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Abstract. The informal goal of a watermarking scheme is to “mark” a digital object, such as a picture
or video, in such a way that it is difficult for an adversary to remove the mark without destroying the
content of the object. Although there has been considerable work proposing and breaking watermarking
schemes, there has been little attention given to the formal security goals of such a scheme. In this work,
we provide a new complexity-theoretic definition of security for watermarking schemes. We describe
some shortcomings of previous attempts at defining watermarking security, and show that security under
our definition also implies security under previous definitions. We also propose two weaker security
conditions that seem to capture the security goals of practice-oriented work on watermarking and show
how schemes satisfying these weaker goals can be strengthened to satisfy our definition.

1 Introduction

Informally, a digital watermarking scheme is a procedure which embeds a “mark” in an object so that
it is hard to remove the mark without “damaging” the object. These procedures have a wide variety of
applications to digital rights management, including detection of unauthorized copies, limitations on media
copying, tracing of information leaks, and resolution of ownership disputes over digital content; for further
exposition on various applications see, for example [1, ch. 20]. As a result, watermarking schemes have seen
intense research efforts; for example, see [2] and the references therein, or the proceedings [3–16]. Most of
this work is focused on the construction of schemes for various digital media and attacks on these schemes,
where there is a long history of schemes being broken almost immediately after they are proposed.

Given this history, it is not surprising that in the security community, there is a perception that secure
watermarking is “theoretically impossible,” as expressed, for instance, in [1, 17, 18]. While this idea is
intuitively appealing, it is difficult to prove something is (im)possible without first formally defining the
notion. Consider for instance, the related notions of program obfuscation and steganography, which were
both widely believed to be impossible. Program obfuscation was formalized and shown to be impossible in
general [19], but subsequently some progress has been made in limited cases [20, 21]. Steganography, on the
other hand, was formalized and shown to be possible, but at limited rates [22–24].

Surprisingly, formal definitions for watermarking security have only recently appeared in the literature.
The state of the art focuses on defining schemes secure against specific “protocol attacks,” which attack the
protocols that use a watermark rather than removing a mark from an object [25]; these very powerful attacks
changed researchers’ understanding of what it means for a watermark to be “secure.” For example, Kutter
et al. [26] introduced the copy attack, in which a watermark is copied from an object O1 into an object O2

to form an object O′2 that appears marked even though it was never legitimately watermarked. This makes
it impossible to use the attacked watermarking scheme for various applications, such as resolving ownership
disputes.

Later Adelsbach, Katzenbeisser, and Veith formalized copy attacks and a different protocol attack known
as an ambiguity attack. They then showed protocols intended to be provably secure against these attacks [27].
Several other authors have also produced schemes claimed to be provably resistant to copy attacks or other
protocol attacks [28, 29].3 While this line of work has led to interesting results, there are some limitations,
3 We stress that these constructions, similarly to our own, do not attempt to construct a provably secure watermark

“from scratch” but rather try to build something “secure against X” from a watermark that is not assumed to be
secure in this sense.



which we summarize in Appendix B. Additionally, this approach leads to an “arms race,” in which, as new
protocol attacks are discovered, new watermarking schemes must be designed and proven secure.

The primary contribution of this work is to initiate the systematic study of watermarking security def-
initions. We define a “strong watermarking” security condition with respect to a metric space on objects,
which compares a watermark to an ideal functionality in which an object is marked if and only if it is similar
to some object previously marked by the functionality. We show that this definition implies security against
previously known protocol attacks, and explore the question of proving impossibility. We also explore weaker
security conditions and show how, under some conditions, schemes satisfying these weaker definitions can be
strengthened or amplified to produce strong watermarks.

We stress that in these latter results, we explicitly do not construct “secure” watermarking schemes
from scratch. Instead, we show that watermark designers can achieve a strong notion of security from
weak constructions that are not secure against protocol attacks. These results have two implications. First,
impossibility results for strong watermarking in a metric space will also imply impossibility of these weaker
goals. Second, this means that watermark designers need not complicate their schemes by attempting to
rule out protocol attacks. Instead, they need only achieve the weaker notion and then apply our results; put
another way, it is enough to build schemes that heuristically satisfy these goals and apply our constructions
to build (heuristically) strong watermarking schemes, similar to results that say we can build (heuristically)
strong secret-key encryption schemes from (heuristically) strong block ciphers.

Overview of our results. In Section 3 we propose a new definition of secure watermarking schemes,
that we call strong watermarking, in the case that the marking and detecting procedures share a secret key.
Our definition allows the adversary to make adaptive queries to oracles for both marking an object and
detecting whether an object is marked. The main idea of the definition is that a strong watermarking scheme
(in which there is no communication between the marking and detection procedures) should simulate an “ideal
watermarking functionality,” which we define. We show that strong watermarking implies security against
all known protocol attacks, and argue that the definition will imply security against future protocol attacks.
Furthermore, we show that security in our model depends critically on both the notion of similarity and the
distribution on objects to be marked; specifically, we show an example of these settings under which strong
watermarking is impossible, and an example where strong watermarking exists, relative to an oracle.

In Section 4 we introduce a “weaker” notion of watermark, which we call a non-removable embedding.
This is a weak notion because it only requires that the watermark cannot be removed; we explicitly allow
copy and ambiguity attacks to succeed against non-removable embeddings. We formalize this notion, prove
a separation between the notion and our proposed strong definition, and point out that many watermarking
schemes in the literature use a security metric closely related to this notion. We also introduce a notion of
“limited” adversaries, who only create new objects based on some limited set of transformations. This notion
is interesting since there are some techniques in the watermarking literature which seem to imply provable
security against “limited” attacks such as Gaussian noise. Additionally, some applications of watermarking
only require watermarks to be “robust” against distortions caused by physical processes; these can be modeled
by limited adversaries. We note that all of our results on amplification can be easily extended to the limited
adversarial setting. We then show how schemes that are provably secure under the strong watermarking
definition can be constructed from non-removable embeddings plus a semi-offline trusted third party, a
standard digital signature scheme, and a semantically secure symmetric encryption scheme. This shows that
our notion of strong watermarking can be built on the “weak” primitive of non-removable embeddings. While
we do require a third party, this party is not required during watermark detection.

In Section 5 we study an alternative method for producing a strong watermarking scheme. Specifically,
we consider the question of security amplification of watermarking schemes. We formally specify two new
notions that correspond to a weaker version of strong watermarking and show how schemes which satisfy
these natural conditions can be efficiently composed to produce strong watermarking schemes. Note that
this construction can be seen as an heuristic method to create strong watermarking schemes as well as a way
to extend impossibility results for a given notion of similarity.
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2 Preliminaries

We will work with discrete metric spaces. A discrete metric spaceM is a finite space equipped with a distance
function d : M×M → Z+ ∪ {0}. The distance function is symmetric, obeys the triangle inequality and
has the property that if d(x, y) = 0 then x = y. We will associate with a metric space a similarity relation
∼ defined by x ∼δ y ≡ d(x, y) ≤ δ for some fixed δ. When the meaning is clear from context, we will drop
the δ and simply write ∼. For simplicity, we will assume that all parties can efficiently evaluate ∼. Finally,
we denote by D a distribution on M. Unless otherwise specified, we assume that all parties can efficiently
sample from D and we denote by O ←R D an object O ∈M sampled according to the distribution D .

We will also make use of a digital signature scheme S = {SGen,Sig,Ver}. We say that a signature scheme
is (t, q, ε)-existentially unforgeable under adaptive chosen message attack [30] if all adversaries running in
time at most t making at most q queries to a signature oracle have chance at most ε of obtaining a signature
on a message not previously queried.

We will use a symmetric encryption scheme SE = {Encrypt,Decrypt}. We say that a symmetric encryption
scheme is (t, q, ε)-secure in the left-or-right sense [31] if every time t adversary, given q queries to a “left-or-
right” oracle LORK(b, x0, x1) = Encrypt(K,xb) cannot distinguish between the case that b = 0 and b = 1
with advantage better than ε.

Finally, we will need a pseudorandom function ensemble
{
F : {0, 1}k × {0, 1}L(k) → {0, 1}`(k)

}
k∈N [32].

We say that a function ensemble is (t, q, ε)-pseudorandom if any adversary running in time at most t and
making at most q queries to a function oracle can distinguish an oracle for F (Uk, ·) from an oracle for a
random function f : {0, 1}L(k) → {0, 1}`(k) with advantage at most ε.

3 Strong Watermarking

As previously mentioned, the informal notion of a watermarking scheme requires the ability to somehow
“mark” digital objects, such as pictures, sound, video, or text. The scheme should also satisfy several addi-
tional requirements:

– The result, O′, of marking an object, O, should be “similar” to O.
– An adversary, given O′, should not be able to find an object O′′ that is similar to O′ but unmarked; this

prevents removal of the mark except by “damaging” the object.
– Most objects O must not be marked. If this is not the case, then certain desirable uses of watermarks,

such as searching for copies of O′ and proving ownership of O′, are not possible.
– There should be no communication required between the marking procedure and the detecting procedure;

or this communication should be minimized. This is necessary for many applications, for example, a media
player that may not have a network connection.

We will model the notion of similarity or damage by postulating the existence of a “perceptual metric” that
measures the distance between objects of a given type. Thus such a metric would assign a small distance
between two pictures that look alike and a large distance between two very different pictures. In practice it
is difficult to characterize such a metric space, so researchers typically focus on Euclidean or weighted L1

distance in some “perceptually significant” space such as the Fourier [33], Wavelet [34], or Fourier Mellin [35]
transforms. Once we fix a metric d, the natural notion of similarity is the relation ∼δ defined previously,
that is, we will say that objects O1 and O2 are similar if d(O1, O2) ≤ δ.

Given this formalization of similarity, we can construct a perfectly secure watermarking scheme that
optimally satisfies the above requirements. To mark an object O with key K, the ideal scheme simply adds
O to its list of objects marked with K; to test whether an object O′ is marked with K, the ideal scheme
simply searches the appropriate list of marked objects and returns true if it finds an object similar to O′

and false otherwise. This “ideal” scheme does not allow an adversary to succeed in “unmarking” a marked
object but leaves the largest possible set of objects unmarked subject to this constraint. The ideal scheme
is undesirable in that it requires unbounded, online communication between the marking and detection
algorithms; our intent is to compare a real-world watermarking scheme (which does not allow any online
communication between the marking and detection procedures) to this ideal.
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Oracle Mark∗(O):
1. O′ ← Mark(K, O)
2. Marked← Marked ∪ {O′}
3. return(O′)

Oracle Detect∗(O):
1. b← Detect(K, O)
2. B′ ← IdealDetect(O)
3. if b 6∈ B′

4. then bad← true
5. return(b)

Oracle Challenge∗D()
1. O ←R D
2. O′ ← Mark(K, O)
3. chalns← chalns ∪ {O′}
4. Marked← Marked ∪ {O′}
5. return(O′)

Fig. 1. Definition of Mark∗, Challenge∗ , and Detect∗ oracles for strong watermarking. The global variables K, Marked,
chalns, and bad are initialized in figure 2

An informal statement of our definition allows an adversary access to a marking oracle and a detection
oracle for a watermarking scheme. The adversary then attempts to attack the scheme by finding an object
such that the results of the actual detection algorithm and the ideal detection procedure differ: either the ob-
ject is marked and should not be, or it is unmarked and should be. Unfortunately, any watermarking scheme
that produces objects that are similar to its input and has a static detection scheme would be insecure under
this definition. The intuition is that the following attack would succeed with very high probability:

1. The adversary samples an object O ∈ M. Since it has not been queried to the marking procedure, it is
not yet marked under the ideal scheme.

2. Next the adversary queries Mark(O), to get an object O′ similar to O.
3. Finally, the adversary queries Detect(O). In the watermarking scheme under attack, O should not be

marked (since it was not marked in step 1, and there is no communication between marking and detection
schemes). But in the ideal scheme, it is close to O′, which is marked. Thus the adversary has succeeded
in finding an object on which the real and ideal schemes differ.

We give a formal proof of this in Appendix C, where we also show that a cryptographically natural alterna-
tive definition also rules out secure schemes that distort originals by less than half the similarity radius. Our
solution is to introduce a third, challenge oracle that selects objects to watermark from some probability
distribution; the performance of the watermarking scheme is only compared to that of the ideal scheme on
these challenge objects.

3.1 Definition of Strong Watermarking Schemes

A secret-key watermarking scheme W = {WMGen,Mark,Detect} consists of three algorithms: WMGen :
1∗ → Keys generates a secret key to be used in marking and detection; Mark : Keys ×M → M takes a
key and an object to mark and returns a new object; and Detect : Keys ×M → {true, false}. Notice that
we do not explicitly allow any online communication between the Detect and Mark procedures, since in many
applications the devices detecting and marking objects may not have any means by which to communicate.

We can now define strong watermark security. Our definition formalizes the informal discussion above.
An adversary is given access to oracles for Mark and Detect, and a special Challenge∗ oracle that samples and
marks objects from an efficiently sampleable distribution D overM. The adversary wins if he calls Detect∗

on an object that is either marked, but not similar to the result of a Mark∗ or Challenge∗ query, or unmarked,
but similar to the result of some Challenge∗ query. Notice that unlike in the hypothetical discussion above,
we only require the objects near the result of Mark (rather than the input) to be marked, since these are
(presumably) the ones that the adversary will be able to access. The formal security experiment has four
global variables: Marked and chalns, sets of objects; bad, a boolean flag; and K, a key. In Figures 1 and 2 we
show pseudocode for initializing the security experiment and the ideal detection functionality, as well as for
oracles Mark∗, Challenge∗, and Detect∗. We note that some of our reductions require the ability to sample
from a distribution D′ onM.

We say that a watermark is ρ-preserving for D if Pr[K ← WMGen(1k);O ← D;O′ ← Mark(K,O) :
d(O,O′) > ρ] is negligible in k; that is, if the marked version of an object is almost always within distance ρ
of the original. This “bounded distortion” requirement is not strictly necessary for security in all applications,
but is typically vital to the utility of a watermarking scheme.
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Experiment Expstrong
D,W (A):

1. K ←WMGen(1k)
2. bad← false
3. Marked← ∅
4. chalns← ∅
5. AMark∗,Challenge∗,Detect∗()
6. return (bad)

Procedure IdealDetect(O):
1. if (∃O′ ∈ chalns : O ∼ O′)
2. then return {true}
3. else if (∃O′ ∈ Marked : O ∼ O′)
4. then return {true, false}
5. else
6. return {false}

Advstrong
D,W (A) = Pr[bad = true]

Fig. 2. Definition of security experiment for strong watermarking.

The advantage of an adversary AStrong is Advstrong
D,W (AStrong) as defined in Figure 2. The scheme is a

(D, t, qM , qD, qC , ε, δ)-strong watermarking scheme if for all adversaries AStrong running in time at most t,
making at most qM queries to Mark∗, at most qD queries to Detect∗, and at most qC queries to Challenge∗ ,
the advantage of AStrong is at most ε with respect to similarity relation ∼δ.

Philosophically, one may think of the above experiment as a game between, say, a “hacker” and a “stu-
dio.” The hacker can “give” movies to the studio to see how they look when marked, and he can check, using
his personal DVD player, whether any particular object is marked. Meanwhile, the studio will release other
videos not created by the hacker; it is the hacker’s goal to “unmark” one of these movies, or alternatively,
to create a movie that appears to be marked but was never marked by the studio. If the hacker cannot do
this, the studio can have good confidence that a movie will appear marked iff it was produced by them.

Dependence on ∼ and D. It should be clear that the existence of strong watermarks depends critically on
both the similarity relation ∼ and the distribution on challenge objects, D. For instance, if an attacker can
deduce, given the result of a query to Challenge∗D the object O ← D from line 1 of Figure 1, then as pointed
out in our earlier discussion, the scheme cannot be secure for D and ∼. Thus D must have high entropy,
and be “one-way” for most keys. Likewise, if for any given O, enumerating the set Nδ(O) = {O′ : O′ ∼ O}
is feasible, then a watermarking scheme cannot be secure. In this work, we do not explore all the necessary
conditions on ∼ and D; it seems to be a difficult challenge to even identify the correct similarity metric and
distribution for many of the applications of watermarking. Here we briefly give two results that show that
even when the previous two conditions are satisfied, there cannot be a “generic” argument for the existence
or impossibility of strong watermarks.

Proposition 1. Let D be the uniform distribution on k-bit strings and let d(x, y) be the hamming dis-
tance metric on k-bit strings. Then there is no δ-preserving, (D, O(k), 1, 1, 1, 1/2δ+1, δ)-strong watermarking
scheme.

Notice that for δ(k) = O(log k), the neighbor set has size superpolynomial in k, and D has k bits of
entropy, yet no watermarking scheme can have security better than 1/2k. The proposition can be seen
to be true as follows. Suppose we uniformly pick a point x ∈ {0, 1}k; consider the point y returned by
Mark∗(x), and let z and w be uniformly chosen points in Nδ(y) and Nδ(x), respectively. Now we know that
if a watermarking scheme is to be ε-secure, it must be that Pr[Detect∗(z) = false] ≤ ε, since otherwise an
adversary can remove a mark with probability greater than ε by sampling a random point in the neighborhood
of a marked object. It can also be shown that Pr[z ∈ Nδ(x)] ≥ 1/2δ. This gives us that Pr[z ∈ Nδ(x) ∧
Detect∗(z) = true] ≥ 1 − (Pr[z 6∈ Nδ(x)] + Pr[Detect∗(z) = false]) ≥ 2−δ − ε. Note that ε security also
requires that Pr[Detect∗(w) = true] ≤ ε, since otherwise we can easily find a marked point – by randomly
sampling an object in the neighborhood of a random point – breaking the watermark. Thus we also have
that ε ≥ Pr[Detect∗(w) = true ∧ w ∈ Nδ(y)]. But by symmetry, for any fixed choice of K, x, y, we have
Pr[Detect∗(w) = true∧w ∈ Nδ(y)] = Pr[Detect∗(z) = true∧z ∈ Nδ(x)]. This gives ε ≥ 2−δ−ε, or ε ≥ 2−δ−1.

Notice that a similar argument applies to any metric space, distribution and marking function such
that (i) the neighborhood of an object and its marked version are symmetric, (ii) these neighborhoods have
noticeable intersection, and (iii) it is possible to uniformly sample from the neighborhood set of an object.
Thus to rule out an impossibility result, we seek to violate these properties.

Proposition 2. There exists an oracle Π, relative to which there exists a distribution DΠ , a metric dΠ ,
and a 1-preserving watermarking scheme WΠ such that WΠ is (DΠ , t, t, t, t, t

2/2k, 1)-strong.
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Experiment Expcp
D,W (B) :

1. K ← WMGen(1k)
2. O1 ←R D
3. O′

1 ← Mark(K, O1)
4. O2 ←R D
5. O′

2 ← B(O′
1, O2)

6. if Detect(K, O′
2)

7. and O2 ∼ O′
2 6∼ O′

1
8. then b = true
9. else b = false
10. return(b)

Advcp
D,W (B) = Pr[b = true]

Experiment Expamb
D,W (B) :

1. K ← WMGen
2. repeat
3. O1 ←R D
4. until Detect(K, O1) = false
5. O′

1 ← B(O1)
6. if Detect(K, O′

1) and O1 ∼ O′
1

7. then b = true
8. else b = false
9. return(b)

Advamb
D,W (B) = Pr[b = true]

AdversaryAB
cp() :

1. O1 ← Mark∗(O ← D)
2. O2 ←R D
3. O′

2 ← B(O′
1, O2)

4. Detect∗(O′
2)

Adversary AB
amb:

1. O1 ←R D
2. Detect∗(O1)
3. O′

1 ← B(O1)
4. Detect∗(O′

1)

Fig. 3. Experiments for copy and ambiguity attacks and the corresponding strong watermark adversary.

Intuitively, we will chooseΠ, dΠ and DΠ so that for most strings x it will be very hard to even find a string
y such that dΠ(x, y) = 1, but the oracle gives us a way to sample from a set of “special” strings x′ that violate
this property. Once we mark an object x′ it is no longer in this special set, so it is hard for the adversary to
remove the mark. Formally, the oracle Π “knows” a uniformly chosen bijection π : {0, 1}2k → {0, 1}k×{0, 1}k
for each k and answers three types of queries: sample, dist, and move. Π(sample, y) returns π−1(y, 0k).
Π(dist, x0, x1) computes (yb, zb) = π(xb), and then returns 0 if x0 = x1, 1 if y0 = y1 and some zb = 0k, 2
if y0 = y1, and 3 otherwise. Π(move, x, z′) computes (y, z) = π(x); if z = 0k then it returns π−1(y, z′); if
z = z′ it returns π−1(y, 0k), and otherwise it returns x. The distribution DΠ is defined as Π(sample, Uk)
and the metric dΠ(x, y) = Π(dist, x, y), so that for most 2k-bit strings x, there is only one string at distance
1 from x. The marking scheme WΠ uses k-bit keys, and computes MarkΠ(K,x) = Π(move, x,K), while
DetectΠ(K,x) returns true iff Π(move, x,K) 6= x.

We remark that, obviously, the oracle distribution Π does not prove that strong watermarks exist. It
merely shows that there cannot be a “black-box” proof that rules out all possible strong watermarking
schemes without considering the details of D and ∼. We believe it is an interesting open question to find any
D and ∼, even if they are contrived, that provably admit a strong watermarking scheme without reference
to an oracle, or even with small values (qM , qC , qD).

3.2 Strong Watermarks Are Secure Against Protocol Attacks

Adelsbach et al. provided the first formal definition of copy attacks and ambiguity attacks [27]. We adapt
their definitions to our setting, in which we consider only the presence of a mark rather than its content. We
show that strong watermarks are secure against copy and ambiguity attacks.

First we consider copy attacks. Informally, a copy attack occurs when an adversary can “copy” a water-
mark from a marked object O′1 to a second object O2. In our watermarking model, “copy” means that the
adversary, given a marked object O′1, can cause an object O2 to return true for Detect∗ despite never having
been queried to Mark. More formally, we say a watermarking scheme is (D, t, εcp, δcp)-secure against copy
attacks if all adversaries B running in time at most t have advantage Advcp

D,W(B) ≤ εcp with respect to
similarity relation ∼δcp . Notice that in this definition (and in the original definition of Adelsbach et al. [27])
the copy adversary is not afforded access to a Mark∗ or Detect∗ oracle. We can prove that a D-strong wa-
termarking scheme is not vulnerable to copy attacks for any sampleable distribution D′ : if there exists an
adversary B that successfully carries out a copy attack, then the adversary AB

cp in Figure 3 succeeds at
breaking the strong watermark. A formal theorem statement and proof are in Appendix A.

Next, we consider ambiguity attacks. A classical ambiguity attack takes an unmarked object O1, and
produces a new “original” object O2 such that O1 appears to be marked with O2 as the original. In our
model, we can recast ambiguity attacks as, given an unmarked object O1, find an object O2 such that
O2 ∼ O1 and O2 appears to be marked, without legitimately marking O2. Strong watermarking implies
security against ambiguity attacks: if B succeeds at carrying out an ambiguity attack, then the adversary
AB

amb shown in Figure 3 breaks the strong watermark. Details are in Appendix A.
Remark. We note that some works on protocol attacks describe attacks where the adversary is allowed to
choose the key to the watermarking scheme. While it is important to eventually address such chosen-key
attacks, we believe it is an interesting and important first step to concentrate on getting the definitions right
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Experiment ExpNRE
D (A):

1. (z, z′)← EMGen(1k)
2. Embedded← ∅
3. OA ← AEmbed(z,·,·),Challenge∗ (z′)

Oracle Challenge∗(m):
1. O ←R D
2. O′ ← Embed(z, O, m)
3. Embedded← Embedded ∪ {(O′, m)}
4. return O′

AdvNRE
D (A) = Pr[∃(Oi, mi) ∈ Embedded : OA ∼ Oi ∧ Extract(z′, OA) 6= mi]

Fig. 4. Security experiment and Embed∗ oracle for non-removable embeddings.

for the more basic scenario. Thus in this paper we do not consider attacks that involve manipulating the
keys of the marking and detection procedures.

4 Non-Removable Embeddings and Strong Watermarks
Many watermarking schemes in the literature actually provide a somewhat different interface from the wa-
termarking primitive described in the previous section. Instead, these schemes focus on embedding a short
string within an object so that if the adversary does not distort the object too much, the embedded string
can be recovered. Typical schemes do not attempt to prevent “insertion” of strings into an object, which is
the reason that many protocol attacks succeed. In this section, we give a formal notion of a primitive, the
non-removable embedding (NRE), that seems to capture this design goal. We will demonstrate that NREs
are provably weaker objects than strong watermarks: if NREs exist at all, then there are NREs that allow
copy attacks. After separating the notions of NREs and strong watermarks, we give a construction which
makes limited use of a semitrusted third party to construct a strong watermarking scheme from a NRE.

The notion of an NRE is closely related to a security notion widespread in the watermarking literature.
Many schemes presented in the watermarking literature, for example [36–40], take as their evaluation metric
the bit error rate for a watermarked message given a specified constraint on the distortion allowed the adver-
sary, or “watermark to noise ratio.” Essentially, these schemes attempt to bound the rate of bit errors in the
embedded string for a given amount of distortion induced by the adversary. One of the interesting properties
of the NRE notion is that we can easily build an NRE from such schemes. Because we deal with probabilistic
polynomial time adversaries, we can assume that the bit errors follow a computationally bounded distribu-
tion. Therefore, we can use the coding methods of Micali et al. to obtain an NRE from up to a bit error rate
of one half: we simply encode the message before embedding and decode on extraction [41].

To begin, an embedding scheme (Embed,Extract,EMGen) is a triple of algorithms with the following
signatures: Embed : Aux×M×{0, 1}k →M, Extract : Aux′×M→ {0, 1}k∪ ⊥, and EMGen : 1∗ → Aux ×Aux′

for some fixed k. Here M is a metric space, and Aux and Aux′ are sets of possible auxiliary inputs. For
example, Aux might be a set of secret keys, while Aux′ might be a set of public keys. k is the length of
strings to be embedded in objects.

We further require that embedded messages can be extracted, i.e. for (z, z′) ← EMGen(1k), we have
Extract(z′,Embed(z,O, x)) = x with high probability. An embedding scheme is ρ-preserving for D if for all
m ∈ {0, 1}k, d(Embed(O,m), O) ≤ ρ with high probability over O ← D. Together, these give a correctness
and a bounded distortion requirement for a non-removable embedding.

We define security of embedding scheme NRE by saying it is (D, t, qE , qC , ε, δ) non-removable for distri-
bution D if for all A running in time at most t, that make at most qE queries to an Embed oracle and at
most qC queries to the Challenge∗ oracle, the advantage AdvNRE

D (A) defined in Figure 4 is at most ε.
Remarks. This definition does not rule out the protocol attacks we have discussed: in particular, if there
is a ρ-preserving non-removable embedding for the metric space M with metric d, we can construct a 2ρ-
preserving non-removable embedding for the metric spaceM×{0, 1}k with metric d′, that allows copy attacks
to succeed, as follows. We define the metric d′((O1, y1), (O2, y2)) to be d(O1, O2) if y1 = y2 and d(O1, O2) +
ρ otherwise; define Embed′(z, (O, y), x) = (Embed(z,O, x), x), and Extract′(z′, (O, x)) = Extract(z′, O) if
Extract(z′, O) 6=⊥ and Extract′(z′, (O, x)) = x otherwise. Then it is easy to see that, as long as ρ < δ, given
a marked object O = (O1, x) and an unmarked object O′ = (O2, y) we can “copy” the mark from O onto O′

by setting O′′ = (O2, x); yet it is still hard to remove x from O.
Although we do not explicitly require it, we note that typical applications will require that ρ < δ and

in many cases, ρ � δ. We also note that it is trivial to construct a ρ-preserving non-removable embedding
for the case that ρ = sup(x,y)∈M×M d(x, y), using an error correcting code with minimum distance 2δ, if one
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exists for the metric space M.4 Thus the interesting question, for a given metric space, becomes “for what
values of (ρ, δ) is a NRE possible?”

Barak et al. [42] defined watermarking for circuits, showing there are families of circuits for which such
watermarking is impossible, and that the notion is incompatible with obfuscation even for watermarks that
only succeed on some circuits. They briefly discuss how allowing “approximate implementations” may change
their results. Our definition, in contrast, place these decisions in the choice of ∼ and the distribution D.

We also note that many “public-key” watermarking schemes in the literature seem to target (D, t, qE , 1,
ε, δ) non-removability, expressed in terms of bit error rate for the watermarked message as noted above. A
simple hybrid argument implies such schemes also have (D, t, qE , qC , qCε, δ) non-removability [43, 40]. Thus
while we are not aware of any strong candidate NREs, the existence of such a scheme seems to be a natural
assumption if watermarking can be feasible at all.

We note that Moulin and Wang have shown that quantization index modulation (QIM) techniques
provide provably good watermarks against an adversarial memoryless channel. The restriction to memoryless
channels, together with an assumption that the host signal is Gaussian, allows them to analytically derive
the “worst possible” channel and evaluate the bit error rate for a watermark signal under a specified bound
on the mean squared error introduced by the adversary. Therefore, we can view their result as showing that
QIM techniques yield a non-removable embedding for the class of memoryless adversary channels. While
this is a severely limited class of adversaries, it shows that our notion is realizable at least under “toy”
circumstances.

Finally, the StirMark benchmark [44, 45] performs transformations such as resampling, resizing, and “jit-
ter” in images; this benchmark is widely used to evaluate watermarks. We can capture both Moulin and
Wang’s result and the StirMark benchmark in our framework. If C is a set of object transformations, we de-
fine an attacker from class C to be an adversary who can only create objects via sampling from D, queries to
oracles, and applying transformations from C to objects he has already created. Then it is a straightforward
extension of our results to show that if there is an NRE that is secure against all attackers from class C,
there is a strong watermarking scheme that is secure against all attackers from C.

4.1 Building Strong Watermarks from Embeddings

We now show how to build ideal watermarking schemes from non-removable embeddings, digital signature
schemes, and a trusted third party (TTP). The main benefit of our scheme is that the TTP need not be
present during watermark detection; anyone can check whether an object is marked without needing to
contact the TTP in a wide variety of cases. Our scheme requires digital signatures in addition to a TTP
because the underlying embeddings are not assumed secure against insertion of watermarks or copy attacks.
The nonremovable embedding is necessary to allow offline detection, because otherwise an adversary could
remove any metadata that might be attached to an object as a mark.

The TTP has well-known public keys and provides two services over authenticated channels: Register(O,
K, x) picks a unique identifier i, checks that x = Encrypt(K,O), and returns (i,SigTTP (i, x)); Retrieve(i)
returns the x associated with i if any exists, or ⊥ otherwise; we assume that neither call returns unless a
correctly signed response is received. We require that parties who execute Mark can communicate with the
TTP as necessary. Note, however, that Retrieve is implemented in a semi-offline manner. Because unique
identifiers are assigned in ascending order, the TTP publishes a signed list, TTPList, of all (i, x) pairs each
day, Retrieve(i;TTPList) only needs to contact the TTP if i > TTPList.length. Standard measures (such
as substituting a zero-knowledge proof of knowledge of (O,K) for (O,K); maintaining an ordered, signed
TTPList; checking for consistency of TTP lists between updates; et cetera) can be taken to reduce the level
of trust required in the TTP; we omit them for clarity of presentation, and because they do not affect the
security proof.

Now let E = (Embed,Extract,EMGen) be an embedding; and let SE = (Encrypt,Decrypt) be a symmetric
encryption scheme. We then define a new watermarking scheme WE = (WMGenE,SE ,MarkE,SE , DetectE,SE)

4 We let Embed(O, x) = encode(x) and Extract(O) = decode(O). If the code’s minimum distance is 2δ then clearly
any distortion by distance δ or less will result in extraction of the “embedded” message, but the worst-case distortion
of this procedure is the maximum possible distance between two objects in M.
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Algorithm MarkE((z, z′, K), O)
1. x← Encrypt(K, O)
2. (i, σ)← Register(O, K, x)
3. O′ ← Embed(z, O, (i, σ))
4. return O′

Algorithm WMGenE(1k)

1. (z, z′)← EMGen(1k)

2. K ←R {0, 1}k

3. return (z, z′, K)

Algorithm DetectE((z, z′, K), O∗; TTPList):
1. if (Extract(z′, O∗) =⊥) then return false
2. (i∗, σ∗)← Extract(z′, O∗)
3. x∗ ← Retrieve(i∗; TTPList)
4. O ← Decrypt(K, x∗)
5. if (x∗ =⊥ or O =⊥ or VerTTP((i∗, x∗), σ∗) = false)
6. then return false
7. if Embed(z, O, (i∗, σ∗)) ∼ O∗

8. then return true
9. else return false

Fig. 5. Pseudocode for WMGenE , MarkE , and DetectE
.

as shown in Figure 5. Mark(O) encrypts O, registers the ciphertext with the TTP, and embeds the TTP’s
identifier and signature in O. Detect(O;TTPList) extracts the TTP identifier and signature, retrieves the
associated ciphertext, and checks that O is close to the result of Embed applied to the plaintext.

The main result of this section is that if the underlying embedding is non-removable, then the scheme
WE satisfies our notion of strong watermarking. Formally, we can state the following theorem, whose proof
is in Appendix A.2.

Theorem 1. Suppose E is a (D, tE , qEM , qEC , εE , δ)-secure non-removable embedding, S = (SGen,Sig,Ver)
is (tS , qS , εS)-existentially unforgeable under chosen message attack, and SE = (Encrypt,Decrypt) is (t, qen, εen)
left-or-right secure under chosen plaintext attack. Then WE is a (t′, qM , qD, qC , ε

′, δ)-strong watermarking
scheme, where ε′ = 2εS + εen + εE, qM + qC ≤ min(qen, qS), qM ≤ qEM , and qC ≤ qEC .

Remarks. We note that the scheme as written requires the Embed procedure to be deterministic; this is
without loss of generality because the shared symmetric key between Mark and Detect can include a seed for
a pseudorandom generator that is used to generate the random bits used by Embed in a deterministic way
without changing the security properties of the scheme.

We also note that if the distribution D has Shannon entropy less than k – the length of strings embedded
by E – then in principle the TTP can be removed from this scheme. In this case, the marking scheme first
losslessly compresses the object O into a short string x of length less than k; the string x is then encrypted
and authenticated using standard cryptographic techniques to get a ciphertext c which is embedded into
O. The detection scheme recovers c, checks it for authenticity and if it passes, decrypts c to obtain x, then
expands x to the original object O before comparing it to the input object. Thus our TTP can be seen as
implementing a compression algorithm for unknown or incompressible distributions D.

5 Strengthening Watermarks by Composition

Suppose we are given a watermarking scheme with known attacks that succeed at insertion or removal of a
watermark with high probability, for example 90%, but retains some weak sense of security, in that it is not
known how to defeat it with probability 1. In this section, we show that this sense of security is essentially
enough for strong watermarking. Given an offline watermarking scheme W that satisfies two weak properties,
we can construct an (offline) strong watermarking scheme in the sense of Section 3. The first property is
that the scheme is secure in this weak sense – every adversary fails to defeat the scheme with some constant
probability. The second property is that marking an object many times preserves some similarity to the
original.

As mentioned previously, we believe this results has both positive and negative applications. Many of
the heuristic watermarking schemes in the literature are broken, but frequently the known attacks do not
succeed with probability 1. Thus applying our amplification scheme could heuristically create schemes which
are, in some sense, secure “against known attacks.” On the other hand, our results show that in order to
rule out even weakly secure watermarking schemes for a given metric and distribution, it is sufficient to
concentrate on showing the impossibility of a strong watermarking scheme.
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5.1 Weakly secure watermarking schemes

Our scheme will work by applying the Mark function to its own output several times. Because our security
notions depend on the probability distribution on the inputs to Mark, we will need some assumption on the
distribution of the outputs of Mark. The strongest assumption is that these distributions are identical, but
in general this amounts to assuming that Mark is the identity function. Thus, instead, we assume that the
(weak) security of a watermark holds even if we make some small distortions to an object before marking
it. Formally, we say that a randomized algorithm D is a (t, r)-perturbation of D if D runs in time t and
Pr[O ← D;O′ ← D(O) : dM(O,O′) > r] is negligible. We will say that our watermarking schemes are
weakly secure for D if they are weakly secure for any (t, r)-perturbation of D.
(Weak) security against removal. We define the removal advantage of an adversary against a water-
marking scheme to be the probability that an adversary can produce, given a watermarked object drawn
from a (t, r)-perturbation of D, a similar object that is not marked. Formally, define

Advrm
W,D(A) = Pr[K ←W.WMGen(1k);O ← D;O′ ←W.MarkK(D(O));

O′′ ← A(O′) : W.DetectK(O′′) = false ∧O′′ ∼δ O
′] .

Then, we say that a watermark W is (t, εrm, δ,D, r)-secure against removal if for every time-t adversary A,
and every (t, r)-perturbation D of D, Advrm

W,D(A) ≤ εrm. Informally, this definition says that every adversary
who runs in time at most t fails to remove the watermark of an object drawn from a (t, r)-perturbation of
D with probability at least 1− εrm.

We remark that this experiment captures the intuitive notion of trying to remove a watermark without
damaging some challenge object, a common goal of attacks on watermarking schemes found in the literature.
We also note that the goal of our scheme is to strengthen a watermark with only constant security against
removal – meaning that we explicitly allow a watermarking scheme that can be removed, say, 99% of the
time.
(Weak) Security against insertion. We informally define the insertion advantage of an adversary
against a watermarking scheme to be the probability that an adversary can produce, given a single water-
marked object, another watermarked object. Formally, define

Advins
W,D(A) = Pr[K ←WMGen(1k);O ← A(1k);O′ ←W.MarkK(O);

O′′ ← A(O′) : W.DetectK(O′′) = true ∧O′′ 6∼δ O
′] .

Then, we say that a watermark W is (t, εins, δ)-secure against insertion if for every time-t adversary A,
Advins

W,D(A) ≤ εins. Informally, this definition says that every adversary who runs in time t must fail to
produce a (new) watermarked object with probability at least 1 − εins. We remark that security against
insertion is essentially an adversarial notion of the “false positive rate” of a watermark [2, 27]. We can now
state the main result of this section; the proof depends on several additional results proved in the remainder
of the section:

Theorem 2. Suppose there exists a watermarking scheme W such that:

– W is ρ-preserving;
– W is both (t, εrm, δ,D, kO(1)ρ)-secure against removal and (t, εins, δ)-secure against insertion; and
– εrm, εins are constants such that 4εins lg 1

εrm
< 1; and t = kω(1)

Then there exists a (D, t′, qM , 1, qD, ν, δ)-strong watermarking scheme W ′, where t′ = kω(1) and ν = 1/kω(1).
The scheme W ′ is kO(1)ρ-preserving.

Proof. The new watermark W ′ is constructed from W using the techniques developed in the remainder of
this section: first the “alternating” composition ALT` with ` = O(lg k) levels, from Section 5.3 is applied
to W . By repeated application of Theorem 3 the resulting scheme S(W ) is ν-secure against removal and
insertion, for negligible ν. Lemma 1 implies that this scheme is also a (D, t′, qM , 1, qD, ν, δ)-strong watermark,
for qM + qD = 1. To achieve arbitrary qM and qD, we construct the scheme S′(W ) described in Section 5.4
with m = qM + qD. By Theorem 4 the resulting scheme is a (D, t′, qM , 1, qD, ν, δ)-strong watermark.
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5.2 Single-Property Amplification.

Let K = (K1,K2, . . . ,Km) be a set of independently chosen secret keys. We define

MarkW
K (O) := W.MarkKm

(W.MarkKm−1(. . .W.MarkK1(O) . . . )) ,

i.e. MarkW
K is the sequential marking of an object O with each secret key in the vector K. We now have two

choices for defining the DetectWK (O′) algorithm, each resulting in a different watermarking scheme. Define
the schemes as follows:

AND(m,W ).DetectK(O′) =
∧

1≤i≤m

W.DetectKi(O
′)

OR(m,W ).DetectK(O′) =
∨

1≤i≤m

W.DetectKi(O
′)

Intuitively, we expect that AND(m,W ) will improve the insertion security of watermark W while impeding
the removal security. This is because to insert a watermark one must insert m copies of W , while to delete
a watermark one need only delete 1 out of m. Likewise, we intuitively would expect that OR(m,W ) will
decrease the insertion security while increasing the removal security. We can write this formally in the
following theorem, whose proof is in Appendix A.3.

Theorem 3. Let W be ρ-preserving, (t, εins, δ)-secure against insertion, and (t, εrm, δ,D, r)-secure against
removal. Then:

(a) OR(m,W ) is (t′,mεins, δ −mρ) secure against insertion.
(b) AND(m,W ) is (t′,mεrm, δ −mρ,D, r −mρ) secure against removal.

Where t′ = t−mTM −O(1) if TM is the time to mark an object. Furthermore, for any q(k) ∈ kO(1),

(c) AND(m,W ) is (t′, εmins + 1/q, δ −mρ) secure against insertion.
(d) OR(m,W ) is (t′, εmrm + 1/q, δ −mρ,D, r −mρ) secure against removal.

Where t′ = t/poly(q,m).

5.3 Simultaneous Amplification

Let W be a watermarking scheme with key space K and define the scheme ALT(W ) with key space K4

by ALT(W ) = AND(2,OR(2,W )). Then by the previous theorem, if W is (kω(1), c/2, δ,D, r) secure against
removal and (kω(1), d/4, δ) secure against insertion, then ALT(W ) is (kω(1), c2/2, δ − 4ρ,D, r − 4ρ)-secure
against removal and (kω(1), d2/4, δ − 4ρ)-secure against insertion. If we define the scheme ALT`(W ) by
ALT1(W ) = ALT(W ) and ALT`(W ) = ALT(ALT`−1(W )), we see that ALT`(W ) is (kω(1), d2`

/4, δ − 4`ρ)-
secure against insertion and (kω(1), c2

`

/2, δ − 4`ρ,D, r − 4`ρ)-secure against removal, for ` = O(log k). By
setting ` = dlog ke and letting S(W ) = OR(2,ALT`(W )) we obtain a scheme that inserts poly(k) marks
such that any poly(k)-time adversary has negligible advantage for both removal and insertion, if the original
scheme is weakly secure against (for example) subexponential time adversaries.

Intuitively, we can think of this scheme as building a tree of marking schemes over the object O to be
marked. By building the tree appropriately, alternating AND and OR at each level, we can reduce both
the insertion and deletion probabilities for the resulting detection scheme. Each leaf of the tree corre-
sponds to an independently keyed insertion of a watermark. Suppose we have a depth t tree compris-
ing 2t independent keys. The top gate, an OR, will recursively compute AND.Detect(O, k[1]...k[2t−1]) and
AND.Detect(O, k[2t−1]...k[2t]) and return true if at least one recursive branch returns true. OR is defined
analogously. Alternatively, from the bottom-up view, there is one object in which we may have embedded
n = 2t marks; we check if each mark is present and then compute a formula based on these truth values to
decide whether the composed mark is present.
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We note that the full alternating binary tree only exponentially reduces the insertion and removal proba-
bilities if we start with εrm < 1/2 and εins < 1/4. For many watermarking schemes in the literature, however,
we might expect that the insertion probability is low, say εins < 1/100, while the removal probability is high,
say εrm = 0.9. In this case, we can make the lowest level of the tree consist of an OR of 20 marks to get
ε′rm = 1/e2 < 1/2 and ε′ins < 1/5. We can then build a binary tree on top of the resulting watermark.

It remains to show that the scheme S(W ) is correct, i.e. that S.DetectK (S.MarkK(D)) = true except with
negligible probability. Notice, however, that S.Detect returns true if either its left branch or its right branch
return true. But the insertion of the marks in the right branch is just one particular instance of an adversary
(against the left branch) that returns an output that is distorted by distance at most 4`ρ from its input, so
if δ > 4`ρ, the probability that this “adversary” succeeds in removing the mark inserted by the left branch
is negligible.

5.4 Strong watermark security from insertion and removal security.

Notice that the definition of (t, εins, δ) security against insertion implies (D, t, 1, 1, 0, εins, δ)-strong water-
mark security: any strong watermark adversary A who makes one Mark∗ query and one Detect∗ query can be
converted into a weak insertion adversary B: B(1k) simply runs A until A makes a query to Mark∗, say O, and
outputs O; B(O′) returns O′ to A and outputs the object O′′ that A queries to Detect∗. Since the list chalns is
empty, submitting an unmarked O′′ will give b = false and b′ = false, so A can only win by “inserting” a wa-
termark. Additionally satisfying (t, εrm, δ,D, r)-security against removal implies (D(D), t, 0, 1, 1, ε, δ) strong
watermark security for any D that perturbs D by at most r, because an adversary who makes only a single
query O′ ← Challenge∗(D(D)) can only win by querying Detect∗(O′′) such that:

– O′′ ∼ O′ and DetectK(O′′) = false; if this happens with probability greater than εrm then the removal
security of the scheme is contradicted.

– d(O′′, O′) > δ and DetectK(O′′) = true; if this happens with probability greater than εins then the
insertion security is violated: an insertion adversary can always draw his challenge object O′ ← D(D).

This observation leads to the following lemma:

Lemma 1. If W is (t, εins, δ)-secure against insertion and (t, εrm, δ,D, r)-secure against removal then W
is a (D(D), t, qM , 1, qC , εins + εrm, δ)-strong watermarking scheme, for any distortion function D ∈ time(t)
that perturbs D by distance at most r, and any qC ≤ 1− qM .

Suppose that we extend the definition of a strong watermark to allow Mark to maintain a local state.
Then we can generically increase the number of (mark and challenge) queries we are secure against by a
factor of n while also increasing the running time of Detect by a factor of n as follows. We require that Mark′K
keeps a count, i, of the number of objects it has marked (say modulo n). When Mark′K(O) marks a new
object, it computes the entire set of keys to use as Ki = FK(i), where F is a pseudorandom function of the
appropriate output size, and then calls MarkKi

(O). Then in Detect′K(O) we try K = FK(1), FK(2) . . . FK(n)
and output true if any of these watermarks is detected. This increases the insertion probability by at most
a factor of n. We make this more formal in the following theorem, whose proof is in Appendix A.3.

Theorem 4. Let W = (Mark,Detect) be a (D, t, qM , 1, 1− qM , εwm, δ)-strong watermarking scheme and let
W ′ = (Mark′,Detect′) be a watermarking scheme with the stateful Mark’ algorithm described above, and let F
be a (t, n, εprf )-pseudorandom function. Then W ′ is a (D, t, qM , 1, n−qM , nεwm+εprf , δ)-strong watermarking
scheme.

6 Conclusions

In this paper we have initiated the scientific study of complexity-based security of watermarking schemes. We
define a notion of watermarking security based on comparison to an ideal scheme, and give evidence that this
is the right notion of security for watermarks in two ways. First, we show that security in our sense implies

12



previous definitions of security, while the converse is not true. Second, we have shown how to construct a
watermark which is secure in our sense from several weaker primitives, which seem to capture the goals
of research in watermarking primitives. Our intent is not to introduce new watermarking protocols, but to
suggest that security in the “strong watermark” sense is the “right definition” - if secure watermarks (in any
sense) are feasible at all, then so are strong watermarking schemes. A key question left open by our work,
therefore, is the construction of similarity-preserving strong watermarking schemes that are provably-secure
under standard cryptographic assumptions; even a construction for a contrived metric space would be an
interesting first step in this direction.
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A Proofs

A.1 Copy and Ambiguity Attacks

We now formally state a theorem showing that strong watermarks are not vulnerable to copy attacks.

Theorem. Suppose W is a (D, t, 1, 1, 0, ε, δ)-strong watermarking scheme. Let D′ be any distribution on
M that can be sampled in time tsample. Then W is (D′, t′, ε′, δ′)-secure against copy attacks, where t′ =
t− tsample −O(1), ε′ = ε, and δ′ = δ.

Proof. Suppose there exists an adversary B that runs in time at most t such that Advcp
D′,W(B) > ε′. We

construct an adversary AB
cp that uses B as an oracle and show that Advstrong−wm

D,W (AB
cp) > ε. We will see

that this contradicts our assumption that W is a (D, t, 0, 1, 1, ε, δ)-strong watermarking scheme.
We show the code for AB

cp in Figure 3. By the definition of a copy attack, the call Detect∗(O′2) returns
true with probability at least ε. Also by the definition of a copy attack, O′2 6∼ O1 ; note also that δ is the
same for both the strong watermarking experiment and the copy attack experiment. At this point in the
simulation, Marked contains only O1, so therefore O′2 /∈ Marked . Therefore the AB

cp query to Detect∗ with
O′2 causes bad to be set to true, and consequently AB

cp wins the strong watermarking experiment if B wins
the copy attack experiment. Finally, note that AB

cp requires one query to Detect∗ and one query to Mark∗.

We now state a theorem showing that strong watermarks are not vulnerable to ambiguity attacks.

Theorem. Suppose W is a (D, t, 0, 2, 0, ε, δ)- strong watermarking scheme. Suppose that D′ can be sampled
in time tsample. Then W is (D′, t′, ε′, δ)-secure against ambiguity attacks, with t′ = t − tsample − O(1) and
ε′ = ε.

Proof. Suppose there exists an adversary B that runs in time at most t′ such that Advamb
D′,W(B) > ε′. We

construct an adversary AB
amb that uses B as an oracle and show that Advstrong−wm

D,W (AB
amb) > ε with two

queries to Detect∗. This contradicts our assumption thatW is a (D, t, 0, 2, 0, ε)-strong watermarking scheme.
We show the code for AB

amb in Figure 3. At line 2, the lists chalns and Marked are both empty, so if
Detect(K,O1) returns true, we will have set bad← true. Let B2 denote this event, i.e., the call to Detect∗ in
line 2 sets bad← true. Note that conditioned on B2, the object input to B in line 3 by A and the object input
to B in Expamb

D,W(B) have the same distribution. By the definition of the ambiguity experiment, when B
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wins we have O1 ∼ O′1 and Detect(K,O′1) = true, yet the lists Marked and chalns are both empty. Therefore,
the call to Detect∗(O′1) sets bad to true if B wins the ambiguity experiment. Thus we have

Advswm
D,W(AB

amb) = Pr[B2] + Pr[bad = true|B2] Pr[B2]

≥ Pr[B2] + ε(1− Pr[B2])
≥ εPr[B2] + ε(1− Pr[B2]) = ε

To finish the proof, note that AB
amb requires only two queries to Detect∗.

A.2 Strong Watermarks from Non-Removable Embeddings

We now give the proof for our theorem stating that our canonical scheme built on non-removable embeddings
is a strong watermark scheme.

Theorem. Suppose E is a (D, tE , qEM , qEC , εE , δ)-secure non-removable embedding, S = (SGen,Sig,Ver) is
(tS , qS , εS)-existentially unforgeable under chosen message attack, and SE = (Encrypt,Decrypt) is (t, qen, εen)
left-or-right secure under chosen plaintext attack. Then WE is a (t′, qM , qD, qC , ε

′, δ)-strong watermarking
scheme, where ε′ = 2εS + εen + εE, qM + qC ≤ min(qen, qS), qM ≤ qEM , and qC ≤ qEC .

Proof. (Sketch) Suppose not. Therefore there exists an adversary Astrong against the watermarking scheme
such that the advantage of Astrong in the strong watermarking experiment is more than ε′. There are two
cases.

1. There exists a j such that for the object Oj that was an argument of Astrong’s j’th query to Detect∗, we
have b = true and B′ = false.

2. There exists a j such that for the object Oj that was an argument of Astrong’s j’th query to Detect∗, we
have b = false and B′ = true, i.e. there is an object O′i ∈ chalns such that O′i ∼ Oj .

Let E1 be the event that case (1) occurs and E2 be the event that case (2) occurs and case (1 does
not. We see that Advstrong

W,D (Astrong) = Pr[E1] + Pr[E2]. The main idea of the proof is that we construct
a sequence of adversaries Asig,1, Asig,2, Aenc, and Anre. We show that Asig,1 forges a TTP signature with
probability Pr[E1]. Then we show that Pr[E2] is at most the sum of Asig,2’s probability of forgery plus Aenc’s
left-or-right advantage against the symmetric encryption scheme SE plus qD times Anre’s advantage against
the non-removable embedding E . We conclude that Advstrong−wm

WE ,D (Astrong) ≤ 2εS + εen + qDεE .
We now describe the adversary Asig,1 that mounts a chosen message attack on the signature scheme S.

The adversary Asig,1 runs EMGen(1k) to obtain a key pair (z, z′) for E , picks an encryption key K ← {0, 1}k
then simulates WE for the adversary Astrong. Whenever Astrong makes a Mark∗ query on an object O, A1

sig

creates the appropriate (i, O) pair, adds (i,Encrypt(K,O)) to its TTP list, then uses its adaptive chosen
message oracle to sign the pair and uses its embedding key to return an (O′;TTPList) with the proper (i, σ)
pair embedded. When Astrong queries Detect∗ with an object (Oj ;TTPList∗ that causes bad to be set to
true, Asig,1 sets (i, σ) = Extract(z′, Oi), retrieves (i, x) from TTPList∗, and returns (i,Decrypt(K,x)), σ as
its forgery against S.

Now suppose E1 occurs. Therefore, there exists some object Oi that causes Detect to return true, but Oi

is not similar to any object previously queried to Mark∗. By the definition of Detect , however, Oi is similar to
object i on TTPList∗, and furthermore (i∗, O∗) is properly signed by S. Therefore, we see that if E1 occurs,
(i∗, O∗) cannot have been previously queried to the signing oracle, yet σ∗ passes signature verification with
VK. Therefore Asig,1 succeeds at producing a forgery if E1 occurs.

Now suppose E2 occurs. There are two further cases:

(a) The object O′i ∼ Oj such that Oi was generated by a previous challenge is not the object associated to
i∗ in TTPList.

(b) Extract(z,Oj) returns the error value ⊥ or a pair (i∗, σ∗) such that VerTTP ((i∗, Oi∗), σ∗) = false.
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Let us refer to the event that case (2a) occurs by the event E2a and the event that case (2b) occurs and
neither case (2a) nor case (1) occur by the event E2b, with Pr[E2] = Pr[E2a] + Pr[E2b]. The adversary Asig,2

is similar to the adversary Asig,1. We see that if E2a occurs, then Asig,2 succeeds in outputting a forgery
just as Asig,1 does.

Next we describe a hybrid experiment H and show a left-or-right encryption adversary Aenc who makes
qC + qM queries and breaks SE with advantage (PrH [E2b]−Prstrong[E2b]). The hybrid experiment H works
exactly like the strong watermarking experiment with W, except that when Challenge∗ computes MarkK(O)
it draws a second object O′ and submits Encrypt(K,O′) to the TTPList; and Detect∗ modifies detect to
substitute O for O′ in line 4 of DetectE . Aenc picks all of the necessary keys for signature and embedding,
and emulates Mark∗,Challenge∗,and Detect∗, except that every time Challenge∗ calls Mark(O), Aenc chooses
a second object O′ ← D and replaces line 1 with x ← LORK(O,O′). Aenc then outputs 1 if the event E2b

occurs and 0 otherwise. Since the functionality of the Mark and Detect routines is maintained in this hybrid
experiment, the only difference is whether LORK encrypts its first or second arguments; if the first argument
is encrypted, Pr[ALORK(0,·,·)

enc = 1] = Prstrong[E2b], and otherwise Pr[ALORK(1,·,·)
enc = 1] = PrH [E2b]. Thus the

advantage of Anre is as claimed.
We now describe the adversary Anre that breaks the non-removability of the underlying scheme if event

E2b occurs in the hybrid experiment H. Anre(z′) runs the signature scheme key generator to obtain (SK,VK)
for the public key signature scheme and picks a random j ← {1, . . . , qD}. Then Anre(z′) runs Astrong as
a subroutine and uses its Embed∗ oracle to simulate answers to Mark∗ in the obvious way; Anre uses
its Challenge∗ oracle to respond to Astrong’s challenge queries by drawing an object O′ ← D, computing
x = Encrypt(K,O′), and querying Challenge∗(x). Anre(z′) uses z′ to compute responses to Detect∗(O) queries
as in the hybrid experiment H; when Astrong queries a Detect∗(Oj) query that causes event E2b, Anre(z′)
returns the object Oj . Note that by the definition of event E2b, Oj is similar to some object returned
by Anre’s Challenge∗ oracle, but Extract(z′, Oj) 6= (i∗, σ∗). Thus AdvNRE

D (Anre) = PrH [E2b], which gives
Prstrong[E2b] ≤ εen + εE .

A.3 Simultaneous Amplification

Theorem. Let W be ρ-preserving, (t, εins, δ)-secure against insertion, and (t, εrm, δ,D, r)-secure against
removal. Then:

(a) OR(m,W ) is (t′,mεins, δ −mρ) secure against insertion.
(b) AND(m,W ) is (t′,mεrm, δ −mρ,D, r −mρ) secure against removal.

Where t′ = t−mTM −O(1) if TM is the time to mark an object. Furthermore, for any q(k) ∈ kO(1),

(c) AND(m,W ) is (t′, εmins + 1/q, δ −mρ) secure against insertion.
(d) OR(m,W ) is (t′, εmrm + 1/q, δ −mρ,D, r −mρ) secure against removal.

Where t′ = t/poly(q,m).

Proof. The proofs of statements (a) and (b) are essentially standard hybrid arguments: suppose, for example,
that (b) does not hold. Then there must be some pairA, D ∈ TIME(t−mTM ) such thatA produces, given the
result of MarkW

K (O = D(D)), an O’ with d(O′, O) < δ−mρ and Pr[(
∧

i DetectKi
(O′)) = false] > mεrm. But in

this case we have Ei[Pr[DetectKi
(O′) = false]] > εrm and thus for some i we have a D′ = MarkW

K1,...,Ki
(D(·))

and A′ = A(MarkKi+1,...,Km
(·)) that succeed with probability at least εrm, while D′ perturbs D at most mρ

and A′(D′(O)) ∼ O. This gives a contradiction and thus (b) must hold. The proof of (a) is similar.
We briefly sketch the proof of (d), which closely follows the proof of [46, Lemma 1]; the proof of (c) is

similar. The basic idea is that a sample O ← D(D) together with a vector of independent keys K1, . . . ,Km

form a “weakly verifiable puzzle” in that, given the keys and the adversary’s input O′ = MarkW
K (O), we

can check that an adversary’s output O′′ is not marked by any of K1, . . . ,Km and is sufficiently close to
O′ to constitute a removal. As in [46] we can imagine a giant matrix M associated to each (A, D) where
the columns are indexed by keys K1 and the rows are indexed by K2, . . . ,Km, O; the element indexed by
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(K1, . . . ,Km, O) has a 1 in the first position if DetectK′(O′′) = false and O′′ ∼ O′, and a 1 in the second
position if

∧
2≤i≤m(DetectKi

(O′′) = false) and O′′ ∼ O′. If (d) does not hold then for some (D,A) the
fraction of (1, 1) entries is at least εmrm + 1/q, and this implies that either: (1) there exists some column k1

such that at least a εm−1
rm + 1/q fraction of the entries have the form (∗, 1); or (2) the probability that an

entry is (1, 1) conditioned on (∗, 1) is at least ε. In the first case, we can find such a k1 in time roughly qO(1)

and inductively run the procedure with D′ = Markk1(·). In the second case, we can randomly pick qO(1)
random completions (K2, . . . ,Km) for (K1, O) and expect that for one of them K2, . . . ,KM are removed;
in this case, it is a “good bet” (probability ε) that K1 is removed as well, giving an adversary for W . The
complete proof that this strategy works is nearly identical to the proof in [46].

We now state a theorem regarding the security of the stateful construction shown in Section 5.4 and give
its proof.

Theorem. Let W = (Mark,Detect) be a (D, t, qM , 1, 1 − qM , εwm, δ)-strong watermarking scheme and let
W ′ = (Mark′,Detect′) be a watermarking scheme with the stateful Mark’ algorithm described above, where F
is a (t, n, εprf )-pseudorandom function. Then W ′ is a (D, t, qM , 1, n−qM , nεwm+εprf , δ)-strong watermarking
scheme.

Proof. The proof has two steps. The first is to consider a hybrid W ′ with access to a truly random function f
with the same domain as F ; it is easy to see that for any A, Pr[Expstrong−wm

D,W ′(FK)(A) = 1]−Pr[Expstrong−wm
D,W ′(f) (A) =

1] ≤ εprf . Next we show how to convert an adversary A who makes n queries to Challenge∗ and Mark∗ against
W ′(f) with advantage ε into an adversary B against W who makes 1 query to Challenge∗ or Mark∗ and has
advantage at least ε/n. B guesses which key Ki A will succeed in removing or inserting and passes the ith

query made by A on to its Challenge∗ or Mark∗ oracle; for all other queries, B picks a fresh random key
and responds appropriately. Whenever A wins the strong watermarking game, it is because either (1) A’s
query to Detect∗ was unmarked and similar to some Oj returned by Challenge∗; or (2) A’s query to detect
was marked by some Kj and never returned by Challenge∗ or Mark∗. In either case, B will succeed with
probability 1/n when A does.

B Limitations of Previous Work

Although the literature on watermarking includes several previous works on formal security definitions, these
works tend to be too permissive or incomplete. We will later give a more complete discussion of issues with
previous work. Here we give a short summary.

Adelsbach, Katzenbeisser, and Veith gave formal definitions of ambiguity and copy attacks, and construc-
tions for watermarks provably secure against these attacks [27]. These definitions do not allow the adversary
to mount “chosen-object” attacks, where the adversary may submit objects to be watermarked and observe
their watermarked versions; in a copyright registration scenario, this attack is realistic. Further, their defini-
tions do not formally describe what is required for the watermark to be non-removable under attack. Finally,
in the Appendix we discuss issues with one of their proposed constructions.

Li and Chang give a construction of watermarks using a pseudo-random generator that are claimed secure
against ambiguity attacks [29]. Their definition does not rule out attacks that remove the watermark. For ex-
ample, a watermarking scheme that encrypts the low-order bits of a picture would satisfy their requirements,
but the watermark can easily be removed by setting all low-order bits to 0. There is a further conceptual
issue: their adversary must work with a specific challenge object O and is not allowed to return an object
O′ such that O′ ∼ O. As a result, their notion of security is too restrictive of the adversary.

Dittmann et al. propose definitions and constructions for secure authentication of digital media using
invertible watermarks [28]. The scheme proposed there, however, appears to rely on assumptions about
the watermarking scheme that are not stated in the proof of security, rendering the proof incomplete. For
concreteness, we summarize the scheme and an attack that works under certain conditions in Appendix B.1.
In addition to this difficulty, this particular work is a further example of the watermarking “arms race” we
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seek to avoid, in that the authors focus on a specific attack rather than trying to obtain a general security
condition.

Comesana et al. propose a notion of watermarking security that focuses on information about the secret
key leaked to the adversary, under several different notions of the adversary’s view [47]. They consider a
scheme secure if the mutual information between marked objects observed by the adversary and the secret
key of the watermarking scheme is small. The authors themselves point out security in their sense does not
necessarily mean the watermark is difficult to remove. For example, the identity map, which does not depend
on the secret key, appears to be perfectly secure under their definition because the distribution of “marked”
objects is independent of the secret key. Therefore, it is not clear whether security in this sense is useful for
evaluating watermark schemes. The security notions we present here are closer to what Comesana et al. and
others in the watermarking literature call “robustness” in that the focus is on whether the mark is detectable
after an adversarial transformation of the marked object.

B.1 Dittmann et al.’s scheme

Dittmann et al. are concerned with protecting the authenticity of an object via a watermark, without
compromising its “quality”. To that end, they define security as the inability, given an oracle Protect, to
produce an object O and its protected version O, without querying Protect(O). They assume the existence
of procedures Join and Separate such that for an object O, Separate(O) returns a pair (AO, BO) such that
BO can be compressed, and Join(AO, BO) = O. No further security assumptions on Protect nor functionality
constraints on (Join,Separate) are given.

The scheme involves a signature scheme Sig, a symmetric encryption scheme with secret key K, and a
cryptographic hash function H. Protect(O) computes (AO, BO) ← Separate(O), sets CO = Compress(O),
and sets X ← EK(CO‖H(O)), s ← Sig(AO‖X), and O = Join(AO, X‖s); verification of an object O runs
Separate(O) to obtain AO and X‖s, and checks that s ∈ Sig(AO‖X).

We show that this scheme requires some further assumption on Join and Separate, at a minimum, in
order to be secure. Specifically, an adversary can query an object O to the Protect oracle to obtain an object
O′ = Join(KW , AO, X||s). The adversary then runs Separate(KW , O′) to obtain A0 and X‖Sig(A0||X). Let
X = X1‖X2, where, e.g., |X1| is one byte. From this, the adversary forms AP as AO‖X1 W

′ = X2‖s, and
P ← Join(AP ,W

′). Verification on the resulting P will succeed, but P was not the result of a query to the
Protect oracle.

B.2 Adelsbach et al.’s Definition

Adelsbach, Katzenbeisser, and Veith define a watermarking scheme as a triple 〈G,E,D〉 of probabilistic poly-
nomial time algorithms. Algorithm G is the key generator: on input 1nk , where k is the security parameter,
G outputs a watermarking key K ∈ {0, 1}k of length k.

The algorithm E is the watermark embedding process. On input of a digital object O, a watermark
message W ∈ {0, 1}n, and a key K, it outputs a watermarked object O′. The object O′ is required to be
“perceptually similar” to the original object O.

Finally, the algorithm D is the watermark detector. Given a possibly marked object O′, a candidate
original object O, a candidate watermark W , a key K, and an auxiliary input Aux that does not de-
pend on the object O, algorithm D either outputs true or false . The output true indicates the pres-
ence of the watermark W in the object O′. Adelsbach et al. require with overwhelming probability that
D(E(O,W,K), O,W,K,Aux) = true for all objects O, watermarks W , and keys K. The authors then for-
mally define security against copy attacks and ambiguity attacks as follows.

Definition 1. Let W be a watermark, K be a watermarking key, O1 be an arbitrary object, and O′1 its
watermarked version, i.e. D(O′1, O1,W,K,Aux) = true for some auxiliary input Aux. A copy attack on
the watermark is a probabilistic algorithm Copy(O′1, O2, Aux) that either succeeds and outputs O′2 such that
D(O′2, O2,W,K,Aux) = true or fails and outputs a special failure symbol. We say that a watermarking scheme
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is (t, ε)-secure against copy attacks if all copy attacks running in time at most t have success probability at
most ε.

An ambiguity attack on the watermark is a probabilistic algorithm Ambig(O′, Aux) that either succeeds
and outputs (W,K,O) such that D(O′, O,W,K,Aux) = true. or fails and outputs a special failure symbol.
We say that a watermarking scheme is (t, ε)-secure against ambiguity attacks if all ambiguity attacks running
in time at most t have success probability at most ε.

We note several shortcomings in these definitions. First, there is no requirement that a watermark be hard
to remove in the underlying definition of a watermarking scheme. Another limitation of these definitions is
that they do not consider attacks where the adversary learns many (Oi, O

′
i) pairs. For instance, in a chosen-

object attack, the attacker chooses an object Oi, convinces a legitimate participant to watermark it, and
learns O′i. The adversary might be able to repeat this process many times, adaptively. Their definitions do
not consider this attack model. Our notion of strong watermarking, in contrast, allows an adversary adaptive
access to a marking oracle and provides an easy way to quantify this access by measuring the number of
oracle queries allowed.

B.3 Adelsbach et al.’s Scheme

Adelsbach et al. also propose several constructions that use digital signature schemes to improve the security
of watermarks against copy and ambiguity attacks. In spirit, these schemes are similar to the work we present
in Section 4.1. We now describe Scheme C of Adelsbach et al. The scheme requires a trusted third party
(TTP) with signature public key P and secret key S. To mark an object O, we first pick an arbitrary identity
string ID and a watermarking key K. We then set the watermark W to ID||SigS(O⊗(ID||K), S) and embed
W to obtain O′.

Here, the || denotes concatenation. The operator s1 ⊗ s2 is a special XOR operation; if |s1| = |s2|, then
⊗ denotes the ordinary XOR. If |s1| < |s2| or |s1| > |s2| the smaller string is repeated in a cyclic manner
and cut off at the appropriate position, before computing the XOR operation. The authors assume that
the length of a digital signature is constant and known in advance. The detection process for Scheme C is
expressed by the following pseudocode:

DP,C(O′, O,W,K,P ):
1.Parse W as W1||W2

2.if D(O′, O,W,K) = false then
3. return false
4.if Ver(O ⊗ (W1||K),W2, P ) = true then
5. return true else
6. return false

First, we notice that a signature on the embedding key K is provided to the adversary as part of the
watermark W . Depending on the signature scheme, this may reveal K (e.g. if the signature scheme has the
message recovery property). Therefore, it is not clear what role is played by K, since it cannot be considered
secret.

We further observe that Scheme C has the following property. Suppose that knowledge of the key K
allows insertion of arbitrary watermarks. Then, given a marked object O1 with watermark W1 an adversary
can create an object O′ with a mark W ′ = W ′1||W ′2 that depends on the mark W . This follows because the
adversary may find an O′ such that O′ ⊗ (W ′1||K) = O1 ⊗ (W1||K).

This property does not count as a “copy attack” under Adelsbach et al’s definition. The reason is that
their definition requires that the embedded watermark string be exactly the same between the two marked
objects. We suggest that this property is undesirable for a watermarking scheme, and therefore the fact
that it does not fall under the definition of a copy attack is a shortcoming of the definition of Adelsbach
et al. While one could extend the definition of copy attack to preclude these types of similar watermarks,
there would remain the question of whether this extension went far enough. In contrast, our notion of strong
watermarking prevents this attack because the adversary cannot find an object O′ such that O′ appears
marked, yet O′ was not submitted to the mark oracle.
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B.4 Li and Chang’s Definition

Li and Chang propose a definition of security against ambiguity attacks. In their definition, an ambiguity
attack algorithm B is given an object O′ which may or may not be marked with a key K. If O′ is not
marked, then the algorithm B succeeds if it outputs a special symbol ⊥. Otherwise, if O′ is marked, the
algorithm B succeeds if it outputs a pair (W,K ′) such that O′ contains the watermark W under key K ′.
They note that their definition differs from previous definitions of security against ambiguity attacks in
that their adversary’s success condition changes depending on whether the object has been marked or not.
Unfortunately, this definition is too restrictive – it does not allow for the adversary to output a (W,K ′) that
succeeds with an object O′′ that is “close” to the target O′. Their definition also makes no requirement that
the watermark be hard to remove.

C On the need for the Challenge Oracle

Oracle Mark∗(O):
1. O′ ← Mark(K, O)
2. Marked← Marked ∪ {O′}
3. return(O′)

Oracle Detect∗(O):
1. b← Detect(K, O)
2. if ∃O′ ∈ Marked : O ∼ O′

3. then b′ = true
4. else b′ = false
5. if b 6= b′

6. then bad← true
7. return(b)

Experiment Expwm1
W (A):

1. K ←WMGen(1k)
2. bad← false
3. Marked← ∅
4. AMark∗,Detect∗()
5. return (bad)

Fig. 6. Watermarking security definition based on direct comparison with the ideal scheme

In Section 3 we state that the intent of our security definition is to compare a watermarking scheme
(which is typically stateless) to the ideal watermarking scheme. The most obvious way of formalizing this
comparison, from a cryptographic perspective, is the experiment shown in Figure 6. Here, an adversary is
given access to Mark and Detect queries for some uniformly chosen key K, and succeeds in attacking the
scheme if he can find an object O so that Detect(K,O) and the ideal watermarking scheme disagree: either
Detect(K,O) = true and O is not similar to any object queried to Mark(K, ·) or Detect(K,O) = false yet
O is similar to some object resulting from a query to Mark(K, ·). We define the advantage of the adversary
A against the scheme W to be Advwm1

W (A) = Pr[Expwm1
W (A) = true] and say W is (t, qM , qD, ε) secure if

every adversary that runs in time at most t and makes at most qM Mark∗ queries and qD Detect∗ queries
has advantage at most ε.

Unfortunately, the following result shows that no scheme that is δ preserving (where δ is the “similarity”
threshold for metric space M) with high probability can be secure in this sense. Formally, suppose that D
is a distribution on M such that Pr[K ← WMGen(1k);O ← D : Mark(K,O) ∼ O] = p; if the watermark is
ρ-preserving for any ρ ≤ δ then p is negligibly close to 1. The following adversary has advantage at least p:

A1:
1. O ← D
2 Detect∗(O)
3. O′ = Mark∗(O)
4. Detect∗(O) .

To see that Advwm1
W (A1) ≥ p, let us denote by A2 the event that bad ← true in line 2 and A4 the event

that bad ← true in line 4, but not line 2. Then we have Advwm1
W (A1) = Pr[A2] + Pr[A4]. Now suppose

that once we draw O ← D and K ← WMGen(1k), we do not have Detect∗(K,O) = true; then in line 4,
A1 queries an object O that is similar to the result of a Mark∗ query (with probability p) but unmarked;
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Thus Pr[A4] = Pr[O′ ∼ O ∧ ¬A2]. And since it is also true that Pr[A2] ≥ Pr[A2 ∧ O′ ∼ O], we then have
Advwm1

W (A1) ≥ Pr[O′ ∼ O ∧ ¬A2] + Pr[O′ ∼ O ∧ A2] = Pr[O′ ∼ O] = p.

Oracle Mark∗(O):
1. MarkQueries← MarkQueries ∪ {O}
2. O′ ← Mark(K, O)
3. Marked← Marked ∪ {O′}
4. return(O′)

Oracle Detect∗(O):
1. b← Detect(K, O)
2. if ∃O′ ∈ Marked : O ∼ O′

3. then b′ = true
4. else b′ = false
5. if b 6= b′ and O 6∈ MarkQueries
6. then bad← true
7. return(b)

Experiment ExpWM2
D,W (A):

1. K ←WMGen(1k)
2. bad← false
3. Marked← ∅
4. AMark∗,Detect∗()
5. return (bad)

Fig. 7. Experiment that rules out success based on submitting unmarked originals

At first glance, this problem seems similar to the problem of having chosen-ciphertext security for an en-
cryption scheme without restricting the adversary to disallow querying the challenge ciphertext to his decryp-
tion oracle. This suggests a second possible security experiment which prevents the adversary from defeating
a watermarking scheme by querying Detect∗ on “unmarked originals”, shown in Figure 7. Unfortunately,
this definition rules out strong watermarks that are δ/2 preserving with high probability. Suppose, for some
sampleable distribution D onM, we have that Pr[O ← D;K ←WMGen(1k) : dM(O,Mark(K,O)) ≤ δ] ≥ ψ.
We give an adversary A2 with advantage at least (ψ/2)3 in Expwm2

W :

A2:
1. O ← D
2..K ′ ←WMGen(1k)
3. O′ ← Mark(K ′, O)
4 Detect∗(O′)
5. O′′ = Mark∗(O)
6. Detect∗(O′) .

In analyzing this attack, we note that the adversary succeeds with probability at least Pr[O′ ∼ O′′], since
whenever this happens, either O′ is marked before O is queried to Mark∗, or O′ is not marked according to
Detect(K, ·), but should be marked according to the ideal scheme, in line 6. A probabilistic lemma used in
the proof of the so-called “forking lemma” [48] implies that Pr[O′ ∼ O′′] ≥ (ψ/2)3. We also note that if the
metric space M is such that it is easy to find an object O′ such that dM(O,O′) < µ, then a similar attack
is possible with probability Pr[K ←WMGen(1k);O ← D : dM(O,Mark(K,O)) < δ − µ].

This leads us to the conclusion that the adversary should not be allowed to know the “unmarked originals”
for the objects he tries to unmark. Thus, we must introduce some sort of “challenge” oracle that draws objects
from a probability distribution and marks them. An additional question then becomes: what should be the
probability distribution of the Challenge∗ oracle? The most secure definition would allow the adversary some
control over the distribution of “originals” marked by the oracle. However, it is easy to construct examples,
under reasonable assumptions on the metric space M where this still fails. For example, if the adversary
chooses a distribution with low entropy he may still guess what the originals picked by Challenge∗ will be and
carry out the unmarked original attack anyway. Or, he may choose a distribution D with high entropy, but
such that each point in the support of D is the only in a radius much wider than the expected distortion of
the marking procedure. Rather than attempt to address all the necessary conditions on adversaries that make
this definition interesting, we choose to be agnostic about the existence of such distributions and include the
distribution D as a security parameter.
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