
Hardware Implementation of the ηT Pairing in
Characteristic 3

Robert Ronan1, ColmÓ hÉigeartaigh2, Colin Murphy1, Tim Kerins1 and
Paulo S. L. M. Baretto3

1 Department of Electrical & Electronic Engineering, University College Cork,
College Road, Cork, Ireland.

{robertr,cmurphy,timk}@rennes.ucc.ie
2 School of Computing, Dublin City University,

Ballymun, Dublin 9, Ireland.
coheigeartaigh@computing.dcu.ie

3 Escola Polit́ecnica, Universidade de São Paulo, Brazil.
pbarreto@larc.usp.br

Abstract. Recently, there have been many proposals for secure and novel cryp-
tographic protocols that are built on bilinear pairings. TheηT pairing is one such
pairing and is closely related to the Tate pairing. In this paper we consider the
efficient hardware implementation of this pairing in characteristic 3. All charac-
teristic 3 operations required to compute the pairing are outlined in detail. An
efficient, flexible and reconfigurable processor for theηT pairing in characteristic
3 is presented and discussed. The processor can easily be tailored fora low area
implementation, for a high throughput implementation, or for a balance between
the two. Results are provided for various configurations of the processor when
implemented over the fieldF397 on an FPGA. As far as we are aware, the proces-
sor returns the first characteristic 3ηT pairing in hardware that includes a final
exponentiation to a unique value.

Keywords − ηT pairing, characteristic 3, elliptic curve, reconfigurableprocessor,
FPGA

1 Introduction

Since the introduction of the Weil and Tate pairings for constructive cryptographic ap-
plications, there has been a flurry of proposals for novel cryptographic protocols based
on pairings, including identity-based encryption (IBE) schemes, key exchange schemes
and short signature schemes [7].

Bilinear pairings are used to map the Discrete Logarithm Problem (DLP) from the
divisor class group of an elliptic or genus 2 hyperelliptic curve, defined overFq, to the
multiplicative subgroupF∗qk of some extension of the base field. The valuek is known
as theembedding degreeor security multiplier.

The viability of practical applications of these schemes relies on the efficient im-
plementation of bilinear pairings. This has led to many suggestions for algorithmic op-
timisations. The Tate pairing was originally computed using Miller’s Algorithm [14].



In 2002, significant improvements to this method were independently suggested in [3]
and [9]. After this, the Tate pairing implementation was further optimised in [8] for a
small class of curves, resulting in the Duursma-Lee algorithm for pairing implemen-
tation. In [2] it was clarified how these methods can be used ona more general set
of curves. In [2] it was also demonstrated that an even fasterbilinear pairing can be
returned by using a smaller iterative loop and a slightly more complicated final expo-
nentiation. They call this pairing the truncatedeta pairing (denotedηT ). In this paper
we describe the hardware implementation of this pairing in characteristic 3.

Even with these algorithmic optimisations, pairing calculation remains a compli-
cated operation. Pairings are very well suited to hardware implementation for two rea-
sons: Much of the arithmetic performed on the extension fieldFqk can be reduced to
arithmetic onFq. Many of theseFq arithmetic operations can be performed in parallel
in hardware, providing a large saving over implementationson general purpose serial
processors. Furthermore, a pairing calculation consists of an iterative loop followed by a
final exponentiation. If care is taken with the scheduling ofoperations through the loop,
a hardware implementation can provide a large level of pipelining, further speeding up
pairing computation.

An FPGA implementation of the characteristic 3 pairing methods described in [13]
has appeared in [11], where the extension field operations required for pairing com-
putation are hardwired. However, this leads to a large design and provides no level of
flexibility for different applications (the authors concern themselves with high through-
put only). In [10] a pairing processor for the implementation of the pairings described
in [8] and [13] is presented. AnF3m ALU is used to perform the operations required
for pairing computation. This processor again provides no means for reconfiguration.
A study on the scheduling of the Duursma-Lee algorithm in [8]has appeared in [4].
Recently, an implementation of the characteristic 3ηT pairing has appeared in [6]. The
operations necessary for the iterative loop of theηT pairing are hardwired. This results
in a high operational frequency. However, there is no means for exponentiation using
the architecture in [6]. This exponentiation is required such that the pairing returns a
unique value, which is required for cryptographic applications. Thus, the architecture
in [6] must be supplemented with a coprocessor for exponentiation, which, at the time
of writing, is a work in progress and details are not included.

This paper is organised as follows: Section 2 presents the necessary mathematical
preliminaries along with algorithms for computation of theηT pairing on a characteris-
tic 3 elliptic curve. Section 3 outlines the implementationof arithmetic onF3, F3m and
F36m . Section 4 describes the reconfigurable processor used to perform theηT pairing.
Section 5 presents results returned by the processor when generated on the fieldF397

and implemented on an FPGA in various configurations. Finally, Section 6 draws some
conclusions from the work.

2 Mathematical Preliminaries

Let Fq = Fpm be a finite field of characteristicp. The group of points on an elliptic
curveE defined overFq is denoted byE(Fq). A subgroup ofE(Fq) of prime orderr



hasembedding degreek if r dividesqk−1, but does not divideqi−1 for any0 < i < k.
A subgroup of orderr is known as anr-torsion group, denotedE(Fq)[r].

Following [3] and [9], the Tate pairing of orderr is a bilinear map betweenE(Fq)[r]
andE(Fqk)[r] to an element of the multiplicative groupF∗qk :

er(P,Q) : E(Fq)[r] × E(Fqk)[r] → F
∗

qk (1)

The second argument can be generated overE(Fq) and then mapped toE(Fqk) using a
distortion map (denotedφ) [16]. This leads to a reduction in cost since more operations
can be performed on the sub-field. The incorporation of the distortion map yields the
modified Tate pairing

êr(P,Q) = er(P, φ(Q)) (2)

where nowP,Q ∈ E(Fq)[r]. In [8], it was shown how the distortion map can be incor-
porated into the formulae for this modified pairing computation.

The valuêer(P,Q) is only defined up tor-th powers. A final exponentiation must be
performed to obtain a unique value for cryptographic purposes. The reduced modified
Tate pairing is defined as

ê(P,Q) = êr(P,Q)
(qk
−1)/r (3)

In this paper we compute theηT pairing on a characteristic 3 elliptic curve given by

E : y2 = x3 − x + b, b ∈ −1, 1 (4)

over a fieldFq = F3m with m mod 12 ≡ 1, m mod 6 ≡ 1. This curve has an embed-
ding degree ofk = 6. The Tate pairing is computed with an iterative algorithm incorpo-
rating the intermediate tangent, chord and vertical line functions on the curve associated
with the elliptic curve additive group operation. TheηT pairing reduces the number of
iterations required to build a bilinear pairing at the expense of a more complicated fi-
nal exponentiation when compared to the Tate pairing. In most cases, the reduction in
computation time yielded by the smaller number of iterations far outweighs the slightly
more costly exponentiation.

In characteristic 3, theηT pairing is related to the Tate pairing with

(ηT (P,Q)M )
3T 2

= (êN (P,Q)
M

)L (5)

where

N = 3m + 1 + b.3(m+1)/2

M = (36m − 1)/N = (33m − 1)(3m + 1)(3m − b.3(m+1)/2 + 1)

T = q − N = −1 − b.3(m+1)/2

L = −b.3(m+3)/2

The interested reader is referred to [2] for the derivation of Eq. (5) and for more
details on the proof of theηT pairing.



The functionηT (P,Q)M is itself bilinear and returns a non-degenerate and unique
value. It is, therefore, suitable as a basis for secure cryptographic protocols. The remain-
der of this paper deals with the efficient implementation ofηT (P,Q)M in hardware. We
refer to the exponentiation toM as thefinal exponentiation. If compatibility with the
Tate pairing is required, then the powering to3T 2 can be performed with a very small
number of calculations (that are insignificant when compared to the overall cost of the
pairing computation).

2.1 The Characteristic 3 ηT Pairing

In this section we describe the calculation of theηT pairing on the curveE : x3 −x+ b
in affine coordinates defined on the fieldF3m in them mod 12 ≡ 1, m mod 6 ≡ 1,
b = −1 case. Note that other cases form andb require only slight modifications (but
no significant additional operations). Again, consider thepointsP = (xP , yP ), Q =
(xQ, yQ) ∈ E(F3m)[r] with xP , yP , xQ, yQ ∈ F3m .

A suitable distortion mapφ on this curve is

φ(Q) = φ(xQ, yQ) = (ρ − xQ, σyQ) (6)

whereσ ∈ F32 andρ ∈ F33 such thatσ2 + 1 = 0 andρ3 − ρ + 1 = 0.
A basis must be chosen for the representation of elements inF36m . The choice of

basis is motivated by the desire to simplify the arithmetic operations in this field as much
as possible. We choose to represent elements ofF36m using the basis(1, σ, ρ, σρ, ρ2, σρ2).
An elementA ∈ F36m is then represented as

A = (a0, a1, a2, a3, a4, a5)

= a0 + a1σ + a2ρ + a3σρ + a4ρ
2 + a5σρ2 (7)

= â0 + â1ρ + â2ρ
2 (8)

wherea0, a1, a2, a3, a4, a5 ∈ F3m andâ0 = a0 +a1σ, â1 = a2 +a3σ, â2 = a4 +a5σ
with â0, â1, â2 ∈ F32m .

This is equivalent to a tower field representation [9] ofF36m , i.e.F36m ≡ ((F3m)
2
)
3

whereσ andρ are zeros ofσ2 + 1 andρ3 − ρ + 1 as defined by the distortion map. The
F36m field is generated as

F32m = F3m [y]/g[y] (9)

whereg(y) = y2 + 1 is an irreducible polynomial overF3m and

F36m = F32m [z]/h[z] (10)

whereh(z) = z3 − z + 1 is an irreducible polynomial overF32m .
The operations required to computeηT (P,Q)M , as described in [2], are shown in

Algorithm 1. Note that using the tower of extensions, all arithmetic operations in Al-
gorithm 1 are performed onF3m . The algorithm begins with a precomputation stage in
which powers of cubes ofxQ andyQ are calculated and stored in memory. This means
that the calculation of cube roots during loop iteration is avoided and the appropiate
powers ofxQ andyQ are instead extracted on each iteration. Although the calculation



Algorithm 1 Computation ofηT (P,Q)M onE(F3m) : y2 = x3−x−1, m mod 12 ≡
1, m mod 6 ≡ 1 case
INPUT: P = (xP , yP ), Q = (xQ, yQ), (P, Q) ∈ E(F3m)
OUTPUT: f = ηT (P, Q) ∈ F

∗

36m

INITIALISE:
1: f ∈ F36m

2: f ← 1
PRECOMPUTE:
3: for i← m− 1 downto (m + 1)/2 + 1 do
4: xQ ← xQ

3, yQ ← yQ
3 – 2F3m cubings

5: end for
6: for i← (m + 1)/2 downto 0 do
7: xQ ← xQ

3, yQ ← yQ
3 – 2F3m cubings

8: x′

Q[i]← xQ, y′

Q[i]← yQ

9: end for
RUN:

10: for i← 1 to (m + 1)/2 do
11: u← xP + x′

Q[i] + 1

12: c0 ← −u.u – 1F3m mul
13: c1 ← −yP .y′

Q[i] – 1F3m mul

14: g ← c0 + (c1)σ + (−u)ρ + (0)σρ + (−1)ρ2 + (0)σρ2

15: f ← f.g – 13F3m muls
16: if i < (m + 1)/2 then
17: xP ← x3

P , yP ← y3
P – 2F3m cubings

18: end if
19: g ← −yP .(x′

Q[i] + xP + 1) + (−y′

Q[i])σ + (yP )ρ – 1F3m mul

20: f ← f.g – 10F3m muls
21: end for
22: returnf(33m

−1)(3m+1)(3m+3(m+1)/2+1) –See Algorithm 2

of cube roots in characteristic 3 has been simplified in [1], the roots are stored in this
way to ensure an efficient use of area in the hardware implementation by avoiding the
additional area cost that would be incurred by a cube rootingcircuit.

The most costly part of the pairing is the loop iteration. Each iteration requires
fifteenF3m multiplications, a number ofF3m additions and subtractions and twoF3m

cubings. The scheduling of these operations through the hardware processor will be
vital to computation speed. The multiplication off byg can be performed with a regular
F36m multiplication (requiring 18F3m multiplications). However, this does not make
use of the fact thatg has the special formg = (g0+g1σ+g2ρ+(0)σρ+(−1)ρ2+(0)σρ.
If the F36m multiplication is unrolled and examined, it becomes apparent thatf.g can
be performed in only13 multiplications, providing a saving of five multiplications.
The F3m operations required for the multiplication off = (f0, f1, f2, f3, f4, f5) by
g = (g0, g1, g2, 0,−1, 0), including the required reductions are shown in (11), (12) and
(13). Note that all13 F3m multiplications can be performed in parallel.

mul0 ← f0.g0

mul1 ← f1.g1

mul2 ← (f0 + f1).(g0 + g1)
mul3 ← f2.g2

mul4 ← f3.g2

mul5 ← (f0 + f2).(g0 + g2)

mul6 ← (f1 + f3).(g1)
mul7 ← (f0 + f1 + f2 + f3).(g0 + g1 + g2)
mul8 ← (f0 + f4).(g0 + 2)
mul9 ← (f1 + f5).(g1)
mul10 ← (f0 + f1 + f4 + f5).(g0 + g1 + 2)
mul11 ← (f2 + f4).(g2 + 2)
mul12 ← (f3 + f5).(g2 + 2)

(11)



Algorithm 2 Exponentiation ofηT (P,Q) to ηT (P,Q)M onE(F3m) : y2 = x3−x−1,
m%12 ≡ 1, m%6 ≡ 1 case
INPUT: f = ηT (P, Q) ∈ F

∗

36m

OUTPUT: f (33m
−1)(3m+1)(3m+3(m+1)/2+1) = ηT (P, Q)M ∈ F

∗

36m

1: INITIALISE:
2: n, d, w ∈ F36m

3: w ← f
4: RUN:
5: for i← 0 to (m + 1)/2− 1 do
6: w ← w3 – F36m cube
7: end for
8: d← f.w – 1F36m mul
9: f ← fq – 1F36m powq

10: n← f
11: f ← fq – 1F36m powq
12: d← d.f – 1F36m mul
13: f ← fq – 1F36m powq
14: t← f2 – 1F36m mul
15: d← d.t – 1F36m mul
16: f ← fq – 1F36m powq
17: d← d.f – 1F36m mul
18: f ← fq – 1F36m powq
19: n← n.f – 1F36m mul
20: f ← fq – 1F36m powq
21: t← f3 – 1F36m cube
22: n← n.t – 1F36m mul

23: w ← wq2
– 1F36m powq2

24: n← n.w – 1F36m mul
25: w ← wq – 1F36m powq
26: n← n.w – 1F36m mul

27: w ← wq2
– 1F36m powq2

28: d← d.w – 1F36m mul
29: f ← n
30: f ← f/d – 1F36m inv, 1F36m mul
31: returnf

t00r ← mul0 −mul1
t11r ← mul3
t22r ← −f4

t01r ← mul5 −mul6
t02r ← mul8 −mul9
t12r ← mul11

t00i ← mul2 −mul0 −mul1
t11i ← mul4
t22i ← −f5

t01i ← mul7 −mul5 −mul6
t02i ← mul10 −mul8 −mul9
t12i ← mul12

(12)

c0 ← t00r − t12r + t11r + t22r

c1 ← t00i − t12i + t11i + t22i

c2 ← t01r − t00r + t11r + t12r + t22r

c3 ← t01i − t00i + t11i + t12i + t22i

c4 ← t02r − t00r + t11r

c5 ← t02i − t00i + t11i

(13)

The computationηT (P,Q) finishes with an exponentiation toM . This exponenti-
ation is vital since it ensures a unique output value for the overall computation. The
exponentM is unrolled and the operations required to perform the final exponentiation



are detailed in Algorithm 2. The exponentiation requires(m + 1)/2 + 1 F36m cubings,
seven powerings toq = 3m, two powerings toq2, elevenF24m multiplications and an
F36m inversion. The computation of these operations is performed using the tower of
extensions idea and will be detailed later. Note that due to the serial nature of the expo-
nentiation, it is vital that these operations are performedefficiently if a low computation
time forηT (P,Q)M is to be returned.

3 Characteristic 3 Arithmetic

In this section we consider the hardware implementation ofF3, F3m andF36m arith-
metic for the computation ofηT (P,Q)M . We provide results when the arithmetic oper-
ations are implemented over a base fieldF397 . This base field was chosen as it affords
us the opportunity to compare our implementation with others in the literature. The ir-
reducible polynomial used isx97 + x16 − 1. However, the components described in
this section can be reconfigured for any other suitable field size or irreducible polyno-
mial. The FPGA on which the arithmetic is implemented is aXilinx Virtex-II Pro FPGA
(xc2vp100-6ff1696) with 45120 slices. All components havebeen realised using VHDL
and synthesised and placed & routed usingXilinx ISEVersion 8.1i.

3.1 F3 Arithmetic

Unlike the characteristic 2 field on which the additive and multiplicative operations
can be performed using only onexor- gate and oneand-gate respectively,F3 arith-
metic operations are slightly more complicated to perform in hardware. Each element
{0, 1, 2} ∈ F3 must be represented using two hardware bits. We choose the representa-
tion 0 = {00, 01}, 1 = 10 and2 = 11. This representation means that thecheck if zero
operation can be performed by simply checking the high bit ofanF3 element.

On F3, the required arithmetic operations are addition, subtraction and multiplica-
tion (negation can be performed with a subtraction from zero). The underlying logic
unit on FPGAs are function generators, which can be configured as4 : 1 Look-Up
tables (LUTs). We make explicit use of these LUTs in generating circuitry for the addi-
tive and multiplicativeF3 operations. The input-output map for each of the arithmetic
operations can be placed on two4 : 1 look up tables, or one FPGA slice.

3.2 F3m Arithmetic

TheF3m operations that are required for the computation ofηT (P,Q)M are addition,
subtraction, cubing and multiplication. AnF3m inversion is also required for the final
extension field division in Algorithm 2. Note thatF3m squaring is performed using mul-
tiplication circuitry. The arithmetic components used to implementF3m are described
in Table 1.

Addition, subtraction and cubing inF3m are combinatorial and incur a relatively
small area cost. Inversion, however, is generally a complicated operation in any field. A
hardware inverter costs 1939 slices and returns a result in2m clock cycles. Fortunately,
inversion must only be performed once. Multiplication can be performed using two



Op Description Cycles Area(Slices)

Add/Sub Performed usingm F3 addition or subtraction units. Combi-
natorial logic only.

1 97

Cube Created as anxor-gate array using methods from [5]. Com-
binatorial logic only.

1 120

Inv Performed using the Extended Euclidean Algorithm (EEA).
The EEA operations are modified for a characteristic 3 im-
plementation [12].

2m 1939

Mult

D≡1 A serialMost Significant Coefficient First(MSC) Multiplier
[12] is used. Only one input coefficient operated on at a time.

m 637

D>1 Digit Multipliers of type described in [15] are used.D co-
efficients of the inputs are processed in parallel, whereD is
known as theDigit Size. The area of the multiplier increases
with D. These multipliers offer a direct trade-off between
speed and area.

m/D D=4: 1224

D=8: 2049

D=16: 3737
Table 1. Implementation of Arithmetic onF3m

different types of multipliers. The first is a low area cost serial approach utilising aMost
Significant Coefficient First(MSC) multiplier. In this case, coefficients of the inputs
are operated on one at a time. The MSC multiplier returns a result in m clock cycles.
The second approach is to useDigit Multipliers such thatD coefficients of the inputs
are operated on in parallel. These multipliers return results in m/D clock cycles and
provide a speed/area trade-off.

3.3 F36m Arithmetic

As seen in Algorithm 2, various extension field operations must be performed during the
final exponentiation. However, using the tower of extensions idea, arithmetic onF36m

can be reduced to operations onF3m . This means that the components described in the
previous section can be reused to perform theF36m operations. TheF36m operations
required by Algorithm 2 are shown in Table II.

Note that theF36m cubing,powq and powq2operations require onlyF3m cubes
and additions/subtractions, which are combinatorial. Extension field multiplication and
inversion are, however, more costly to compute.

4 The ηT processor

This section describes the reconfigurable processor designed to compute the secure
bilinear pairingηT (P,Q)M . The processor was designed with flexibility and versatility
in mind and is shown in Figure 1.

Rather than hardwiring the logic to compute the pairing, theprocessor is imple-
mented with an ALU containing a number ofF3m arithmetic components. The ALU



Op Method of Computation Cost on F3m

Cube Let A = â0 + â1ρ + â2ρ
2 where â0 = (a0 + a1σ), â1 =

(a2 + a3σ), â2 = (a4 + a5σ) (see (8))
⇒ A3 = â3

0 + â3
1ρ

3 + â2
3ρ6

But ρ3 = ρ− 1 andρ6 = ρ2 + 1. Reduce: (see (6))
⇒ A3 = (â3

0 − â3
1 + â3

2) + ((â3
1 + â3

2)ρ + â3
3ρ

2

But σ2 = −1,⇒ â3
0 = (a0

3 − σa1
3), â3

1 = (a2
3 − σa3

3), â3
2 =

(a4
3 − σa5

3)

⇒ A3 = (a0
3−a2

3 +a4
3)+(a3

3−a1
3−a5

3)σ +(a2
3 +a4

3)ρ+
(−a3

3 − a5
3)σρ

+(a4
3)ρ2 + (−a5

3)σρ2

6 cubings,
8 sub/adds

PowQ Let A = â0 + â1ρ + â2ρ
2 again:

⇒ Aq = A3m

= â3m

0 + â3m

1 ρ3m

+ â2
3(ρ2)

3m

⇒ Aq = â0 + â1ρ
3 + (â1)ρ

6

⇒ Aq = (a0−a2+a4)+(a3−a1−a5)σ+(a2+a4)ρ+(−a3−a5)σρ
+(a4)ρ

2 + (−a5)σρ2

8 sub/adds

PowQ2 Reapplypowq:
⇒ Aq2

= (a0+a2+a4)+(a3+a1+a5)σ+(a2−a4)ρ+(a3−a5)σρ
+(a4)ρ

2 + (a5)σρ2

6 sub/adds

Mul Given A = (â0 + â1ρ + â2ρ
2), B = (b̂0 + b̂1ρ + b̂2ρ

2) perform
Karatsuba Multiplication ofA.B over F32m followed by a reduction
by ρ3 = ρ − 1. The Karatsuba Multiplication costs sixF32m multi-
plications. EachF32m multiplication requires three multiplications on
F3m . This means that, in total, 18F3m multiplications are required for
F36m multiplication. All multiplications can be performed in parallel
if desired. See [11] for more details.

18 muls,
72 add/subs

Inv Use method in [11]. Change representation from{1, σ, ρ, σρ, ρ2, σρ2}
to{1, ρ, ρ2, σ, σρ, σρ2, i.e.A = â0+â1σ whereâ0 = a0+a1ρ+a2ρ

2

and â1 = a3 + a4ρ + a5ρ
2. Recalling thatσ2 = −1, the inversion

can be carried out efficiently using conjugate methods. Only oneF3m

inversion is required.

33 muls,
4 cubings,
67 add/subs, 1
inv

Table 2. Implementation of Arithmetic onF36m

contains one arithmetic unit forF3m addition,F3m subtraction,F3m cubing andF3m

inversion. As multiplication is performed so often and is a relatively time consuming
operation (requiringm/D clock cycles), the processor has been designed such that the
number of multipliers in the ALU can be reconfigured with little impact on the over-
all architecture. By varying the number of multipliers, andindeed their digit sizes, the
processor can easily be tailored for a low area implementation, a high throughput im-
plementation, or a desired compromise between the two.



+ -- b
3

b
-1 mul

0
mul
k-1

0 1 2 3 4

douta

dinb

doutb

dina
x , y , x ,yp p q q

addra

e
n

lo
a
d

d
a
ta

 i
n

dout

dout

rs
t

Instructions
state

machine

buff sel buff sel buff sel buff sel buff sel buff sel

2m 2m

2m

2m

Dout

RAM

ROM

COUNTER

e
n

 r
a
m

 a

e
n

 r
a
m

 b

a
d

d
r 

ra
m

 a

a
d

d
r 

ra
m

 b

b
u

ff
 s

e
l

rs
t 

a
ri

th

e
n

 r
a
m

a

e
n

 r
a
m

b

a
d

d
r 

ra
m

a

a
d

d
r 

ra
m

b

rs
t(

0
)

rs
t(

k
)

rs
t(

1
)

Din

clk

rst

2m

ALU

rst

Data Line

CONTROL

d
o

n
e

done

Fig. 1. The characteristic 3 elliptic curveηT processor

Dual port RAM is used to store the intermediate variables required for computa-
tion. The required input coordinates are read serially intothe RAM before computation
begins. During computation, two2m-bit data signals bring variables to the ALU to be
operated on. Tri-state buffers at the output of the arithmetic components are used to
select which result is written to RAM when theF3m operation has been completed.

A control unit consisting of a ROM, a counter and a simple state machine is used
to perform the pairing operation. An instruction set sequencing the operations required
for theηT pairing is loaded into the ROM. A counter controls the address of the ROM.
When the processor is reset, the counter begins to iterate through the instruction set.
A simple state machine checks bits of the instruction vectorand halts the counter for
m/D clock cycles andm clock cycles when a multiplication and an inversion are being
performed respectively so that the correct result will be written to RAM. The counter
also contains aload control bit such that the counter can jump to particular addresses
in the instruction set when required (for example jumping from the end of the loop
to the beginning of the loop in Algorithm 1 when required). The state machine also
handles the data load. This control methodology ensures flexibility as it eliminates the
requirement for a large fixed state machine. When a new instruction set is required, it
can simply be loaded into the ROM.

4.1 Processor Generation

To facilitate ease of processor reconfiguration and to ensure flexibility, the VHDL code
for the processor is generated using aC program. UsingC code the field size, the



number of multipliers and their digit sizes, the instruction set and, indeed, the size of
the memory blocks, can be automatically reconfigured according to the application.

The instruction set that implements the bilinear pairing isalso generated inC code
and written to a file that is loaded into the ROM. The instruction set is generated very
efficiently inC through the use of operator overloading. Arithmetic operators are over-
loaded such that an instruction of the typeX=Y+Z written inC code will automatically
generate instructions that sendX from RAM port a,Y from RAM port b and set the tri-
state buffers, the RAM enable signals and the RAM address signals such that the result
is written from the addition circuitry toX after a clock cycle. This yields a very rapid
generation of an instruction set for a particular application. Additional operations such
as elliptic curve point scalar multiplication as required by some pairing-based protocols
can also be added to the instruction set with ease.

4.2 Operation Scheduling

It is vital that the scheduling of operations be as efficient as possible to ensure that
valuable clock cycles are not wasted. Operations are scheduled such that, if possible,
additions, subtractions and cubings are performed and their results written to RAM
while multiplication or inversion is in progress. In particular, the scheduling of opera-
tions through the loop of Algorithm 1 is vital since the loop is performed(m + 1)/2
times. To achieve a fast throughput through the loop, hardware pipelining is performed.
Before the loop begins to iterate, the values ofc0 = −u1.u1 andc1 = −yP .y′Q[i] are
computed and subsequently stored. On the first iteration of the loop, the calculation of
f.g can then proceed almost immediately as the inputs to the operation will be available.
The values ofc0 andc1 that will be required on the following iteration can be calcu-
lated in parallel with these multiplications and stored. This means that after finding the
initial values ofc0 andc1, all 15 F3m multiplications can be performed in parallel if
desired. Note also that the additions required to computef , as per (12) and (13), are
also pipelined in a similar manner by calculating thef coefficients of the previous loop
while multiplications are being performed during the current iteration. It is worthwhile
noting that only a small level of this form of parallel scheduling can be achieved dur-
ing the final exponentiation toM as described in Algorithm 2. This means that while
the number of operations required for exponentiation is farless than for the loop itera-
tions, the time required for exponentiation is not trivial due to its serial nature and effort
should be made to minimise the number of operations requiredas much as possible.

5 Results

The Tate pairing processor described in the previous section was implemented over the
sameF397 base field and on the same FPGA described at the beginning of the previous
section. Note that the processor is fully reconfigurable forany suitable field size.

Results returned by the processor whenηT (P,Q)M is implemented with 1, 2, 3, 4,
5 and 8 multipliers are provided in Tables III and IV. Note that an implementation with
either 6 or 7 multipliers would not yield an efficient use of resources. This is because



Number of Multipliers

Dm 1 2 3 4 5 8

Area of the ηT Processor (slices)

1 3610 4420 5190 6069 7093 9652

4 4125 5657 7265 8887 1054015401

8 4995 7491 10000125201505622632

16 70361163516290209432562639553

Execution Time for ηT (P, Q) (µs)

1 862 482 322 272 221 177

4 302 185 137 127 120 119

8 198 130 114 115 113 113

16 200 162 151 154 151 155

Execution Time for Exp. to M (µs)

1 308 177 133 119 104 91

4 130 89 76 72 67 64

8 96 73 65 63 60 59

16 109 88 81 79 77 79

Execution Time for ηT (P, Q)M (µs)

1 1170 659 454 391 325 268

4 432 275 213 199 187 183

8 294 203 178 178 173 172

16 309 250 232 233 228 227
Table 3. Required area with execution times
returned by the processor forηT (P, Q),
the final exponentiation and for compu-
tation of the full ηT (P, Q)M pairing,
fCLK=91.2,84.8,70.4 and 61.6MHz for
D=1,4,8 and 16 respectively

Number of Multipliers

Dm 1 2 3 4 5 8

Area Time Product (slices.µs)

1 4.22 2.91 2.36 2.37 2.31 2.59

4 1.78 1.55 1.55 1.77 1.97 2.82

8 1.47 1.52 1.78 2.23 2.60 3.88

16 2.17 2.90 3.78 4.88 5.85 8.97

Clock Cycles for ηT (P, Q)

1 78653 4400729350247872012416147

4 25589 1571111638107951014010089

8 16745 11043 9646 9783 9538 9581

16 12323 9984 9338 9483 9330 9569

Clock Cycles for Exp. to M

1 28061 161431210310842 9529 8320

4 10997 7575 6415 6090 5713 5440

8 8153 6147 5467 5298 5077 4870

16 6731 5433 4993 4902 4759 4876

Clock Cycles for ηT (P, Q)M

1 1067146015041453356292965324467

4 36586 2328618053168851585315529

8 24898 1719015113150811461514451

16 19054 1541714331143851408914445

Table 4. Area Time Product and Clock Cycles
Required by the Processor for the execution
of ηT (P, Q), the final exponentiation and for
computation of the fullηT (P, Q)M pairing.

the multiplications required within the loop of Algorithm 1dominate the pairing cal-
culation time. The latency of these15 multiplications does not improve between 5 and
7 (it remains at3m/D until a configuration incorporating 8 multipliers is instantiated).
Operations required by theF36m multiplication are also scheduled to make use of the
various numbers of multipliers.

Results are returned by the processor when implemented withserial MSC multipli-
ers (D ≡ 1) and for digit multipliers with digit sizes of 4, 8 and 16. Note that when



0 1 2 3 4 5 6 7 8 9

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000
 D=1
 D=4
 D=8
 D=16

A
re

a(
S

lic
es

)

Number of Multipliers

(a) Total area for theηT Processor in slices

0 1 2 3 4 5 6 7 8 9
10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

 D=1
 D=4
 D=8
 D=16

C
lo

ck
 C

yc
le

s

Number of Multipliers

(b) Total number of clock cycles forηT (P, Q)M

0 1 2 3 4 5 6 7 8 9

200

400

600

800

1000

1200

 D=1
 D=4
 D=8
 D=16

To
ta

l C
al

cu
la

tio
n 

Ti
m

e 
(u

s)

Number of Multipliers

(c) Total time for computation ofηT (P, Q)M in µs

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

10

11

12
 D=1
 D=4
 D=8
 D=16

A
re

a 
Ti

m
e 

P
ro

du
ct

 (S
lic

es
.s

)

Number of Multipliers

(d) Area-Time Product for theηT Processor in slices.s

Fig. 2. ηT processor results when implemented with 1, 2, 3, 4, 5 and 8 multipliers with D=1, 4,
8, 16

configured with the MSC multiplier, the maximum attainable post place and route clock
frequency of the processor is91.2MHz. The maximum frequencies for the processor
when implemented with digit multipliers of D=4, 8 and 16 are84.8MHz, 70.4MHz and
61.6MHz respectively. The computation times in Tables III and IVare returned by the
processor at these post place & route frequencies.

Figure 2 illustrates trends in the area of the processor (slices), the total number of
clock cycles required forηT (P,Q)M , the total computation time (µs) and the area-
time product returned for the various configurations (slices.s). From Table III and Fig-



ure 2(a) it can be seen that the processor can be configured fora large range of area costs,
depending on the required computation time and application(3610–39553 slices).

As seen in Figure 2(b) the total number of clock cycles decreases as both the digit
size and number of multipliers increase. An increase in the number of multipliers in the
D = 1 case provides for a dramatic reduction in the number of clockcycles required
since in this case each multiplicative operation consumes arelatively large number (m)
of clock cycles. The effect is less dramatic in theD > 1 cases since not only are the
multiplicative operations less dominant but there is less time to pipeline intermediate
additions while the multiplications are being performed.

Figure 2(c) illustrates trends in the time taken to computeηT (P,Q) and provides
some interesting results. Here, the decrease in clock frequency as the digit size is in-
creased has an effect on the computation. In theD = 16 case, the reduced frequency
yielded by the larger digit size results in longer computation times than theD = 8 case
and in the{D=4, number of mults>2} cases since the multiplicative operations are
taking a relatively small amount of time and are thus not so dominant when compared
to the quantity of additive operations. From Table III the fastest pairing is returned in
172µs for the{D=8, number of muls=8} case. However, note from Table III that in-
creasing the number of multipliers from 3 to 8 for this digit size returns a very small
decrease in computation time. A more efficient option for a fast throughput architecture
is the{D=8, number of muls=3} case, which requires only10, 000 slices (22.6% of the
FPGA) and returns a cryptographically secure pairing in 178µs.

Trends in the area-time (AT) product of the processor are illustrated in Figure 2(d)
and are, perhaps, the most revealing since a measure of the efficiency of the processor
in the various configurations is provided. In theD ≡ 1 case, the AT product reduces
continuously until the number of multipliers is 5. Increasing the number of multipliers
to 8 yields a less efficient utilisation of area as the extra 3 multipliers do not provide a
large enough reduction in computation time to warrant theirinclusion. The AT product
floor is hit when the number of multipliers is3 in theD = 4 case. For digit sizes of 8
and 16, the most efficient utilisation of resources is returned by a processor with just one
multiplier as the latency through the multipliers is reduced and the additions begin to
dominate the computation time. Overall, the most efficient use of resources is returned
by the{D = 8, number of muls=2} case. This configuration costs only 7491 slices
(17% of the FPGA) and returns a fully secure pairing in203µs.

In the future, data trends for various different field sizes will be generated to inves-
tigate the best configuration for theηT processor at various security levels.

5.1 Comparisons

Consider, for example, our pairing result of178µs or 15,113 clock cycles utilising
10,000 slices returning an area-time product of 1.78slices.s in the{D=8, number of
muls=2} case. The pairing computation time provides a large speedupover the software
implementation time of2.72ms on a Pentium IV processor running at 3GHz in [2]. It
also provides a large improvement on the estimated pairing time of0.85ms (at 15MHz)
reported for a characteristic 3 hardware pairing implementation in [11]. The architec-
ture in [11] contains hardwired extension field arithmetic components, which reduces
the attainable frequency and returns a large area cost. In [10] the characteristic 3 pairing



algorithms of [13] and [8] are performed in 64887 and 69543 clock cycles respectively
with an area of 4481 slices. No post place and route frequencyvalues are provided. Our
implementation compares favourably with these results.

6 Conclusions

In this paper we have discussed the efficient implementationof theηT pairing in charac-
teristic 3. All F3, F3m andF36m operations required to compute a secure cryptographic
pairing (including final exponentiation) have been discussed and their hardware im-
plementation considered. A reconfigurable hardware processor for theηT pairing has
been presented. As far as we are aware, this is the first processor in the literature that
computes e bilinear pairing including final exponentiationusing theηT methods in char-
acteristic 3. The cryptographic processor can be tailored for various applications as it is
fully reconfigurable for any suitable field size, for variousnumbers of multipliers and
for different multiplier digit sizes. The efficient scheduling of operations through this
processor has been considered and a pipelining methodologyoutlined. Results returned
by the processor when implemented over a field size ofF397 have been presented. At
present, the processor returns the fastest characteristic3 cryptographic pairing returning
a unique value in the literature.

In the future it will be interesting to analyse the results returned by the processor
for various different field sizes. It would also be interesting to add an instruction set for
the implementation of point scalar multiplication as this operation is required by many
pairing based protocols.

References

1. P. S. L. M. Barreto. A note on efficient computation of cube roots in characteristic 3. Cryp-
tology ePrint Archive, Report 2004/305, 2004. Available fromhttp://eprint.iacr.
org/2004/305.

2. P. S. L. M. Barreto, S. Galbraith, C.Ó hÉigeartaigh, and M. Scott. Pairing computation on
supersingular abelian varieties. Cryptology ePrint Archive, Report 2004/375, 2004. Avail-
able fromhttp://eprint.iacr.org/2004/375.

3. P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for pairing-based
cryptosystems. InAdvances in Cryptology – Crypto’2002, volume 2442 ofLecture Notes in
Computer Science, pages 354–368. Springer-Verlag, 2002.

4. G. Bertoni, L. Breveglieri, P. Fragneto, and G. Pelosi. Parallel Hardware Architectures for the
Cryptographic Tate Pairing. InInformation Technology: New Generations, pages 186–191.
IEEE Computer Society, 2006.

5. G. Bertoni, J. Guajardo, S. Kumar, G. Orlando, C. Paar, and T. Wollinger. EfficientGF (pm)
arithmetic architectures for cryptographic applications. InTopics in Cryptology - CT RSA
2003, volume 2612 ofLecture Notes in Computer Science, pages 158–175. Springer-Verlag,
2003.

6. J.L. Beuchat, M. Shirase, T. Takagi, and E. Okamoto. An algorithm for theηT pairing cal-
culation in characteristic three and its hardware implementation. Cryptology ePrint Archive,
Report 2006/327, 2006.http://eprint.iacr.org/2006/327.

7. R. Dutta, R. Barua, and P. Sarkar. Pairing-based cryptography:A survey. Cryptology ePrint
Archive, Report 2004/064, 2004.http://eprint.iacr.org/2004/064.



8. I. Duursma and H.-S. Lee. Tate pairing implementation for hyperellipticcurvesy2 = xp −
x + d. In Advances in Cryptology – Asiacrypt’2003, volume 2894 ofLecture Notes in
Computer Science, pages 111–123. Springer-Verlag, 2003.

9. S. Galbraith, K. Harrison, and D. Soldera. Implementing the Tate pairing. In Algorithmic
Number Theory – ANTS V, volume 2369 ofLecture Notes in Computer Science, pages 324–
337. Springer-Verlag, 2002.

10. P. Grabher and D. Page. Hardware acceleration of the tate pairing incharacteristic 3. In
Cryptographic Hardware and Embedded Systems (CHES), volume 3659 ofLecture Notes in
Computer Science, pages 398–411. Springer-Verlag, 2005.

11. T. Kerins, W.P. Marnane, E.M. Popovici, and P.S.L.M. Barreto. Efficient hardware for the
Tate pairing calculation in characteristic 3. InCryptographic Hardware and Embedded Sys-
tems (CHES), volume 3659 of LNCS, pages 412–426. Springer, 2005.

12. Tim Kerins, Emanuel M. Popovici, and William P. Marnane. Algorithms and architectures
for use in FPGA implementations of identity based encryption schemes. InFPL, pages
74–83, 2004.

13. S. Kwon. Efficient Tate pairing computation for elliptic curves over binary fields. InAus-
tralasian Conference on Information Security and Privacy – ACISP 2005, volume 3574 of
Lecture Notes in Computer Science, pages 134–145. Springer-Verlag, 2005.

14. V. S. Miller. Short programs for functions on curves. Unpublished manuscript, 1986.http:
//crypto.stanford.edu/miller/miller.pdf.

15. L. Song and K.K. Parhi. Low-energy digit-serial/parallel finite field multipliers. Journal of
VLSI Signal Processing Systems, 2(22):1–17, 1997.

16. E. Verheul. Evidence that XTR is more secure than supersingular elliptic curve cryptosys-
tems. InAdvances in Cryptology – Eurocrypt’2001, volume 2045 ofLecture Notes in Com-
puter Science, pages 195–210. Springer-Verlag, 2001.


