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Abstract

Copyrighting a function is the process of embedding hard-to-remove marks in the func-
tion’s implementation while retaining its original functionality. Here we consider the above
problem in the context of public-key encryption and we parallel the process of copyrighting
a function to the process of designing traitor tracing schemes.

We derive two copyrighted public-key encryption functions for the 2-key setting, solving
an open question left by earlier work with respect to copyrighting discrete-logarithm based
functions. We then follow a modular design approach and show how to elevate the 2-
key case to the multi-user setting, employing collusion secure codes. Our methodology
provides a general framework for constructing public-key traitor tracing schemes that has
the interesting property that the transmission rate remains constant if the plaintext size
can be calibrated to reach an appropriate minimal length. Achieving a constant rate, i.e.,
constant expansion in the size of ciphertexts and keys, is an important open problem in
the area of traitor tracing schemes. Our design shows how one can solve it for settings that
accommodate the required plaintext calibration (e.g., when a bulk of symmetric cipher
keys can be encrypted in one message).

Our constructions support “black-box traitor tracing”, the setting where the tracer only
accesses the decryption box in input/output queries/responses. For the first time here we
provide a modeling of black-box traitor tracing that takes into account adversarially chosen
plaintext distributions, a security notion we call semantic black-box traceability. In order
to facilitate the design of schemes with semantic black-box traceability we introduce as
part of our modular design approach a simpler notion called semantic user separability
and we show that this notion implies semantic black-box traceability. In the multi-user
setting our constructions also demonstrate how one can derive public-key traitor tracing
by reducing the required “marking assumption” of collusion-secure codes to cryptographic
hardness assumptions.
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1 Introduction.

Copyrighting a function is the process that transforms a function to a function-family where
each member (i.e., each function representation) has the same functionality but possesses
discernible and unique markings. Such markings should be perceptible to the appropriate
entities and moreover they should be resilient to removal even by adversaries commanding a
sub-collection of the functions. Copyrighting functions has numerous applications in settings
where the same function is used by a number of possibly adversarial entities, and where it is
desired that the illegal redistribution or misuse of the function should be somehow deterred
(due to the fear of exposure when the marking is detected).

Naccache, Shamir and Stern in [NSS99] studied the problem of copyrighting symmetric
encryption functions. The techniques presented in [NSS99] applied to one-way (hash) func-
tions and to symmetric encryption (and were implemented based on the RSA function used
as a private key function). They left as an open question whether it is possible to achieve
function copyright for discrete-log based systems. Perhaps more importantly, their work leaves
another open question : is it possible to copyright public-key encryption functions (or decryp-
tion functions to be more precise)? Here, we provide answers to these questions. We argue
that copyrighting a public-key encryption function, interpreted as copyrighting the decryption
function (since the encryption is meant to be publicly available and not owned by any entity)
parallels the design of public-key traitor tracing schemes. Using this observation as a starting
point for the current work, we present a general framework for designing public-key traitor
tracing schemes as well as two concrete instantiations of the framework which possess unique
efficiency and security characteristics.

1.1 Traitor tracing

Traitor tracing [CFN94] allows the distribution of digital content to a set of subscribers, so
that if any misbehaving coalition thereof (up to a certain size) leaks its decryption keys to
a pirate that constructs a “pirate-decoder”, it is still possible to discover the identities of
the misbehaving parties (a.k.a. traitors). Traitor tracing is attractive since it offers some
redistribution resistance even in settings where the subscription keys can be reverse-engineered
out of decoders; this is quite useful given that software obfuscation is limited and in fact does
not appear to allow for cryptographically strong hiding (cf. [BGI+01]).

From the time of the primitive’s introduction in [CFN94], a series of works including
[Pfi96, SW98, NP98, KD98, BF99, FT01, GSY99, NP00, SW00, NNL01, KY01b, CPP05,
BSW06, PST06] proposed more efficient and more robust schemes or schemes with advanced
capabilities. Two desirable properties of a traitor tracing scheme are (i) Public-key traitor
tracing, where any third party is able to send secure messages to the set of subscribers (in-
creasing the functionality and scale of the service); and (ii) Black-box traitor tracing, which
suggests that the tracing procedure can be accomplished with merely black-box access to the
pirate-decoder. Black-box traitor tracing reduces tracing costs drastically as there is no need
to reverse engineer the pirate-decoder and tracing can be performed remotely.

Traitor tracing has also its shortcomings: the size of the ciphertexts and keys used by
traitor-tracing schemes depends on quantities such as the number of users and/or the maximum
traitor collusion that is anticipated. Even though progress has been made from the initial
scheme of [CFN94] in reducing the “communications overhead” in traitor tracing schemes, so
far there has not been a scheme in which the rate of the three main efficiency parameters
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of a traitor tracing scheme: ciphertext, encryption-key and user-key, is constant; the “rate”
of a parameter expresses the ratio of its size over the size of the plaintexts (note that the
plaintext size is essentially the security parameter). We will refer to the sum of the rates of
the three parameters collectively, as the “transmission rate” of a traitor tracing scheme. The
reason we do not concentrate solely on the ciphertext rate, or the “per message” overhead,
is that memory costs induced by the size of keys are equally important contributions to the
“transmission” costs of a traitor tracing scheme (especially when implemented in dedicated or
embedded systems). We note that minimizing the transmission rate has been, in fact, open
since [CFN94].

1.2 Our results

Our starting point is the notion of a multi-key public-key encryption scheme. Based on this
primitive we provide a formal model for black-box traceability that takes into account adver-
sarial plaintext distributions: we call this security notion “semantic black-box traceability.”
This means in particular that the pirate will be allowed to choose the plaintext distribution
that it wishes the pirate decoder to operate on. In previous works that considered black-box
traitor tracing, including [CFN94, BF99, CFNP00], such adversarial capability was not con-
sidered. We stress that a traitor tracing scheme may be used to distribute varied material
(possibly determined by a malicious content distributor), and thus it is important to consider
adversarial plaintext distributions in the same way that it is important to consider semantic
security when designing public-key encryption schemes. It is important to note that allowing
the pirate to choose the plaintext distribution is tricky from a definitional viewpoint, as any
such formulation should also take into account the success probability that is required of the
pirate decoder (if not, “key-less” decoders can be feasible which, in turn, will render tracing
impossible).

We continue to present a general methodology for designing public-key traitor tracing
schemes with semantic black-box traceability, inspired by the copyrighting a function method-
ology of [NSS99]. Our framework involves two major stages.

In the first step the focus is on copyrighting public-key functions in the 2-user setting. The
2-user setting, while retaining much of the complexity of the multi-user setting, is more readily
attainable. An important aspect of our modular design methodology is the notion of semantic
user-separability that we introduce. Semantic user separability is a crucial stepping stone for
attaining semantic black-box traceability while being conceptually much simpler; we show that
any semantic user-separable 2-key public-key encryption scheme satisfies semantic black-box
traceability (in the 2-user setting).

We then present two explicit constructions of 2-key public-key encryptions that are user-
separable. Therefore these constructions allow for black-box traceability in the 2-user setting.
Our first construction is based on the DDH problem over composite groups and its traceability
relies on the quadratic residuosity assumption. Our second construction is based on the DDH
problem over prime order subgroups and its traceability relies on the DDH assumption.

In the second stage of our framework, we start with a 2-user public-key encryption scheme
that achieves semantic user separability and we provide a general construction for obtaining
a solution to the multi-user setting that involves a collusion secure code [BS98, Tar03] and
the concatenation of parallel composition of a number of instances of the underlying 2-user
encryption. Note that the employment of collusion-secure codes in general requires a “mark-
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ing assumption” that restricts the behavior of the pirates. Our 2-user semantic separability
notion is a tool that, based on our parallel composition approach, effectively enforces such
marking assumption under complexity theoretic assumptions. In our concrete designs the
quadratic residuosity assumption and the decisional Diffie-Hellman assumption are employed,
respectively, for the two schemes.

Our public-key traitor tracing schemes, have the interesting property of being the first to
achieve constant transmission rate when operated in a setting where the distributor has the
flexibility of adjusting the size of the plaintexts to accommodate tracing. Such flexibility is
always possible in bulk data encryption (or in the public-key setting, bulky transmission of
numerous session keys). Given that the basic block of plaintext is calibrated, the “calibration
length” (i.e., the size of the basic block of plaintext) becomes an additional parameter. Overall,
this introduces a tradeoff that allows us to have constant transmission and key size rate by
increasing the calibration factor appropriately. Note that the calibration factor is a property
of the basic block of the plaintext of the public encryption system and not a property of the
entire cleartext. For example, the block may contain the keys for many pieces of content put
together and subsequent blocks may be transmitted symmetrically encrypted.

Our first public-key traitor tracing scheme achieves a constant rate of 2 for ciphertexts and 1
for secret-keys when the plaintexts reach a minimal size (via calibration) that is O(lc2 log(n/ε))
where l is a security parameter, c is the maximum number traitors that can be tolerated, n
is the number of users and ε is the error-probability of the tracing procedure. Note that
simple (uncopyrighted) ElGamal encryption has identical transmission rate (but regardless of
calibration). Our second public-key traitor tracing scheme has a ciphertext rate of 3 and a
secret-key rate of 2, under the same calibration requirements. Our second scheme achieves
black-box traceability for a larger family of pirates and adversarial plaintext distributions
though.
Organization. In section 2 we present some basic notations, definitions and the formal model
for black-box traceability. In particular in section 2.1 we discuss the intractability assumptions
we employ, in section 2.2 we define public-key traitor tracing and our new definition for semantic
black-box traceability. Then, in section 3 we present the copyrighted function setting of [NSS99]
together with our reformulation of the concept to apply to copyrighted public-key functions.
In section 4, we first present the notion of semantic user-separability (section 4.2) and show
that it implies black-box traceability in the 2-user setting. Then, we present two schemes of
copyrighted public-key encryption for the 2-user setting. The generic construction for traitor
tracing schemes based on the 2-user case is presented in section 6. Finally, our new public-key
traitor tracing schemes are described in a self-contained fashion in section 7.
Remarks. This work is the full revised version of [KY02]. The present version includes ad-
ditionally the new formal modeling of semantic black-box traceability and the reduction to
semantic user separability. The present version also corrects a false claim stated in [KY02]
regarding the number of queries required for the black-box traceability of one of the con-
structions. Further, in [KY02] the first scheme we presented was given without black-box
traceability and it was left as an open problem to achieve it. This open problem is resolved in
the affirmative herein.

Recent Works: In subsequent work that builds on our results, Chabanne, Phan and
Pointcheval, [CPP05] presented a scheme with asymptotic rate 1 and put forth the notion
of public-traceability. Later, Phan, Naini and Tonien, [PST06] showed how to achieve rate 1
and maintain public-traceability at the same time (a question that was left open in the work
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of [CPP05]).

2 Preliminaries and modeling

A function σ : N→ R will be called negligible if for all c ∈ N there exists a l0 ∈ N so that for
all l ≥ l0 it holds that σ(l) < l−c. Throughout the text l will denote a security parameter. All
procedures that we consider unless noted otherwise are probabilistic polynomial-time (PPT)
in l. If K is a set of objects of size polynomial in l and f is a PPT on input 1l samples an
element of K, denote by k ←↩f K a random variable over K following the distribution induced
by f ; note that we may occasionally omit f or K from this notation if they are implied by the
context. If K is a finite set of objects, let len[k ∈ K] denote the maximum size that an object
in K may have. As stated above len[k ∈ K] is polynomial in the security parameter l and
perhaps it may depend on other parameters as well. We use |x| to denote the size of an object
x, for example, |x| = blog2 xc+ 1 if x ∈ N; also let [k] denote the set {1, . . . , k}. If f(b, v) is a
function with real values, we write f(b, v) ∼ c where c ∈ R is a constant iff limb,v→∞ f(b, v) = c.
The notation a ∈U R stands for “a is sampled from R following the uniform distribution.” If
Kl is a set of objects of a certain size k(l) where l ∈ N then we will denote by K the collection
{Kl}l∈N. We will also use the notation [K]l to refer to the l-th element of the collection.

A code C is a family of sets of strings over an alphabet Σ parameterized by n ∈ N. We
assume that the there exists a polynomial-time function descC that on input 1n produces all
codewords of [C]n. In cases where the length of each element of [C]n is v and the alphabet size
is d we refer to the code C as a 〈n, v〉d-code. If ω ∈ [C]n then we write ω = (ω)1 . . . (ω)v where
each (ω)` ∈ Σ.

A family of probability distributions D parameterized by l ∈ N will be called a probability
ensemble. We define the min-entropy of a probability ensemble D to be the (N→ R) function
− log(maxa∈[Ω]l Prob[X = a]) where [Ω]l is the support set of [D]l, X is a random variable
distributed according to D and log(·) denotes the base 2 logarithm. Given two probability
ensembles D1,D2 we define the statistical distance of them as a function in l that is equal to

1
2

∑
a∈[Ω]l

|Prob[X = a]−Prob[Y = a]|

where X,Y are random variables distributed according to [D1]l and [D2]l respectively. Two
probability ensembles are called statistically indistinguishable if their statistical distance is a
negligible function in l. We say that two probability ensembles are computationally indistin-
guishable if it holds that maxA |Prob[A(X) = 1]−Prob[A(Y ) = 1]| is a negligible function in
l where A is a PPT (probabilistic polynomial-time) predicate; note that such predicates will
be called distinguishers between the two random variables X,Y .

Next we define the notion of a multi-key public-key encryption scheme :

Definition 1 A multi-key public-key encryption scheme is a tuple 〈P,C,K,S, G,E,D〉 so that

1. P and C are the plaintext-space and ciphertext-space respectively. K and S is the public
and secret-key space respectively. These are collections parameterized by the security
parameter l ∈ N.
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2. Key Generation. The sampling algorithm G is used for key generation in the following
manner : 〈pk, sk1, . . . , skn, τ〉 ← G(1l, 1n); note that τ is some auxiliary private infor-
mation that may be empty. In general we denote by [S]l,pk the subset of [S]l that contains
all sk such that 〈pk, . . . , sk, . . .〉 can appear as an output of G(1l, 1n) for some n (i.e.,
all possible secret-keys for a fixed public-key). Note that it may be the case that Sl,pk is a
singleton and further it is not assumed that Sl,pk is maximal in some way (in particular
the definition of this set is syntactic based only on G).

3. Encryption. E : ([K]l × [P]l)→ [C]l is a probabilistic polynomial-time procedure in l.

4. Decryption. D : ([S]l× [C]l)→ [P]l is a deterministic polynomial-time procedure in l that
satisfies the condition D(sk,E(pk,m)) = m for all l ∈ N, m ∈ [P]l and pk ∈ [K]l and
sk ∈ [S]l,pk.

5. Semantic Security (in the sense of indistinguishability): we define the following game
Gn that operates in conjunction with a PPT adversary A: Gn on input 1l obtains
〈pk, sk1, . . . , skn, τ〉 from G(1l, 1n) and simulates A(1l, pk); A returns two messages
m0,m1 ∈ [P]l such that m0 6= m1 as well as some auxiliary information aux. Gn samples
c←↩E(pk,mb) [C]l where b ∈U {0, 1} and simulates A(1l, aux, c) to obtain output b∗; finally
Gn returns 1 if and only if b∗ = b (otherwise 0). We define AdvnA(l) = Prob[Gn(1l) = 1]
in the above procedure. The multi-user encryption scheme is said to be semantically
secure for n users, if 2AdvnA(l)− 1 is a negligible function in l.

Note that in some cases we will want to stress that the multi-key scheme operates for a
specific value of n. In such cases we may write instead “n-key public-key encryption scheme.”

The above definition is a simple syntactic extension of the standard notion of public-key
encryption with semantic security; since no requirement is imposed on the structure of the
secret-keys, any public-key encryption scheme also fits the above definition (by e.g., setting
sk1 = . . . = skn for all n ∈ N).

2.1 Intractability assumptions

The security of the schemes that we will develop will be based on the hardness of the Decisional
Diffie Hellman (DDH) Problem over a multiplicative cyclic subgroup 〈g〉. Formally we define
the assumption as follows:

Definition 2 Decision Diffie Hellman Assumption. Let desc be a probabilistic algorithm
that on input 1l produces a string that contains (a) the description of a polynomial-time in l
group operation · : G × G → G, (b) the description of a polynomial-time in l membership test
“x ∈ G”, (c) an element g ∈ G, (d) an integer t. We denote ~d an arbitrary output of desc(1l).

For a given ~d, we denote by D~d the set {〈g, gx, gy, gxy〉 | x, y < t}, and by R~d
the set

{〈g, gx, gy, gz〉 | x, y, z < t}. The DDH assumption for desc(·) states that any poly-time dis-
tinguisher D for the uniform distributions over the sets D~d,R~d

will have a distance that is a
negligible function in l.

The DDH assumption has been used in a variety of settings and over many different
group description generators; for an overview and applications the reader is referred to [NR97]
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[Bon98]. The DDH assumption over subgroups of prime order within the multiplicative group
Z∗
p where p is prime, is known to be equivalent to the security of regular ElGamal encryption,

see [TY99]. We note here that ElGamal-like encryption with composite modulus has also been
used extensively, e.g. [FH96, CG00]. In such case it can be that the order of g within G is
not public and thus the value t can be chosen to be some integer that approximates it (with-
out revealing much information about it). Note that the DDH would be expected to be hard
independently of whether the factorization of the modulus is known, see [KY06].

In this work we will employ the DDH assumption over the following two group description
generators:

• descprime: on input 1l it samples two prime numbers p, q so that q | p−1 and 2l > p > 2l−1

and |q| is a predetermined function in l; it sets the group operation as multiplication
modulo p, and selects g to be an element of Z∗

p that has order q; finally it sets t = q.

• desccompo: on input 1l it samples two prime numbers of the same size p, q so that n = pq
satisfies 2l > n > 2l−1 and p ≡ q ≡ 3 mod 4; it sets the group operation as multiplication
modulo n, and selects g to be an element of Z∗

n that has order ρ = p−1
2 ·

q−1
2 ; finally it

sets t = dn/4e.

We also utilize the Quadratic Residuosity (QR) Assumption [GM84]:

Definition 3 Quadratic Residuosity Assumption. For n = pq selected as in desccompo(1l),
the Quadratic Residuosity assumption states that any polynomial-time distinguisher D for the
uniform distribution over the sets Jn (Jacobi +1 elements mod n) and Qn (quadratic residues
mod n) has negligible success probability in l.

We will employ also an equivalent variant of the assumption where the sets Jn − Qn and
Qn are assumed to be computationally indistinguishable.

2.2 Public-key traitor tracing schemes

In this section we define a public-key traitor tracing scheme extending the functionality of a
multi-user public-key encryption scheme as defined in definition 1. A public-key traitor tracing
scheme will combine a multi-user public-key encryption with a traceability algorithm : this
procedure will be capable of identifying secret-keys by observing a decryption algorithm. The
intended functionality of a public-key traitor tracing scheme is in a multi-recipient encryption
setting where many receivers want to invert the public-key pk. If an adversary (known as
a pirate in this setting) uses t keys given by some users (known as traitors) to construct a
decryption device (known as a pirate-box) for the purpose of implementing an illegal receiver
in the system, the authority will be able to recover the identity of one of the traitor users given
the pirate-box (by utilizing the traitor-tracing algorithm). Formally we have:

Definition 4 A public-key traitor tracing scheme with c-traceability where c is a (N → N)
function on a parameter n, is a multi-user public-key encryption scheme 〈P,C,K,S, G,E,D〉
so that the following holds:

There exists a procedure T so that for any ε ∈ (0, 1), n ∈ N, any C = {i1, . . . , it} ⊆
{1, . . . , n}, with t ≤ c(n), any probabilistic polynomial-time procedure A, and any 〈pk, sk1, . . . ,
skn, τ〉 ← G(1l, 1n), if A is given pk and {ski1 , . . . , skit} and A outputs d ∈ [S]l,pk, then
Prob[∅ ( T (1n, 1l, τ, d) ⊆ C] ≥ 1− ε in time polynomial in log(1/ε) + n+ l.
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We stress the weakness of the above definition with respect to the power of the tracer: the
adversary is required to return some decryption key d ∈ [S]l,pk where [S]l,pk is the set of secret
keys that can be produced together with pk from G. One can make various heuristic arguments
that such a definition is satisfactory to some extent (e.g., by somehow arguing that the only
possible way to decrypt a ciphertext encrypted with pk is using D on some element of [S]l,pk
and by assuming that such a key would be possible to be reverse-engineered from a decryption
device) however such arguments are typically ad-hoc. On the one hand the pirate may not
use directly a certain decryption key d ∈ [S]l,pk but instead it can construct a simulator for
the decryption operation that does not suggest necessarily an element d; on the other hand,
such element may be hard to recover given the code of the simulator. To capture this type
of adversarial behavior, we will strengthen the traitor tracing property below. We first start
with a definition :

Definition 5 A [D, σ]-semantic-pirate against a multi-user public-key encryption scheme, 〈P,
C,K,S, G,E,D〉, where D is a plaintext distribution over P, and σ is a (N → R) func-
tion, is a PPT P so that if 〈pk, sk1, . . . , skn, τ〉 ← G(1l, 1n), then the pirate P on input
(1n, 1l, ski1 , . . . , skit) where i1, . . . , it ∈ {1, . . . , n}, t ≤ n, returns a PPT B satisfying:

Prob[B(E(pk,m)) = m] ≥ σ(l)

when m←↩D [P]l.

A few remarks are in place. First observe that the adversary returns a PPT, which amounts
to returning the description of a probabilistic procedure (e.g., a Turing machine) paired with
a polynomial function that acts as a time bound for simulating the pirate-box. Second, note
that the above definition requires from the pirate P to always output a functional pirate-box.
This is not really a restriction, as pirates that operate on traitor key sets of specific size/form,
may easily be extended to pirates that operate on any size of traitor key input (the extended
P ′ will simply return the description of D(sk, ·) whenever P is undefined for an input of traitor
keys that includes some key sk).

We next proceed to define semantic black-box traceability. The property will be parame-
terized by a family of plaintext ensembles ∆ out of which the pirate may select one ensemble
to construct a pirate-box, a function κ that will be the success threshold that is required to be
reached at minimum by pirate-boxes, and a function c that will specify an upper bound on the
number of traitor keys that will be available to the pirate. In general we would like to achieve
semantic black-box traceability for a ∆ that include as many ensembles as possible, for a κ
that is as small as possible and for a c that is as close to n as possible.

Definition 6 A public-key traitor tracing scheme with [∆, κ, c]-semantic-black-box-traceability
where c is a (N → N) function on a parameter n, ∆ is a collection of plaintext probability
ensembles over P, and κ is a (N→ R) function, is a multi-user public-key encryption scheme
〈P,C,K,S, G,E,D〉 so that the following holds:

There exists a procedure N so that for any ε ∈ (0, 1), n ∈ N, any C = {i1, . . . , it} ⊆
{1, . . . , n}, with t ≤ c(n), and any [D, σ]-semantic-pirate P, with D ∈ ∆ and σ > κ (for all
l), we have that: If 〈pk, sk1, . . . , skn, τ〉 ← G(1l, 1n), and B ← P(1n, 1l, ski1 , . . . , skit) then it
holds that: Prob[∅ ( NB(·)(1l+n, τ) ⊆ C] ≥ 1 − ε and N has running time polynomial in
ln(ε−1) + (σ(l)− κ(l))−1 + n+ l.
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For efficiency purposes and other technical reasons we will require that there is a non-
negligible bound between σ(l) (the decryption success of the pirate-box) and κ(l) the success
bound that needs to be reached at minimum for plaintext distributions in ∆ (i.e., (σ(l)−κ(l))−1

is polynomial in l). In this way the black-box tracing procedure will be polynomial in n, l.
Note that in the definitions 4 and 6 of traceability and semantic-black-box traceability

respectively, we required that the tracing and analyzer procedures terminate in time polynomial
in n; this may be restricted further to be log n for systems that expect a large number of users
and more frequent tracing operations. Another possible extension is to allow further access of
the pirate to secret-keys of uncorrupted users through the employment of a chosen ciphertext
oracle.

In the following proposition we point to a simple natural limitation in the construction of
schemes that satisfy black-box traceability : for tracing to succeed it should hold that the min-
entropy of the pirate-distribution should not be below the negated logarithm of the successful
decryption bound κ that is required from the pirate-box to exceed.

Proposition 7 For any functions c ∈ (N → N), κ ∈ (N → R), the multi-user public-key
encryption scheme 〈P,C,K,S, G,E,D〉 does not satisfy [∆, κ, c]-semantic-black-box-traceability
if ∆ includes a plaintext probability ensemble D so that the min-entropy µ of D satisfies µ ≤
− log κ.

Proof. Suppose that D has min-entropy µ and consider the following [D, 2−µ]-pirate: P on any
input returns a pirate-box B that always returns the plaintext m0 ∈ [P]l such that Prob[m =
m0] ≥ 2−µ when m ←↩D [P]l. Clearly the success probability of B(·) is at least 2−µ. Given
that κ(l) ≤ 2−µ, it is very easy to show that for any analyzer procedure N it is possible to find
ε ∈ (0, 1) and C = {i1, . . . , in} so that N fails to trace the pirate-box B as constructed above
as long as n > 1 (and this holds true independently of time allowed for tracing). ut

We complete this section with a definition that specifies the efficiency parameters of a given
traitor tracing scheme.

Definition 8 Efficiency Parameters. The three basic efficiency parameters of traitor trac-
ing schemes are (i) the ciphertext rate len[c∈[C]l]

len[m∈[P]l]
, (ii) the user-key rate len[d∈[S]l]

len[m∈[P]l]
, and (iii) the

encryption-key rate len[pk∈[K]l]
len[m∈P] . The transmission rate of the scheme is defined as the sum of

the three rates.

3 Copyrighting a function

Nacacche, Shamir and Stern [NSS99] introduced a technique for personalizing a certain function
f to a set of users. This fingerprinting technique generates a number of personalized copies of f ,
so that f1(x) = . . . = fn(x) = f(x) for all x. The copies are drawn out of a keyed collection of
different versions of f , denoted by {fk}k∈K. It is assumed that there is a “generator” function
F (x, k) = fk(x) for all x, k ∈ K that is publicly known and also that K can be sampled
efficiently by some (secret) procedure GK.

In this section we give a brief overview of the results of [NSS99]. The following definition
is from [NSS99], slightly amended (see below for comments):
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Definition 9 A keyed collection {fk}k∈K is called:
(i) c-copyrighted against passive adversaries, if there is an analyzer procedure T so that: an
adversary given c elements of K constructs another element sk0 of K; then, T given sk0 and
possibly some trapdoor information τ associated to K, is able to reconstruct at least one of the
c elements that were given to the adversary.
(ii) c-copyrighted against active adversaries, if there is an analyzer procedure N so that: an
adversary given c elements of K produces a simulator S that agrees with fk(x) for almost all
inputs x, then N with oracle access to S and also possibly given some trapdoor information τ
associated to K, is capable of recovering at least one of the c elements that were given to the
adversary.

We note that in the original definition of [NSS99] the notion of copyrighted function was
more restricted. In particular, in the case of passive adversaries the adversary was supposed to
produce one of the keys of the collectionK, and in the case of active adversaries the analyzer was
given the code of the implementation instead of merely black-box access as formulated above.
It is easy to see that the formulation presented above captures the intended functionality of a
copyrighted function and in fact it strengthens it. Finally, the original definition did not make
explicit the need of a trapdoor information for the tracing procedure (that nevertheless was
necessary for the construction presented there). The original formulation of copyrighted against
passive adversaries given in [NSS99] will be given below and reformulated as copyrighted in
the “strong sense” (as it implies our formulation above):

Definition 10 A keyed collection {fk}k∈K is called:
(i’) c-copyrighted against passive adversaries in the strong-sense, if given c elements of K it is
computationally impossible to find another element of K.

In [NSS99] a method was presented that allowed copyrighting a hash function based on
RSA-encryption. The basic design paradigm of [NSS99] solved the two-user case first and
then the multi-user case was addressed by employing collusion-secure codes [BS98]. Note
that in [NSS99] a method to copyright the RSA-encryption function was given, but only as a
symmetric-encryption function, since no public-components were allowed. In [NSS99] it was
left as an open question whether it is possible to achieve a copyright mechanism based on the
Discrete-Logarithm Problem. Later on we will answer this question in the affirmative.

Still, the most important question that arises from the work of [NSS99], who showed how
to copyright symmetric encryption functions, is whether it is possible to copyright a public-key
encryption function. We consider this question in the following subsection and we find it to
be essentially equivalent to the notion of constructing public-key traitor tracing schemes.

Copyrighting a Public-Key Encryption Function. Given that a public-key encryption
scheme has an encryption function that is meant to be publicly available to any sender, the
interpretation of “copyrighting a public-key encryption” we adopt will be to copyright the
decryption function of a public-key encryption scheme.

Following the general approach of copyrighting a function from [NSS99] we deduce that
a public-key encryption function 〈P,C,K,S, G,E,D〉 can be copyrighted if there is a way to
produce a number of variants (say n) of the decryption function D keyed by elements k1, . . . , kn
so that each variant is capable of inverting the encryption function E. In particular:
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Definition 11 A n-key, c-copyrighted Public-Key Encryption Scheme against passive (resp.
active) adversaries is a tuple 〈P,C,K,S, G,E,D〉 so that
(i) 〈P,C,K,S, G,E,D〉 is a n-key public-key encryption scheme.
(ii) for any pk ∈ Kl, the function collection {D(sk, ·) : C→ P}sk∈Sl,pk

is c-copyrighted against
passive (resp. active) adversaries.

From the above it can be seen that an n-key, c-copyrighted public-key encryption scheme
against passive (resp. active) adversaries is conceptually equivalent to a public-key traitor trac-
ing scheme where the c-copyrighted parameter corresponds to the resilience of the traceability
procedure. More specifically, if the scheme is c-copyrighted against passive adversaries this will
give rise to a public-key encryption with c-resilient traceability, whereas if the scheme is copy-
righted against active adversaries this will give rise to a public-key encryption with black-box
traceability. This conceptual equivalence will motivate the remaining of the paper that focuses
on the design of public-key traitor tracing schemes in a modular fashion starting from the
2-user case and extending to the multi-user setting through appropriate code constructions.

4 The two-user case: from user separation to black-box trace-
ability

In this section we concentrate on 2-key public-key encryption. We will show that semantic
black-box traceability follows from the notion of semantic user separability that we formalize
next. This result will enable us to infer semantic black-box traceability for explicit construc-
tions by simply arguing that they satisfy semantic user-separability, a conceptually simpler
notion.

4.1 Semantic user separability

In this section we introduce the concept of (semantic) user separation for a 2-key public-key
encryption scheme. In the remaining of the section, we note that the two keys of the 2-key
scheme will be referred to as “key 0” and “key 1” or sk0, sk1 respectively.

Definition 12 A 2-key public-key encryption scheme 〈P,C,K,S, G,E,D〉 is called [∆, κ]-user-
separable where ∆ is a family of plaintext ensembles and κ a function (N→ R+), if there exists
a PPT procedure E0 : P→ C that takes as additional input the tracing trapdoor τ , has identical
functionality to E in the view of the user holding key 0 and has the following two additional
properties:

US1. Ciphertexts produced by E0 are computationally indistinguishable from regular ciphertexts
produced by E for an adversary holding the key sk0; in particular we will denote the
distinguishing probability by ε0(l) that will be a negligible (N → R+) function in the
security parameter l.

Specifically, we have that for all D ∈ ∆, the two ensembles (1) 〈sk0, E(pk,m)〉 where
(pk, sk0, sk1, τ)← G(1l), with m←↩D [P]l and (2) 〈sk0, E0(pk, τ,m)〉 where (pk, sk0, sk1,
τ) ← G(1l) with m ←↩D [P]l, have distinguishing probability at most ε0(l) for any
polynomial-time bounded distinguisher.
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US2. Any adversary holding the key sk1, that decrypts valid E ciphertexts for any plaintext
drawn from an ensemble D ∈ ∆ with probability at least κ(l) + α(l) where α(l) is a non-
negligible (N→ R+) function in l, when given a special ciphertext encrypted by E0 on a
plaintext drawn from distribution D, it can decrypt it correctly (i.e., in the way user 0
does) with probability at most κ(l).

Specifically, we have that for all PPT A, D ∈ ∆, if (pk, sk0, sk1, τ) ← G(1l) and it
holds that Prob[A(pk, sk1, E(m)) = m] ≥ κ(l) + α(l) with α a non-negligible function
and m ←↩D [P]l then it holds that Prob[A(pk, sk1, c) = D(sk0, c)] ≤ κ(l) where c is a
ciphertext sampled as c←↩E0(pk,τ,m) [C]l.

It follows that if a 2-key public-key encryption scheme is [∆, κ]-user-separable then it is
possible to encrypt plaintexts that the user holding the key 0 finds it difficult to distinguish
from regular transmissions but user 1 cannot decrypt them with probability better than κ as
long as it behaves as a correct decryptor for valid ciphertexts with probability bounded by a
non-negligible fraction above κ. A scheme that is [∆, κ]-user-separable will be said to satisfy
semantic user separability for the family of ensembles ∆.

4.2 Semantic user separability implies semantic black-box traceability

In the remaining of this section we will establish the fact that any user-separable 2-key public-
key encryption scheme has a corresponding analyzer procedure N that makes it a semantic
black-box traitor tracing scheme. We first start with a preparatory lemma.

Lemma 13 Let D1,D2 be two probability distributions over {0, 1} defined as follows: if v ←↩D1

{0, 1} it holds that v = 1 with probability at least δ1 whereas if v ←↩D2 {0, 1} it holds that v = 1
with probability at most δ2. Moreover it holds that there exist ψ, γ ∈ (0, 1) such that ψ ·δ1 ≥ δ2+
γ. Then, there exists a deterministic polynomial-time T that given ~v ←↩ Db × . . .×Db︸ ︷︷ ︸

K

it returns

b ∈ {1, 2} with probability at least 1 − ε for an appropriate choice of K = poly(ln(ε−1), (1 −
ψ)−1, δ−1

1 , γ−1).

Proof. We define T as follows: letK ′ be the Hamming weight of ~v. If it holds thatK ′/K > ψ·δ1
then return 1 else return 2. We next compute the success probability of T in predicting the
probability distribution.

Suppose that the given bitstring is drawn from distribution D1. The probability of the event
K ′/K > ψδ1 can be bounded from below using the Chernoff bound as follows: let µ1 be the
probability of having a 1 in a given location of v; we have that, Prob[K ′ ≤ µ1K−d] ≤ e−d

2/2K

for any d > 0. From this we obtain that, Prob[K ′/K ≤ δ1 − d/K] ≤ Prob[K ′/K ≤ µ1 −
d/K] ≤ e−d2/2K , for any d > 0. We set now d = K(δ1−ψδ1) = (1−ψ)Kδ1 and we obtain that
Prob[K ′/K ≤ ψδ1] ≤ e−K(1−ψ)2δ21/2, which suggests that T will return the correct answer in
this case with probability at least 1− e−K(1−ψ)2δ21/2.

Now suppose that the given bitstring is drawn from the distribution D2 and µ2 ≤ δ2
is the probability of obtaining a 1 in v. Using the Chernoff bound again we have that
Prob[K ′−µ2K ≥ d] ≤ e−d

2/2K from which we obtain that Prob[K ′ ≥ δ2K+d] ≤ Prob[K ′ ≥
µ2K + d] ≤ e−d

2/2K and by setting d = K(ψδ1 − δ2) we obtain that Prob[K ′/K ≥ ψδ1] ≤
e−K(ψδ1−δ2)2/2. This suggests that the correct answer will be returned with probability at least
1− e−K(ψδ1−δ2)2/2.
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In both cases we want that the probability is at least 1 − ε. It follows that due to 1 −
e−K(1−ψ)2δ21/2 ≥ 1 − ε we obtain that K ≥ ln(ε)−2/((1 − ψ)δ1)2 and similarly that K ≥
ln(ε)−2/(ψδ1 − δ2)2 from the second relation.

Now given that for ψ, γ ∈ (0, 1) it holds that ψδ1 ≥ δ2 + γ, we have that ψδ1 − δ2 ≥ γ.
From this it follows that K is a polynomial function in ln(ε−1) + (1− ψ)−1 + δ−1

1 + γ−1. ut

Analyzer N for given plaintext distribution D
Input : tracing trapdoor τ ; public-key pk; security parameter 1l

Oracle access: pirate-box B
Parameters: K ∈ N, ψ, σ ∈ (0, 1)
K ′ = 0;
For i = 1, . . . ,K

sample mi ←↩D [P]l;
set Ci ← E0(pk, τ,m);
m′
i ← B(Ci);

if (mi = m′
i) then K ′ = K ′ + 1;

if K ′/K ≥ ψ · (σ − ε0) output 0 else output 1;

Figure 1: Black-Box Analyzer Procedure for a 2-user public-key encryption.

In figure 1 we present the black-box traitor tracing procedure for a pirate-box B that oper-
ates on a pirate distribution D and is successful with probability σ. It employs the alternative
encryption E0 that is suggested by the semantic user-separability property. The parameter ψ
employed in the figure will be clarified in the theorem below :

Theorem 14 The [∆, κ]-user-separable 2-key public-key encryption scheme 〈P,C,K,S, G,E,D〉
satisfies [∆, κ, 1]-semantic-black-box traceability using the analyzer N presented in figure 1.

In particular for any 〈∆, σ〉-semantic-pirate P, such that σ(l) ≥ κ(l) + α(l) where α(l) is
a non-negligible function in l, it holds that (1) N has success probability at least 1− ε, (2) the
running time of N is polynomial time in ln(ε−1) + α(l)−1 + σ(l)−1.

Proof. In the remaining of the proof we drop the (l) from σ(l), α(l), µ(l), ε0(l).
We set ψ = 1 − α

2(σ−ε0) , γ = α/2 − ε0. Observe that ψ, γ ∈ (0, 1) for sufficiently large
values of l (note that using the fact that ε0 is negligible while α is non-negligible is of essence
here). Let pk, sk0, sk1, τ be the public and secret-keys of the system as well as the tracing
trapdoor. Let 〈B,D, C ⊆ {0, 1}〉 be the pirate box, the pirate plaintext distribution and the
traitor set with |C| = 1. The analyzer N defined in figure 1 operates as follows: it samples K
plaintexts following the pirate distribution D, applies to them the special encryption function
E0 using the tracing trapdoor τ , and then applies B on them to collect the number of successful
decryptions K ′. Then, if K ′/K is sufficiently large, the analyzer returns 0 otherwise it returns
1. Based on the result of lemma 13 we observe that the analyzer N operates the deterministic
test T defined there that is successful with probability 1 − ε (for an appropriate selection of
K); the two probability distributions D1,D2 over {0, 1} that are defined there are produced
by the equality test mi = m′

i and they vary depending on whether B had access to the key of
the traitor set {0} or the key of the traitor set {1}. It remains below to determine δ1, δ2 for
the two cases and verify that ψ · δ1 ≥ δ2 + γ.
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Note that we are guaranteed that B successfully decodes valid ciphertexts. Given property
US1 of definition 12, we have that the user holding the key sk0 will be unable to distinguish
special ciphertexts produced by E0 compared to valid ciphertexts. It follows that a pirate-box
produced with the key of the traitor set C = {0} will have a successful probability of decryption
of at least δ1 = σ − ε0 (recall that ε0 is a negligible function defined in property US1).

On the other hand, observe that based on property US2 of definition 12, a pirate-box B
produced with the key of the traitor set C = {1} that has correct decryption probability
σ ≥ κ+ α and will correctly decrypt an E0 ciphertext with probability at most δ2 = κ.

It follows by the definition of ψ, γ that ψ · δ1 ≥ δ2 + γ; by applying lemma 13 to the above
to conclude that N will be successful with probability 1 − ε and will have time-complexity
polynomial in ln(ε)−1 +2(σ− ε0)α−1 +(σ− ε0)−1 +2α−1 from which the desired result follows
taking into account that ε0 is a negligible function in the security parameter l. ut

Remark. It is relatively simple to derive a 2-user scheme with semantic user-separability. In
particular if 〈P,C,K,S, G,E,D〉 is a public-key encryption scheme then we can generate two
independent instances of it and encrypt plaintexts m ∈ P as pairs 〈Euser0(m), Euser1(m)〉; user
0 will hold the secret-key of the first coordinate where user 1 will hold the secret-key of the
second coordinate. While user-separability follows easily in this case, the transmission rate
of such a construction is not very favorable: for example, if it is instantiated with ElGamal
encryption [ElG85] we have that the ciphertext rate will be about 4. The schemes that we will
present in the following two sections have better ciphertext rates.

5 Two concrete two-user schemes

In this section we present two 2-key public-key encryption schemes and prove that they satisfy
semantic-black-box-traceability.

Scheme 1 is based on the Decision-Diffie Hellman over the quadratic residues in Z∗
N and

the Quadratic Residuosity Assumption. Scheme 2 is based on the Decision-Diffie Hellman over
a group of prime order G.

5.1 Scheme 1

Consider the following 2-key public-key encryption function 〈P,C,K,S, G,E,D〉: The function
G given 1l simulates desccompo with the following modification: the two primes p, q produced are
required to satisfy the relations p ≡ 3(mod8), q ≡ 7(mod8) which imply that p−1

2 ≡ 1(mod
4), q−1

2 ≡ 3(mod4). Note that this type of composite numbers satisfy (i) ( 2
n) = −1, and (ii)

−1 ∈ Jn −Qn.
In addition, G, following desccompo outputs t = dn/4e and also samples g an element of

Z∗
n of order ρ = p−1

2
q−1
2 . Then, G sets pk = 〈n, t, g, h〉 where h = gα mod n and h is selected

according to the uniform distribution over 〈g〉. We will return to the selection of the secret-keys
after we describe the encryption function.

The plaintext space [P]l will be defined as {0, 1}b where b = |n|−2 = l−2. Given a plaintext
m ∈ [P]l the probabilistic function E returns the pair 〈A,B〉 = 〈gr mod n, hr · enc(m) mod n〉
where r is sampled uniformly from [t] and enc(·) is an invertible mapping from the set {0, 1}b
to Jn (we will describe such a mapping shortly).

Given the definition of E it is clear that given 〈A,B〉 the plaintext m can be recovered
by the computation enc−1(A−αB mod n). From this it is also evident that for any public-key
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〈n, t, g, h〉 we can define as the corresponding secret-key space, the set Sl,pk = {x ∈ N | x =
α(modρ)}: indeed, it holds that any x ∈ Sl,pk can be used as a secret-key for the decryption
of the ciphertext 〈A,B〉.

Next we specify how G produces two distinct secret-keys and thus the encryption function
is a 2-key public-key encryption scheme: the keys selected are the following {α, α+ρ} and user
0 receives the even key from this set, while user 1 receives the odd key from this set (note that
addition is performed over Z and the keys are of different parities since ρ is an odd number by
the selection of p, q). The tracing trapdoor τ of the encryption scheme will be empty (i.e., no
special system information will be needed to trace in scheme 1).

We complete our description of the 2-key public-key encryption by describing the encoding
function enc(·). Recall that the plaintext-space for the encryption operation is {0, 1}b with
b = |n|−2. Given a plaintext m =

df
m0m1m2 . . .mb−1 ∈ {0, 1}b let M ′ =

df
m0 +2m1 +22m2 +

. . . + 2b−2mb−2 + dn8 e. It is easy to see that n
8 ≤ M ′ < n

4 . Now if (M
′

n ) = 1 the encoding of
m would be defined to be (−1)mb−1M ′ mod n, else if (M

′

n ) = −1 then the encoding of m is
defined as (−1)mb−1 · 2 ·M ′ mod n. This completes the description of enc. It is easy to verify
that enc({0, 1}b) ⊆ Jn: this is due to the fact that ( 2

n) = −1 as well as that −1 ∈ Jn due to
the choice of n.

The encoding function can be inverted as follows: given c = enc(m) for some m =
m0 . . .mb−1, we first compute mb−1 by checking whether c < n/2. We then evaluate c′ =
(−1)mb−1 · c mod n, and compute M ′ so that M ′ =

df
c′ if c′ < n/4, or M ′ =

df
c′/2 (over Z) if

c > n/4. The decoding of enc(M) is the binary representation of M ′ − dn8 e concatenated by
the bit mb−1 as recovered above.

A property of our invertible encoding enc(·) that we will make a non-trivial use for trace-
ability is the following:

Proposition 15 For all l ∈ N it holds that enc(m0 . . .mb−1) ≡n −enc(m0 . . . ,mb−2mb−1)
where if b ∈ {0, 1} it holds that b = 1− b.

Proof. The proof is immediate from the definition of the encoding function enc(·); simply recall
that the encoding is always multiplied by the factor (−1)mb−1 . ut

Note that the choice of the (b−1)-th bit of the plaintext was arbitrary and we may had just
as well performed an invertible encoding that relied in any other bit of the plaintext. Finally,
we note that the tracing trapdoor τ of scheme 1 will be empty : in particular, this means that
no additional information beyond what is publicly known will be employed by the tracer. In
[CPP05] this notion was called public-traceability.

In figure 2 we present the efficiency properties of scheme 1. The maximum traceable
collusion will be 1 user and this will be proved in the next two sections.

Plaintext Ciphertext User-Key Public-Key Max Traceable
Space Rate Rate Rate Collusion
{0, 1}b 2(b+2)

b ∼ 2 (b+1)
b ∼ 1 3(b+2)

b ∼ 3 1

Figure 2: Efficiency Parameters of Scheme 1 (Two-User Setting)
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5.1.1 Semantic security and security against passive adversaries

We proceed to the security analysis of the construction. In the following standard lemma we
show that the sampling performed by the sender during encryption introduces a negligible
statistical distance compared to a uniform group distribution. This will come handy in the
security analysis.

Lemma 16 The uniform distribution over 〈g〉 is statistically indistinguishable from the dis-
tribution D induced over 〈g〉 by the mapping k ← gk where k ∈U [t].

Proof. Recall that n = (2k+1)(2k′+1) for some integers k, k′. It follows that n = 4kk′+2(k+
k′) + 1 and as a result it holds that dn/4e = dkk′ + k+k′

2 + 1/4e. Based on the selection of g
we have that the order of g is equal to kk′. Now observe the following: for some u, U ∈ Z, the
statistical distance of the uniform probability distribution over Zu compared to the probability
distribution of ω mod u where ω ∈R {0, 1, . . . , U − 1} is equal to

1
2

(
v · |π + 1

U
− 1
u
|+ (u− v)| π

U
− 1
u
|
)

where U = πu+v and 0 ≤ v < u. It follows that the statistical distance is equal to v(u−v)/(U ·
u) which is less than v/U . Applying this argument to the present scenario for U = dn/4e and
u = kk′ we have that the statistical distance of the two distributions is less than 2(k+k′)+1

dn/4e
which is a negligible quantity bounded by 2−l/2+2. ut

Theorem 17 The 2-key public-key encryption function described above is
(i) Semantically Secure under the DDH Assumption over Qn and the QR Assumption in Qn.
(ii) 1-copyrighted against passive adversaries (in the strong sense): given the public-key pk and
a key αx of {α0, α1} it is computationally infeasible to construct another key in Sl,pk under the
assumption that factoring n is hard.

Proof. (i) Recall the definition of semantic security in the sense of message indistinguishability
as a game G0 that is defined as follows: an adversary A is given the parameter 1l and the
public-key pk of the system; it returns two messages m0,m1 ∈ Pl such that m0 6= m1. Then a
coin is flipped, b ∈R {0, 1} and A receives a ciphertext drawn from Cl according to E(pk,mb).
Finally, A terminates by returning b∗. The adversary wins the game in the case of the event
(b = b∗).

In the game above, the ciphertext given to the adversary after the challenge is produced
is of the form 〈A,B〉 = 〈gr, hr · enc(mb)〉. Suppose we modify the game into game G1 so that
the value B is calculated in a different way as follows : B = hr

′ · enc(mb) where r′ ∈R [t]. It
follows by a standard argument that the statistical distance in the winning probability of the
adversary will be bounded by the advantage of distinguishing DDH triples over the subgroup
〈g〉.

In the modified game G1 the value B is a random element of G multiplied by the encoding
of the message mb. Note that enc(mb) does not necessarily belong to the subgroup 〈g〉. In
fact 〈g〉 is the group of quadratic residues Qn while enc(m) ∈ Jn, the subgroup of Jacobi +1
symbols in Z∗

n that strictly subsumes Qn.
Next we modify the game further into game G2 as follows: in case enc(mb) ∈ Qn we

compute B as hr
′

(i.e., ignoring the enc(mb)); on the other hand, if enc(mb) ∈ Jn − Qn we
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compute B as −hr′ . Recall that (−1
n ) = (−1

p ) · (−1
q ) and (−1

p ) = −1 and (−1
q ) = −1 since

p, q = 3(mod4), as a result −1 ∈ Jn−Qn. It is easy to see that the probability distribution of
B in the two games is identical and thus there will be no difference in the success probability
of the adversary.

Consider now the event Same to include all coin tosses for whichm0,m1 have their encodings
both in Qn or both in Jn −Qn.

It is apparent that as long as the event Same happens the success probability of the above
modified game is equal to 1/2 since no information about b is retained in the input given to
the adversary in the second stage. Next we consider the conditional space on the event ¬Same;
in this case we have that the success probability of the game is bounded by the advantage of
a QR distinguisher since the element B is with 1/2 probability either a random element of Qn
or a random element of Jn −Qn. From the above we conclude that the success probability of
A in the modified game G2 is only by a negligible fraction different from 1/2 (under the QR
assumption).

(ii) First it is apparent that given any two keys α0, α1 ∈ Sl,pk one can immediately recover
L = (mult) · ρ. Such integer can be used to factor n as follows: first we compute m to be
the largest odd divisor of L. Since L is a multiple of (p − 1)(q − 1) and by selection it holds
that p ≡ 3(mod4) we have that m must be a multiple of p−1

2 . We similarly argue for q. Then
we select a ∈R Zn. If a 6∈ Z∗

n then n can be factored immediately (but this is a negligible
probability event). Otherwise assume that a ∈ Z∗

n. Consider now the probability event that
either (a ∈ Qp and a 6∈ Qq) or (a 6∈ Qp and a ∈ Qq); this is a 1/2 probability event conditioning
on “a ∈ Z∗

n.” Note that this implies that either a
p−1
2 = 1 mod p or a

q−1
2 = 1 mod q. If we

compute now b = am in Z, it follows that b + 1 will be a multiple of one of p, q but not of
both simultaneously. Indeed, if it was a multiple of both simultaneously it would hold that
am ≡ −1 mod n something that contradicts the fact that either am ≡ 1 mod p or am ≡ 1 mod q.
Using this fact we obtain easily the factorization of n.

Given the above arguments, it suffices now to show that we can simulate the key-assignment
process without possessing φ(n) (in this fashion we can turn any adversary against the strong
copyrighted property of the encryption scheme into a factorization algorithm as shown above).
First observe that the choice of α0 = α can be done independently of φ(n); indeed we may
simple sample α uniformly from [t] and following a similar argument as that in the proof of
lemma 16 we can show that the statistical distance between the two probability distributions is
negligible. The choice of α1 during the system key assignment is done by computing α1 = α+ρ
over Z where α is uniformly selected from [ρ] where ρ = p−1

2
q−1
2 . A simulated key-assignment

for α1 without knowledge of φ(n) (and thus of ρ) can be as follows α1 = α+ t where α ∈R [t].
With a similar argument as in the proof of lemma 16 we can also show that the statistical
distance of the simulated choice of α1 compared to the one performed normally is negligible.

ut

We remark that the scheme presented above is strictly 1-copyrighted in the strong sense
and not 2-copyrighted in the strong sense since if the two users collude it is immediate that they
can construct other keys in Sl,pk as follows: given α0, α1 ∈ Sl,pk we have that α1 − α0 equals ρ
and as a result any integer α0 + x(α1 − α0), where x ∈ N, is an element of Slpk. Nevertheless,
observe that the scheme is still (plain) 2-copyrighted since in the case the analyzer procedure
T is given some key that is not among α0, α1 he can accuse correctly either of the two players
(i.e., the tracing algorithm will succeed).

18



5.1.2 Security against active adversaries : black-box traitor tracing

In the public-key encryption scheme we presented it holds that all valid ciphertexts 〈A,B〉
satisfy A ∈ Qn and B ∈ Jn. The decryption operates by first computing V = Aαx mod n ∈ Qn
and subsequently by computing B/V mod n and inverting the encoding. The two secret-keys
α0, α1 have different parity. We take advantage of this fact in designing a special encryption
procedure E0 as follows: the output of E0 is an invalid ciphertext 〈A,B〉, where A = −gr mod n
and r ∈U [t] while B is computed as in E; note that we have that A ∈ Jn − Qn (recall that
due to the choice of n it holds that −1 ∈ Jn −Qn). Now observe that V = Aαx mod n will be
in Jn if αx is odd (i.e., when x = 1 in our key assignment) whereas it will be in Qn if αx is
even (i.e., when x = 0 in our key assignment).

Based on the above observation the decryption of a special ciphertext of E0, 〈−gr, hr ·
enc(m)〉 will be as follows: user 0 who holds the even key α0 will simply obtain enc(m) and
apply to it the inverse encoding enc−1(·) returning correctly the plaintext m. On the other
hand, user 1 who holds the odd key will obtain the value −enc(m) mod n. It is evident by the
definition of the encoding that the user 0 will decrypt an E0 ciphertext hiding m = m0 . . .mb−1

correctly while user 1 will also decrypt the plaintext, but with one bit flipped, in particular it
will return m′ = m0 . . .mb−2mb−1 where mb−1 denotes the bit mb−1 flipped.

The analyzer procedure N is essentially the one provided in figure 1. In the remaining of
the section we will establish the fact that the 2-key public-key encryption scheme we presented
is user-separable and thus theorem 14 will establish black-box traceability.

In the following lemma we establish the property US1 of definition 12: it is difficult for an
adversarial user 0, to distinguish the two functions E and E0.

Lemma 18 The ciphertexts that are produced by the encryption function E, i.e., the probabil-
ity distribution defined by 〈gr mod n, hr · enc(m) mod n〉 and the special ciphertexts 〈−gr mod
n, hr · enc(m) mod n〉 produced by E0, are computationally indistinguishable for the user 0
under the QR Assumption.

Proof. Suppose that g is an element of order ρ in Z∗
n that generates the quadratic residues and

G is a challenge for the QR Assumption modulo n (of unknown factorization). Observe that we
can simulate the key-selection α of user 0, by simply selecting a random number α in [t] (recall
that t = dn/4e and that t is an even number) and giving to the adversary the value α0 which
is selected to be the even value among {α, α + t − 1}. This is statistically indistinguishable
from the honest key-assignment. We set the public-key to be g, h = gα0 , and consider the
ciphertext 〈G,Gα0 · enc(m)〉. Observe that if G is drawn from the quadratic residues modulo
n, it holds that the ciphertext is consistent with an encryption of m according to E, whereas
if G is drawn from Jn−Qn it holds that the ciphertext is consistent with a special encryption
according to E0. This completes the argument for the proof of the lemma. ut

Next we specify the family of probability ensembles ∆ that will be applicable to our black-
box analyzer N . ∆ for any size l, it includes all probability distributions D for which if
m←↩D {0, 1}l−2 it holds that the random variable Bitb−1(m) is the uniform over {0, 1} (where
Bitb−1(m) = mb−1 whenever m = m0 . . .mb−1). In the next lemma, we establish the property
US2 of definition 12 for scheme 1, i.e., that an adversarial user 1, has an upper bound on the
successful decoding of any ciphertext produced by E0.
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Lemma 19 Let B be a pirate-box that is produced by using the secret-key sk1 of the public-key
encryption scheme and correctly decrypts valid ciphertexts with probability σ(l) ≥ 1/2 + η(l)
where η(l) is a non-negligible function for plaintext distributions D ∈ ∆. Then, under the
QR Assumption, B has success probability at most 1/2 in decrypting “correctly” any ciphertext
prepared by the function E0 (i.e., decrypting it in the way that the honest user 0 decrypts it).

Proof. Let g,G, n be a challenge for the QR Assumption, i.e., n is an RSA modulus of the type
used by our scheme 1, g is a generator of quadratic residues modulo n, and G is a uniformly
distributed element from either Qn or Jn − Qn. We simulate the key-assignment to user 1,
by selecting α ∈R [t] and providing to the adversary the value α1 which is the odd number
among {α, α + t− 1} (recall that in our setting t = dn/4e is even) and setting the public-key
as h = gα1 .

Let m = m0m1 . . .mb−1 ←↩D {0, 1}b. Consider the ciphertext 〈−G,Gα1 · enc(m)〉. Ob-
serve that if G is a uniform element of Qn then the ciphertext is an E0-ciphertext encrypting
m0 . . .mb−1. On the other hand if G is a uniform element of Jn −Qn the ciphertext is a valid
E ciphertext encrypting m0 . . .mb−2mb−1.

Now consider the event Flip that the pirate box B returns m0 . . .mb−2mb−1. In case G is a
uniform element of Jn −Qn it follows that the probability of the event Flip should be at least
σ(l), the probability that the pirate-box correctly decrypts a valid ciphertext. Note here that
both m0m1 . . .mb−1 and m0m1 . . .mb−2mb−1 are equally likely as plaintexts of the pirate-box
distribution D ∈ ∆.

On the other hand, if G is a uniform element of Qn, we have that the probability of the
event Flip should be |Prob[Flip]−σ(l)| ≤ negl(l) under the QR Assumption (otherwise we can
turn the event Flip into a distinguisher). It follows that the probability of the event Flip is at
least σ(l)−negl(l) which implies that the probability of correct decryption of the E0 ciphertext
(i.e., in the way that user 0 decrypts it) can be at most 1− σ(l) + negl(l) since the Flip event
suggests incorrect decryption for the pirate-box B. Since σ(l) ≥ 1/2+η(l) it follows that B can
correctly decrypt invalid E0 ciphertexts with probability at most 1/2−η(l)+negl(l) ≤ 1/2. ut

Armed with the two lemmas above we obtain the following corollary:

Corollary 20 The 2-user public-key encryption scheme 2 is a [∆, 1
2 ]-user-separable public-key

encryption scheme, where ∆ is a family of all plaintext distributions as defined above.

Using now theorem 14 and the above corollary the following theorem follows easily.

Theorem 21 The 2-key public-key encryption scheme 1 described above is a 2-key public-key
encryption scheme satisfying [∆, 1

2 , 1]-semantic-black-box-traceability with the analyzer N of
figure 1 using the special encryption E0.

In particular, for any 〈∆, σ〉-pirate P such that σ(l) ≥ 1/2 + α(l) where α(l) is a non-
negligible function it holds that (1) N has success probability 1− ε, (2) the running time of N
is polynomial in ln(ε−1) + α(l)−1 + σ(l)−1.

Proof. The proof follows directly from the proof of theorem 14 using the results of lemmas 18
and 19. ut

We note that the above suggests a rather weak form of black-box traceability. First, it
is restricted to plaintext distributions that have high entropy on a certain bit of the input
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(note that the bit that one relies upon can be changed by modifying the encoding accordingly,
i.e., our assumption is that the plaintext distribution contains a truly random bit). Still, the
biggest restriction in the above definition is that it allows the existence of pirate-boxes that can
decrypt correctly about half of the time and can remain undetected; we note that such pirate-
boxes may in fact be quite useful in many settings. In the coming section, our scheme 2, will
circumvent these limitations and provide black-box traceability for essentially any arbitrary
distribution and pirate decoders.

5.2 Scheme 2

Consider the following public-key encryption function 〈P,C,K,S, G,E,D〉: The function G
given 1l simulates descprime to obtain the two prime numbers p, q as specified in section 2.1.
Let G be the subgroup of quadratic residues of Z∗

p where p = 2q + 1 where both p, q, are
primes. It follows that the order of G is q. Let g be a generator of G. The public-key of the
scheme is set to pk =

df
〈p, f, g, h〉 where f =

df
gα, h =

df
gβ and α, β ∈R [q]. The two users are

given two “representations” of α with respect to the “base” g, h as their secret-keys, i.e. two
vectors 〈d0, d

′
0〉, 〈d1, d

′
1〉 over Zq so that di + βd′i = α for both i ∈ {0, 1}. The two vectors are

chosen so that they are linearly independent over Zq. Note that the set of all possible keys is
Sl,pk =

df
{〈d, d′〉 | d+ d′β = α(modq)}. The tracing trapdoor τ of scheme 2 will be set to the

tuple 〈d0, d
′
0, d1, d

′
1, β〉.

Encryption is performed as follows: given the public-key 〈f, g, h〉 and a plaintext mes-
sage m ∈ {0, 1}b, the encryption of m is 〈enc(m) · f r mod p, gr mod p, hr mod p〉, where
enc : {0, 1}b → G is an appropriate encoding (to be specified below). Decryption works as
follows: given one of the two keys 〈di, d′i〉 and a ciphertext 〈A,B,C〉 the receiver computes
enc−1(A(B−1)di(C−1)d

′
i mod p). It is easy to verify that the decryption operation inverts en-

cryption.
Next we specify the appropriate encoding function for the plaintext-space {0, 1}b. We

set b = |p| − 2 = l − 2. The invertible encoding function enc : {0, 1}b → G is as follows:
given m = m1 . . .mb ∈ {0, 1}b let m′ = m1 + 2m2 + . . . 2bmb + 1. It is easy to verify that
m′ ∈ {1, . . . , q}. Then, we set enc(m) =

df
(m′)2 mod p. It is easy to see that enc(m) ∈ G for

any m ∈ {0, 1}b: this is because G = 〈g〉 is the subgroup of quadratic residues modulo p. The
encoding function enc can be inverted as follows: given enc(m) we compute its two square
roots modulo p and let m′ be the one that belongs in {1, . . . , q}. It follows that, the decoding
of enc(m) is the binary representation of m′ − 1. The rates of the parameters of the system
are illustrated in the figure 3 (recall that |p| = b+ 2). Traceability for collusions of size 1 will
be established in the remaining of the section.

Plaintext Ciphertext User-Key Public-Key Max Traceable
Space Rate Rate Rate Collusion
{0, 1}b 3(b+2)

b ∼ 3 2(b+1)
b ∼ 2 4(b+2)

b ∼ 4 1

Figure 3: Efficiency Parameters of Scheme 2 (Two-User Setting)

5.2.1 Semantic security and security against passive adversaries

We proceed to the security analysis of the 2-key public-key encryption scheme 2.
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Theorem 22 The public-key encryption function described above is
(i) Semantically Secure under the DDH Assumption over G.
(ii) 1-copyrighted against passive adversaries (in the strong sense): given the public-key infor-
mation pk and a key 〈d, d′〉 ∈ Sl,pk it is computationally infeasible to construct another key in
Sl,pk under the Discrete-Log assumption over G.

Proof. (i) Recall, from the proof of theorem 17, the definition of semantic security in the sense
of message indistinguishability as a game G0. The challenge ciphertext has the form 〈A,B,C〉.

Let g, h,G,H be a challenge for the DDH assumption over G. We use the following public-
key : 〈g, h, f = ga0ha1〉 where a0, a1 ∈R [q]. Next, we modify the challenge ciphertext as
follows: 〈G,H,Ga0Ha1 · enc(mb)〉.

Observe that in this modified game as described above, whenever 〈g, h,G,H〉 is a valid
DDH triple then the modified game induces an identical distribution to that of the original
indistinguishability game G0. On the other hand, if 〈g, h,G,H〉 is distributed according to the
uniform distribution, we have that G = gr0 ,H = hr1 and Ga0Ha1 = gr0a0ha1r1 .

Now define the value u = r0a0 + a1r1 logg(h) in Zq. We will show that this value in the
information theoretic sense can assume with (almost) equally likely probability any value in [q]
in the view of the semantic security adversary A. This is the case, since the only information
communicated regarding the values a0, a1 is through the value v = a0 + a1 logg(h). It follows
that the linear system of the two equations for u and v has a single unique solution (a0, a1)
for each choice of u as long as r0 logg(h) 6= r1 (i.e., its determinant is non-zero). Given that
r0, r1 are selected uniformly at random over [q] we conclude that conditioning on the event
r1 6= r0 logg(h), the value u is uniformly distributed over [q] and thus the probability that the
adversary A guesses b correctly is exactly 1/2 (since no information about b is conveyed by
gu · enc(mb)). Moreover the event r1 = r0 logg(h) is a 1/q probability event, thus we conclude
that any semantic security adversary can have advantage at most 1/2 + ε+ 1/q where ε is the
advantage of the best possible polynomial time distinguisher for the DDH assumption over G.
This concludes the proof for (i).

(ii) Observe that given any two distinct keys 〈d0, d
′
0〉, 〈d1, d

′
1〉 ∈ Sl,pk, we have that di+d′iβ =

α. It cannot be the case that d′0 = d′1. Indeed if this is the case we have that d0 = d1 as well
and thus the two keys are the same. It follows that the above two equations, yield a linear
system with two uknowns α, β and determinant d′0 − d′1 that is solvable uniquely revealing
the secret exponents α, β. It follows that any adversary that violates the strong copyrighted
property can be used to recover the secret exponents α, β.

Consider g, h an instance of the discrete-logarithm problem. We define f = gaha
′

with
a, a′ ∈R [q] and set the public-key as g, h, f . It follows that a, a′ is a valid secret-key that
can be given to an adversary against the strong copyrighted property. Note that 〈a, a′〉 and
a secret key as given in the system’s key assignment operation follow identical distributions.
Now suppose that the adversary returns a pair 〈b, b〉 that is different from 〈a, a′〉 and is also
a valid key of the system. This in turn reveals α = logg(h) which is the solution of the given
instance of the discrete-logarithm problem. ut

As in the case of scheme 1, the construction presented above is strictly 1-copyrighted in the
strong sense and not 2-copyrighted in the strong sense since a collusion of two users is capable
of recovering the secret-keys α, β and thus capable of sampling Sl,pk at will. For example, given
〈d0, d

′
0〉 and 〈d1, d

′
1〉 it holds that 〈rd0 + (1− r)d1, rd

′
0 + (1− r)d′1〉 ∈ Sl,pk for any r ∈ Zq. Still

the scheme is 2-copyrighted against passive adversaries since if a key is recovered that belongs
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to none of the two users it holds that we can accuse correctly any of the users as a traitor.

5.2.2 Security against active adversaries : black-box traitor tracing

In this section we describe the analyzer procedure N against active adversaries, or black-box
traitor tracing. First we establish user separability. We describe a special encryption function
E0 that for a given message distribution D it encrypts plaintexts so that user 0 finds them
indistinguishable from other ciphertexts whereas the other user cannot decrypt correctly. Given
m←↩ D and the tracing trapdoor information τ , E0 selects random s0, s1 ∈R [q] and computes
r0, r1, r0d0 +r1d′0β = s0 and r0d1 +r1d′1β = s1. Note that the determinant of the above system
equals β(d0d

′
1 − d1d

′
0) and is non-zero as long as d0d

′
1 6= d′0d1 and β 6= 0. Recall that 〈d0, d

′
0〉

and 〈d1, d
′
1〉 are both solutions of the equation x+βy = α and the equality d0d

′
1 = d′0d1 implies

that (α − βd′0)d′1 = d′0(α − βd′1). In turn from this we obtain that, as long as α 6= 0, it holds
that d′0 = d′1 which is a 1/q probability event given that we select these values at random (and
we compute the values d0, d1 based on them). It follows that with probability at least 1− 3/q
over the choices of the public-key of the encryption scheme, the linear system suggested above
yields a unique solution for the variables r0, r1 using any choice of s0, s1. The ciphertext that
is prepared by E0 is of the following form: 〈gs0 · enc(m), gr0 , hr1〉.

The analyzer procedureN will use this special encryption function E0 to submit ciphertexts
to the pirate decoder box B(·) and obtain the decoder’s answer m′ following the description
of figure 1. The process is repeated K times. Let K ′ ≤ K be the number of times that the
decoder responds correctly (i.e., it holds that m′ = m). The analyzer N will return user 0 (that
is the user holding the key 〈d0, d

′
0〉) if K ′/K > ψ · (σ − ε0) where ψ ∈ (0, 1) is the parameter

specified in theorem 14, otherwise it concludes that user 1 is responsible.
In the remaining of the section we will establish the fact that the above described procedure

N is a black-box traitor tracing algorithm for the 2-key encryption scheme by arguing first,
that the 2-key encryption is user-separable and then employing theorem 14.

First, in the following lemma, we argue that from the point of view of user 0, acting as the
advesary, it is impossible to distinguish the ciphertexts that are produced by E0 compared to
regular ciphertexts produced by E, thus property US1 of definition 12 is satisfied.

Lemma 23 Suppose that A is a PPT that is given d0, d
′
0 and the public-key f, g, h, acts as

a distinguisher of the probability distributions 〈f r · enc(m), gr, hr〉 and 〈gs0 · enc(m), gr0 , hr1〉
where f, g, h is a public-key of the public-key encryption scheme as produced by G(1l), m is any
plaintext in [P]l and r0, r1, s0 are selected as above. Suppose that the distinguishing probability
of A is ε. Given A we can build a DDH distinguisher with the same distinguishing probability.

Proof. We describe the DDH distinguisher B. Given 〈g, h,G,H〉, we select d0, d
′
0 at random

from [q] and set f = gd0hd
′
0 . The values 〈f, g, h〉 form the public-key of the system. B simulates

A with input 〈f, g, h〉 and a secret key 〈d0, d
′
0〉. Observe that d0, d

′
0 are indistinguishable from

the distribution during the honest key generation.
Next, B prepares the ciphertext 〈G,H,Gd0Hd′0 · enc(m)〉 and simulates A on that input. It

returns the output that A returns.
It is easy to see that if 〈g, h,G,H〉 is a valid DDH triple then the ciphertext calculated

by B is indistinguishable from a valid ciphertext under the public-key 〈f, g, h〉. On the other
hand, if 〈g, h,G,H〉 is a random DDH triple then the ciphertext 〈G,H,Gd0Hd′0 · enc(m)〉 has
the form 〈gr0 , hr1gr0d0hr1d′0 · enc(m)〉. If we denote by s0 the value r0d0 + r1d

′
0 logg(h) then
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we have that the ciphertext is of the form 〈gr0 , hr1 , gs0 · enc(m)〉, which is indistinguishable
from the ciphertexts produced by the E0 alternative encryption. We conclude that if user 0
has distinguishes valid ciphertexts from invalid ciphertexts prepared by N then with the same
distingushing probability we can solve the DDH assumption. ut

In this way we have established that from the point of view of user 0, the ciphertexts
produced by the analyzer procedure using E0 are indistinguishable from valid ciphertexts.
This is not the case of course for user 1. Nevertheless, based on our construction, user 1,
despite the fact that he may realize that the ciphertext is invalid he will be unable to deliver
the appropriate output to appear as user 0. This case will be argued in the following lemma
that will establish property US2 of the definition of user-separability.

Lemma 24 Suppose that A is a PPT that is given 〈d1, d
′
1〉 the public-key f, g, h and a special

E0 ciphertext of the form 〈gs0 · enc(m), gr0 , hr1〉 as defined above. The plaintext m follows the
distribution D that has min-entropy µ(l). The probability that A returns m is bounded from
above by 2−µ(l).

Proof. Recall that the selection of r0, r1 is as follows: first random s0, s1 are selected; then the
system r0d0 + r1d

′
0β = s0 and r0d1 + r1d

′
1β = s1 is solved to calculate r0, r1. The ciphertext

prepared by N is of the form 〈gs0 · enc(m), gr0 , hr1〉.
In the information theoretic sense the following values are bound in the view of the ad-

versary A: β = logg(h), logg(f), r0, r1. Note that by selection the value s1 is also bound.
On the other hand the only information about the value s0 given to A is through the value
F = gs0 · enc(m). It follows that conditioning on F , for each m′ ∈ [P]l there is exactly one
choice of s0 that “explains” the value F , s0 = logg(F/enc(m′)). In our conditional space, s0
can assume any of these values with the same probability of success. It follows that in the view
of A the value F carries no information about m and as a result the probability of returning
m will be bounded by 2−µ(l) where µ(l) is the min entropy of the distribution D. ut

Armed with the two lemmas above we obtain the following corollary:

Corollary 25 The 2-user public-key encryption scheme 2 is a [∆, 2−µ(l)]-user-separable public-
key encryption scheme, where ∆ is a family of all plaintext distributions that have min-entropy
µ(l).

Using now theorem 14 and the above corollary the following theorem follows easily.

Theorem 26 The 2-key public-key encryption scheme 2 described above satisfies [∆, 2−µ(l), 1]-
semantic-black-box-traceability with the analyzer N of figure 1 using the special encryption E0,
where ∆ contains any plaintext probability ensemble that has min-entropy µ(l).

In particular, for any 〈∆, σ〉-pirate P such that σ(l) ≥ 2−µ(l) +α(l) it holds that (1) N has
success probability 1− ε, (2) the running time of N is polynomial in ln(ε−1)+α(l)−1 +σ(l)−1.

Proof. The proof follows directly from the proof of theorem 14 using the results of lemmas 18
and 19. ut
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6 The multi-user case

Let 〈P,C,K,S, G,E,D〉 be a 2-key public-key encryption scheme. In this section we will show
how is it possible to extend this construction to n-keys using a composition of the underlying
construction with a collusion secure code [BS98]. This technique was employed in [NSS99] to
construct a copyrighted hash function based on RSA by composing such codes to a basic 2-key
copyrighted hash function. Here, we show how to obtain an multi-key public-key traitor tracing
schemes by a parallel composition of independent instantiations of a 2-key encryptions based
on collusion-secure codes. Note that [NSS99] employed a nested composition instead, whereas
here we employ a parallel type of composition; our approach is geared towards attaining black-
box traceability (something that is not apparent how to achieve in the previous work).

Let C =
df
{ω1, . . . , ωn} be a 〈n, v〉2-collusion-secure code over the alphabet {0, 1} with v-

long codewords, that allows collusions of up to c and has a tracing algorithm that succeeds
with probability 1 − ε in returning a traitor. More specifically, to detail the traceability of
collusion secure codes we need the following definition:

Definition 27 Given a set of codewords C = {ωi1 , . . . , ωit} ⊆ C an undetectable position is
a location i ∈ {1, . . . , v}, such that (ωi1)i = . . . = (ωit)i. The set of undetectable positions is
denoted by U(C). The feasible set of C denoted by F (C) is defined as:

F (C) =
{
ω ∈ {0, 1, ?}v | (ω)U(C) = (ωi1)U(C)

}
The traceability of collusion secure codes imply that there is a tracing procedure T such that

given any string ω∗ ∈ F (C) where C = {ωi1 , . . . , ωit} with t ≤ c it holds that T returns with
probability at least 1− ε one of the indices i1, . . . , it. Collusion secure codes were introduced in
[BS98], and further investigated in [SSW00, SW01a, SW01b, Tar03]. Note that collusion secure
codes are generated by a probabilistic procedure that also creates a secret tracing trapdoor τ0
and is employed by the tracing procedure T . The code generation procedure defines a family
of code distributions one for each value of n ∈ N.

We define next our composite multi-user public-key encryption scheme and argue about its
traceability properties. The scheme will be built on a collusion secure code family and a 2-key
public-key encryption scheme.
Key-Generation. The key-generation procedure, generates a collusion secure code C =
{ω1, . . . , ωn} with tracing trapdoor τ0 and then generates v independent key-instantiations of
a 2-key public-key encryption scheme:

{〈pki, sk0,i, sk1,i〉}vi=1

with tracing trapdoors τ1, . . . , τv.
Without loss of generality we assume that the plaintext-space P over all instantiations is

the same (= {0, 1}b) and that len[c ∈ C1] = . . . = len[c ∈ C1]. The i-th decryption key of the
n-key system is defined as the following sequence ~ski =

df
〈ski,ωi,1 , . . . , ski,ωi,v〉 where ωi,` is the

`-th bit of the i-th codeword of C. The tuple 〈pk1, . . . , pkv〉 constitutes the public-key.
Encryption and Decryption. The plaintext space of the n-key system is Pv. A message
〈M1, . . . ,Mv〉 is encrypted by the tuple 〈E(pk1,M1), . . . , E(pkv,Mv)〉. Because each user has
one key that inverts E(pk`, ·) (either sk0,` or sk1,`) for all ` = 1, . . . , v it is possible for any user
to invert a ciphertext and compute 〈M1, . . . ,Mv〉.
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Traceability. To argue about the traceability of the above construction suppose that the
2-key public-key encryption scheme satisfies 1-traceability. Suppose now that 〈sk∗1, . . . , sk∗v〉
is a key that was constructed by a coalition of t users s.t. t ≤ c. Given such key the tracer
constructs a codeword ω∗ =

df
ω∗1|| . . . ||ω∗v as follows

ω∗i =
df

0 (if sk∗i = sk0,i) OR ω∗i =
df

1 (if sk∗i = sk1,i) OR ω∗i =
df

? (otherwise)

Because of the fact that each instance of the encryption satisfies the traceability property
against coalitions of one user it is possible to recover the key used in a coordinate where
all traitors share the same key. This in turn suggests that if C =

df
{ωi1 , . . . , ωit} is the set

of codewords that corresponds to the keys of the coalition of traitor users that constructed
〈sk∗1, . . . , sk∗v〉 as returned by the traceability algorithm, it holds that ω∗ ∈ F (C), where F (C)
is the feasible set of the codewords C (see [BS98]); it follows that if ω∗ is given as input to the
tracing algorithm of the collusion-secure-code C, and because |C| ≤ c, we are guaranteed to
obtain the identity of one of the traitors. In order to achieve probability of success 1 − ε we
will need to employ a public-key encryption scheme with traceability success at least 1− ε/2v
and a collusion secure code with probability of success at least 1 − ε/2. Note that the above
argumentation assumes implicitly that a key for all v instantiations will be found inside the
pirate decoder, i.e. implemenations of pirate decoders that omit keys are not useful. We deal
with how this can be enforced in more details in section 7 where we describe the two public-key
traitor tracing schemes based on this construction.
Black-box traceability. Suppose now that the underlying 2-key public-key encryption
scheme satisfies [∆, κ]-user-separability. We show that it is possible in the composite scheme to
construct the codeword ω∗ using merely black-box access to the pirate decoder: the analyzer
procedure (cf. figure 4) performs the black-box tracing analysis procedure for each coordinate
independently in a left-to-right sweep of the v-long composite ciphertext. This will have the
effect of identifying the key employed by the pirate-box for each coordinate. Thus, we can
calculate the symbol ω∗i as defined above as the output of the analyzer procedure for the i-th
coordinate. Based on this argumentation, the proof of the following theorem follows easily.

Theorem 28 The n-key composite public-key encryption scheme described above that is based
on a 〈n, v〉2-collusion-secure code for coalitions up to c and v instantiations of a 2-key public-key
encryption scheme that is [∆, κ]-user-separable satisfies [∆v, κ, c]-semantic-black-box-traceability,
where ∆v is a family of plaintext distributions over Pv that adheres to the following assumption:
Projection Assumption: if Dv ∈ ∆v then the projection of Dv into its i-th coordinate induces
a probability distribution over P that belongs to ∆.

In particular for any 〈∆v, σ〉-pirate P, such that σ(l) ≥ κ(l) + α(l) it holds that (1) N has
success probability at least 1− ε, (2) the running time of N is polynomial time in v(ln(v+1)+
ln(ε−1)+α(l)−1 +σ(l)−1) plus the time required to perform tracing on the collusion-secure code
C with success probability 1− ε

2 .

Proof. Let P be a [∆v, σ]-pirate against the composite TTS that for a certain choice of
the public-key produces a pirate-box B based on up to c of the secret-keys and a plaintext
distribution D ∈ ∆v. Based on the specifications, the success probability of B when given a
valid ciphertext would be at least σ(l).

To establish the black-box traceability of the composite scheme we demonstrate that the
analyzer procedure of figure 4 will determine one traitor given access to the pirate box pro-
duced by P. Based on the statement of the theorem we have that D when projected to its v
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Analyzer N for given plaintext distribution D ∈ ∆v

Input : tracing trapdoor τ0, τ1, . . . , τv; public-key 〈pk1, . . . , pkv〉; security parameter 1l

Oracle access: pirate-box B
Parameters: K, v ∈ N, ψ, σ ∈ (0, 1)
For ` = 1, . . . , v

K ′ = 0;
For i = 1, . . . ,K

sample mi ←↩D ([P]l)v;
parse mi as mi,1 . . .mi,v;
set Ci,` ← E0(pk`, τ`,m`);
set Ci,`′ = E(pk`′ ,m`′) for all `′ ∈ {1, . . . , v} − {`};
m′
i,1 . . .m

′
i,v ← B(Ci,1 . . . Ci,v);

if (mi,` = m′
i,`) then K ′ = K ′ + 1;

if K ′/K ≥ ψ · (σ − ε0) set ω∗` = 0 else set ω∗` = 1;
Return output of tracing procedure of C with input τ0 and ω∗ = ω∗1 . . . ω

∗
v ;

Figure 4: Black-Box Analyzer Procedure for a n-user composite public-key encryption based on
v instances of 2-key [∆, κ]-user-separable public-key encryption scheme and a collusion secure
code C.

coordinates induces a sequence of distributions D1, . . . ,Dv each one belonging to ∆. Given that
B correctly decrypts D with success at least σ(l) it follows that during the (`, i)-th execution
of the body of the main loop of the analyzer of figure 4 it holds that the pirate-box B will be
successful in decrypting correctly the E0 ciphertext with probability at least σ(l)− ε0(l) if the
coalition of traitor keys all agree in their `-th location and possess the key sk0,`, whereas the
pirate-box B will successfully decrypt the E0 ciphertext with probability at most κ(l) if the
coalition of traitor keys all agree in their `-th location and possess the key sk1,`. Note that
if both keys sk0,`, sk1,` are available to the traitor coalition no guarrantees are given on the
output of B.

Next we specify the parameters ψ and γ as follows: ψ = 1 − α
2σ and γ = α/2; then based

on lemma 13 we know that we can set K to be a polynomial in ln(v) + ln(ε−1) +α(l) + σ(l)−1

and obtain a correct prediction for ω∗` with probability at least 1− ε
2v .

It follows that with probability (1 − ε
2v )

v ≥ 1 − ε
2 the analyzer procedure will recover the

bitstring ω∗ in time polynomial in v · (ln(v + 1) + ln(ε−1) + α(l)−1 + σ(l)−1), and by applying
the tracing of the collusion secure code the analyzer N of figure 4 will obtain the result in
time-polynomial in n and success at least 1− ε

2 . It follows that the overall success probability
of the analyzer will be at least (1− ε

2)2 ≥ 1− ε. ut

Efficiency Parameters and Constant Transmission Rate. It is easy to see that the
derived scheme has the same ciphertext rate, user-key rate and public-key rate as the underlying
2-key public-key encryption scheme. This is because the v-fold expansion of these parameters
is cancelled by the simultaneous v-fold expansion of the plaintext-space.
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7 Two multi-user public-key traitor tracing schemes

The application of the construction of the previous section to the 2-key public-key encryption
schemes of sections 5.1 and 5.2 yields two public-key traitor tracing schemes. In the following
we will use the collusion secure code C = {ω1, . . . , ωn} of Tardos [Tar03] that has code length
v = O(c2 log(n/ε)) where c is the maximum collusion size and 1− ε is the lower bound on the
success probability of the tracing algorithm.

7.1 Public-key traitor tracing scheme 1

In the following ` is interpreted as a value in {1, . . . , v}.
Key Generation. Select N1, . . . , Nv composite numbers so that N` = p`q` and p`, q` satisfy
the properties described in section 5.1. Also recall that ρ` = p`−1

2
q`−1

2 . Without loss of
generality we assume that l =

df
|N1| = . . . = |Nv|. The public-key of the system is the set to

〈N1, g1, y1 =
df
gα1
1 mod N1〉, . . . , 〈Nv, gv, yv =

df
gαv
v mod Nv〉

where each 〈g`〉 = QN`
and α` ∈U [ρ`]. User i is given as its personal decryption key the tuple

〈sk1,ωi,1 , . . . , skv,ωi,v〉, where {sk`,0, sk`,1} = {α`, α` + ρ`} where each sk`,0 is selected to be the
evennumber of the pair.
Encryption. Any third party can encrypt a message 〈m1, . . . ,mv〉 ∈ {0, 1}v·b where b = l− 2
by employing the encoding defined in section 5.1 in the following way: 〈gr11 mod N1, y

r1
1 ·

enc(m1) mod N1, . . . , g
rv
v mod Nv, y

rv
v · enc(mv) mod Nv〉 where r` ∈U [N`].

Decryption. Given a ciphertext 〈A1, B1, . . . , Av, Bv〉 and a user-key 〈sk1, . . . , skv〉 the de-
cryption is enc−1(B1(A−1

1 )sk1 mod N1)|| . . . ||enc−1(Bv(A−1
v )skv mod Nv).

Traceability. It is easy to see that the construction satisfies the traceability property; in
particular as we have shown in theorem 17(ii) the underlying 2-key public-key encryption
scheme is 1-copyrighted in the strong sense under the factoring assumption, thus if a pirate
has to construct a pirate-key of the form 〈sk1, . . . , skv〉 ∈ Sl,pk and it is the case that in the
`-th coordinate all traitor-keys agree, the pirate will be forced to use that exact key assuming
factoring is hard. Based on this, it follows easily :

Proposition 29 The n-key public-key encryption scheme presented above satisfies c-traceability
under the factoring Assumption where c is a (N→ N) function such that c(n) is the maximum
traitor collusion size of the underlying 〈n, v〉2 collusion secure code employed in the construc-
tion.

Proof. Follows directly from the traceability of the underlying collusion secure codes and
theorem 17(ii). ut

Black-Box Traceability. The analyzer procedure is directly derived from theorem 28 and
corollary 20. In particular, the analyzer procedure will be successful in tracing any pirate-box
that has success probability in returning the correct plaintext with probability at least 1/2+α
where α is a non-negligible function in the security parameter and moreover the plaintext
distribution is restricted so that the plaintext distribution ∆v contains at least one truly
random bit in each of its v coordinates (and the location of this bit is known and incorporated
into the encoding).
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Theorem 30 The n-key public-key encryption scheme presented above satisfies [∆, 1
2 , c]-semantic-

black-box-traceability under the QR Assumption where ∆ is the family of plaintext distributions
as defined above and c is a (N→ N) function such that c(n) is the maximum traitor collusion
size of the underlying 〈n, v〉2 collusion secure code employed in the construction.

Proof. Follows directly from theorem 28 and corollary 20. ut
The efficiency parameters of the scheme are presented in figure 5.

7.2 Public-key traitor tracing scheme 2

Key Generation. The primes p1, . . . , pv are selected so that p` = 2q` + 1 with q` also prime.
Without loss of generality we assume that l = |p1| = . . . = |pv|. The public-key of the system
is the set to 〈p1, f1, g1, h1〉, . . . , 〈pv, fv, gv, hv〉 where f`, g`, h` are generators of the q`-order
subgroup G` of Z∗

p`
, with known relative discrete-logs for the authority.

Let ~d0,` = 〈d0,`, d
′
0,`〉 and ~d1,` = 〈d1,`, d

′
1,`〉 be two random, linearly independent represen-

tations of f` w.r.t. g`, h`, i.e. f` = g
du,`

` h
d′u,`

` for u ∈ {0, 1}. User i is given as the decryption
key the tuple 〈~d1,ωi,1 , . . . ,

~dv,ωi,v〉,
Encryption. Any third party can encrypt a message 〈M1, . . . ,Mv〉 ∈ {0, 1}b·v where b = l−2,
in the following way: 〈enc(M1) · f r11 mod p1, g

r1
1 mod p1, h

r1
1 mod p1, . . . , enc(Mv) · f rvv mod

pv, g
rv
v mod pv, hrvv mod pv〉 where r` ∈U [q`] and enc(·) is the encoding function defined in

section 5.2.
Decryption. Given a ciphertext 〈A1, B1, C1, . . . , Av, Bv, Cv〉 and a user-key 〈 ~sk1, . . . , ~skv〉 the
decryption is computed as follows

〈enc−1(A1〈B−1
1 , C−1

1 〉
~sk1 mod p1), . . . , enc−1(Av〈B−1

v , C−1
v 〉

~skv mod pv)〉

where 〈a, b〉〈c,d〉 =
df
acbd.

Traceability. It is also easy to see that the construction above satisfies the traceability
property; in particular as we have shown in theorem 22(ii) the underlying 2-key public-key
encryption scheme is 1-copyrighted in the strong sense under the Discrete-log assumption,
thus if a pirate has to construct a pirate-key of the form 〈sk1, . . . , skv〉 ∈ Sl,pk and it is the case
that in the `-th coordinate all traitor-keys agree, the pirate will be forced to use that exact
key. Based on this it follows easily :

Proposition 31 The n-key public-key encryption scheme presented above satisfies c-traceability
under the Discrete-log Assumption where c is a (N → N) function such that c(n) is the max-
imum traitor collusion size of the underlying 〈n, v〉2 collusion secure code employed in the
construction.

Proof. Follows directly from the traceability of the underlying collusion secure codes and
theorem 22(ii). ut
Black-Box Traceability. The analyzer procedure is directly derived from theorem 28 and
corollary 20. In particular, the analyzer procedure will be successful in tracing any pirate-box
that has success probability in returning the correct plaintext at least 2−µ(l)/v + α(l) where α
is a non-negligible function in the security parameter and moreover the plaintext distribution
D ∈ ∆ is such that it has min-entropy µ(l) that is evenly spread across the v components of
plaintexts (i.e., each of the v components has min-entropy µ(l)/v).
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Ciphertext User-Key Public-Key Max Traceable
Plaintext Expansion Expansion Expansion Factor Collusion with

Space Factor Factor Factor (1− ε)-success
TTS 1 {0, 1}bv 2v(b+3)

bv ∼ 2 v(b+4)
bv ∼ 1 3v(b+3)

bv ∼ 3 Ω(
√

v
log(n/ε))

TTS 2 {0, 1}bv 3v(b+2)
bv ∼ 3 2v(b+1)

bv ∼ 2 4v(b+2)
bv ∼ 4 Ω(

√
v

log(n/ε))

Figure 5: Efficiency Parameters of the two Traitor Tracing Schemes assuming plaintext cal-
ibration, over a 〈n, v〉2-collusion secure code of codeword length v = O(c2 log(n/ε)), where ε
denotes the error probability of the tracer and c the maximum traitor collusion size.

Theorem 32 The n-key public-key encryption scheme presented above satisfies [∆, 2−µ(l)/v, c]-
semantic-black-box-traceability under the DDH Assumption, where ∆ is the family of plaintext
distributions with min-entropy µ(l) as specified above and c is a (N→ N) function such that c(n)
is the maximum traitor collusion size of the underlying 〈n, v〉2 collusion secure code employed
in the construction.

Proof. Follows directly from theorem 28 and corollary 20. The projection assumption is ensured
by the fact that the µ(l) min-entropy of the pirate distribution is evenly spread across the v
components that comprise the plaintext random variable. ut

The efficiency parameters of the scheme are presented in figure 5.

7.3 Remarks on Traceability

We note that the projection assumption essentially enforces the pirate-decoder to include at
least one key for each of the v-components. For example in the public-key traitor tracing scheme
#2, we require that each pirate decoder successfully decodes a coordinate of a ciphertext with
probability at least 2−µ/v+α where µ/v is the min-entropy of the plaintext distribution in one
of the v coordinates (and µ is the overall min-entropy).

Dealing with pirates that violate the projection assumption (for example pirates whose
success probability on some of the coordinates drops below the bound required above) can be
still made possible by employing collusion secure codes that are resistant against “erasures”
or even “shortening” of codewords, i.e., essentially considering codes that can handle more
general “marking conditions” (cf. [SW01b, SW02]).

To deal with the similar issue of why the pirate should include all keys within the pirate
decoder it was suggested in [KY02] to employ an all-or-nothing transform (AONT) [Riv97].
The employment of the AONT will force the pirate to include one key from each component in
order to reach an acceptable success ratio and this will enable the non-black-box traceability
argument to be made more compelling. On the other hand, in the black-box setting, the AONT
will not prevent the cropping or otherwise tampering of the plaintext once it is decrypted and
thus it can be seen not to offer a significant advantage in the black-box setting.
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[Tar03] Gábor Tardos, Optimal probabilistic fingerprint codes, in Proceedings of the 35th
Annual ACM Symposium on Theory of Computing, June 9-11, 2003, San Diego, CA, USA.
ACM 2003, pp. 116-125.

[TY99] Yiannis Tsiounis and Moti Yung, On the Security of ElGamal Based Encryption, in
Hideki Imai, Yuliang Zheng (Eds.): Public Key Cryptography, First International Work-
shop on Practice and Theory in Public Key Cryptography, PKC ’98, Pacifico Yokohama,
Japan, February 5-6, 1998, Proceedings. Lecture Notes in Computer Science 1431, pp.
117-134.

34


