function of Corollary 1 is CCZ-inequivalent to any Gold

function on F2n if n ≥ 7 and n > 2p where p is the smallest positive integer

different from 1 and 3 and coprime with n.

Proof. Let F (x) = x3 + tr(x9) and G(x) = x2r+1 be APN functions on F2n ,
n ≥ 7, r ≤ (n − 1)/2.

Suppose the functions F and G are EA-equivalent. Then, there exist affine
permutations L1, L2 and an affine function L′ such that

L1(x
3) + L1(tr(x

9)) = (L2(x))2t+1 + L′(x).

That is,
L1(x

3) + L1(1) tr(x9) = (L2(x))2t+1 + L′(x).

Since the functions are quadratic, we can assume without loss of generality
that L1 and L2 are linear: L1(x) =

∑

m∈Z/nZ bmx2m
, L2(x) =

∑

p∈Z/nZ cpx
2p

.

11



Then we get

∑

m∈Z/nZ

bmx3·2m

+ tr(x9)
∑

m∈Z/nZ

bm =
∑

l,p∈Z/nZ

cpc
2t

l x2l+t+2p

+ L′(x). (1)

On the left hand side of the identity (1) we have only items of the type x3·2m
,

x9·2m
, with some coefficients. Therefore this must be true also for the right

hand side of the identity.

Let p be the smallest positive integer different from 1 and 3 such that gcd(n, p) =
1 (for example, if n is odd then p = 2, if n is even and not divisible by 5 then
p = 5). If n > 2p then 2p + 1 is not in the same cyclotomic coset with 3 or 9.
Therefore, the items of the type x2k(2p+1) must cancel. That is, for any k

ckc
2t

k−t+p = ck+pc
2t

k−t. (2)

Since n ≥ 7 then 3 and 9 are in different cyclotomic cosets and we have for
any k

L1(1) = ckc
2t

k−t+3 + ck+3c
2t

k−t.

If L1(1) 6= 0 then

ckc
2t

k−t+3 6= ck+3c
2t

k−t. (3)

If ck 6= 0 for all k then from (2) and (3) we get

ckc
−2t

k−t = ck+pc
−2t

k−t+p, (4)

ckc
−2t

k−t 6= ck+3c
−2t

k−t+3. (5)

Since gcd(n, p) = 1 and from (4)

ckc
−2t

k−t = cmc−2t

m−t

for any m. It contradicts (5). Thus, ck = 0 for some k. Then from (2) and (3)
we get that ck+p = 0. Repeating this step for ck+p, ck+2p, ... we get ck+ps = 0
and since gcd(n, p) = 1 then ck = 0 for all k. A contradiction. If L1(1) = 0
then the equation L(x) = 0 has at least 2 solutions 0, 1 and therefore L1 is
not a permutation. Thus, F and G are EA-inequivalent.

Suppose that F (x) and G(x) are CCZ-equivalent, that is, there exists an affine
automorphism L = (L1, L2) of F2n × F2n such that y = F (x) ⇔ L2(x, y) =
G(L1(x, y)) and L1(x, F (x)) is a permutation. This implies then L2(x, F (x)) =
G(L1(x, F (x))). Writing L1(x, y) = L(x)+L′(y) and L2(x, y) = L′′(x)+L′′′(y)
gives

L′′(x) + L′′′(F (x)) = G (L(x) + L′(F (x))) . (6)

We can write
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L(x) = b +
∑

m∈Z/nZ

bmx2m

,

L′(x) = b′ +
∑

m∈Z/nZ

b′mx2m

,

L′′(x) = b′′ +
∑

m∈Z/nZ

b′′mx2m

,

L′′′(x) = b′′′ +
∑

m∈Z/nZ

b′′′mx2m

,

b + b′ = c.

Then we get

G(L(x) + L′(F (x))) =
(

L(x) + L′(x3 + tr(x9)
) (

L(x) + L′(x3 + tr(x9)
)2r

=



c +
∑

m∈Z/nZ

bmx2m

+
∑

m∈Z/nZ

b′mx2m(2+1) + tr(x9)
∑

m∈Z/nZ

b′m





×



c2r

+
∑

m∈Z/nZ

b2r

mx2m+r

+
∑

m∈Z/nZ

b′2
r

m x2m+r(2+1) + tr(x9)
∑

m∈Z/nZ

b′2
r

m





= Q(x) + [
∑

m,k∈Z/nZ

bmb′2
r

k x2m+2k+r+2k+r+1

+ L′(1)2r ∑

m,k∈Z/nZ

bmx2m+2k+3+2k

+
∑

m,k∈Z/nZ

b′mb2r

k x2m+1+2m+2k+r

+ L′(1)
∑

m,k∈Z/nZ

b2r

mx2m+r+2k+3+2k)]

+ [
∑

m,k∈Z/nZ

b′mb′2
r

k x2m+1+2m+2k+r+1+2k+r

+ L′(1)2r ∑

m,k∈Z/nZ

b′mx2m+1+2m+2k+3+2k

+ L′(1)
∑

m,k∈Z/nZ

b′2
r

m x2m+r+1+2m+r+2k+3+2k

],

where Q(x) is a quadratic polynomial. Obviously, all terms in the expression
above whose exponents have 2-weight strictly greater than 2 must cancel.
Since F and G are EA-inequivalent then L′ is not a constant. Then there
exists m ∈ Z/nZ such that b′m 6= 0.

Let L′(1) 6= 0. Since the items with the exponet 2m+1 + 2m + 2m+2 + 2m+5

have to vanish then we get L′(1)2r
b′m = L′(1)b′2

r

m−r and since L′(1) 6= 0, b′m 6= 0
and r is coprime with n then b′k 6= 0 and b′kb

′−2r

k−r = L′(1)1−2r
for all k. Now

we can deduce that b′k+r = L′(1)1−2r
b′2

r

k for all k. Then, introducing µ such
that L′(1)1−2r

= µ2r−1, we deduce that µb′k+r = (µb′k)
2r

for all k and then that

µb′k+1 = (µb′k)
2 (using that gcd(r, n) = 1) and then µb′k = (µb′0)

2k
. This means
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that µL′(x) = µb′ + tr(µb′0x). It implies that all nonquadratic items in the
last bracket vanish and L′(x) = d + tr(d′x) for some d, d′.
The function L is not 0 because L′ is not a permutation, then bm 6= 0 for
some m. Since the items with the exponent 2m + 2m+2 + 2m+5 have to vanish
then L′(1)2r

bm = L′(1)b2r

m−r. Like above we get L(x) = d + tr(d′x). Thus,
L1(x, F (x)) = d′′ + tr(F ′(x)) for some d′′ and F ′(x) and L1(x, F (x)) is not a
permutation. A contradiction.

Let L′(1) = 0 and r 6= 1. Then 2m+1 + 2m + 2m+r+1 + 2m+r has 2-weight 4
and since the items with this exponent should cancel then we get b′2

r+1
m =

b′m+rb
′2r

m−r. Since b′m 6= 0 then b′m+r, b
′
m−r 6= 0 and b′mb′−2r

m−r = b′m+rb
′−2r

m . Since
gcd(n, r) = 1 then b′k 6= 0, b′kb

′−2r

k−r = b′mb′−2r

m−r for all k and this implies L′(x) =
d + tr(d′x) for some d, d′. Since L1(x, F (x)) is a permutation then L 6= 0
and bm 6= 0 for some m. The items with the exponent 2m + 2m+r + 2m+r+1

should vanish. Therefore, bmb′2
r

m = b′m+rb
2r

m−r and bmb−2r

m−r = b′m+rb
′−2r

m . As
above it leads to the equality L(x) = d+tr(d′x) which is in contradiction with
L1(x, F (x)) being a permutation.

Let L′(1) = 0 and r = 1. Since L′(1) = 0 and b′m 6= 0 then there exists t such
that b′m+t 6= 0. If t 6= −1,−2 then 2m+1 + 2m + 2m+t+2 + 2m+t+1 has 2-weight
4 and we get b′mb′2

r

m+t = b′m+t+1b
′2r

m−1 and b′mb′−2r

m−1 = b′m+t+1b
′−2r

m+t. Therefore,
L′(x) = d+tr(d′x) for some d, d′. If t 6= 1, 2 then 2m+t+1 +2m+t +2m+2 +2m+1

has 2-weight 4 and we get b′m+tb
′2r

m = b′m+1b
′2r

m+t−1 and again L′(x) = d+tr(d′x)
for some d, d′. Thus, L 6= 0 and then bm 6= 0 for some m. Since the items
with the exponent 2m + 2m+2 + 2m+3 cancel then bmb′2

r

m+1 = b′m+2b
2r

m−1 and
bmb−2r

m−1 = b′m+2b
′−2r

m+1. This implies L(x) = d + tr(d′x) and, thus, L1(x, F (x)) is
not a permutation. Therefore, F and G are not CCZ-equivalent. 2

Corollary 2 The function of Corollary 1 is EA-inequivalent to any power

function on F2n if n ≥ 7 and n > 2p, where p is the smallest positive integer

different from 1 and 3 and coprime with n.

Proof. The function F (x) = x3 + tr(x9) is quadratic APN and by Theorem
2 it is EA-inequivalent to any quadratic power function. Since the algebraic
degree is EA-invariant then F is EA-inequivalent to any power mapping. 2

Dobbertin and inverse APN functions have unique Walsh spectra (except the
case n = 3 when the inverse function is EA-equivalent to x3) which are different
from the Walsh spectra of quadratic APN functions (see [14,17,35]). Since the
extended Walsh spectrum of a function is invariant under CCZ-equivalence
then we can make the following conclusion.

Proposition 3 The function of Corollary 1 is CCZ-inequivalent to the in-

verse and Dobbertin APN functions for n ≥ 7.
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For n = 7 the ∆-rank of the function F (x) = x3 + tr(x9) equals 212 and
differs from the ∆-ranks of the Kasami functions x13 and x23 (which equal 338
and 436, respectively). Thus, for n = 7 the function F is CCZ-inequivalent
to Kasami functions, and by Theorem 2 to the Gold functions. Since in this
field the Welch and Niho cases coincide with the Kasami cases then F is
CCZ-inequivalent to all power maps on F27 .

Corollary 3 The function F (x) = x3 + tr(x9) is CCZ-inequivalent to power

functions on F27.

Conjecture 1 The function F (x) = x3 + tr(x9) is CCZ-inequivalent to any

power function on F2n if n ≥ 7 and n > 2p, where p is the smallest positive

integer different from 1 and 3 and coprime with n.

Applying CCZ-equivalence to the quadratic APN function F (x) = x3 +tr(x9),
it is possible to construct classes of nonquadratic APN mappings which are
CCZ-inequivalent to power functions.

Proposition 4 Let F : F2n → F2n, F (x) = x3 + tr(x9) then the following

functions are CCZ-equivalent to F

1) for n odd the function with algebraic degree 3

x3 + tr(x9) + (x2 + x) tr(x3 + x9);

2) for n even the function with algebraic degree 3

x3 + tr(x9) + (x2 + x + 1) tr(x3);

3) for n divisible by 6 the function with algebraic degree 4

(

x + trn/3(x
6 + x12) + tr(x) trn/3(x

3 + x12)
)3

+ tr
(

(

x + trn/3(x
6 + x12) + tr(x) trn/3(x

3 + x12)
)9
)

;

4) for n odd and divisible by 3 the function with algebraic degree 4

(

x
1
3 + trn/3(x + x4)

)−1
+ tr

(

(

(

x
1
3 + trn/3(x + x4)

)−1
)3
)

.

Proof. The proof is the same as for the cases from [5,11,12] (use the affine
permutation L(x, y) = (x + tr(y), y) for the first two cases, L(x, y) = (x +
trn/3(y

2 + y4), y) for the third case and L(x, y) = (x + trn/3(y + y4), y) for the
fourth case). 2

Remark 3 Note that the second, the third and the fourth APN functions in
Proposition 4 can be obtained from respectively the first, the second and the
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third functions of Table 2 by adding tr(G(x)) for some G. It means that the
construction F (x) + tr(G(x)), where F is APN and G is arbitrary, actually
gives new APN functions even if F and G are not quadratic. 2

5 Further quadratic APN constructions?

There is a straightforward generalization of Theorem 1:

Theorem 3 Let F be a quadratic APN function from F2n to itself, let f be a

quadratic function from F2n to F2m where m is a divisor of n, and

ϕF (x, a) = F (x) + F (x + a) + F (a) + F (0),

ϕf (x, a) = f(x) + f(x + a) + f(a) + f(0).

Then the function F (x) + f(x) is APN if for every nonzero a ∈ F2n there

exists a linear function ℓa from F2n to F2m which satisfies the conditions

1) ϕf(x, a) = ℓa(ϕF (x, a)),
2) for every u ∈ F

∗
2m, if ϕF (x, a) = u for some x ∈ F2n then ℓa(u) 6= u.

We could find an application of Theorem 3:

Corollary 4 Let n = 2m where m is an even positive integer. Let us denote

by trn/m the trace function from F2n to F2m : trn/m(x) = x+x2m
. The functions

F (x) = x3 +trn/m(x2m+2) = x3 +x2m+2 +x2m+1+1 and F ′(x) = x3 +(trn/m(x))3

are APN.

But unfortunately, these functions are EA-equivalent to power functions. In-
deed, let G be the Gold function G(x) = x2m−1+1. Let γ be any element of
F4 \F2 and L1, L2 be the linear mappings L1(x) = γ2x2m+1

+ γ x2, L2(x) =
γ x2m

+ γ2x. Then L = (L1, L2) is an isomorphism since the system











γ2x2m+1
+ γ x2 = 0

γ x2m
+ γ2x = 0

clearly admits 0 as the only solution. And since γ2m
= γ, γ2m−1

= γ2 and
γ + γ2 = 1, we have

G ◦ L1(x) =
(

γ2x2m+1

+ γ x2
)2m−1+1

=
(

γ x + γ2x2m
) (

γ2x2m+1

+ γ x2
)

= γ
(

x3 + x2m+2 + x2m+1+1
)2m

+ γ2
(

x3 + x2m+2 + x2m+1+1
)

=L2 ◦ F (x).
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