Hardwar e | mplementation of the i Pairingin
Characteristic 3

Robert Ronah Colm O hEigeartaigR, Colin Murphy', Tim Kerins' and
Paulo S. L. M. Barettd

! Department of Electrical & Electronic Engineering, University CollegekCo
College Road, Cork, Ireland.
{robertr, cnurphy, ti nk}@ ennes. ucc.ie

2 School of Computing, Dublin City University,
Ballymun, Dublin 9, Ireland.

cohei geartai gh@onputing. dcu.ie

3 Escola Poliécnica, Universidade deds Paulo, Brazil.

pbarreto@ ar c. usp. br

Abstract. Recently, there have been many proposals for secure and nopel cry
tographic protocols that are built on bilinear pairings. Thepairing is one such
pairing and is closely related to the Tate pairing. In this paper we consider the
efficient hardware implementation of this pairing in characteristic 3. Altatra
teristic 3 operations required to compute the pairing are outlined in detail. An
efficient, flexible and reconfigurable processor forlepairing in characteristic

3 is presented and discussed. The processor can easily be tailoeelbfoarea
implementation, for a high throughput implementation, or for a balancedestw
the two. Results are provided for various configurations of the procedsen
implemented over the fielfl;0- on an FPGA. As far as we are aware, the proces-
sor returns the first characteristicyg pairing in hardware that includes a final
exponentiation to a unigue value.

Keywords — i pairing, characteristic 3, elliptic curve, reconfiguraptecessor,
FPGA

1 Introduction

Since the introduction of the Weil and Tate pairings for ¢amgive cryptographic ap-
plications, there has been a flurry of proposals for novgbtographic protocols based
on pairings, including identity-based encryption (IBEhsmes, key exchange schemes
and short signature schemes [7].

Bilinear pairings are used to map the Discrete Logarithnblera (DLP) from the
divisor class group of an elliptic or genus 2 hyperellipticwe, defined oveF,, to the
multiplicative subgrouij;k of some extension of the base field. The valus known
as theembedding degreer security multiplier

The viability of practical applications of these schemdieseon the efficient im-
plementation of bilinear pairings. This has led to many ssjigns for algorithmic op-
timisations. The Tate pairing was originally computed gditiller's Algorithm [14].

In 2002, significant improvements to this method were indepeatly suggested in [3]
and [9]. After this, the Tate pairing implementation wagfier optimised in [8] for a
small class of curves, resulting in the Duursma-Lee algorifor pairing implemen-
tation. In [2] it was clarified how these methods can be used omore general set
of curves. In [2] it was also demonstrated that an even fdsli@ear pairing can be
returned by using a smaller iterative loop and a slightly encomplicated final expo-
nentiation. They call this pairing the truncateth pairing (denoted)7). In this paper
we describe the hardware implementation of this pairingharacteristic 3.

Even with these algorithmic optimisations, pairing caftidn remains a compli-
cated operation. Pairings are very well suited to hardwamementation for two rea-
sons: Much of the arithmetic performed on the extension figldcan be reduced to
arithmetic onlF,. Many of theseF,, arithmetic operations can be performed in parallel
in hardware, providing a large saving over implementatiomgeneral purpose serial
processors. Furthermore, a pairing calculation consists tterative loop followed by a
final exponentiation. If care is taken with the schedulingdrations through the loop,
a hardware implementation can provide a large level of pipa, further speeding up
pairing computation.

An FPGA implementation of the characteristic 3 pairing noethdescribed in [13]
has appeared in [11], where the extension field operatiamsresl for pairing com-
putation are hardwired. However, this leads to a large desigl provides no level of
flexibility for different applications (the authors connghemselves with high through-
put only). In [10] a pairing processor for the implementataf the pairings described
in [8] and [13] is presented. Alis~ ALU is used to perform the operations required
for pairing computation. This processor again provides mams for reconfiguration.
A study on the scheduling of the Duursma-Lee algorithm int{& appeared in [4].
Recently, an implementation of the characteristig-3airing has appeared in [6]. The
operations necessary for the iterative loop offfxgairing are hardwired. This results
in a high operational frequency. However, there is no meansxXponentiation using
the architecture in [6]. This exponentiation is requiredrsthat the pairing returns a
unigue value, which is required for cryptographic applmas. Thus, the architecture
in [6] must be supplemented with a coprocessor for expoataii, which, at the time
of writing, is a work in progress and details are not included

This paper is organised as follows: Section 2 presents tbessary mathematical
preliminaries along with algorithms for computation of tiepairing on a characteris-
tic 3 elliptic curve. Section 3 outlines the implementatadrarithmetic onFs, F3» and
Fs6m. Section 4 describes the reconfigurable processor usedftompehern pairing.
Section 5 presents results returned by the processor whesraged on the field'so-
and implemented on an FPGA in various configurations. Bingkction 6 draws some
conclusions from the work.

2 Mathematical Preliminaries

LetF, = F,~ be afinite field of characteristic. The group of points on an elliptic
curve E defined oveff, is denoted byE(FF,). A subgroup ofE(F,) of prime orderr

hasembedding degrekeif r dividesq® — 1, but does not divide® — 1 for any0 < i < k.
A subgroup of order is known as am-torsion group, denoted (F,)[r].

Following [3] and [9], the Tate pairing of ordeiis a bilinear map betweeki(F,)[r]
andE (I)[r] to an element of the multiplicative grouj,.:

67-(P, Q) : E(Fq)[r} X E(Fqk)[r] - FZ’C (1)

The second argument can be generated 6Y&,;) and then mapped t&8(F,«) using a
distortion map (denoted) [16]. This leads to a reduction in cost since more operation
can be performed on the sub-field. The incorporation of tkéodion map yields the
modified Tate pairing

&r(P,Q) = (P, ¢(Q)))

where nowP, Q € E(F,)[r]. In [8], it was shown how the distortion map can be incor-
porated into the formulae for this modified pairing compiotat

The valuez,.(P, Q) is only defined up te-th powers. A final exponentiation must be
performed to obtain a unique value for cryptographic puegod he reduced modified
Tate pairing is defined as

k_ T
eP.Q) = (P ©)
In this paper we compute thg- pairing on a characteristic 3 elliptic curve given by
E:y?=a—z+0b be—-1,1 (4)

over afieldF, = Fsm withm mod 12 =1, m mod 6 = 1. This curve has an embed-
ding degree of: = 6. The Tate pairing is computed with an iterative algorithicoirpo-
rating the intermediate tangent, chord and vertical limefions on the curve associated
with the elliptic curve additive group operation. The pairing reduces the number of
iterations required to build a bilinear pairing at the exgeof a more complicated fi-
nal exponentiation when compared to the Tate pairing. Inticases, the reduction in
computation time yielded by the smaller number of iteratitar outweighs the slightly
more costly exponentiation.

In characteristic 3, ther pairing is related to the Tate pairing with

372

(nr(PQM)™ = (en(P,@)"™)" (5)
where
N =3m 414 b3m+D/2
M= (3" —1)/N = (3% — 1)(3™ + 1)(3™ — b.30"T1/2 4 1)

T=qg—N=-1-p3m+1/2
L= —b3m+3)/2

The interested reader is referred to [2] for the derivatibiE@. (5) and for more
details on the proof of ther pairing.

The functionn(P, Q)™ is itself bilinear and returns a non-degenerate and unique
value. ltis, therefore, suitable as a basis for secure egypphic protocols. The remain-
der of this paper deals with the efficient implementationgfP, Q)" in hardware. We
refer to the exponentiation td/ as thefinal exponentiationlf compatibility with the
Tate pairing is required, then the poweringdtB? can be performed with a very small
number of calculations (that are insignificant when comghanethe overall cost of the
pairing computation).

2.1 The Characteristic 3 nr Pairing

In this section we describe the calculation of thepairing on the curveé® : 23 —z +b
in affine coordinates defined on the fiélg» inthem mod 12 =1, m mod 6 = 1,
b = —1 case. Note that other cases farandb require only slight modifications (but
no significant additional operations). Again, consider poents P = (xp,yp), Q =
(zQ,yq) € E(F3m)[r]withxp,yp, zq,yo € Fam.

A suitable distortion mag on this curve is

?(Q) = 9(2q,yq) = (p — 2q,0Yq) (6)

whereo € Fs» andp € Fys such thab? +1 =0andp® — p+1 = 0.

A basis must be chosen for the representation of elemeritgsin The choice of
basis is motivated by the desire to simplify the arithmegierations in this field as much
as possible. We choose to represent elemeritgsof using the basiél, o, p, op, p2, op?).
An elementA € Fs6n is then represented as

A = (ag,a1,az,a3,a4,as)
= ag + a10 + asp + azop + asp® + asop? (7)
=g + a1p + azp” (8)

Whel’eao, ai,a2,a3,0a4,05 € F3m anddo =ap+taio, a1 = as +aso, G2 = a4+ aso
with ag, a1, 09 €]:F32'm, .

This is equivalent to a tower field representation [9Fgf., i.e. Fom = ((F3m)?)
whereo andp are zeros ob2 + 1 andp® — p + 1 as defined by the distortion map. The
Fsem field is generated as

3

Fa2m = Fam [y]/g[y] ©)
whereg(y) = y? + 1 is an irreducible polynomial ovéfs.» and

Faon = Faom[2]/h]2] (10)

whereh(z) = z* — z + 1 is an irreducible polynomial ovefsz...

The operations required to compute(P, Q) as described in [2], are shown in
Algorithm 1. Note that using the tower of extensions, altharietic operations in Al-
gorithm 1 are performed dfs~ . The algorithm begins with a precomputation stage in
which powers of cubes afg andyg are calculated and stored in memory. This means
that the calculation of cube roots during loop iterationvsided and the appropiate
powers ofrg andyg are instead extracted on each iteration. Although the tlon

Algorithm 1 Computation of)r (P, Q)™ on E(Fzm) : y* = 23 —2—1,m mod 12 =
1,m mod 6 =1 case
INPUT. P = (zp,yp), Q@ = (2q,¥Q), (P,Q) € E(F3m)

OUuTPUT: f =n7(P,Q) € Fyom
INITIALISE:

1. f €Fyom
2: F—1
PRECOMPUTE:
3 for i — m — 1 downto (m, +1)/241do
TQ — .LQ VYQ — yQS —2F3m cubings
5: endfor
6: fori — (m + 1)/2 downtoOdo
7 zg 20 o — va® —2Fzm cubings
8! apli] —zq,unli — e
9: end for
RUN:

10: fori « 1to(m +1)/2do
11: u«—atp+zb[i]+1

12: ¢y — —u.u —1F3m mul

13 C1 — —yp.y/Q [Z] —1F3m mul

14: g CO + (e1)o + (—u)p + (0)ap + (=1)p° + (0)op?

15: f—f. —13F3m muls

16: ifi< (m, + 1)/2then

i;: Tp — 131‘3 Yp — Yp —2F3m cubings
o endif

19: g~ —yp.(w’Q[i]—i-xp+1)+(—yb[i])o’+(yp)p —1F3m mul

20 f—"fyg —10Fgm muls

21: end for s e

22: returnf© moD@ET D E™ 3T 2) —See Algorithm 2

of cube roots in characteristic 3 has been simplified in 8, toots are stored in this
way to ensure an efficient use of area in the hardware impletien by avoiding the
additional area cost that would be incurred by a cube rodatiroyiit.

The most costly part of the pairing is the loop iteration. lE&eration requires
fifteenF3» multiplications, a number dfs~ additions and subtractions and t\i#g
cubings. The scheduling of these operations through theéwsae processor will be
vital to computation speed. The multiplication by g can be performed with a regular
F36m multiplication (requiring 18F3» multiplications). However, this does not make
use of the fact tha has the special form = (go+g10+g2p+(0)op+(—1)p*+(0)ap.

If the F36.» multiplication is unrolled and examined, it becomes appitieat f.g can
be performed in onlyl3 multiplications, providing a saving of five multiplicatien
The F3~ operations required for the multiplication ¢f = (fo, f1, f2, f3, f4, f5) by

g = (90,91, 92,0,—1,0), including the required reductions are shown in (11), (1) a
(13). Note that alll3 F3.» multiplications can be performed in parallel.

muls — (f1 + f3)-(g1)

muly «— (fo + f1+ fo+ f3).(90 + g1 + g2)
muls — (fo + fa).(go + 2)

muly < (f1 + f5).(g1) (11)
mulio «— (fo+ f1+ fa+ f5).(go + g1 +2)

mulin — (f2 + fa).(g2 + 2)

muliz — (fs + f5).(g2 +2)

mulo — f()‘go
muli — fi.g1
muly — (fo + f1)-(go + g1)
mul3 «— fggg
mula «— f3.92
muls — (fo + f2).(g0 + g2)

Algorithm 2 Exponentiation ofj (P, Q) to nr (P, Q)M on E(Fzm) : y? = 23 —2 -1,
m%12 =1, m%6 = 1 case
INPUT: f =nr(P,Q) € Fiom

3m_ 1y am m | a(m+1)/ y X
OUTPUT:](-(3‘3 1)(3™+1)(3™+3 + 2+1> = ’I’]T(P7 Q)]\[€]Fgfhn

1: INITIALISE:
2: n,d,w € Fyem
3 we—f
4: RUN:
5: fori«— 0to(m+1)/2 — 1do
6 we—uw —Fs6m cube
7: end for
8 d— fw —1F46m mul
9 f— f9 —1F6m pOWq
11: f— f9 —1F 36/ pOWQ
12: d — d.f —1F36m mul
13: f — f4 —1F6m pOWqQ
14: ¢ — 52 —1F36m mul
15: d—d.t —1F 36m mul
16: f — f¢ —1F36m powq
17: d — d.f —1F56:» mul
18: f jo = aom Pond
19: n —n.f —1F36:m,m mul
20: f — f4 —1F36m pOWq
21t — f3 —1F6m cube
22: n—n.t —1F56:,» mul
23w — w? —1F 36m powe?
24: n — now —1F56:» mul
25: w — w1 —1F56m powq
26: n — n.w —1F36m mul
27 w— wi® —1F36m powe?
28. d — dw —1F 36, mul
29: f«—n
30: f— f/d —1F46m iV, 156, mul
31: returnf
100, «— mulyg — muly t00; «— muls — mulo — muly
t11, «— muls t11; «— muly
t01, «— muls — mulg t01; «— muly — muls — mulg
t02, «— muls — mulg t02; «— mulip — muls — muly
t12, — muli1 t12; «— mulio

co «— t00, — t12, + t11, + t22,

C1 <— tOOZ — t121 + tllz + t221

co +— 101, — t00, + t11, + 12, + t22,
cs «— t01; — t00; + ¢t11; + t12; + t22;
cq «— 102, — t00, + t11,

cs «— t02; — t00; + t11;

13)

The computatiomr (P, Q) finishes with an exponentiation f/. This exponenti-
ation is vital since it ensures a unique output value for therall computation. The
exponentM is unrolled and the operations required to perform the firpbaentiation

are detailed in Algorithm 2. The exponentiation requifes+ 1)/2 + 1 Fszem cubings,
seven powerings tg = 3™, two powerings ta;?, elevenF,s» multiplications and an
F36m inversion. The computation of these operations is perfdrosing the tower of
extensions idea and will be detailed later. Note that dubecserial nature of the expo-
nentiation, it is vital that these operations are perforeiidiently if a low computation
time fornr (P, Q)M is to be returned.

3 Characteristic 3 Arithmetic

In this section we consider the hardware implementatiof;0fF3» andFss arith-
metic for the computation ofr (P, Q). We provide results when the arithmetic oper-
ations are implemented over a base fiBld-. This base field was chosen as it affords
us the opportunity to compare our implementation with athiethe literature. The ir-
reducible polynomial used i8°7 + x'6 — 1. However, the components described in
this section can be reconfigured for any other suitable fiekl ar irreducible polyno-
mial. The FPGA on which the arithmetic is implemented ¥§lanx Virtex-1l Pro FPGA
(xc2vp100-6ff1696) with 45120 slices. All components hagen realised using VHDL
and synthesised and placed & routed ustilinx ISE Version 8.1i.

3.1 [F3 Arithmetic

Unlike the characteristic 2 field on which the additive anditiplicative operations
can be performed using only oner- gate and onend-gate respectivelylfs arith-
metic operations are slightly more complicated to perfanrhardware. Each element
{0,1,2} € F3 must be represented using two hardware bits. We choosepitesenta-
tion 0 = {00,01}, 1 = 10 and2 = 11. This representation means that tieeck if zero
operation can be performed by simply checking the high bérdf; element.

On T3, the required arithmetic operations are addition, subta@nd multiplica-
tion (negation can be performed with a subtraction from efbe underlying logic
unit on FPGAs are function generators, which can be confijaset : 1 Look-Up
tables (LUTs). We make explicit use of these LUTs in genegatircuitry for the addi-
tive and multiplicativel's operations. The input-output map for each of the arithmetic
operations can be placed on two 1 look up tables, or one FPGA slice.

3.2 TF3m Arithmetic

TheFs~ operations that are required for the computatiomefP, Q)" are addition,
subtraction, cubing and multiplication. Afg~ inversion is also required for the final
extension field division in Algorithm 2. Note thBt~ squaring is performed using mul-
tiplication circuitry. The arithmetic components usedrwplementFs.. are described
in Table 1.

Addition, subtraction and cubing iRs~ are combinatorial and incur a relatively
small area cost. Inversion, however, is generally a coraf@dit operation in any field. A
hardware inverter costs 1939 slices and returns a res2ilkiolock cycles. Fortunately,
inversion must only be performed once. Multiplication cangerformed using two

’ Op ‘D&ecription ‘Cycl&e‘Area(S!ic&) ‘

Add/Sub|Performed usingn F3 addition or subtraction units. Combi- 1 |97
natorial logic only.

Cube |Created as amor-gate array using methods from [5]. Cdm-1 {120
binatorial logic only.

Inv |Performed using the Extended Euclidean Algorithm (EEA)m (1939
The EEA operations are modified for a characteristic 3 im-
plementation [12].

Mult

D=1 |A serialMost Significant Coefficient FirgMSC) Multiplierf m [637
[12] is used. Only one input coefficient operated on at a fime.

D>1 |Digit Multipliers of type described in [15] are usef). co-| m/D |D=4: 1224

efficients of the inputs are processed in parallel, whHeris

known as theédigit Size The area of the multiplier increases D=8: 2049

with D. These multipliers offer a direct trade-off between

speed and area. D=16: 3737
Table 1. Implementation of Arithmetic ofrsm

different types of multipliers. The first is a low area costaeapproach utilising Most
Significant Coefficient FirsfMSC) multiplier. In this case, coefficients of the inputs
are operated on one at a time. The MSC multiplier returns @tresm clock cycles.
The second approach is to uB@it Multipliers such thatD coefficients of the inputs
are operated on in parallel. These multipliers return tesalm/D clock cycles and
provide a speed/area trade-off.

3.3 TFzem Arithmetic

As seen in Algorithm 2, various extension field operationsthe performed during the
final exponentiation. However, using the tower of extensiolea, arithmetic off 36
can be reduced to operationsBs.. This means that the components described in the
previous section can be reused to performlige. operations. Thé';s. operations
required by Algorithm 2 are shown in Table II.

Note that theFss.» cubing, powqand powqg2operations require onl¥s~ cubes
and additions/subtractions, which are combinatorialeksion field multiplication and
inversion are, however, more costly to compute.

4 The nr processor

This section describes the reconfigurable processor dabigm compute the secure
bilinear pairingnr (P, Q)™ . The processor was designed with flexibility and versatilit
in mind and is shown in Figure 1.

Rather than hardwiring the logic to compute the pairing, thecessor is imple-
mented with an ALU containing a number B arithmetic components. The ALU

[Op [Method of Computation [CostonFsm |
Cube [Let A = ao + aip + dep” whereay = (ao + a10), a1 =|6 cubings,
(a2 + aso), a2 = (as + as0) (see (8))8 sulyadds
= A% =ad +a3p® + ax3p°

But p® = p — 1 andp® = p? + 1. Reduce: (see (6))

= A% = (&} — &} +a3) + ((af +ad)p + a3p?

Buto? = -1, = 4§ = (ao® — car®), @
(a43 - O’CL53)

= A% = (ao3 —a® +a43) + (a33 —a® - a53)0+ (az3 +a43)p+
(—as® — as®)op

+(as®)p® + (—as®)op®

PowQ [LetA = ao + a1p + da2p” again: 8 sub/adds
= AT=A%" =a3" +a¥" ¥ + @*(p?)°
= A% =ao + a1p® + (a1)p°

= A? = (a0—az2+as)+(azs—a1—as)o+(az+as)p+(—az—as)op
+(a4)p® + (—as)op®
PowQ?*|Reapplypowq 6 sub/adds
= A7 = (ag+as+as)+(as+a1+as)o+(az —as)p+(as—as)ap
+(aq)p® + (as)op®
Mul |Given A = (Go + G1p + d2p?®), B = (bo + bi1p + bep?®) perform18 muls,
Karatsuba Multiplication ofA.B over F32» followed by a reductiofy2 add'subs
by p®> = p — 1. The Karatsuba Multiplication costs sB2.» multi-
plications. Eact¥;2» multiplication requires three multiplications pn
Fsm. This means that, in total, I8~ multiplications are required for
F46» multiplication. All multiplications can be performed in parallel
if desired. See [11] for more details.
Inv Use method in [11]. Change representation fiame, p, o p, p°, op° }|33 muls,
to {1, p, p*,0,0p,0p%,i.6.A = do-+d10 wheredy = ao-+a1p+a2p*|4 cubings,
anday = a3 + asp + a5p2. Recalling that2 = —1, the inversiorn67 add'subs, 1
can be carried out efficiently using conjugate methods. OnlyRarginv
inversion is required.

Table 2. Implementation of Arithmetic off 56,

contains one arithmetic unit fds~ addition,Fs~ subtractionFs~ cubing andFsm
inversion. As multiplication is performed so often and isstatively time consuming
operation (requiringn/D clock cycles), the processor has been designed such that the
number of multipliers in the ALU can be reconfigured withléittmpact on the over-

all architecture. By varying the number of multipliers, @ndeed their digit sizes, the
processor can easily be tailored for a low area implemeamtaé high throughput im-
plementation, or a desired compromise between the two.

s RAM

——{addrrama
——{addrram b

-~ dout jaddra
;| COUNTER goue| Intrustions (T
E ROM sty machine

wf
3 sl 8|23

8| 8| = 2l e

g € 2

§§done

Fig. 1. The characteristic 3 elliptic curugr processor

Dual port RAM is used to store the intermediate variablesiireg for computa-
tion. The required input coordinates are read serially ihédoRAM before computation
begins. During computation, twn-bit data signals bring variables to the ALU to be
operated on. Tri-state buffers at the output of the aritieregmponents are used to
select which result is written to RAM when tfig operation has been completed.

A control unit consisting of a ROM, a counter and a simpleestaichine is used
to perform the pairing operation. An instruction set se@irgnthe operations required
for the ny pairing is loaded into the ROM. A counter controls the adsliefgthe ROM.
When the processor is reset, the counter begins to iterataghrthe instruction set.
A simple state machine checks bits of the instruction veatat halts the counter for
m/ D clock cycles andn clock cycles when a multiplication and an inversion are ein
performed respectively so that the correct result will bétem to RAM. The counter
also contains 4oad control bit such that the counter can jump to particular egses
in the instruction set when required (for example jumpiranfrthe end of the loop
to the beginning of the loop in Algorithm 1 when required).eTétate machine also
handles the data load. This control methodology ensureibifigxas it eliminates the
requirement for a large fixed state machine. When a new irtiiruset is required, it
can simply be loaded into the ROM.

4.1 Processor Generation

To facilitate ease of processor reconfiguration and to enfdexibility, the VHDL code
for the processor is generated using'gorogram. UsingC' code the field size, the

number of multipliers and their digit sizes, the instruntiet and, indeed, the size of
the memory blocks, can be automatically reconfigured adegtd the application.

The instruction set that implements the bilinear pairingl§d generated i6' code
and written to a file that is loaded into the ROM. The instructset is generated very
efficiently in C through the use of operator overloading. Arithmetic opmaare over-
loaded such that an instruction of the tygeY+Z written in C' code will automatically
generate instructions that seAdfrom RAM port a,Y from RAM port b and set the tri-
state buffers, the RAM enable signals and the RAM addressisguch that the result
is written from the addition circuitry t& after a clock cycle. This yields a very rapid
generation of an instruction set for a particular applaatiAdditional operations such
as elliptic curve point scalar multiplication as requirgtsbme pairing-based protocols
can also be added to the instruction set with ease.

4.2 Operation Scheduling

It is vital that the scheduling of operations be as efficienfpassible to ensure that
valuable clock cycles are not wasted. Operations are stdeduch that, if possible,
additions, subtractions and cubings are performed and tbgiults written to RAM
while multiplication or inversion is in progress. In pattiar, the scheduling of opera-
tions through the loop of Algorithm 1 is vital since the logpgerformed'm + 1)/2
times. To achieve a fast throughput through the loop, harelwgelining is performed.
Before the loop begins to iterate, the values@t= —u;.u; ande; = —yp.yyli] are
computed and subsequently stored. On the first iteratioheofdop, the calculation of
f-g can then proceed almost immediately as the inputs to thetpemwill be available.
The values oty andc¢; that will be required on the following iteration can be calcu
lated in parallel with these multiplications and storedisTheans that after finding the
initial values ofcy andc;, all 15 F3= multiplications can be performed in parallel if
desired. Note also that the additions required to compuies per (12) and (13), are
also pipelined in a similar manner by calculating theoefficients of the previous loop
while multiplications are being performed during the cuatrgeration. It is worthwhile
noting that only a small level of this form of parallel schédg can be achieved dur-
ing the final exponentiation td/ as described in Algorithm 2. This means that while
the number of operations required for exponentiation isefss than for the loop itera-
tions, the time required for exponentiation is not triviakedo its serial nature and effort
should be made to minimise the number of operations reqaseduch as possible.

5 Results

The Tate pairing processor described in the previous seat#s implemented over the
samelF;o7 base field and on the same FPGA described at the beginning pféirious
section. Note that the processor is fully reconfigurableafoyr suitable field size.
Results returned by the processor wheit P, Q)M is implemented with 1, 2, 3, 4,
5 and 8 multipliers are provided in Tables Il and IV. Notettha implementation with
either 6 or 7 multipliers would not yield an efficient use ofearces. This is because

Number of Multipliers Number of Multipliers
Dml‘2‘3‘4‘5‘8 Dm1‘2‘3‘4‘5‘8

Area of the nr Processor (dices) Area Time Product (dlices.us)

1 |361Q 4420| 5190| 6069| 7093| 9652 1| 422 |291|236|2.37|2.31| 2.59
4 14125 5657 | 7265| 8887|1054015401 4| 178 |155(155(1.77|1.97| 2.82
4995 7491/10000125201505622632 8| 147 |152|1.78|2.23|2.60| 3.88
16 |70361163516290209432562639553 16| 2.17 | 2.90| 3.78| 4.88| 5.85| 8.97

Execution Timefor nr (P, Q) (uS) Clock Cyclesfor nr(P, Q)
1 (862| 482 | 322 | 272 | 221 | 177 1 | 78653]/4400729350247872012416147
4 1302| 185 | 137 | 127 | 120 | 119 4 | 25589(157111163810795101401008¢9
198| 130 | 114 | 115 | 113 | 113 8 | 16745|11043 9646| 9783| 9538 | 9581

16 | 200| 162 | 151 | 154 | 151 | 155 16 | 12323] 9984| 9338| 9483 | 9330| 9569

Execution Time for Exp. to M (u9) Clock Cyclesfor Exp.to M

308| 177 | 133 | 119 | 104 | 91 1 | 28061(161431210310842 9529| 8320
4130 89 | 76 | 72 | 67 | 64 4 | 10997| 7575| 6415| 6090| 5713| 5440
8|96| 73 | 65 | 63 | 60 | 59 8 | 8153 | 6147|5467 5298| 5077| 4870
16|109| 88 | 81 | 79 | 77 | 79 16 | 6731 | 5433| 4993|4902 | 4759 4876

Execution Timefor nr (P, Q)™ (us) Clock Cyclesfor nr (P, Q)
1]117Q 659 | 454 | 391 | 325 | 268 1 |1067146015041453356292965324467
4 1432| 275 | 213 | 199 | 187 | 183 4 | 36586|2328618053168851585315529

294| 203 | 178 | 178 | 173 | 172 8 |24898(1719015113150811461514451

16 | 309| 250 | 232 | 233 | 228 | 227 16 | 19054|1541714331143851408914445
Table 3. Required area with execution times Taple 4. Area Time Product and Clock Cycles
returned by the processor fonr(P,Q), Required by the Processor for the execution
the final exponentiation and for compu- of 5, (P, Q), the final exponentiation and for
tation of the full nr(P,Q)™ pairing, computation of the fulhr (P, Q)™ pairing.
fcrx=91.2,84.8,70.4 and 61.6MHz for

D=1,4,8 and 16 respectively

the multiplications required within the loop of Algorithmdbminate the pairing cal-
culation time. The latency of thedé multiplications does not improve between 5 and
7 (it remains aBm/D until a configuration incorporating 8 multipliers is instiated).
Operations required by tHes;s» multiplication are also scheduled to make use of the
various numbers of multipliers.

Results are returned by the processor when implementedsaithl MSC multipli-
ers (D = 1) and for digit multipliers with digit sizes of 4, 8 and 16. Mathat when

—m—D=1
50000 — e D=4
D=8 110000 | .
45000 —w—D=
v—D=16 100000 | —m—D=1
40000 v —e—D=4
90000 - D=8
35000 80000 —v—D=16
2 30000 8 70000
@ 25000 v O 60000 A u
© x
2 V/ S 50000
£ 20000 / ol
- |]
15000 - / J— 40000 R ~,
— 30000 \ S~
10000 / e o T .
e . 20000 - ~—
5000 i S T ¢
T T T T T T T T 1 10000 T T T T T T T T 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Number of Multipliers Number of Multipliers
(a) Total area for ther Processor in slices (b) Total number of clock cycles foyr (P, Q)™
—a—D=1
124 —e—D=4
114 D=8
1200 4 . o] —v—D=16
—a—D=1
-, — v
— 1000 —o—D=4 @ 97
4 D=8 o gl
° —v—D=16 2
€ [
£ 8004 3
-
% 600 o 54
o i3
g £ 4 -\ /
[=
S 400 b T g 3 -/
o T~ /|
e '\ \.x 2z 5] ./ i
T L —a —
200 1) e S M 1
T T T T T T T T 1 0 T T T T T T T T 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Number of Multipliers Number of Multipliers

(c) Total time for computation afr (P, Q)™ in us (d) Area-Time Product for thgr Processor in slices.s

Fig. 2. nr processor results when implemented with 1, 2, 3, 4, 5 and 8 multipliers with D=
8, 16

configured with the MSC multiplier, the maximum attainabdsiplace and route clock
frequency of the processor §4.2MHz. The maximum frequencies for the processor
when implemented with digit multipliers of D=4, 8 and 16 84e8MHz, 70.4MHz and
61.6MHz respectively. The computation times in Tables 11l andai returned by the
processor at these post place & route frequencies.

Figure 2 illustrates trends in the area of the processares)j the total number of
clock cycles required fonr (P, Q)*, the total computation timeu§) and the area-
time product returned for the various configuratiosiddes.s). From Table 11l and Fig-

ure 2(a) it can be seen that the processor can be configuratbigie range of area costs,
depending on the required computation time and applic48600—-39553 slices).

As seen in Figure 2(b) the total number of clock cycles deseas both the digit
size and number of multipliers increase. An increase in thelyver of multipliers in the
D = 1 case provides for a dramatic reduction in the number of cbydkes required
since in this case each multiplicative operation consuntefatively large numbenf)
of clock cycles. The effect is less dramatic in the> 1 cases since not only are the
multiplicative operations less dominant but there is lése tto pipeline intermediate
additions while the multiplications are being performed.

Figure 2(c) illustrates trends in the time taken to computéP, Q) and provides
some interesting results. Here, the decrease in clock éregyuas the digit size is in-
creased has an effect on the computation. Infthe- 16 case, the reduced frequency
yielded by the larger digit size results in longer compuotatimes than thé = 8 case
and in the{D=4, number of mults2} cases since the multiplicative operations are
taking a relatively small amount of time and are thus not smidant when compared
to the quantity of additive operations. From Table Il thetéest pairing is returned in
172us for the{D=8, number of muls=B case. However, note from Table IlI that in-
creasing the number of multipliers from 3 to 8 for this digitesreturns a very small
decrease in computation time. A more efficient option forsa flaroughput architecture
is the{D=8, number of muls=Bcase, which requires onlif), 000 slices (22.6% of the
FPGA) and returns a cryptographically secure pairing irng&s78

Trends in the area-time (AT) product of the processor anstilated in Figure 2(d)
and are, perhaps, the most revealing since a measure offitierely of the processor
in the various configurations is provided. In the= 1 case, the AT product reduces
continuously until the number of multipliers is 5. Increagsthe number of multipliers
to 8 yields a less efficient utilisation of area as the extrau®ipliers do not provide a
large enough reduction in computation time to warrant timsilusion. The AT product
floor is hit when the number of multipliers ¥in the D = 4 case. For digit sizes of 8
and 16, the most efficient utilisation of resources is reddioy a processor with just one
multiplier as the latency through the multipliers is rediieend the additions begin to
dominate the computation time. Overall, the most efficies#t of resources is returned
by the {D = 8, number of muls2} case. This configuration costs only 7491 slices
(17% of the FPGA) and returns a fully secure pairin@®3us.

In the future, data trends for various different field sizél lve generated to inves-
tigate the best configuration for thg processor at various security levels.

5.1 Comparisons

Consider, for example, our pairing result bf8us or 15,113 clock cycles utilising
10,000 slices returning an area-time product of 1s/Z8es.s in the {D=8, number of
muls=2 case. The pairing computation time provides a large speedeithe software
implementation time o2.72ms on a Pentium IV processor running at 3GHz in [2]. It
also provides a large improvement on the estimated pairimgaf0.85m.s (at 15MHz)
reported for a characteristic 3 hardware pairing impleraggon in [11]. The architec-
ture in [11] contains hardwired extension field arithmetienponents, which reduces
the attainable frequency and returns a large area costO]nHé characteristic 3 pairing

algorithms of [13] and [8] are performed in 64887 and 6954 kIicycles respectively
with an area of 4481 slices. No post place and route frequeslogs are provided. Our
implementation compares favourably with these results.

6 Conclusions

In this paper we have discussed the efficient implementafitirer pairing in charac-
teristic 3. AllF3, F3» andFse» operations required to compute a secure cryptographic
pairing (including final exponentiation) have been disedsand their hardware im-
plementation considered. A reconfigurable hardware peaedsr then pairing has
been presented. As far as we are aware, this is the first [gacisthe literature that
computes e bilinear pairing including final exponentiatismg they; methods in char-
acteristic 3. The cryptographic processor can be tailaseddrious applications as it is
fully reconfigurable for any suitable field size, for variausmbers of multipliers and
for different multiplier digit sizes. The efficient schethg of operations through this
processor has been considered and a pipelining methodolatyyed. Results returned
by the processor when implemented over a field sizEsef have been presented. At
present, the processor returns the fastest charact&istyptographic pairing returning
a unique value in the literature.

In the future it will be interesting to analyse the resultsireed by the processor
for various different field sizes. It would also be interegtto add an instruction set for
the implementation of point scalar multiplication as thigmation is required by many
pairing based protocols.

References

1. P. S. L. M. Barreto. A note on efficient computation of cube roots aratteristic 3. Cryp-
tology ePrint Archive, Report 2004/305, 2004. Available frbtt p: // eprint.i acr.
or g/ 2004/ 305.

2. P.S. L. M. Barreto, S. Galbraith, ©. hEigeartaigh, and M. Scott. Pairing computation on
supersingular abelian varieties. Cryptology ePrint Archive, Rep@®4275, 2004. Avail-
able fromhtt p: // eprint.iacr. org/ 2004/ 375.

3. P.S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient algbms for pairing-based
cryptosystems. IAdvances in Cryptology — Crypto’200@olume 2442 of_ecture Notes in
Computer Sciencpages 354—368. Springer-Verlag, 2002.

4. G. Bertoni, L. Breveglieri, P. Fragneto, and G. Pelosi. Parallel Warel Architectures for the
Cryptographic Tate Pairing. Imformation Technology: New Generatioqeges 186-191.
IEEE Computer Society, 2006.

5. G. Bertoni, J. Guajardo, S. Kumar, G. Orlando, C. Paar, and Tlinger. EfficientGF(p™)
arithmetic architectures for cryptographic applications.Tdpics in Cryptology - CT RSA
2003 volume 2612 of_ecture Notes in Computer Scienpages 158-175. Springer-Verlag,
2003.

6. J.L. Beuchat, M. Shirase, T. Takagi, and E. Okamoto. An algorithmthier pairing cal-
culation in characteristic three and its hardware implementation. CryptoRgytérchive,
Report 2006/327, 200t t p: / / eprint. i acr. or g/ 2006/ 327.

7. R. Dutta, R. Barua, and P. Sarkar. Pairing-based cryptogrépsyrvey. Cryptology ePrint
Archive, Report 2004/064, 2004t t p: // eprint.i acr. or g/ 2004/ 064.

10.

11.

12.

13.

14.

15.

16.

I. Duursma and H.-S. Lee. Tate pairing implementation for hypereliptivesy? = af —
x + d. In Advances in Cryptology — Asiacrypt’200@lume 2894 ofLecture Notes in
Computer Sciencgages 111-123. Springer-Verlag, 2003.

. S. Galbraith, K. Harrison, and D. Soldera. Implementing the Tate gaitim Algorithmic

Number Theory — ANTS, Volume 2369 ot.ecture Notes in Computer Scienpages 324—
337. Springer-Verlag, 2002.

P. Grabher and D. Page. Hardware acceleration of the tate pairatiacteristic 3. In
Cryptographic Hardware and Embedded Systems (CH&fR)me 3659 otf.ecture Notes in
Computer Sciencgages 398—411. Springer-Verlag, 2005.

T. Kerins, W.P. Marnane, E.M. Popovici, and P.S.L.M. BarrdEfficient hardware for the
Tate pairing calculation in characteristic 3. @nyptographic Hardware and Embedded Sys-
tems (CHES)volume 3659 of LNCS, pages 412—-426. Springer, 2005.

Tim Kerins, Emanuel M. Popovici, and William P. Marnane. Algorithmd architectures
for use in FPGA implementations of identity based encryption schemed=Pln pages
74-83, 2004.

S. Kwon. Efficient Tate pairing computation for elliptic curves oveabhyrfields. InAus-
tralasian Conference on Information Security and Privacy — ACISP 200bime 3574 of
Lecture Notes in Computer Scienpages 134-145. Springer-Verlag, 2005.

V. S. Miller. Short programs for functions on curves. Unpublisimanuscript, 198t t p:
/lcrypto.stanford.edu/mller/mller.pdf.

L. Song and K.K. Parhi. Low-energy digit-serial/parallel finite fieldltipliers. Journal of
VLSI Signal Processing Syster2§22):1-17, 1997.

E. Verheul. Evidence that XTR is more secure than supersindlifiicecurve cryptosys-
tems. InAdvances in Cryptology — Eurocrypt’200dolume 2045 ot.ecture Notes in Com-
puter Sciencegpages 195-210. Springer-Verlag, 2001.

