Constant Round Group Key Exchange with
Logarithmic Computational Complexity

Junghyun Nam, Youngsook Lee, and Dongho Won

School of Information and Communication Engineering, Sungkyunkwan University, Korea
{jhnam,yslee,dhwon}@security.re.kr

Abstract. Protocols for group key exchange (GKE) are cryptographic algorithms that describe
how a group of parties communicating over a public network can come up with a common secret key.
Due to their critical role in building secure multicast channels, a number of GKE protocols have been
proposed over the years in a variety of settings. However despite many impressive achievements,
it still remains a challenging problem to design a secure GKE protocol which scales very well for
large groups. Our observation is that all provably-secure constant-round GKE protocols providing
forward secrecy thus far are not fully scalable, but have a computational complexity that scales only
linearly in group size. Motivated by this observation, we propose a new GKE protocol that not only
offers full scalability in all directions but also attains provable security against active adversaries.
Full scalability is achieved by using a complete binary tree structure where users are arranged
on both internal and leaf nodes. Security is proved via reduction to the decisional Diffie-Hellman
assumption in a well-defined formal model of communication and adversarial capabilities.

Keywords: Group key exchange, scalability, binary tree, provable security, DDH assumption.

1 Introduction

The primary goal of cryptography is to provide a means for communicating confidentially and
with integrity over a public channel. Roughly speaking, confidentiality ensures that communi-
cations and messages are kept secret between authorized parties, and integrity guarantees that
any unauthorized modifications to the transferred data will be detected. In practice, these two
main security properties are best achieved with key exchange protocols which allow the parties
communicating over an insecure network to establish a common secret key called a session key.
That is, it is typical that the communicating parties, who want confidentiality and integrity, first
generate a session key by running an appropriate key exchange protocol and then use this key
together with standard cryptographic algorithms for message encryption and authentication.
Thus, the problem of establishing confidential and integrity-preserving communication is com-
monly reduced to the problem of getting a right protocol for session key generation. Needless to
say, a tremendous amount of research effort has been devoted to the design and analysis of key
exchange protocols in a variety of different settings (e.g., [22,29, 40,9, 30] and their follow-ups).

The first priority in designing a key exchange protocol is placed on ensuring the security
of session keys to be established by the protocol. Even if it is computationally infeasible to
break the cryptographic algorithms used, the whole system becomes vulnerable to all manner
of attacks if the keys are not securely established. But unfortunately, the experience has shown
that the design of secure key exchange protocols is notoriously difficult; there is a long history
of protocols for this domain being proposed and later found to be flawed (see [19] for a compre-
hensive list of examples). Thus, key exchange protocols must be subjected to a thorough and
systematic scrutiny before they are deployed into a public network, which might be controlled
by an adversary. This concern has prompted active research on formal models [6, 8,45,5,13, 18,
2,32] for security analysis of key exchange protocols, and highlighted the importance of proofs
of protocol security in a well-defined model. Although rigorously proving a protocol secure can
often be a lengthy and complicated task, proofs are advocated as invaluable tools for obtaining
a high level of assurance in the security of key exchange protocols [31, 13, 33,2, 37, 20].

2 Junghyun Nam, Youngsook Lee, and Dongho Won

Efficiency is another important consideration in designing key exchange protocols. In partic-
ular, it may become a critical practical issue in the group setting where quite a large number of
parties are likely to get involved in session key generation. The efficiency of a group key exchange
(GKE) protocol is typically measured with respect to communication cost as well as computa-
tion cost incurred by the protocol. Three common measures for gauging the communication cost
of a protocol are (1) the round complexity, the number of rounds until the protocol terminates,
(2) the message complezity, the maximum number of messages sent per user in the protocol,
and (3) the bit complexity, the maximum number of bits sent per user in the protocol. In order
for a GKE protocol to be scalable, it is desirable in many real-life applications that the protocol
should be able to run in a constant number of rounds. The computation cost of a protocol is
directly related to the computational complexity which is defined as the maximum amount of
computation done by any single user in the protocol. The computational complexity is mostly
concerned with the number of public-key cryptographic operations such as modular exponen-
tiations, signature generations, public-key decryptions, signature verifications, and public-key
encryptions. (We note that the above definitions of various complexities are the same as those
given in the full version of [33].1)

Motivation. Efficient and secure generation of session keys for large groups is a difficult problem
that needs more work to solve it. The difficulty of the problem is well indicated by the fact that
it took nearly two decades before we got the first provably-authenticated GKE protocol [13] with
round complexity O(n) in a group of size n. Although some protocols with provable security re-
quire only a constant number of rounds, they still suffer from the number of public-key operations
that scales linearly in group size. Indeed, all the best-known constant-round protocols [11,33,
34, 24] for authenticated key exchange have O(n) computational complexity under the definition
above. The protocol of [11] requires one distinct user to perform O(n) public-key encryptions.
The other protocols from [33, 34, 24] is all a novel extension of the protocol (i.e., protocol 3) by
Burmester and Desmedt [14], but commonly require each user to perform O(n) signature verifi-
cations. For moderate size groups, these previous solutions are clearly appealing. But for large
groups, many applications will likely demand a protocol whose computational complexity scales
logarithmically with group size. It is this observation that prompted the present work aimed
at designing a provably-secure constant-round GKE protocol with logarithmic computational
complexity.

Contribution. The result of this work is the first GKE protocol that is fully scalable in all
key metrics and is provably authenticated in a well-defined formal model. To the best of our
knowledge, all the provably-authenticated GKE protocols published up to now fail to achieve
either constant round complexity or logarithmic computational complexity. We summarize in
Table 1 the communication and computation requirements of our protocol and two other leading
protocols [11,33].2 As the table shows, the maximum computation rate per user is bounded by
O(logn) in our protocol, whereas this rate per user rises up to O(n) in the other protocols.
Furthermore, all the three measures for estimating the communication cost remain constant in
our protocol, regardless of the number of users. The protocol of [11]? features optimal round
complexity, but lacks perfect forward secrecy [23].

Our protocol is provably secure against a powerful active adversary under the decisional
Diffie-Hellman assumption. We provide a rigorous proof of security for the protocol in a refine-
ment of the standard security model [13,11, 33,34, 24]. From the standpoint of the adversary’s
capabilities, our security model is a unique combination of previous results from [13,12, 2, 39],

! The full version of [33] is available at http://eprint.iacr.org/2003/171.

2 Although the protocols from [34,24] may perform better in practice than the protocol of [33], they fall into the
same category from the computational complexity perspective.

3 We refer to [20] for a security enhancement to this protocol.

Constant Round Group Key Exchange with Logarithmic Computational Complexity 3

Table 1. Complexity comparison

Communication Computation
Rounds ‘ Messages ‘ Bits Exp ‘ Sig/Dec ‘ Ver/Enc ‘ Div ‘ Mul
Boyd-Nieto [11] 1 o(1) O(n) o(1) O(n)
Katz-Yung [33] 3 o(1) O(1) o(1) o(1) O(n) O(1) | O(nlogn)
Here 3 o(1) O(1) | O(logn) 0(1) O(logn) | O(1) O(logn)

Note. The communication cost is measured in a broadcast network model, but this is only for clarity of comparison.

Rounds: the number of communication rounds required to complete the protocol.

Messages: the maximum number of messages sent by any single user.

Bits: the maximum number of bits sent by any single user.

Exp: the maximum number of modular exponentiations performed per user.

Sig/Dec: the maximum number of signature generations or public-key decryptions performed per user.
Ver/Enc: the maximum number of signature verifications or public-key encryptions performed per user.
Div: the maximum number of modular divisions performed per user.

Mul: the maximum number of modular multiplications performed per user.

which are in turn based on earlier work of Bellare, Pointcheval, and Rogaway [5]. In particular,
our model maximizes the overall attacking ability of the adversary in two ways. Firstly, we allow
the adversary to query the Test oracle as many times as it wants. Secondly, we incorporate
strong corruption [5] into the model by allowing the adversary to ask users to release any short-
term and long-term secret information. A detailed discussion on this is deferred to Section 2.
Our security proof of course captures important security notions of perfect forward secrecy and
known key security [21]. In addition since security is proved in the strong corruption model, our
protocol also guarantees that the release of short-term secrets used in some sessions does not
jeopardize the security of other sessions.

Tree-Based Protocols. A number of GKE protocols, including ours, have leveraged a tree
structure in order to provide better scalability. As is widely known, the protocols of Wallner et
al. [47] and Wong et al. [48] are based on a logical tree of key encryption keys. These protocols
make substantial progress towards scalable key management in very large groups, by reducing
the cost of rekeying operations associated with group updates from O(n) to O(logn). But, these
group rekeying methods (and their many optimizations and extensions, e.g., [16, 41, 44]) fail to
provide (perfect) forward secrecy, requiring long-term pairwise secure channels between a key
server and all users.

The approach using logical key trees has been extended by Kim et al. [35, 36] to the forward-
secure case. Their protocols require no secure channels of any kind and offer distributed func-
tionality. Later, Lee et al. [38] present a paring-based variant of the TGDH protocol of [35]. All
these works [35, 36, 38], however, provide no explicit treatment of key exchange for initial group
formation, focusing only on key updates upon group membership changes.

Ren et al. [43] make use of a binary key tree in their generic construction where an authenti-
cated GKE protocol is built upon any authenticated protocol for two-party key exchange. Barua
et al. [4] and Dutta et al. [25] construct their protocols by combining a ternary tree structure
with the one-round three-party protocol of Joux [30]. Back in 1994, Burmester and Desmedt
[14] also proposed a tree-based GKE protocol. This protocol (i.e., protocol 2 of [14]) seems to be
the first GKE protocol utilizing a binary tree structure, and distinguishes itself from all other
protocols mentioned here in that there exists a bijective mapping between users and nodes of
the tree used in the protocol. But, this protocol, in common with other protocols from [4, 43,
25], has round complexity O(logn), in contrast to O(1) in our protocol.

After the first version of this paper was written, we became aware that in 1996, Burmester and
Desmedt [15] presented another tree-based protocol called CKDS. The CKDS protocol (more
specifically, the multicast version of CKDS) improves on the protocol 2 of [14] and achieves
the same level of complexities as our protocol. Interestingly, this protocol has not received

4 Junghyun Nam, Youngsook Lee, and Dongho Won

much attention in the literature despite its scalability. More interestingly, CKDS in its basic
form is similar to our unauthenticated protocol (the SKE protocol in Section 3.1), although
the two protocols are independently developed. However, CKDS considering passive adversaries
only carries no formal analysis of security and instead justifies its security on purely heuristic
grounds. In contrast, our protocol comes along with a rigorous proof of its semantic security
against active adversaries in a concrete and well-established model. In this sense, another way
to see our result may be as a provably-authenticated improvement on the CKDS protocol.

Organization. The remainder of this paper is organized as follows. Section 2 describes a for-
mal model for security analysis of GKE protocols and reviews some cryptographic assumptions
underlying the security of our construction. Section 3 presents our two-round GKE protocol
secure against passive adversaries. This unauthenticated protocol is then transformed into a
three-round authenticated protocol in Section 4. The transformation is done by using a modi-
fied version of the compiler presented by Katz and Yung [33]. Concluding this work, Section 5
poses a challenging open problem. Proofs of security for the unauthenticated and authenticated
protocols are provided in Appendices A and B, respectively.

2 Formal Setting

Any form of security analysis of a cryptographic construction should be preceded by clear defini-
tions of its security goals and tools. In this section we provide such a preliminary formalism for
group key exchange, introducing our communication and adversarial model with an associated
definition of security and describing some cryptographic building blocks used to construct our
protocol.

2.1 Communication and Adversarial Model

Participants. Let U be a set of all users who are potentially interested in participating in a
group key exchange protocol. The users in any subset of &/ may run the group key exchange
protocol at any point in time to establish a session key. Each user may run the protocol multiple
times either serially or concurrently, with possibly different groups of participants. Thus, at a
given time, there could be many instances of a single user. We use Hfj to denote instance i
of user U. Before the protocol is executed for the first time, each user U creates a long-term
public/private key pair (PKy, SKy) by running a key generation algorithm C(1%). All instances
of a user share the public/private keys of the user even if they participate in their respective
sessions independently. Each private key is kept secret by its owner while the public keys of all
users are publicized.

Partners. Intuitively, the partners of an instance is the set of all instances that should compute
the same session key as the instance in an execution of the protocol. Like most of previous work,
we use the notion of session IDs to define partnership between instances. Literally, a session
ID (denoted as sid) is a unique identifier of a communication session. Following [5,17, 18, 32],
we assume that session IDs are assigned and provided by some higher-level protocol. While this
assumption is unnecessary in some protocols [11, 33] which use only broadcast messages (in these
protocols, a session ID can readily be defined as the concatenation of all message flows), it seems
very useful in other protocols where some protocol messages are not broadcast and thus not all
participants have the same view of a protocol run. We let SID be the algorithm used by the
higher-level protocol to generate session IDs, and assume that SZD is publicly available.

We also need the notion of group IDs to define partnership properly. A group ID (denoted
as gid) is a set consisting of the identities of the users who intend to establish a session key

Constant Round Group Key Exchange with Logarithmic Computational Complexity 5

among themselves. This notion is clearly natural because it is impossible (not even defined) to
ever execute a group key exchange protocol without participants. Indeed, a group ID is a both
necessary and important input to any protocol execution.

In order for an instance to start to run the protocol, we require that both sid and gid should be
given as input to the instance. We use sid}j and gid%] to denote respectively sid and gid provided
to instance 17, [’J Note that gid%] should always include U itself. Session IDs and group IDs are
public and hence available to the adversary. Indeed, the adversary in our model generates these
IDs on its own; it generates a session ID by running SZD and a group ID by choosing a subset
of U.

An instance is said to accept when it successfully computes a session key in a protocol
execution. Let acc%] be a boolean variable that evaluates to TRUE if H(i] has accepted, and FALSE
otherwise. We say that any two instances [T, ;J and I7, (j],, where U # U’, are partners of each other,
or equivalently, partnered iff all the following three conditions are satisfied: (1) sid, = sidé,, (2)
gid%] = gidgj,, and (3) acc’ij = accgj, = TRUE. We also say that two instances Hf] and H[j],
(U # U') are potential partners of each other, or equivalently, potentially partnered iff the first
two conditions above hold. We use pidzi] and ppid’(‘] to denote respectively the partners and the
potential partners of the instance 17, f] Then it follows by the definitions that pid%] C ppid’['].

Adversary. The adversary in our model controls all message exchanges in the protocol and
can ask participants to open up access to any secrets, either long-term or short-term. These
capabilities of the adversary are modeled via various oracles to which the adversary is allowed
to make queries. Unlike most previous models for group key exchange, we allow the adversary
to query the Test oracle as many times as it wants?. This approach was recently suggested by
Abdalla et al. [2] for password authenticated key exchange in the three-party setting and was
also proved there to lead to a stronger model (for more details, see Lemmas 1 and 2 in Appendix
B of [2]). What we found interesting is that allowing multiple Test queries is very useful in
proving Theorem 1 which claims the security of our unauthenticated protocol against a passive
adversary. We also strengthen the model by incorporating strong corruption [5] in which the
adversary is allowed to ask user instances to release both short-term and long-term secrets. We
treat strong corruption in a different manner than [5]°, and follow [39] in that we provide the
adversary with an additional oracle called Dump which returns all short-term secrets used by an
instance. Other oracles (Execute, Send, Reveal, and Corrupt) are as usual. In the following, we
describe these relatively familiar oracles first and then Dump and Test oracles.

— Execute(sid, gid): This query prompts an honest execution of the protocol between a set of
instances consisting of one instance for each user in gid, where the instances are all given the
session ID sid and the group ID gid as their input. The transcript of the honest execution
is returned to the adversary as the output of the query. This models passive attacks on the
protocol.

— Send(I7, 5, M): This query sends message M to instance IT }] The instance H[i] proceeds as it
would in the protocol upon receiving message M; the instance updates its state performing
any required computation, and generates and sends out a response message as needed. The
response message, if any, is the output of this query and is returned to the adversary. This
models active attacks on the protocol, allowing the adversary to control at will all message
flows between instances. A query of the form Send(II},, sid||gid) prompts II}; to initiate an
execution of the protocol using session ID sid and group ID gid.

4 The model in [1] appears to be the first one for group key exchange that does not restrict the adversary to ask
only a single Test query.
® In the strong corruption model of [5], the Corrupt oracle returns both long-term and short-term secrets.

6 Junghyun Nam, Youngsook Lee, and Dongho Won

— Reveal(IT, 5)6: This query returns to the adversary the session key held by I, }] This can be
asked only if accb = TRUE and if the adversary has not queried Test (I ljj,) for some I1 g]/ in
pid;; (we will discuss this matter further in Section 2.2). Allowing this query enables us to
see whether or not the protocol is secure against known key attacks.

— Corrupt(U): This query returns to the adversary all long-term secret information of U includ-
ing the private key SKy 7. This models the adversary’s capability of breaking into a user’s
machine and gaining access to the long-term data set stored there. The adversary can issue
this query at any time regardless of whether U is currently executing the protocol or not.
This query is considered to deal with forward secrecy of the protocol.

— Dump(IT, [’]) This query returns all short-term secrets used in the past or currently being used
by instance Hfjs. But, neither the session key computed by H[i] nor any long-term secrets
of U are not returned. This models the adversary’s capability to embed a Trojan horse
or other form of malicious code into a user’s machine and then log all the session-specific
information of the victim. The adversary is not allowed to ask this query if it has already
queried Test(II{,) for some II}, in ppid; (see Section 2.2 for the reason for this).

— Test(II};): This query provides a means of defining security. The output of this query depends
on the hidden bit b that the Test oracle chooses uniformly at random from {0, 1} during its
initialization phase. The Test oracle returns the real session key held by H[i] if b =1, or
returns a random session key drawn from the key space if b = 0. The adversary is allowed
to query the Test oracle as many times as necessary. But, the query can be asked only when
instance II}; is fresh (see Definition 1 given below). All the queries to the oracle are answered
using the same value of the hidden bit b that was chosen at the beginning. Namely, the keys
returned by the Test oracle are either all real or all random.

Remark 1. The Dump oracle is essentially similar to the Session-state reveal oracle introduced in
[17]. But as noted in [39], there is a technical difference between these two oracles. The Session-
state reveal oracle can be queried only to obtain the internal state of an incomplete session,
whereas the Dump oracle allows the adversary to obtain the recording of local history of an
either incomplete or complete session.

Definition 1. The instance H[i] 1s considered unfresh iff any of the following conditions hold:

acc); = FALSE.

The adversary queried Corrupt(U’) for some U’ in gid%] before some H‘J/ m ppid@ accepts.
The adversary queried Dump(H]_,) for some H[]], in ppid};. A ‘

The adversary queried Reveal (IT],,) or Test(II{,,) for some II},, in pidy;.

Lo~

All other instances are considered fresh.

Remark 2. By “Test(U(j],)’7 in the fourth condition of Definition 1, we require that for each
different set of partners, the adversary should access the Test oracle only once. One may think
that this restriction weakens the ability of the adversary. However this is not the case because
when all information on partnering is public, obtaining the same data multiple times (from a
given set of instances partnered together) is no different than obtaining it once.

Remark 3. Regarding the restriction mentioned in Remark 2, we should point out a minor
definitional error in the ROR model of [2]. The ROR model does not impose our restriction on

5 While the Reveal oracle does not exist in the so-called ROR model of Abdalla et al. [2], it is available to the
adversary in our model and is used to prove Lemma 1, enabling a modular approach in the security proof of
our protocol. Anyway, allowing Reveal queries causes no harm, but rather provides more clarity.

" This definition of the Corrupt oracle corresponds to the so-called weak corruption model [5].

8 This combined with the Corrupt oracle represents strong corruption.

Constant Round Group Key Exchange with Logarithmic Computational Complexity 7

accessing the Test oracle, but rather it allows the adversary to ask multiple Test queries regardless
of whether the tested instances are partnered together or not. To make this approach workable,
the ROR model mandates that in the case of b = 0, the Test oracle must return the same random
key for all Test queries that are directed to the instances which are partnered together. At first
glance, this way of accessing the Test oracle seems to work well enough, avoiding the need for our
restriction. We note however that the ROR model mistakenly opts for this seemingly innocuous
approach. The problem is that allowing the adversary to access the Test oracle more than once
for each set of partners invalidates the proof of Lemma 2 in Appendix B of [2]. The reason for
this will be explained at an appropriate point later in this paper (see Remark 4 after the proof of
Lemma 1 in Section A). But, this is a minor discrepancy and can be easily resolved by imposing
our restriction on accessing the Test oracle.

Definition 2. An adversary is called active iff it is allowed to access all the oracles described
above, and called passive iff it is allowed to access all but the Send oracle.

We represent the amount of queries used by an adversary as an ordered sequence of six non-
negative integers, @ = (qexec, @sends Greves Georrs Gdump, Gtest), Where the six elements refer to the
numbers of queries that the adversary made respectively to its Execute, Send, Reveal, Corrupt,
Dump, and Test oracles. We call this usage of queries by an adversary the query complexity of
the adversary. Note that by Definition 2, the query complexity of a passive adversary is always
represented as a sequence of the form @ = (gexecs 05 Greves Georrs Gdump, test)-

2.2 Definitions of Security

Having introduced the communication and adversarial model, we now proceed to define what is
meant for a group key exchange protocol to be secure. We then briefly review the cryptographic
assumptions on which the security of our construction depends.

Secure Key Exchange. The security of a group key exchange protocol P against an adversary
A is defined in terms of the probability that A succeeds in distinguishing random session keys
from real session keys established by the protocol P. That is, the adversary A is considered
successful in attacking P if it breaks the semantic security of session keys generated by P. This
notion of security is defined in the context of the following two-stage game, where the goal of
adversary A is to correctly guess the value of the hidden bit b chosen by the Test oracle.

— Stage 1: A makes queries to the Execute, Send (only if A is an active adversary), Reveal,
Corrupt, Dump, and Test oracles as many times as it wants.

— Stage 2: Once A decides that Stage 1 is over, it outputs a bit &’ as a guess for the value of
the hidden bit b used by the Test oracle. A wins the game if b =1'.

In the game above, the adversary can keep querying the oracles even after it asked some Test
queries. However, when there was the query Test(H@) asked, the adversary is prohibited from
querying Dump(Ué,) for some H{]/ € ppid}; and from querying ReveaI(H{],) for some Hé, € pidy;.
This restriction reflects the fact that the adversary can win the game unfairly by using the
information obtained via the query Dump(Hé,) or ReveaI(HIjj,).

Given the game above, the advantage of A in attacking the protocol P is defined as Advp(A) =
|2 - Pr[b = b/] — 1|. Note that this definition is equivalent to say that the advantage of A is the
difference between the probabilities that A outputs 1 in the following two experiments consti-
tuting the game: the real experiment where all queries to the Test oracle are answered with the
real session key, and the random experiment where all Test queries are answered with a random
session key. Thus, if we denote the real and the random experiments respectively as Exps(A)

8 Junghyun Nam, Youngsook Lee, and Dongho Won

and Exp3™(A), the advantage of A can be equivalently defined as Advp(A) = |[Pr[Exps?(A) =
1] — Pr[Exp3"(A) = 1]|, where the outcomes of the experiments is the bit output by A.

We say that the group key exchange protocol P is secure if Advp(A) is negligible for all
probabilistic polynomial time adversaries A. To quantify the security of protocol P in terms of
the amount of resources expended by adversaries, we let Advp(t, Q) denote the maximum value
of Advp(A) over all A with time complexity at most ¢ and query complexity at most Q.

Decisional Diffie-Hellman (DDH) Assumption. Let G be a cyclic (multiplicative) group of
prime order q. Since the order of G is prime, all the elements of G, except 1, are generators of G.
Let g be a random fixed generator of G and let z,y, z be randomly chosen elements in Z; where
z # xy. Informally stated, the DDH problem for G is to distinguish between the distributions of
(9%, 9Y,9™) and (g7, ¢Y, g%), and the DDH assumption is said to hold in G if it is computationally
infeasible to solve the DDH problem for G. More formally, we define the advantage of D in solving
the DDH problem for G as Adv%dh(D) = |Pr[D(G, g, 4%, ¢¥,g"Y) = 1]-Pr[D(G, g, 9", ¢¥, 9%) = 1]|.
We say that the DDH assumption holds in G (or equivalently, the DDH problem is hard in G)
if Adv%dh(D) is negligible for all probabilistic polynomial time algorithms D. We denote by

Adv@dn(#) the maximum value of Advi®h(D) over all D running in time at most t.

Signature Schemes. Let X = (Kgen,Sign, Vrfy) be a signature scheme, where Kgen is the
key generation algorithm, Sign is the signature generation algorithm, and Vrfy is the signature
verification algorithm. Let Succy(A) denote the probability that A succeeds in generating an
existential forgery under adaptive chosen message attack [28, 42]. We say that a signature scheme
X is secure if Succy(A) is negligible for every probabilistic polynomial time adversary .A. We
use Succy(t) to denote the maximum value of Succy(A) over all A running in time at most t.

3 A Scalable Protocol for Unauthenticated Group Key Exchange

This section presents a new group key exchange protocol called SKE (Scalable Key Exchange).
Let G = {U1,Us,...,U,} be a set of n users wishing to establish a session key among themselves.
As stated in the Introduction, our goal is to design a forward-secure group key exchange protocol
that has round complexity O(1) and computational complexity O(logn). Towards the goal, we
arrange the users in a complete binary tree where all the levels, except perhaps the last, are
full; while on the last level, any missing nodes are to the right of all the nodes that are present.
Fig. 1 shows an example of a complete binary tree of height 3 with 6 leaves and 6 internal nodes.
Users in G are placed at nodes in a straightforward way that U; has Us; as its left child and
Uszi+1 as its right child. Let N; denote the node at which U; is positioned and let G; denote the
subgroup consisting of all users located in the subtree rooted at node NV;. Each internal node N;
is associated with a node key k;. In the protocol, the node key k; is first generated by U; and
then shared as the subgroup key among the users in G;. Accordingly, k1 serves as the group key
(i.e., session key) shared by all users in G.

3.1 Description of SKE

In describing the protocol, we assume that the following public information has been fixed in
advance and is known to all parties in the network: (1) the structure of the tree and the users’
positions within the tree, (2) a cyclic multiplicative group G of prime order ¢, where the DDH
assumption holds, and a generator g # 1 of G, and (3) a function I mapping elements of G to
elements of Z,. A standard way of generating G where the DDH assumption is assumed to hold
is to choose two primes p, ¢ such that p = kq + 1 for some small £k € N (e.g., £ = 2) and let G
be the subgroup of order ¢ in Z;. For our purpose, we require that I : G — Z, be bijective and
(for any element in G) efficiently computable. Whether there are appropriate bijections from G

Constant Round Group Key Exchange with Logarithmic Computational Complexity 9

— level 3

Fig. 1. A complete binary tree for G = {Un,...,Ui2}

into Z, depends on the group G. If p is a safe prime (i.e., p = 2¢ + 1), then such a bijection I
can be constructed as follows:

if x <
I(x):{w Lo
p—x fg<ax<p.

The protocol SKE runs in two communication rounds.

Round 1: All users, except Uy at the root, send a message to their parent as follows:
— Each user U; at a leaf node chooses a random r; € Z,, computes z; = g™, and sends
M} = U;||1]|2 to its parent.
— Each user U; at an internal node chooses two random s;,t; € Z4, computes k; = gsiti,
r; = I(k;) and 2; = ¢"i, and sends M} = U;||1]2; to its parent.
Meanwhile, Uy chooses two random s1,t1 € Z, and computes kq = g,
Round 2: Each internal user U; (including U;) sends a message to its descendants (i.e., the

users in G; \ {U;}) as follows:

1. First, U; computes x9; = zgz and yo; = k:i:p;il. If U; has the right child (this is the case for
all internal users, except possibly for the last one), it also computes xg;11 = 25 41 and
Yair1 = kixgil g

2. Then, U; computes w; = g% and sends M? = U;||2||wi||y2illy2i+1 (or M? = U;||2|jw;l|ya:
if U; has only the left child) to its descendants.

Key computation: Using messages from ancestors, each user U; # U; computes every node
key k; on the path from the parent to the root as follows:

while 7 > 2
do j«—vi/2,
kj =yi-w;
it j>1
then r; = I(k;)
1]

Having derived the root node key k1, all users in G simply set the session key K equal to k;.

10 Junghyun Nam, Youngsook Lee, and Dongho Won

Consider, for example, the user Uyp in Fig. 1. (For simplicity, let us exclude user identities and
sequence numbers from consideration.) Uy; sends z3; = ¢ to Us in the first round and receives
wsl|y10l|ly11, wallyallys and wi||ly2||ys respectively from Us, Us and U; in the second round. Upy
then computes, in sequence, ks = y11-wg'*, 15 = I(ks), k2 = y5-wy®, ro = I(k2) and ky = y2-wi>.
Finally, U1y sets its session key to kj.

It is easy to see that this two-round protocol requires each user to send only a constant
number of messages and bits without respect to the number of users in G. Furthermore, the
maximum amount of computation performed by a user in the protocol increases linearly with
the height of the tree, i.e., logarithmically with the number of users.

Of course, the SKE protocol is not authenticated, and is categorized as a key transport
protocol because the session key is generated by one user (i.e., Uj) and then transferred to all
other users. However, as we will see in the next section, this unauthenticated key transport
protocol can be converted into an authenticated key agreement protocol without compromising
the protocol’s full scalability and provable security (cf. Theorem 1).

3.2 Security Result for Protocol SKE

The following theorem presents our result on the security of protocol SKE. It says, roughly,
that under the DDH assumption for G, the group key exchange protocol SKE is secure against
passive adversaries.

Theorem 1. Let Q) = (gexec; 0, Greves Georrs Qdumps Gtest). Then for any adversary with time
complexity at most t and query complexity at most Q, its advantage in breaking the security of
protocol SKE is upper bounded by:

AdVSKE(ta Q) < Qtestqcxcc(2|'10g G+t _ 1)AdeiG,dh(t,);

where t' = t + O(|U|qexectskr) and tskg is the time required for execution of protocol SKE by
any party.

Outline of Proof. The full proof of Theorem 1 is given in Appendix A. At a high level, the
proof proceeds by a mathematical induction on the height of the binary tree used in protocol
SKE. Let SKE} denote the protocol SKE but with the height of its input tree restricted to some
fixed value h > 0. Namely, SKE;, is exactly the same as SKE, except that it can be run only
for those groups such that 2" < n < 2"*!. Then the basis step is to show that protocol SKE; is
secure against passive adversaries. We take care of the basis step by Corollary 2. The induction
step is to prove that for each h > 1, protocol SKEy, 1 is secure against passive adversaries under
the assumption of the security of protocol SKE, against passive adversaries. The induction step
is covered by Corollary 3. Consequently, Theorem 1 follows immediately from Corollary 2 and
Corollary 3.

Towards the goal of proving the corollaries, we start with Lemma 1 which states that any
key exchange protocol secure against passive adversaries making only a single Test query is also
secure against passive adversaries who make multiple Test queries. Proving this lemma allows
us to limit our security concern only to those cases where adversaries access the Test oracle
only once. In Section A.1, we continue by proving Lemma 2 which plays a key role in deriving
Corollary 2. Lemma 2 says that protocol SKE; is secure against passive adversaries asking only
one query to the Test oracle, as long as the DDH assumption holds in G. Combining Lemmas
1 and 2 completes the proof of Corollary 2. In Section A.2, we turn to Corollary 3 which is
proved analogously to Corollary 2. Given Lemma 1, Corollary 3 directly follows from Lemma 3,
the equivalent of Lemma 2 for the induction step. Thus, our final task is to prove Lemma 3, by

Constant Round Group Key Exchange with Logarithmic Computational Complexity 11

which we claim that for each h > 1, if the protocol SKEy is secure against passive adversaries
(asking multiple Test queries), then protocol SKE; 11 is secure against passive adversaries who
make only one Test query. All the lemmas mentioned above are proved by a standard reduction
argument.

4 A Scalable Protocol for Authenticated Group Key Exchange

Perhaps one of the most pleasing results of research on group key exchange is the one-round
compiler presented by Katz and Yung [33] (in short, the KY compiler). The KY compiler shows
how we can transform any group key exchange protocol secure against a passive adversary into
one that is secure against an active adversary. It certainly is elegant in its scalability, usefulness,
and proven security. The transformation itself is quite simple: it first adds an additional round for
exchanging nonces among users and then let all the messages of the original protocol be signed
and verified with the nonces. In this section, we convert the unauthenticated key transport
protocol SKE into the authenticated key agreement protocol SKE' by using a modified version
of the KY compiler.

4.1 Description of SKET

Let again G be the set of users wishing to establish a common session key. During the initialization
phase of SKE™, each user U; € G generates its long-term verification/signing keys (PKy,, SKy,)
by running Kgen(1®) and makes the verification key PKp, public. Recall that each user U;
receives as input a pair of session and group IDs (sidy;, gidy;,) to participate in a protocol run.
The protocol SKET works in three rounds as follows:

Round 1: Each user U; € G chooses a random nonce k; € {g° g*,...,g7 '} and sends MZ-O =
U;||0]|k; to all other users in gidy,. After receiving all nonces from other users, user U; sets
nesy, = {(Uj, kj) | Uj € gidy, }.

Round 2: This round proceeds like the first round of protocol SKE, except that users have to
sign their outgoing messages:

— Each user U; # U; computes z; as specified in SKE and generates a signature o
SignSKUi(Ui||1HziHsidUi||nchZ.). Then U; sends M} = U;||1]|z]|o} to its parent.

— The operation of U; is exactly the same as in SKE. That is, U; chooses two random
s1,t1 € Zg and computes ki = gst,

Round 3: All users operate as in Round 2 of SKE, but verifying the correctness of incoming
messages and signing outgoing messages. We describe this round only for users who have
both left and right children; users with left child only behave correspondingly.

— When user U; receives Mj1 = UjH1||zj||aj1- from U; for j = 2¢ and j = 2 + 1, it first
checks that VrfypKUj(UjHlHZjHSidUi||nCSUi,O'}) = 1. If any of the verifications fail, U;

1 _

i =

aborts the protocol without accepting (i.e., without computing a session key). Otherwise,
U; computes x2;, Y2;, T2+1, Y2:+1 and w; as in protocol SKE, generates a signature
o7 = Signgr,, (Uil|2llwillyaillyzi+1 [sid;|Incsy;), and sends MF = Uil|2][wi||yaily2i+1]lo?
to its descendants. ~
Key computation: Each user U; # Uy, for all messages M j2 from its ancestors in the tree,
checks that VrfypKUj (Uj12]|wjly2;]|y2j+1sidy; [|nesp,, 03) = 1. If any of the verifications fail,
U; terminates without accepting. Otherwise, U; computes its session key as follows. Assume
first that gidy, = {U1, Us, ..., Un}, and let H : {0,1}* — {0,1}* be a one-way hash function,
where £ is the length of the session key to be distributed in SKE™. Then, U; derives the root
node key k; as in SKE and calculates the session key K as

K = H(ki|[kallks|| - |[kn).

12 Junghyun Nam, Youngsook Lee, and Dongho Won

The transformation above is essentially the same as the transformation by the KY compiler,
except that here nonces are drawn from G and are used in session key calculation (another
minor modification is the inclusion of sid in signing protocol messages). But the similarity does
not mean that the proof of security for the KY compiler can be directly applicable to the SKE™
protocol. Because the adversarial model where the KY compiler was proven secure is weaker
than ours, the security of protocol SKE™ should be reconsidered in light of our stronger model.

4.2 Security Result for Protocol SKE™T

As the following theorem states, the group key exchange protocol SKE™ is secure against active
adversaries in the random oracle model under the security of protocol SKE against passive
adversaries.

Theorem 2. Let Q = (Qexem Gsend;s qreve; dcorr; ddump; Qtest) and Ql = (Qexec + qSend/27 0, Greve,
eorrs Gdump T Gsend/2, Grest). Assume that the hash function H used in protocol SKE™ to derive

the session key is a random oracle. Then for any adversary with time complexity at most t and
query complexity at most Q, its advantage in breaking the security of protocol SKE™ is upper
bounded by:

2
Qieng T Qexeclsend

Advgip+(t, Q) < Advskg(t', Q') + |U| - Sucex(t') + 2G| ,

where t' = t + O(|U|Gexectggp+ + Gsendtggp+) and tegp+ is the time required for execution of
SKE™ by any party.

Tightness of Theorem 2. We prove the theorem in Appendix B by finding a reduction from
the security of protocol SKE™ to the security of protocol SKE. Assuming an active adversary
A* who attacks protocol SKE™, we construct a passive adversary A that uses AT in its attack
on protocol SKE. As in a typical reductionist approach, the adversary A simply runs AT as
a subroutine and answers the oracle queries of A" on its own. The idea in constructing A is
to use the fact that in attacking protocol SKE™, the adversary AT is unable to relay messages
between user instances holding different sets of nonces. Based on this idea, the adversary A
generates a transcript TT of protocol SKE™, by querying its Execute oracle to obtain a transcript
T of protocol SKE and patching the transcript T with appropriate signatures which are all
generated from the same nonce set ncs. A then use this transcript T™ in answering A™*’s Send
queries directed to the instances possessing ncs. This way AT is limited to sending messages
already contained in TT, unless signature forgery and nonce repetition occur. In essence, A is
ensuring that A™’s capability of attacking protocol SKET is demonstrated only on the session
key associated with the patched transcript TT and thus is translated directly into the capability
of attacking protocol SKE.

However, there exists a difficulty in constructing the passive adversary A from the active
adversary A™T. Since AT can obtain a private signing key at any time by calling the Corrupt
oracle, it may send arbitrary — but still valid — messages of its choice (i.e., messages that are
not contained in the patched transcript TT) to an instance. The problem in this case is that A
cannot simulate the actions of the instance because it does not have appropriate internal data
used by the instance at earlier stage. The exact same problem arises in proving security for the
KY compiler. The proof for the KY compiler circumvents this simulation problem by letting A
guess the session in which AT will take advantage of its only chance to access the Test oracle.
For the guessed session, A handles the queries of the active adversary using its own Execute
queries as described above, and for all other sessions, .4 honestly responds by directly executing

Constant Round Group Key Exchange with Logarithmic Computational Complexity 13

protocol SKE™ (i.e., without accessing the Execute oracle). But while this approach works well
against adversaries who are restricted to ask only a single Test query, it is not the case in our
adversarial model where adversaries are allowed to query the Test oracle as many times as they
want. Simply put, the probability of correctly guessing all the sessions to be tested is negligibly
low.

One possible way out of this seemingly dead end situation is to use the result of Corollary 1
(given in Appendix A), which states that in attacking a key exchange protocol, the advantage
of any adversary with query complexity ¢ = (Qexem Gsends Greve; qcorrs ddump> Qtest) is at Most Gest
times the maximum advantage obtainable by an adversary with query complexity Q' = (gexec;
Gsends Greve + Gest — 1y Georr, gdump, 1). Given Corollary 1, the security of protocol SKE" can
be proved by taking the same betting approach as used in the proof for the KY compiler.
However, this solution necessarily incurs a loss of non-constant factor (i.e., qtest(Gexec + send))
in the reduction. Fortunately, we have a better solution which uses Dump queries. Since the
Dump oracle returns all short-term secrets used by an instance, the passive adversary A can
perfectly simulate actions of the instance even when the active adversary AT sends arbitrary
messages that are not contained in the patched transcript TT. A therefore now can use a patched
transcript for all sessions without recourse to Corollary 1 and without the need for betting on
one session. One immediate result of this is that there is no loss in our reduction from the
security of protocol SKE™ to the security of protocol SKE.

5 Conclusion and Open Problem

We have proposed a new group key exchange protocol. The protocol is the first in the sense that
it not only offers full scalability in all key aspects of performance but also provides provable
security against active adversaries. This means that our protocol provides a secure and practical
way to generate session keys even for very large groups.

Although our definition of security is a de facto standard for analyzing group key exchange
protocols, it does not guarantee any security against insider attacks. Indeed, almost all existing
protocols including ours where the roles of participants are asymmetric are trivially vulnerable to,
for example, insider different key attacks (or equivalently, in terms of Definition 1 given in [32],
trivially fail to guarantee agreement). Even well-known symmetric protocols have been shown
to be insecure in the face of malicious insiders [10,46]. Given the situation, the recent work [32]
presented an interesting technique for transforming any protocol proven secure according to our
security definition into one that is secure also against various insider attacks. Thus when insiders
are suspected to be malicious, we may address the concern by applying this transformation
technique. But then the resulting protocol would have a computational complexity which is at
least linear in the number of users. We hence leave it as an open problem to find a protocol
that has the same level of scalability as our protocol and also provides protection against insider
attacks.

References

1. M. Abdalla, E. Bresson, O. Chevassut, and D. Pointcheval. Password-based group key exchange in a constant
number of rounds. 9th International Workshop on Practice and Theory in Public Key Cryptography (PKC
’06), LNCS vol. 3958, pp. 427-442, 2006.

2. M. Abdalla, P.-A. Fouque, and D. Pointcheval. Password-based authenticated key exchange in the three-party
setting. 8th International Workshop on Practice and Theory in Public Key Cryptography (PKC ’05), LNCS
vol. 3386, pp. 65-84, 2005.

3. G. Ateniese, M. Steiner, and G. Tsudik. New multiparty authentication services and key agreement protocols.
IEEE Journal on Selected Areas in Communications, vol. 18, no. 4, pp. 628-639, 2000.

14

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Junghyun Nam, Youngsook Lee, and Dongho Won

R. Barua, R. Dutta, and P. Sarkar. Extending Joux’s protocol to multi party key agreement. Progress in
Cryptology — INDOCRYPT 03, LNCS vol. 2904, pp. 205-217, 2003.

M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure against dictionary attacks.
Advances in Cryptology — EUROCRYPT ’00, LNCS vol. 1807, pp. 139-155, 2000.

M. Bellare and P. Rogaway. Entity authentication and key distribution. Advances in Cryptology — CRYPTO
’93, LNCS vol. 773, pp. 232-249, 1993.

M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing efficient protocols. 1st
ACM Conference on Computer and Communications Security (CCS ’98), pp. 62-73, 1993.

M. Bellare and P. Rogaway. Provably secure session key distribution — the three party case. 27th ACM
Symposium on Theory of Computing (STOC ’95), pp. 57-66, 1995.

S. Bellovin and M. Merritt. Encrypted key exchange: password-based protocols secure against dictionary
attacks. 1992 IEEE Symposium on Security and Privacy, pp. 72-84, 1992.

J.-M. Bohli, M. Vasco, and R. Steinwandt. Secure group key establishment revisited. Cryptology ePrint
Archive, Report 2005/395, 2005. Available at http://eprint.iacr.org/.

C. Boyd and J. Nieto. Round-optimal contributory conference key agreement. 6th International Workshop on
Practice and Theory in Public Key Cryptography (PKC ’08), LNCS vol. 2567, pp. 161-174, 2003.

E. Bresson, O. Chevassut, and D. Pointcheval. Group Diffie-Hellman key exchange secure against dictionary
attacks. Advances in Cryptology — ASIACRYPT ’02, LNCS vol. 2501, pp. 497-514, 2002.

E. Bresson, O. Chevassut, D. Pointcheval, and J.-J. Quisquater. Provably authenticated group Diffie-Hellman
key exchange. 8th ACM Conference on Computer and Communications Security (CCS ’01), pp. 255-264,
2001.

M. Burmester and Y. Desmedt. A secure and efficient conference key distribution system. Advances in Cryp-
tology - EUROCRYPT ’94, LNCS vol. 950, pp. 275-286, 1995.

M. Burmester and Y. Desmedt. Efficient and secure conference-key distribution. 1996 International Workshop
on Security Protocols, LNCS vol. 1189, pp. 119-129, 1997.

R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas. Multicast security: a taxonomy and
some efficient constructions. IEEE INFOCOM ’99, vol. 2, pp. 708-716, 1999.

R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for building secure channels.
Advances in Cryptology — EUROCRYPT 01, LNCS vol. 2045, pp. 453-474, 2001.

R. Canetti and H. Krawczyk. Universally composable notions of key exchange and secure channels. Advances
in Cryptology — EUROCRYPT ’02, LNCS vol. 2332, pp. 337-351, 2002.

K.-K. R. Choo. Provably-secure mutual authentication and key establishment protocols lounge. 2006. Avail-
able at http://sky.fit.qut.edu.au/ choo/lounge.html.

K.-K. Choo, C. Boyd, and Y. Hitchcock. Errors in computational complexity proofs for protocols. Advances
in Cryptology — ASTACRYPT ’05, LNCS vol. 3788, pp. 624-643, 2005.

D. Denning and G. Sacco. Timestamps in key distribution protocols. Communications of the ACM, vol. 24,
no. 8, pp. 533-536, 1981.

W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on Information Theory,
vol. 22, no. 6, pp. 644-654, 1976.

W. Diffie, P. Oorschot, and M. Wiener. Authentication and authenticated key exchanges. Designs, Codes,
and Cryptography, vol. 2, no. 2, pp. 107-125, 1992.

R. Dutta and R. Barua. Constant round dynamic group key agreement. 8th International Conference on
Information Security (ISC ’05), LNCS vol. 3650, pp. 74-88, 2005.

R. Dutta, R. Barua, and P. Sarkar. Provably secure authenticated tree based group key agreement. 6th
International Conference on Information and Communications Security (ICICS ’04), LNCS vol. 3269, pp. 92—
104, 2004.

O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal of the Association
for Computing Machinery, vol. 33, no. 4, pp. 792-807, 1986.

S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences, vol. 28,
no. 2, pp. 270-299, 1984.

S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive chosen-message
attacks. SIAM Journal of Computing, vol. 17, no. 2, pp. 281-308, 1988.

I. Ingemarsson, D. Tang, and C. Wong. A conference key distribution system. IEEE Transactions on Infor-
mation Theory, vol. 28, no. 5, pp. 714-720, 1982.

A. Joux. A one round protocol for tripartite Diffie-Hellman. Journal of Cryptology, vol. 17, no. 4, pp. 263-276,
2003. A preliminary version was presented at ANTS IV.

J. Katz, R. Ostrovsky, and M. Yung. Efficient password-authenticated key exchange using human-memorable
passwords. Advances in Cryptology — EUROCRYPT 01, LNCS vol. 2045, pp. 475-494, 2001.

J. Katz and J. Shin. Modeling insider attacks on group key-exchange protocols. 12th ACM Conference on
Computer and Communications Security (CCS ’05), pp. 180-189, 2005.

J. Katz and M. Yung. Scalable protocols for authenticated group key exchange. Advances in Cryptology —
CRYPTO ’03, LNCS vol. 2729, pp. 110-125, 2003.

Constant Round Group Key Exchange with Logarithmic Computational Complexity 15

34. H.-J. Kim, S.-M. Lee, and D. Lee. Constant-round authenticated group key exchange for dynamic groups.
Advances in Cryptology — ASIACRYPT ’04, LNCS vol. 3329, pp. 245259, 2004.

35. Y. Kim, A. Perrig, and G. Tsudik. Simple and fault-tolerant key agreement for dynamic collaborative groups.
7th ACM Conference on Computer and Communications Security (CCS ’00), pp. 235-244, 2000.

36. Y. Kim, A. Perrig, and G. Tsudik. Communication-efficient group key agreement. IFIP SEC 01, pp. 229244,
2001.

37. H. Krawczyk. HMQV: a high-performance secure Diffie-Hellman protocol. Advances in Cryptology — CRYPTO
"05, LNCS vol. 3621, pp. 546-566, 2005.

38. S. Lee, Y. Kim, K. Kim, and D.-H. Ryu. An efficient tree-based group key agreement using bilinear map. 1st
International Conference on Applied Cryptography and Network Security (ACNS ’03), LNCS vol. 2846, pp.

357-371, 2003.
39. J. Nam, J. Lee, S. Kim, and D. Won. DDH-based group key agreement in a mobile environment. Journal of

Systems and Software, vol. 78, no. 1, pp. 73-83, 2005.

40. E. Okamoto and K. Tanaka. Key distribution system based on identification information. IEEE Journal on
Selected Areas in Communications, vol. 7, no. 4, pp. 481-485, 1989.

41. A. Perrig, D. Song, and J. Tygar. ELK, a new protocol for efficient large-group key distribution. 2001 IEEE
Symposium on Security and Privacy, pp. 247-262, 2001.

42. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures. Journal of Cryp-
tology, vol. 13, no. 3, pp. 361-396, 2000.

43. K. Ren, H. Lee, K. Kim, and T. Yoo. Efficient authenticated key agreement protocol for dynamic groups.
5th International Workshop on Information Security Applications (WISA ’04), LNCS vol. 3325, pp. 144-159,
2004.

44. A. Sherman and D. McGrew. Key establishment in large dynamic groups using one-way function trees. IEEE
Transactions on Software Engineering, vol. 29, no. 5, pp. 444-458, 2003.

45. V. Shoup. On formal models for secure key exchange. Cryptology ePrint Archive, Report 1999/012, 1999.
Available at http://eprint.iacr.org/.

46. Q. Tang and C. Mitchell. Security properties of two authenticated conference key agreement protocols. 7th In-
ternational Conference on Information and Communications Security (ICICS ’05), LNCS vol. 3783, pp. 304—
314, 2005.

47. D. Wallner, E. Harder, and R. Agee. Key management for multicast: issues and architectures. RFC 2627,
1999.

48. C. Wong, M. Gouda, and S. Lam. Secure group communications using key graphs. IEEE/ACM Transactions
on Networking, vol. 8, no. 1, pp. 16-30, 2000. A preliminary version was presented at ACM SIGCOMM ’98.

A Proof of Theorem 1

We begin by proving the following lemma, which states that in attacking any key exchange
protocol, the maximum advantage obtainable by a passive adversary asking qsy Test queries
is at most et times the maximum advantage that a passive adversary can obtain when it is
restricted to access the Test oracle only once.

Lemma 1. For any key exchange protocol P,

AdVP(t, Q) S Qtest ° Ava (t7 Ql)a
where Q = (Qexec; 0, Greves Georrs 4dump> Qtest) and Q/ = (Qexem 0, Greve + Gtest — 1, Georrs ddump> 1)'

Proof. The idea of the proof is essentially the same as in the proof of Lemma 2 in Appendix B
of [2]7 where the case of Q = (QexeC; Gsend, 07 07 07 Qtest) and Ql - (qexeC7 Gsend, Qtest — 17 07 07 1)
was considered.

Let A be an adversary attacking a key exchange protocol P, with time complexity ¢ and
query complexity @ = (Gexec, 0, Greves Georrs Qdumps Grest)- Recall that the advantage of A in
breaking the security of protocol P is the probability that A outputs 1 in the real experiment
Exp’s?'(A) minus the probability that A outputs 1 in the random experiment ExpE"d(A) (see
the security definition in Section 2.2). Namely,

Advp(A) = [Pr[Exps?(A) = 1] — Pr[ExpE"(A4) = 1]].

The proof proceeds 'by a standard hybrid argument [27] Consider a sequence of giest + 1
hybrid experiments Expp(A), 0 < i < gest, Where each Expp(A) is defined as follows.

16 Junghyun Nam, Youngsook Lee, and Dongho Won

Experiment Exp’(A):

1. The adversary A interacts with the oracles, asking queries as many times
as it wants. The interaction proceeds as specified in the model except that
A’s queries to the Test oracle are handled differently, as follows:

The first i queries to the Test oracle are answered with a random
sesston key and all remaining Test queries are answered with the real
session key.

2. Some time after A asked all its queries, it outputs 0 or 1 as the outcome
of the experiment.

Clearly, the experiments Exp%(.A) and Exp%e(A) at the extremes of the sequence are iden-

tical to Exps(A) and Exp"(A), respectively. Notice that as we move from Exp’s'(A) to
Exp’]} (A) in the sequence, we change the response of i-th Test query from the real session key
to a random session key. Since there are giest such moves from Exp}ﬁal(A) to Expﬁnd (A), the
inequality of the lemma follows immediately if we prove that the difference between the proba-
bilities that A outputs 1 in any two neighboring experiments Expi;l(A) and Explp(A) is at most
Advp(t,Q"), where Q" = (gexec, 0, Greve + Gtest — 1, Georr Gdump, 1). That is, to complete the proof,

it remains to show that for every 1 < i < gyest,
{Pr[Exp?l(.A) = 1] — Pr[Expb(A) = 1]| < Advp(t, Q). (1)

For this purpose, let ¢ = |Pr[Exp’'(A) = 1] — Pr[Exp’(A) = 1]|. Then, using the adversary
A, we construct an adversary A; attacking the protocol P, with advantage €, time complexity
ta and query CompleXity Q/ = (Qexem 07 Greve T Qtest — 17 Gcorrs ddump> 1) -AZ begins by inVOking
adversary A, then proceeds to answer the oracle queries of A using its own oracle queries, and
finally ends by outputting whatever bit A eventually outputs. A; answers the oracle queries of
A as follows:

— When A asks a query to the Execute, Reveal, Corrupt, or Dump oracle, A; answers it in a
straightforward way by sending the same query to its own corresponding oracle and then
simply forwarding to A the outcome of its oracle query.

— If A queries the Test oracle, then there are three cases to handle:

e For the first ¢ — 1 Test queries, A; answers them with a random session key.

e On the i-th Test query, A; asks a query to its own Test oracle and returns the result it
receives.

e For all the remaining Test queries, A; answers them with the real session key by accessing
its own Reveal oracle.

It is easy to see that A; has time complexity ¢ and query complexity at most Q" = (qexec, 0,

Greve 1 Qtest — 1, Georrs ddump> 1)
To quantify the advantage of A;, it now suffices to notice the following two facts:

— The probability that A; outputs 1 when its Test oracle returns the real session key is exactly
Pr(Expls H(A) = 1].

— The probability that A4; outputs 1 when its Test oracle returns a random session key is
identical to Pr[Exp(A) = 1].

The advantage of A; in attacking protocol P, Advp(A;), is therefore exactly e = |Pr(Exp’s ' (A) =
1] — Pr[Expp(A) = 1]|. Since Advp(A;) < Advp(t, Q') by definition, we obtain Eq. (1) above.
This gives the desired result of the lemma. a

Constant Round Group Key Exchange with Logarithmic Computational Complexity 17

Remark 4. The simulation in the proof of Lemma 1 fails if the adversary A is allowed to ask the
query Test(I1 (Z]) when some partner of Hfj has already been tested. It is quite easy to see why
this is true. Let I ;J and I7, [jj, be the two instances which are partnered together. Suppose that
A asked the query Test(II};) before its i-th Test query, and asked Test(II [Jj,) after the i-th Test
query. A; then would simulate the Test oracle by returning a random session key in response
to Test(II};) and by returning the real session key in response to Test(II},). The simulation
is clearly not correct. This scenario is indeed feasible for the simulation given in the proof of
Lemma 2 of [2]. Therefore, we suggest that the ROR model of [2] should be fixed to disallow the
adversary to access the Test oracle more than once for each set of partners.

Corollary 1. For any key exchange protocol P,

Advp(t, Q) < grest - Advp(t,Q"),

where Q = (Qexec; Gsend; Qreve;, 4corr; ddump; Qtest) and Q/ = (Qexem Gsend, Greve t Gtest — 1, Georr;
4dump> 1)

Proof. The proof is straightforward from the proof of Lemma 1 and is omitted. a

A.1 The Basis Step

We prove here the induction basis for the proof of Theorem 1. Let SKE; be the protocol as defined
in Section 3.2. Then the following corollary serves as the induction basis: the key exchange
protocol SKE; is secure against a passive adversary (asking multiple Test queries), under the
DDH assumption for G.

Corollary 2. Let Q = (Qexec; 0, Greves Qeorrs qdump> Qtest)- Then we have:

AdVSKE1 (ta Q) S 2Qtesthxec : Advg;dh(t/),
where t' =t + O(gexectskE,) and tskg, is the time required for execution of SKE; by any party.

The first step towards proving the corollary has already been taken with the proof of Lemma
1. Recall that by Lemma 1, we showed that the security of a protocol against passive adversaries
asking multiple Test queries can be reduced to the security of the same protocol against passive
adversaries asking only a single Test query. So to prove Corollary 2, we are left with proving
the following lemma which claims that as long as the DDH assumption holds in G, the protocol
SKE; is secure against passive adversaries who query the Test oracle only once.

Lemma 2. Let Q = (gexecs 0, Greves Georrs Gdump, 1). Then we have
AdVSKE, (1, Q) < 2dexec - Advg" (1),
where t' is as in Corollary 2.
Proof. Let A; be a passive adversary attacking protocol SKE;, with time complexity ¢ and query
complexity @ = (Gexecs 0, Greve, Georrs Gdump, 1). Assume that the probability that A; correctly

guesses the value of the hidden bit b used by the Test oracle is 1/2 4 €. Then we construct from
A; a distinguisher D that solves the DDH problem for G with probability €/gexec-

18 Junghyun Nam, Youngsook Lee, and Dongho Won

To construct the distinguisher D, we first need to consider the following two distributions:

s1,t1 €R ZLg;
T2, ... Tn €ER Lg;
wy = g
2=g72,..., 2, =g
Realy @ { (T, K) |k = g1,
To = g1 ...k, = g%l
Y=k xy 'y =kl
T=(w1,22y-y2ns Y25+ -, Yn);
K=k)
and
(SIGRZq§)
7“2,...,’/“n,a1,...,anERZq;
wy = g
20=9"2, ..., 2p =g™;
Fake1d§f (T, K) |k = g%
To =g, ..., xy = g
ya=ki x5y =kl
T = (W1,22, 320, Y2y - -, Yn);
K=K

The distribution Real; with n € {2,3} represents the distribution of protocol transcript T and
session key K in the real execution of SKE;. (For ease of exposition, we describe the proof for
an arbitrary n € {2,3,...}; however, all security results are stated for n € {2,3}.) Notice that
we have omitted for brevity user identities and sequence numbers (i.e., U;||1 and U;||2) in the
transcript T. The distribution Fake; is obtained from Real; by changing the way of computing
k1 and x;’s; these values are now computed independently of w; and z;’s.

With the above in mind, we now claim that distinguishing between two distributions Real;
and Fake; is at least as difficult as solving the DDH problem for G.

Claim 1 Let D' be a distinguisher that given as input (T, K) coming from one of two distribu-
tions Realy and Fakeq, runs in time t and outputs O or 1. Then we have:

|Pr[D'(T,K) =1 (T,K) « Realy] — Pr[D/(T,K) = 1 | (T, K) « Fake;]| < Adv{i"(¢'),

where t' =t + O(texp) and texp is the time required to perform an exponentiation in G.

Proof. In order to prove the claim, we show how to build from D’ a distinguisher D” that solves
the DDH problem in G. Let (gsl,grz,gsllm) € G? be an instance of the DDH problem given as
input to D”. Using the triple (¢, g™, g*1"2), D" first generates (T, K) according to the following
distribution Disty:

Constant Round Group Key Exchange with Logarithmic Computational Complexity 19

t1 €Er Zq§
as, 33, ..., 0n, Bn €ER Lg;
wy = g
29 =g, 23 = gtwt:s-i-rz,@?,7 e En = gt1an+r26n;

Dist; & { (T, K) | ky = g1,
Ty = gs’1r27x3 _ gslt1a3+s/1r2ﬁ37 Ty = gsltlan+s’lr26n;
Y :kl-xgl,...,yn:kl -m;l;
T = (W1,22, 3 2n,Y2y -+, Yn);

L K=K

Then D" runs D'(T, K) and outputs whatever bit D’ eventually outputs.

The running time of D” is the running time of D’ added to the time to generate (T, K)
according to Dist;. Note that if n € {2,3}, then generating (T, K) according to Dist; requires
D" to perform only a constant number of exponentiations in G.

If (g°',9"2,¢°1"?) is a true Diffie-Hellman triple (i.e., s; = s}), then we have Dist; = Real;
since k1 = w!' and 2; = z;* for all i € [2,n]. If instead (951, g™, g*1"?) is a random triple, then
it is clear that Dist; = Fake;. This means that:

1. The probability that D" outputs 1 on a true Diffie-Hellman triple is exactly the probability
that D" outputs 1 on (T, K) generated according to the distribution Real;.

2. The probability that D” outputs 1 on a random triple is identical to the probability that D’
outputs 1 on (T, K) generated according to the distribution Fake;.

So the claim follows. O
We now make the following observation about the Fake; distribution.
Claim 2 For any (computationally unbounded) adversary A, we have:
Pr[A(T, K@) = 0| (T, K1)) < Faker; Koy < G;b « {0,1}] = 1/2.

Proof. When p = g”, let us write log, 1 to denote the exponent v. Then in distribution Fakey,
the transcript T constrains the exponents a; only by the following n — 1 equations:

logg Y2 = a1 — az,

logg Y3 = ap — as,

log, yn = a1 — an.

Since the equation log, K = ay is linearly independent of the set of n — 1 equations above, the
session key K is independent of the transcript T. This implies the claim. ad

We are now ready to describe the construction of the distinguisher D. Assume without loss
of generality that A; makes its Test query to an instance activated by the v-th Execute query.
The distinguisher D begins by choosing a random 0 € {1, ..., gexec} as a guess for the value of
and by choosing a bit b uniformly at random from {0, 1}. D then invokes .A; as a subroutine and
proceeds to simulate the oracles. Since A is a passive adversary, D does not need to simulate
the Send oracle. Moreover, D may ignore Corrupt queries of A; because there is no long-term

20 Junghyun Nam, Youngsook Lee, and Dongho Won

secret information used in the protocol SKE;. For all other queries of A7, except the d-th Execute
query, D answers them in the natural way by executing protocol SKE; on its own. When A
asks the §-th Execute query, D slightly deviates from the protocol, embedding an instance of the
DDH problem given as input into the transcript as follows: using the input (¢g°', g2, gsllm) €G3,
D generates (T, K) according to the distribution Dist; and answers the 0-th Execute query of Ay
with T. If § # =, then D aborts and outputs a random bit. Otherwise, D answers the Test query
of A; with K if b =1, and with a random key otherwise. Now at some point in time, when A;
terminates and outputs its guess o', D outputs 1 if b = ¥, and 0 otherwise. Let ¢ be the running
time of Aj. Then from the simulation above, it is straightforward to see that D takes at most
time ¢’ =t + O(gexectSKE,)-

We now analyze the advantage of D in solving the DDH problem for G. Suppose that A; asked
its Test query to an instance activated by the d-th Execute query; this happens with probability
1/qexec. If (g1, g™, g%172) is a true Diffie-Hellman triple, then, by Claim 1, Dist; = Real; and
thus, by assumption, Pr[b = b'] = 1/2+ €. So, the probability that D outputs 1 on a true Diffie-
Hellman triple is also 1/2 + . If instead (g°!, g"2, ¢*1"2) is a random triple, then Dist; = Fake;
and hence, Pr[b = '] = 1/2 by Claim 2. Therefore, the probability that D outputs 1 on a
random triple is exactly 1/2. Now since Pr[d = 7] = 1/¢exec, We obtain Adv%dh(D) = €/Qexec-
Finally, since Advskg, (A1) = 2¢ and Adv@"(D) < Adv@@"(#') by definitions, it follows that
Advskr, (A1) < 2¢exec - Adv((d;dh(t’). This completes the proof of Lemma 2. H

A.2 The Induction Step

We now claim that for each h > 1, if the key exchange protocol SKEy, is secure against passive
adversaries, then so is protocol SKEy, ;. This claim is formalized by the following corollary.

Corollary 3. Let Qh+1 = (Qexec; 0, Greve, Georrs qdump qtest) and Qpn = (2; 0, 0,0, 0, 2) Let n
be the number of users participating in protocol SKE 1 (i.e., 2htl < p < 2h+2). Then we have:

Advske, , (t Qnt1) < 2Gtestexec - AdVSKE, (', Qn) + Grest - AdVSKE, (£, Qnt1),

where t' = t—i—O(nqexeCtSKEhH) and tsKg, ., is the time required for execution of SKEp 1 by any
party.

By Lemma 1, we know that to prove Corollary 3, it suffices to prove the claim that protocol
SKE; 1 is secure against passive adversaries accessing the Test oracle only once. A precise
formulation of this claim is given by the following Lemma 3. The proof of the lemma proceeds
very much along the lines of that of Lemma 2, extending the techniques used there to this more
interesting case.

Lemma 3. Let Qpy1 = (Qexec; 0, Greves; Georrs qdump, 1) and Qp = (27 0, 0, 0, 0, 2). Then we
have:

Advske, (£ Qrt1) < 2qexec - Advske, (', Qn) + Advske, (t, Qri1),

where t' is as in Corollary 3.

Proof. Let Ap4+1 be a passive adversary attacking protocol SKE, 1, with time complexity ¢ and
query complexity Qp4+1 = (gexec, 0, Greves Georrs ¢dumps 1). Given the adversary Ay 1, we construct
a passive adversary Ay, attacking protocol SKEy, with time complexity ¢’ and query complexity
Qr=1(2,0,0,0,0, 2).

For ease of exposition, we first introduce some additional notations. Consider the tree struc-
ture shown in Fig. 1 of Section 3 and recall that G; denotes the subgroup consisting of the users
in the subtree rooted at the node hosting U;. In protocol SKE 1, there are two cases depending

Constant Round Group Key Exchange with Logarithmic Computational Complexity 21

on whether n > 5 or n € {4,5}. If n > 5, then both of two subgroup keys ko and ks exist,
whereas in the case of n € {4,5}, the node N3 is a leaf node and thus only ks exist (i.e., k3 does
not exist). Notice that each of ko and ks (if it ever exists) is generated by executing protocol
SKE},. Let T}, ; denote the transcript of protocol SKE), executed by subgroup G; to generate the
subgroup key k;. Then we write (Tp,;, k;) < Realj, to denote the generation of a transcript/key
pair (T ;, k;) through a real execution of SKEj,. We also write (T}, ;, a;) « Randy, to denote the
generation of (Tj ;, a;) where Tj,; is generated by a real execution of SKEj;, and a; is a random
key chosen independently of Ty, ; but chosen uniformly from G.
With these notations, we now introduce the following two distributions:

(Tha,k2), ..., (Thy, k) < Realp;
s1,t1 €R Lyg;
ro = I(ka),...,m1 = I(kp);
Ti4ls--->Tm ER Lg;
wy = g
def ro .
Realpy1 = ¢ (T, K) | 20=9g",....2;m = g"™;
ky = g*1';
T =go" T = 9o
Yo =Fki x5, Ym = k1wl
T=(Thos -, Thp,W1,22, -+, Zm, Y25 - - -, Ym):
K=k)
and
\
(Th2,a2),...,(Thy,a1) < Randp;
51,t1 €R ZLg;
ro = I(az),...,m = I(a);
Ti+ls-+-,Tm €ER Lg;
wy = g
def o r
Randpi1 = S (T, K) | 20=9"%,..., 20 = g"™;
k= g%
T = g7 T = 9o
y2:k1'$517---,ym:k1‘$7nl§
T=(Tho -, Thp,W1,22, -, Zm, Y25 - - -, Ym):
K=K

7

The distribution Realpy1, when either | = m = 3 (i.e, n > 5) or I = 2 and m = 3 (i.e,
n = {4,5}), matches exactly the real execution of protocol SKE; ;. (As in the basis step, we
describe the proof for the general case where 2 <[< m and m = {3,4,...}, but for description
purpose only.) The distribution Randp is obtained from Real,,; by replacing each subgroup
key k; with a random key a;.

We now claim that distinguishing between two distributions Realy 1 and Randy, 1 is no easier
than breaking the security of protocol SKEy,.

Claim 3 Let D be a distinguisher that given as input (T, K) coming from one of two distribu-
tions Realp11 and Randpy1, runs in time t and outputs 0 or 1. Let Qn = (2, 0, 0, 0, 0, 2). Then

22 Junghyun Nam, Youngsook Lee, and Dongho Won
we have:

[Pr[D(T,K) =1 (T,K) < Realy1] — Pr[D(T,K) = 1| (T, K) < Randj,41]|
< Advskg, (t', Qn),

where t' =t + O(texp) and texp is the time required to perform an exponentiation in G.

Proof. Suppose that p and v are the probabilities that D outputs 1 on (T, K) generated according
to Realp4+1 and Randj i, respectively. Then we prove the claim by constructing from D an
adversary Aj, attacking protocol SKE;, with advantage |u — v|.

First, A} obtains [— 1 transcripts Tp 2, Tp3, ..., Ty by making an Execute query for each
of the subgroups Go, G3, ..., G;. Let Il7¢g, denote any instance activated by the Execute query
directed to G;. Next, Aj asks | — 1 Test queries Test(/1yeg,), Test(IIyeg,), - .., Test(Iyeg,);

recall that in our model, the adversary is allowed to ask multiple queries to its Test oracle as
long as the tested instances are fresh and no two of them are partnered together. Let k be either
the real session key or a random session key returned in response to the query Test(Ili¢cg,). We
then write (Tp;, k}) < Testy, to denote the above way of generating a transcript/key pair (Tp,,

Having made the queries and received the results as above, A} generates (T, K) according
to the distribution Disty 1 (defined below), runs D(T, K), and outputs whatever bit D outputs.
Distribution Disty 4 is defined as follows:

)
(Th,g, ké), ey (Th,l7 k‘;) — Testh;
51,11 €R ZLqg;
ro = I(kb),...,m = I(k));
Ti+1s-+-»Tm €ER Lg;
wy = g°

H dﬁf) T

D|Sth+1_ (TvK) 2y =G ...y Z2m =g ™,
ky = g™
2 2981r2a"'7xm :.981rm;
Yo =ki-a5t, .y = k1w
T=(Tha, -, Thi, Wi, 22,y Zms Y2, - - s Um);
K=K

To generate (T, K) according to Disty1, Aj, performs O(m) exponentiations in G and makes
| — 1 Execute queries and [— 1 Test queries. If we instantiate both [and m with 3, A} has time
complexity ¢’ =t + O(texp) and query complexity Qp = (2, 0, 0, 0, 0, 2).

The only possible difference between the distribution Dist;,; and the other two distributions
Realp41 and Randjq is in the way of generating the subgroup keys. If each k! is the real session
key, clearly we have Dist,1; = Realp41. On the other hand, if each k] is a random session key
chosen independently of the transcript Tj_;, then Distj,; = Randj41. This means that:

1. The probability that A} outputs 1 when kj, ..., k; are real session keys is exactly p, the
probability that D outputs 1 on (T, K) generated according to the distribution Realp .

2. The probability that A} outputs 1 when k5, ..., k; are random session keys is exactly v, the
probability that D outputs 1 on (T, K) generated according to the distribution Randy,1.

Thus Advskg, (A},) = ¢ — v|. Since Advskg, (A),) < Advske, (t', Qr), we obtain the statement
of Claim 3. O

Constant Round Group Key Exchange with Logarithmic Computational Complexity 23

Letting Real; be as defined in the proof of Lemma 2, we continue with the following claim.

Claim 4 For any (computationally unbounded) adversary A, we have:

PI‘[A(T,K(b)) =b | (T,K(l)) — Randh+1;K(0) — G;b — {0, 1}} =
PY[A(T,K(b)) =b ’ (T, K(1)> — Rea|1;K(0) — G; b — {0, 1}]

Proof. In distribution Randy1, the session key K is completely independent of the set of | — 1
transcripts {Tp; | ¢ € [2,]]} because each a; € G is chosen at random independently of Ty, ;.
Therefore, if we define Randj, ,; as the distribution derived from Randj 4 by eliminating all the
transcripts Tp 2, Tp3,..., Thy, it is clear that:

PrlA(T, K@) = b | (T, K1) < Rand),, 1; K(g) — G;b — {0,1}] =
PI‘[.A(T, K(b)) =b ‘ (T,K(l)) — Ranth; (0) — G,b — {0, 1}] (2)

Because now Randj, | = Realy, it is also immediate that:

PI[A(T,K(b)) =b | (T,K()) — Randh+1, (0) — G b— {0 1}}
Pr[A(T, K@) = 0| (T, K(1)) < Realy; Koy « G;b — {0,1}]. (3)

Combining Egs. (2) and (3) yields the result of Claim 4. O

Before continuing further, let us define
SuccPri(Aps1) € Pridy 1 (T, Kgy) = b | (T, K1) — Realy; K(g) — G; b — {0,1}]

and

SUCCPthrl(Athl) dﬁf PI‘[Ah+1(T K() =b ’ T K(1)> — RethH, (0) — G b «— {O 1}]

Armed with Claims 3 and 4, we now give the details of the construction of the adversary
Ap. Assume without loss of generality that A;4; makes its Test query to an instance activated
by the 7-th Execute query. The adversary 4;, begins by choosing a random § € {1,..., Gexec} as
a guess for the value of v and by choosing a bit b uniformly at random from {0, 1}. It then runs
Ap+1 as a subroutine, answering the oracle queries of A 1. For all queries of Ay 1, except the
0-th Execute query, A;, answers them in the natural way by executing protocol SKE; 1 on its
own. But when A, asks the d-th Execute query, Ay responds by calling its own Execute and
Test oracles; namely, it generates (T, K) according to the distribution Dist; 1 and returns the
transcript T in response to the query. If 6 # ~, Aj;, aborts and outputs a random bit. Otherwise,
A, answers the Test query of Ay with K if b = 1, and with a random key otherwise. Now
when Ay terminates and outputs its guess o', Ay, outputs 1 if b =¥', and 0 otherwise.

It is easy to see that Aj; has query complexity Qn = (2, 0, 0, 0, 0, 2) and time complexity
t' =t + O(ngexectSKE,,,,), Where 2htl <y < 2hH2,

To analyze the advantage of Aj, in attacking SKEy,, assume that A, 11 asked its Test query to
an instance activated by the 6-th Execute query. If k5, k%, ..., k] in Dist; are real session keys,
then Disty 1 = Realy,41 and thus, the probability that Ap4q correctly guesses the hidden bit b is
SuccPry41(Ap+1). Hence, the probability that A;, outputs 1 when its Test oracle returns actual
session keys is also SuccPrp,1(Ap41). On the other hand, if k5, k%, .. ., kj in Dists 1 are random
session keys, then Dist; 1 = Randpy1 and thus, by Claim 4, the probability that A1 correctly
guesses the hidden bit b is SuccPri(Apy1). So, the probability that A outputs 1 when its Test

24 Junghyun Nam, Youngsook Lee, and Dongho Won

oracle returns random session keys is also SuccPr;(Ap1). Therefore since Pr[d = 7] = 1/¢exec,
we obtain:

AdVSKEh (Ah) = ‘SUCCPthrl(Athl) — SUCCPrl(.Ah+1)‘. (4)

(exec

Note that this equation already implies that |SuccPryyq(Apt1) — SuccPri(Apn11)| is negligible
and so SuccPrp1(Ap+1) is not much greater than 1/2.

It remains to bound the advantage of A1 in attacking protocol SKE, .. By applying
Eq. (4) to the definitional equation Advskg,,,(Ant1) = |2 - SuccPry1(Aps1) — 1], we easily
have:

AdVSKEh_H(Athl) < IQQexec . AdVSKEh (.Ah) + 2 - SuccPrq (.Ah+1) - 1‘.

From this, the following is immediate:

AdvskEg, ., (Ant1) < 2¢exec - AdvskE, (An) + Advske, (Ant1)
< 2gexec - AdvskE, (t', Qn) + AdvskE, (t, Qnt1)-

This completes the proof of Lemma 3. B

B Proof of Theorem 2

Let AT be an active adversary attacking the authenticated protocol SKE™, with time complexity
t and query complexity @ = (Qexem Gsend; Greve; qcorr; ddump> Qtest)- Then we construct from AT a
passive adversary A attacking the unauthenticated protocol SKE, with time complexity ¢’ and
query complexity Ql = (Qexec + QSend/27 0, Greve, Georr; Gdump T QSend/27 qtest)- As indicated by the
statement of the theorem, the advantage of A in breaking the security of SKE is equal to the
advantage that A" has in breaking the security of SKET, provided that none of the following
two events occur during AT’s attack on protocol SKET.

— Repeat: The event that one same nonce is used by a user for two different instances, one
activated by a Send query and the other activated by either an Execute or a Send query.

— Forge: The event that A" outputs a valid forgery with respect to the public key PKy of
some user U € U before making the query Corrupt(U). Let d € {1,2} and let * denote
any message string. Then, more formally, Forge is the event that AT makes a query of the
form Send(IT},, U||d|| * ||o¢;) such that Vrfypg, (U||d| [[sid} ||Incs,, o) = 1 and o was not
previously output by any instance of user U as a signature on U||d|| * |sid?, ||ncsi, .

We begin by bounding the probabilities of these events occurring. First, by a straightforward
calculation, we immediately obtain the following inequality:

2
9send ~+ Qexecsend (5)

Pr[Repeat] < 3G

Next, the probability that the event Forge occurs is bounded by the following lemma.
Lemma 4. Pr[Forge] < |U| - Succx(t'), where t' is as in Theorem 2.

Proof. Assuming that the event Forge occurs, we construct from A™ an algorithm F who suc-
ceeds (with a non-negligible probability) in outputting an existential forgery against the signa-
ture scheme Y. The algorithm F is given as input a public verification key PK and access to a
signing oracle associated with PK. The goal of F is then to produce a message/signature pair
(M, o) such that Vrfypy(M,0) =1 and o was not previously output by the signing oracle as a
signature on message M.

Constant Round Group Key Exchange with Logarithmic Computational Complexity 25

F begins by choosing at random a user U’ € U and setting PKy to PK . For all other users in
U, F honestly generates a verification/signing key pair by running the key generation algorithm
Kgen(1%). F then runs adversary A" as a subroutine, simulating the oracles. F answers all the
queries from AT in the natural way by executing protocol SKE™ on its own, except when A™
asks Send and Corrupt queries. In this latter case, F proceeds as follows:

- Send(H(iJ,M): It U = U’, F answers the query by accessing the signing oracle associated
with PK. Otherwise, F answers exactly as specified in the protocol.

— Corrupt(U): If U # U’, then F simply hands the long-term singing key of U which were
generated by F itself. Otherwise, F halts and outputs “fail”.

The simulation provided above is perfect unless adversary A" makes the query Corrupt(U’).
Throughout the simulation, F monitors each Send query from A", and checks if it includes
a message/signature pair (M, o) such that Vrfyp Ky (M,o) = 1 and o was not previously output
by any instance of U’ as a signature on M. If no such query is made until A" stops, then F halts
and outputs “fail”. Otherwise, F outputs (M, o) as a valid forgery with respect to PK. Lemma
4 directly follows by noticing that this latter case occurs with probability Pr[Forge|/|U|. 0

Having bounded the probabilities that events Repeat and Forge occur, we now describe
the construction of the passive adversary A attacking protocol SKE. After running Kgen(1%)
to generate a verification/signing key pair (PKy, SKy) for each U € U, A invokes A" as a
subroutine and answers the oracle queries of A' on its own. If Repeat or Forge ever occurs, A
aborts and outputs a random bit. Otherwise, A outputs whatever bit A" eventually outputs.
The queries of A" are answered as follows:

Execute Queries. Upon receiving the query Execute(sid, gid), A sends the same query to its
own Execute oracle and receives in return a transcript T of an execution of protocol SKE. Given
T, A generates a transcript TT of an execution of protocol SKE™ by

1. choosing a random ky € G for all U € gid,

2. setting ncs = {(U, ky) | U € gid},

3. signing the messages in T as specified in SKE™ (more concretely, replacing each message
Mg =U|d||* in T with Mg = Ul|d| * ||of:, where o = Signg,, (Ul|d|| * ||sid|ncs)),

4. and prepending {U||0]|ky }egid to the signed transcript.

Then A returns the patched transcript T in response to the Execute query of A* and adds the
pair (ncs, T) into a list NTList which is maintained by A to link a simulated execution of SKE*
to an execution of SKE.

Send Queries. If AT makes a query of the form Sendgﬂfj, sid||gid), A sets sid}; = sid and
gid;; = gid, chooses a random ki, € G, and returns U||0]|k}; to AT. If the query is of the form
Send(I1};, V||0||ky) for some V € gid};, then there are the following two cases.

— If ky is not the last nonce that IT [’] is expected to receive, A simply waits for the next nonce
from other users in gidy;.

— Otherwise, A defines ncsiU as specified in the protocol and replies to AT with an appropriate
message generated according to the general instruction (given below) for answering Send
queries of A™.

26 Junghyun Nam, Youngsook Lee, and Dongho Won

The general instruction for answering query Send(II};, M):

A checks the list NTList to see if there exists an entry of the form
(ncsi;, T). If so, then A generates the message Mg = U||d|| * |lof: from the
appropriate message Mg = U||d||* in T and returns it to adversary A™.
Otherwise, A first obtains a transcript T of an execution of SKE by making
the query Execute(sid@, gid’(j) to its own oracle, then proceeds as in the
former case, and finally adds the pair (ncs};, T) to the list NTList for future
use.

For all other Send queries (that is, the queries of the form Send(II};, V|d|| * |joy)) that
requires some response message, A first verifies the correctness of the incoming message. If
the verification fails, the instance is terminated immediately without accepting. Otherwise, A
proceeds as follows:

— If no one in gid}; has been asked a Corrupt query before the Send query, A responds by
following the general instruction above.

— On the contrary, suppose that some user in gidb has been asked a Corrupt query before the
Send query. In this case, A may has to simulate the action of IT};, without recourse to a fixed
transcript obtained from its Execute oracle, because the adversary A" may have signed and
sent an arbitrary message of its choice. Fortunately, A can do this by asking a query to its
own Dump oracle. First, A finds an entry (ncs@, T) in NTList and makes a Dump query to
the U’s instance activated by the Execute query that resulted in the transcript T. Now, with
the short-term secrets returned in response to the Dump query, A should be able to simulate
the action of H}) perfectly, following the protocol exactly.

Dump Queries. Upon receiving the query Dump(II};), A first finds an entry (ncsi;, T) in list
NTList. A then makes a Dump query to the U’s instance activated by the Execute query that
resulted in the transcript T, and simply forwards the output of this Dump query to AT.

Corrupt Queries. These queries are answered in the obvious way. Namely, A responds to the
query Corrupt(U) by returning the long-term signing key SKp .

Reveal Queries. As can be seen from the way A handles Execute and Send queries of AT, no
session keys are available to .A. However, the query Reveal(II};) can still be answered as follows:

— If either the query Dump(ﬂfj) was asked or some user in gid@ was corrupted before H(i]
received its last incoming message, then A already has all the information needed to compute
the appropriate session key and can therefore answer the query.

— Otherwise, A proceeds according to the following general instruction for answering Reveal
and Test queries of At.

The general instruction for answering Reveal(II};) and Test(I1};):

A finds an entry (ncsi;, T) € NTList, asks the same query (either Re-
veal or Test query) to the U’s instance activated by the Execute query that
resulted in T, and receives in return a key Kgkgr for protocol SKE. Let
gidli] = {Uy,Uy,...,U,} with U; being the user at the root node. Then
using Kskg, A computes a key K as specified in protocol SKE™, namely as
K = H(Kskg||ka||k3| - - - || kn). Finally, A returns the key K to AT,

Constant Round Group Key Exchange with Logarithmic Computational Complexity 27
Test Queries. A answers all of A™’s Test queries by following the general instruction above.

The simulation above is perfect for AT as long as neither Repeat nor Forge occur. Note that
even when a Send query is asked after some corruption, A perfectly simulates the actions of
instances by using its own Dump queries.

To analyze the advantage of A in attacking protocol SKE, consider the simulation described
above for Test queries. If Kgkg is a real session key for protocol SKE, then K is also a real
session key for protocol SKET. If instead Kgkp is random, then so is K since H is a random
oracle. Let Succy (resp. Succ4+) be the event that A (resp. AT) correctly guesses the hidden
bit used by its Test oracle. Then, since A outputs whatever AT does if neither Forge nor Repeat
occur and outputs a random bit otherwise, it easily follows that:

- — 1
Pr[Succ4] = Pr[Succ 4+ A Forge A Repeat] + QPr[Forge V Repeat]. (6)

Since Pr[Forge V Repeat] is negligible, this equation implies that if Pr[Succ 4+ A Forge A Repeat]
is non-negligibly greater than 1/2, then so is Pr[Succy].

To derive the statement of Theorem 2, we apply a series of simple modifications to the
definitional equation Advgkp+(AT) = |2 Pr[Succ4+] — 1] as follows:

Advgypt (A7) = |2 - Pr[Succg+] — 1]
= |2 Pr[Succ 4+ A Forge] + 2 - Pr[Succ 4+ A Forge] — 1]
< |2 - Pr[Forge] 4+ 2 - Pr[Succ 4+ A Forge] — 1|
= |2 - Pr[Forge] + 2 - Pr[Succ 4+ A Forge A Repeat]
+ 2 - Pr[Succ 4+ A Forge A Repeat] — 1].

Applying Eq. (6) to the last equation above leads to:

Advgyp+ (AT) < |2 - Pr[Forge] + 2 - Pr[Succ 4+ A Forge A Repeat]
— Pr[Forge VV Repeat] 4 2 - Pr[Succ 4] — 1].

Since Pr[Forge \V Repeat] > Pr[Forge] + Pr[Succ 4+ A Forge A Repeat], we get:
Advgyp+ (AT) < |Pr[Forge V Repeat] + 2 - Pr[Succ 4] — 1].
From this, the following is immediate:
Advgyp+ (A7) < |Pr[Forge V Repeat]| + |2 - Pr[Succ4] — 1].
By the definition Advskg(A) = |2 - Pr[Succ4] — 1|, this inequality can be rewritten as:
Advgip+ (A7) < Advskr(A) + |Pr[Forge V Repeat]|.

Now since 0 < Pr[ForgeVRepeat] < Pr[Forge]+Pr[Repeat] and since Advskg(A) < Advskge(t, Q'),
we obtain:
Advgyp+ (AT) < Advskgr(t', Q') + Pr[Forge] + Pr[Repeat].

This combined with Lemma 4 and Eq. (5) yields the statement of Theorem 2.

