
PUBLIC-KEY CRYPTOSYSTEM BASED ON
ISOGENIES

Alexander Rostovtsev and Anton Stolbunov

Saint-Petersburg State Polytechnical University, Department of Security and
Information Protection in Computer Systems, Russia

rostovtsev@ssl.stu.neva.ru

stolbunov@list.ru

Abstract. A new general mathematical problem, suitable for public-
key cryptosystems, is proposed: morphism computation in a category
of Abelian groups. In connection with elliptic curves over finite fields,
the problem becomes the following: compute an isogeny (an algebraic
homomorphism) between the elliptic curves given. The problem seems
to be hard for solving with a quantum computer. ElGamal public-key
encryption and Diffie-Hellman key agreement are proposed for an isogeny
cryptosystem. The paper describes theoretical background and a public-
key encryption technique, followed by security analysis and consideration
of cryptosystem parameters selection. A demonstrative example of encryption
is included as well.
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1 Introduction

Security of the known public-key cryptosystems is based on two general mathematical
problems: determination of order and structure of a finite Abelian group, and
discrete logarithm computation in a cyclic group with computable order. Both
of the problems can be solved in polynomial time using Shor’s algorithm for a
quantum computer [1]. Thus, most of the current public-key cryptosystems will
become insecure when size of a quantum register is sufficient. Development of
cryptosystems, which would be strong against a quantum computer, is necessary.

A mathematical problem, which is hypothetically strong against a quantum
computer, is proposed. It consists in searching for an isogeny (an algebraic
homomorphism) between elliptic curves over a finite field. The problem is a
special case of morphism computation in an Abelian groups category. A method
of public-key algorithm construction is proposed as well.

The paper describes theoretical background and a public-key encryption
technique, followed by security analysis and consideration of cryptosystem parameters
selection. A demonstrative example of encryption is included as well.



2 Elliptic Curve

By symbols Z,Q,C,Fp, R[x], #M we denote the ring of integers, the fields of
rational and complex numbers, the finite field having p elements, the ring of
polynomials with coefficients from the ring R, and the power of the set M ,
respectively.

Let K be a field with characteristic different from 2 and 3. A projective
plane P2

K is a set of triplets (X, Y, Z) ∈ K3 \ (0, 0, 0) with equivalence relation
(X, Y, Z) = (uX, uY, uZ) for an arbitrary u ∈ K∗. The line Z = 0 is called the
line of infinity, and the points on it are the infinite points.

An elliptic curve E(K) is a nonsingular curve, given in P2
K by

Y 2Z = X3 + AXZ2 + BZ3. (1)

The curve (1) intersects the line of infinity in the point P∞ = (0, 1, 0) with
multiplicity 3. For all the other points we can assume Z = 1, and x = X

Z , y = Y
Z .

Then the equation (1) can be written as

y2 = x3 + Ax + B. (2)

The prime polynomial y2− (x3 + Ax + B), which gives the elliptic curve (2),
generates a maximal ideal of K[x, y] and specifies the function field of the curve:

K(E) = K[x, y] \ (y2 − (x3 + Ax + B)).

A geometric addition law on the curve E(K) is defined. It converts E(K)
into an Abelian group, where P∞ is a null element [2].

Many cryptoalgorithms are built on elliptic curves over finite fields, e.g.,
digital signature schemes ECDSA and GOST R 34.10-2001 (a Russian standard).

3 Elliptic Curves over C and Modular Functions

Let a lattice L = [ω1, ω2] over C with the basis [ω1, ω2], Im(ω1
ω2

) > 0, be the free
group Zω1 + Zω2. The lattice stays fixed if its basis is multiplied by a matrix
from the group SL2(Z) of matrices of integer elements having determinant 1.
The group SL2(Z) is generated by the matrices S =

(
1 1
0 1

)
and T =

(
0 −1
1 0

)
. As

long as L is a subgroup of C, the additive factor group C/L is defined.
The meromorphic Weierstrass function

℘(z, L) =
1
z2

+
∑

ω∈L\{0}

(
1

(z − ω)2
− 1

ω2

)

satisfies the equation

℘′(z, L)2 = 4℘(z, L)3 − g2(L)℘(z, L)− g3(L),



where
g2(L) = 60

∑

ω∈L\{0}

1
ω4

and
g3(L) = 140

∑

ω∈L\{0}

1
ω6

are complex numbers.
It is shown in [2], that the functions (℘(z, L), ℘′(z, L)) specify the isomorphism

of the groups C/L ∼= EL(C), and the set of lattices over C bijectively corresponds
to the set of elliptic curves E(C).

Lattices L and M are isomorphic (homomorphic), if a number α ∈ C with the
property that αL = M (αL ⊆ M , respectively) exists. Isomorphism of lattices
induces isomorphism of corresponding elliptic curves.

For a lattice L, the function

j(L) =
1728g2(L)3

g2(L)3 − 27g3(L)2

is defined. A necessary and sufficient condition of isomorphism of elliptic curves
and lattices is j(E) = j(L) [2].

For a lattice L, isomorphism of lattices lets us turn from the basis [ω1, ω2] to
the basis [τ, 1], where τ = ω1

ω2
, Im(τ) > 0, and L is defined by τ accurate within

isomorphism. Then we can assign j(L) = j(τ).
A matrix A =

(
a b
c d

)
, acting on the basis of a lattice, transforms the argument

τ in the following way:

A(τ) =
aτ + b

cτ + d
.

For computational convenience of the function j(τ), the argument τ is replaced
by the Fourier-image q = exp(2πiτ).

A meromorphic function of a complex variable τ is called modular, if it is
not changed by action of SL2(Z). The function j(τ) is modular. Any modular
function is representable by a fraction of polynomials in j(τ).

Homomorphism of lattices αL ⊆ M induces algebraic homomorphism of
elliptic curves EL(C) → EM (C), called an isogeny. A non-unit isogeny ϕ has its
finite kernel ker(ϕ), that is the set of points mapped to P∞.

Each isogeny ϕ : EL(C) → EM (C) has its dual isogeny ϕ̂ : EM (C) → EL(C).
If there is an isogeny EL(C) → EM (C), then the curves are called isogenous.
An isogeny ϕ : EL(C) → EM (C) induces injective homomorphism of the

function fields C(EM ) → C(EL). The extension degree of the field C(EL) over
C(EM ) is called the isogeny degree:

deg(ϕ) = deg(ϕ̂) = # ker(ϕ).

Composition of the mappings ϕ, ϕ̂ corresponds to multiplication by deg(ϕ) ∈ Z.
According to the theorem on homomorphisms of groups, an isogeny is fully
determined by its kernel.



For elliptic curve isogenies

E1
ϕ−→ E2

ψ−→ E3
χ−→ E4,

composition
ψϕ : E1 → E3

is defined, where
deg(ψϕ) = deg(ψ) deg(ϕ), (3)

and
ψ̂ϕ = ϕ̂ψ̂.

Isogenies have associative property:

(χψ)ϕ = χ(ψϕ). (4)

Let M l
2(Z) be a set of 2×2 matrices of coprime integer elements and determinant

l. If M ∈ M l
2(Z), and A,B ∈ SL2(Z), then AMB ∈ M l

2(Z). Therefore we can
define the cosets of the set M l

2(Z) to the group SL2(Z). The number of the cosets
is

ψ(l) = l
∏

p|l

(
1 +

1
p

)
,

where product is over all the prime divisors of l.
Let {Mi} be a set of representatives of right cosets of M l

2(Z) to the group
SL2(Z), where 1 ≤ i ≤ ψ(n). A modular polynomial of order l is

Φl(X, j) =
ψ(l)∏

i=1

(X − j(Mi(τ))) , (5)

where Φl(X, j) = Φl(j,X) ∈ Z[X, j]. The roots of the polynomial Φl(X, j) give
the j-invariants of all the elliptic curves, l-degree isogenous to a curve with
invariant j.

4 Elliptic Curves over Fp

Let the equation (2) of a curve E(F̄p) have the coefficients from Fp. Then the
map

π : (x, y) → (xp, yp)

specifies the Frobenius endomorphism of the curve E(F̄p), which leaves the points
of E(Fp) still. A Frobenius map satisfies its characteristic equation over C:

π2 − Tπ + p = 0, (6)



where T = p−#E(Fp) - a Frobenius trace. As long as T 2 < 4p and |T | < 2
√

p, the
discriminant of (6) is negative. If the characteristic of the field is representable
as (7a) or (7b):

p = a2 + |D|b2, (7a)

p =
|D|+ 1

4
a2 + |D|ab + |D|b2, (7b)

then the number of points is evaluated, respectively,

#E(Fp) = p + 1± 2a, T = ±2a, (8a)
#E(Fp) = p + 1± a, T = ±a. (8b)

The discriminant Dπ of the Frobenius equation (6) for the case (7a, 8a) equals

Dπ = T 2 − 4p = 4Db2,

and for the case (7b, 8b) equals

Dπ = T 2 − 4p = D(a + 2b2).

Theorem 1. Elliptic curves are isogenous over Fp if and only if they have equal
number of points.

Proof. See [6].

Theorem 2. Let an elliptic curve E(Fp) have the Frobenius discriminant Dπ,
and

(
Dπ

l

)
be a Kronecker symbol for some l-degree isogeny. If

(
Dπ

l

)
= −1, then

there are no l-degree isogenies; if
(

Dπ

l

)
= 1, then two l-degree isogenies exist; if(

Dπ

l

)
= 0, then 1 or l + 1 l-degree isogenies exist.

Proof. See [6].

Let E(Fp) has a subgroup with prime order r 6= p, and #E(Fp) 6= 0 (mod r2).
Then a finite extension Fpm with the property that #E(Fpm) ≡ 0 (mod r2)
exists. E(Fpm) contains the r-torsion points subgroup E[r], which is direct sum
of two cyclic groups:

E[r] ∼= Z/rZ⊕ Z/rZ.

A Weil pairing er is a computable group homomorphism

E[r]× E[r] → F∗pm

with the following properties (see [5]):

– bilinearity:

er(S1 + S2, T ) = er(S1, T )er(S2, T ), and
er(S, T1 + T2) = er(S, T1)er(S, T2);

(9)

– alternating: er(S, T ) = er(T, S)−1;
– if σ is the automorphism field of Fpm over Fp, then er(S, T )σ = er(Sσ, T σ).



5 Class Number

In order to homomorphism of elliptic curves E(C) → E(Fp) be computable, it
should be algebraic, and j(τ) should be an algebraic number. If τ is an element
of a quadratic imaginary field K = Q[

√
D], D < 0, then j(τ) is an integer [3].

K is not being changed by multiplying its discriminant D by square of an
integer (a conductor). If D1 = a2D, D2 = b2D1, where a, b ∈ Z, then, for the
rings (the quadratic imaginary orders), it can be written OD ⊃ OD1 ⊃ OD2 .
Therefore, a maximal order exists, and it is determined by D, which is free of
squares.

Any ideal A of the quadratic imaginary order of discriminant D ≡ 0, 1
(mod 4) can be specified as A = aZ + Z(b + ξ), where a, b ∈ Z, and a number
c ∈ Z with the property that D = b2 − 4ac, gcd (a, b, c) = 1, exists [4]. The set
of the ideals is multiplication closed.

Ideals A and B of a quadratic order OD are equivalent, if nonzero α, β ∈ OD

such that αA = βB exist. The set of the ideals is decomposed to the equivalence
classes. Let us denote A,B as a classes, where ideals A and B are situated.
Then the class AB corresponds to product of the ideals AB. The set of the
ideal classes is the Abelian group of classes Cl(D). Its order hD is called a class
number. Each class contains a unique reduced ideal, which is defined by a triplet
(a, b, c), where −a < b ≤ a and a ≤ c, and also b ≥ 0 when a = c.

Let OD be a quadratic imaginary order, K - its field of quotients, and L =
[τ, 1] - a lattice in K. Then K = Q[τ ]. As far as τ is a quadratic imaginary
number, there exist coprime numbers a, b, c ∈ Z, a > 0, such that aτ2+bτ +c = 0
and τ = −b+

√
D

2a , where D = b2 − 4ac.
For any class of ideals of a ring OD, a bijectively corresponding lattice exists,

which is homomorphic to a lattice L = [τ, 1]. If τi = bi+
√

D
2ai

, 1 ≤ i ≤ hD, then
j(τi) are integer numbers - roots of the Hilbert polynomial HD(X):

HD(X) =
hD∏

i=1

(
X − j

(
bi +

√
D

2ai

))
∈ Z[X].

Theorem 3. There is bijection between the group of classes of an imaginary
quadratic order ODπ and the set of isogenous elliptic curves over Fp having
discriminant Dπ.

Proof. The Hilbert polynomial degree equals the class number hD. The polynomial
is decomposed to linear factors over Fp. Every Hilbert polynomial root specifies
the j-invariant of an elliptic curve with equal number of points #E(Fp).

Theorem 4. If Dπ = f2D, and D is a square-free quadratic form discriminant,
then

hDπ

wDπ

=
hD

wD
f

∏

k|f

(
1−

(
D
k

)

k

)
, (10)

where product is over all the prime divisors k of the conductor f , wD is a number
of reversible elements in the imaginary quadratic order OD (wD = 4 when D =



−4; wD = 6 when D = −3; and wD = 2 in the other cases), and
(

Dπ

k

)
is a

Kronecker symbol.
(

Dπ

k

)
= D

k−1
2

π (mod k) for the odd k;

(
Dπ

2

)
=

{
0, when Dπ ≡ 0 (mod 2),

(−1)
D2

π−1
8 , when Dπ ≡ 1 (mod 2).

Proof. See [7].

Discriminants, which have a large prime class number, or their class number
has a large prime divisor, are of special interest. According to [7], a class number
asymptotically equals hDπ = O(

√
Dπ).

Corollary 1. If a discriminant D of a positive definite quadratic form is a
product of different odd prime numbers, then the class number can not be prime.

Proof. Follows from theorem 4.

Lengths of coefficients of polynomials HD(X) and Φl(X) grow fast with
increasing D and l, respectively. So, for |D| > 109 (or l > 106), calculation of a
Hilbert polynomial (a modular polynomial, respectively) is practically infeasible.

6 Isogeny Computation

For every prime isogeny degree l, the equivalent polynomial can be calculated
(see [8], [12]):

Gl(X, Y ) =
l+1∑
r=0

v∑

k=0

ar,kXrY k ∈ Z[X, Y ]. (11)

The equation (11) can be used for computation of j-invariants of isogenous
elliptic curves. As compared to the modular polynomial (5), the equivalent
polynomial has smaller degree and lengths of coefficients.

To compute an isogenous elliptic curve, the algorithm from p.111 of [12] can
be used. It takes a source elliptic curve (A,B) with invariant j, an isogeny degree
l, and a root of the equation Gl(X, j) = 0 as input, and gives a target elliptic
curve (A′, B′) on output.

To compute an isogeny kernel, the algorithm from p.116 of [12] can be used.
It gives the polynomial

K(X) = Xd + ad−1X
d−1 + . . . + a1X + a0 ∈ Fp[X], (12)

where d = l−1
2 . The roots of K(X) give all the x-coordinates of kernel points.

An l-degree isogeny I : E(Fp) → E′(Fp) is a pair of rational functions (see
p.4 of [13]). It can be represented as

I(X, Y ) =
(

G(X)
K(X)2

,
J(X,Y )
K(X)3

)
, (13)

where G(X) is a polynomial of degree l, and K(X) is the polynomial (12). To
compute an isogeny, the algorithm from pp.3-4 of [13] can be used.



7 Isogeny Star

Let U = {Ei(Fp)} be a set of elliptic curves with equal number of points, so
that each element of U is uniquely determined by a j-invariant of an elliptic
curve. According to the theorem 1 and the equation (4), we can consider U as a
category, and the set of isogenies between elements of U as a set of morphisms
of this category. Using the theorem 3, we can compute #U = h(Dπ).

According to the equation (3), the set of isogenies between elements of U is
specified by isogenies with prime degrees. For an elliptic curve with invariant j,
number of isogenies having prime degree l equals number of roots of the modular
polynomial (5). Exact number of isogenies can be determined using the theorem
2.

According to the theorem 2, if(
Dπ

l

)
= 1, (14)

then l-degree isogenies of elliptic curves from U form branchless cycles. Changing
direction in a cycle means switching to dual isogenies. In [8] N. Elkies proposed
to use such isogenies for counting points on elliptic curves over finite fields.

It is practically determined that, when #U is prime, all the elements of U
form a single isogeny cycle. For further discussion, let #U be prime.

Let l1 6= l be one more prime isogeny degree with the property that
(

Dπ

l1

)
=

1. In this case, l1-degree isogenies form a cycle over U as well. Then we can put
the l- and l1-degree isogeny cycles over each other. Same can be done for other
isogeny degrees of such kind.

Definition 1. A graph, consisted of prime number of elliptic curves, connected
by isogenies of degrees satisfying (14), is an isogeny star.

The example of an isogeny star is shown on the figure 1. There are 7 elliptic
curves over F83 having T = 9. Their j-invariants are noted in the nodes.
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Fig. 1. 3- and 5-degree isogeny cycles, and the isogeny star.

If an isogeny star is wide enough, we can use it for cryptoalgorithm constructing.
For that purpose, it is necessary to specify a direction on a cycle.



8 Direction Determination on Isogeny Cycle

Let I1 and I2 be l-degree isogenies, where l satisfies the Elkies criterion (14),
and

E1(Fp)
I1←− E(Fp)

I2−→ E2(Fp).

The torsion group E[l] consists of l+1 subgroups of order l. Two of the subgroups
are the kernels of I1 and I2. The case of l = 3 is shown on the figure 2. Infinite
points are denoted here by 0.

I2

E [3]2

E[3] E [3]1

I1

4

4 3

3

2

2

11 O O

O

Fig. 2. Isogeny kernels mapping.

The method for direction determination on an isogeny cycle is mentioned
in [9]. It uses impact of Frobenius endomorphism on an isogeny kernel. When(

Dπ

l

)
= 1, the Frobenius characteristic polynomial at the left side of (6), considered

over Z/lZ, is decomposed to linear factors. Let π1, π2 ∈ Z/lZ be roots of the
polynomial. π1 and π2 are called Frobenius eigenvalues. Impact of Frobenius
endomorphism on the kernel of an l-degree isogeny is equal to multiplication of
a point by an eigenvalue:

(xp, yp) = πi · (x, y) ∈ Fp [x, y] /
(
y2 − x3 −Ax−B, Ki(x)

)
,

where y2 = x3 + Ax + B is a curve equation, and Ki(x) is a polynomial (12),
which roots give the x-coordinates of the isogeny Ii kernel.

In this connection, π1 corresponds to one cycle direction (say, positive), and
π2 - to the other one (negative).



9 Route on Isogeny Star

Let S be an isogeny star, L = {li} - a set of Elkies isogeny degrees being used
and F = {πi} - a set of Frobenius eigenvalues, which specify positive direction
for every li ∈ L.

Definition 2. A set R = {ri}, where ri is number of steps by the li-isogeny in
the direction πi, is a route on the isogeny star.

For example, if we use the clockwise direction on the figure 1, then the route
R = {2, 1}, being started from the node 15, follows through 48, 23 and leads to
55. We will denote it by R(15) = 55. Obviously, it doesn’t matter, in which order
we do steps of a route. The latter route can be evaluated by 15 − 48 − 34 − 55
as well.

We can define composition of routes A = {ai} and B = {bi} as AB =
{ai + bi}. Routes are commutative: AB = BA.

10 Public-Key Encryption Based on Isogeny Star

The ElGamal public-key encryption technique can be implemented on an isogeny
star (see figure 3). You can also find an example of computations in appendix
A.

E -add additional

elliptic curve

E -pub public-key

elliptic curve

E - encryptionenc

elliptic curve

E - initial

elliptic curve
init R -priv computation

of public key

R -enc encryption R -enc encryption

R -priv decryption

R - private-keypriv route

R - encryptionenc route

Fig. 3. Public-key encryption scheme on isogeny star.

10.1 Cryptosystem Parameters

Common parameters :
– Fp;
– Einit - an initial elliptic curve, specified by a pair of coefficients (Ainit, Binit)

of the equation (2) over Fp;



– d - number of isogeny degrees being used;
– L = {li}, 1 ≤ i ≤ d, - a set of Elkies isogeny degrees being used;
– F = {πi}, 1 ≤ i ≤ d - a set of Frobenius eigenvalues, which specify the

positive direction for every li ∈ L;
– k - a limit for number of steps by one isogeny degree in a root. For any

root {ri}, numbers of steps are selected in −k ≤ ri ≤ k.

Private key is a route Rpriv.
Public key is an elliptic curve calculated as Epub = Rpriv(Einit). It is specified

by (Apub, Bpub).

10.2 Encryption

Input :

– common cryptosystem parameters;
– Epub - a public key;
– m ∈ Fp - a cleartext;

Algorithm :

1. Choose the route Renc randomly. If Renc = {0, 0, ..., 0}, then repeat this
step.

2. Compute Eenc = Renc(Epub).
3. Compute the ciphertext s = m · jenc (mod p).
4. Compute Eadd = Renc(Einit).

Output :

– s - a ciphertext;
– Eadd - an additional elliptic curve, specified by (Aadd, Badd).

10.3 Decryption

Input :

– common cryptosystem parameters;
– Rpriv - a private key;
– s - a ciphertext;
– Eadd - an additional elliptic curve, specified by (Aadd, Badd).

Algorithm :

1. Compute Eenc = Rpriv(Eadd).

2. Compute the cleartext m =
s

jenc
(mod p).

Output :

– m - a cleartext;



10.4 Encryption with Point Mapping

As a variant, mapping of a rational point can be used as well. The following
additions should be made for that:

Cryptosystem parameters: Pinit ∈ Einit(Fp) - a rational point on the initial
elliptic curve is now added to common parameters. It is specified by a pair
of coordinates (Xinit, Yinit).

Public key: Ppub ∈ Epub(Fp) - a rational point on the public-key curve. It is
calculated as Ppub = Rpriv(Pinit). Thus, a whole public key is now specified
by

(
(Apub, Bpub), (Xpub, Ypub)

)
.

Encryption :
– Additionally compute Penc = Renc(Ppub) ∈ Eenc(Fp).
– Compute the ciphertext now as s = m ·Xenc (mod p).
– Additionally compute Padd = Renc(Pinit) ∈ Eadd(Fp).
– Output of the encryption algorithm is now expanded with Padd.

Decryption :
– Input of the decryption algorithm is now expanded with Padd.
– Additionally compute Penc = Rpriv(Padd) ∈ Eenc(Fp).
– Compute the cleartext now as m =

s

Xenc
(mod p).

11 Cryptosystem Security

Strength of the cryptosystem proposed is based on the problem of searching for
an isogeny between elliptic curves. For breaking the cryptosystem proposed in
10.2, searching for any isogeny between Einit and Epub (or between Einit and
Eadd) is possible. For breaking the 10.4 cryptosystem, searching for a particular
isogeny, which maps rational points in the same way as Rpriv (or Renc) does, is
necessary.

The following techniques can be used for isogeny search:

– Brute-force.
Using one isogeny degree, move from Einit until reaching Epub.
Another technique of such kind consists in enumerating all the possible routes
from Einit, according to L, d and k restrictions (see 10.1), until reaching Epub.
Complexity of these attacks is estimated at O(n) isogeny computations.

– Meet-in-the-middle.
Let size of an isogeny star be n. When a star consists of one isogeny degree,
average route length is O(n). When a star consists of two isogeny degrees,
length of such route is O(

√
n), since a step of one degree corresponds to

some number of steps of the other one. When a star consists of m isogeny
degrees, the length of such route is Sm ≈ O(mn

1
m ). It’s not hard to notice,

that the function Sm(m) has its minimum O(log n), when m ≈ O(log n).
For the meet-in-the-middle attack, one selects m ≈ O(log n) degrees of
isogenies, satisfying the Elkies criterion. In this case, average length of a



route from Einit to Epub does not exceed Sm. One constructs all the routes
from Einit, not longer than Sm

2 , and stores them in a database. Then one
selects random routes with the same length criterion, applies them to Epub,
and looks for the result in the stored database. It should succeed with a high
probability, according to the birthday paradox. Complexity of the attack is
estimated at O(

√
n) isogeny computations.

– Method described in [14]. Its complexity is estimated at O( 4
√

p).

A supposition about hardness of breaking the cryptosystem with a quantum
computer relies on the following idea. Every isogeny computation at least includes
solving of the equation (11). To compute a chain of q isogenies, one should
consecutively solve these q equations, because of the equation parameter (j-
invariant) is changed with every step. So one can’t parallelize computations to
avoid q steps. It relates to a quantum computer as well. For instance, the Shor’s
algorithm for logarithm computation implies a black box, which implements the
group’s multiplication operator on a quantum computer. So one cant’t implement
the black box with polynomial complexity. It is also noticed in [10], that the
problem of breaking multivariate polynomial cryptosystem is hard for a quantum
computer.

So, the strength of the cryptosystem on isogenies of elliptic curves over Fp is
estimated at O(

√
n) ≈ O( 4

√
p). It is exponential from log p.

12 Cryptosystem Parameters Selection

The section chiefly discusses selection of an initial elliptic curve Einit, which
determines the isogeny star.

Some algorithms, e.g., the ElGamal digital signature, require computation
of isogeny cycle length, what comes to a class number computation for Dπ (see
theorem 3).

According to the corollary 1, for obtaining a prime class number, prime
discriminants should be used. Since modern algorithms compute a class number
with sub-exponential complexity [7], selection of discriminants having a large
prime class number is quite complicated.

In practice, a class number can be determined using analytical methods. In
particular, a good approximation can be achieved by the formula from [11]:

h(Dπ) ≈
√
|Dπ|

3, 14159...

P∏
p=2

p

p−
(

Dπ

p

) .

Product is over all the prime numbers up to some great prime P . Growth of P
increases accuracy of estimation. The exact value can be achieved by brute-force
search near the estimation.

The requirement of primality of #U (number of isogenous elliptic curves)
can be replaced by the requirement of existence of a large prime divisor. Then



cryptosystem strength will be estimated at O(
√

r), where r is the greatest prime
divisor of #U .

The method of cryptosystem parameters selection, which uses a large conductor
for the discriminant Dπ, is further discussed. According to the equation (10),
for obtaining a large prime divisor of a class number, one should choose a prime
conductor f and a discriminant D having a small class number, e.g., 1. In this
case

hDπ = hD

(
f −

(
D

f

))
.

If f = −D is prime, then
hDπ

= |D|hD.

Bilinearity of Weil pairing (9) determines a relation between an isogeny
degree and discrete logarithm in an extended field Fpm . Note that isogenous
curves have equal number of points. Therefore, Weil pairing is a well-defined
map between isogenous curves and one and the same field Fpm . Weil pairing
computation allows determination of an isogeny degree. In order to it can’t be
used for reducing cryptosystem strength, it should be uncomputable (e.g., when
m ≈ O(r)).

For the cryptosystem proposed in section 10.4, Einit and the initial point
Pinit should be chosen in such a way that the elliptic curve discrete logarithm

problem is hard. For isogeny degrees li with the property that #Einit

... li, one

should choose πi 6= 1. Otherwise points of order r
... li are mapped to points of

order r
li

.
For minimizing computational complexity of encryption, a number d of isogeny

degrees should equal O(log #U). In this case, a maximal number k of steps by
one isogeny degree does not exceed 2 (normally equals 1).

For an elliptic curve E(Fp), computational complexity of an l-degree isogeny
is O(l(log p)2) [9]. Therefore, small-degree isogenies are effectively computable.
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A Computation Example

Here is an example of cryptosystem proposed in section 10.4. You can also get
an example of cryptosystem 10.2 by leaving all the point operations out. For
cryptosystem implementation, the algorithms from section 6 were used.

A.1 Cryptosystem Parameters

Common parameters :

– F2038074743;
– Einit = (840697433, 1239823203), jinit = 938101947, T = −3891,−Dπ =

8137159091. The star size is #U = 55103, - prime. Pinit = (4, 621053388),
ord(Pinit) = #Einit(F2038074743) = 2038078635;

– d = 6;
– L = {3, 5, 7, 11, 13, 17};
– F = {2, 3, 2, 9, 10, 13};
– 0 ≤ ri ≤ 10.

Private key Rpriv = {1, 9, 5, 8, 6, 4}.
Public key Epub = (1849047379, 276869621), jpub = 1961855667. Ppub = (715302968, 227927300).

See computation of Epub and Ppub in table 1.



li step A B j X Y

3 1 5623338 1542326099 1184183258 735258627 1467464305

5 1 497969412 705106102 1984232860 493949346 454817148
2 928881180 1027131125 1861937474 645370727 940759816
3 1765734240 237516466 132956431 1502162866 1744063498
4 1902364985 1753730248 1360958896 669541058 1833068083
5 122819350 105454772 1483682133 1488158452 1410607222
6 414929164 417976065 2964552 1651467709 482890778
7 1432504470 316458305 1011356693 1230769732 1731963330
8 172982329 1532737507 213868140 546324352 43067472
9 1286997671 1821824507 1202857918 955414296 302107554

7 1 377485470 228798530 1061214014 68269357 1989452365
2 742522274 500072457 1295398768 1669790941 603030735
3 114269231 769856058 119913964 1880937108 29867989
4 1939589665 1432757346 476536912 1810604710 1290215508
5 857776181 845152502 1208772120 1279874638 2033873922

11 1 1150137508 1547533660 1283953029 1700025245 1634081966
2 1401380203 1833945391 1893235954 84799743 183834053
3 936943246 1119405533 588478707 984858414 1378736331
4 1306360627 930962919 805177668 1085468620 61178743
5 1265431763 842307568 1810888123 999994703 1908407076
6 1795689391 261144439 1106469866 182737432 1233837156
7 77599201 44132770 457404349 21348745 198235777
8 2005860466 1029014684 1352512039 99442406 1653884660

13 1 1543793819 407283806 1817291036 1344779982 1251338105
2 1081239924 526591467 779778495 292322478 1371605957
3 301443158 1462045327 7714248 1336529219 1955112215
4 2019266056 1428170059 728456393 1289680127 1920469797
5 350948593 1340883979 322013003 1119331956 1359922373
6 475151796 1822267465 148260912 497042363 47830495

17 1 485561054 373309690 776882232 926809325 904427639
2 1804825631 273902413 1596279356 943458281 1286926623
3 1661226518 357320951 1707571888 963365744 446877724
4 1849047379 276869621 1961855667 715302968 227927300

Table 1. Computation of (Epub, Ppub) = Rpriv(Einit, Pinit)



li step A B j X Y

3 1 1208990544 595394248 869012729 190838460 1411383263
2 1912521400 1688052158 964482545 1984577424 1437887221

5 1 496835268 1046532783 1247985431 899145936 1074739562
2 88714467 448066583 193601777 353587638 1623558700
3 1139324291 632896417 613835304 536102285 1869175128
4 1684399050 595934546 952071356 385673120 398483212
5 1535275944 584411538 731463788 471174314 1421294144
6 426373764 298831248 987389217 1756561232 892905249
7 1723254887 1809136854 1529350954 441077441 845510273

7 1 1883357505 1750748597 570602746 652546333 684954054
2 1984860587 193084215 1598368280 487812879 454302397
3 338351524 1285648029 1422624226 538375825 30722397

13 1 2027749523 367621897 1887486367 1041151951 1564663643
2 1631964080 1321385215 204166526 629851264 1979857008

17 1 1502644223 1000537226 559761086 1995641973 327234176
2 1938579915 966513714 187324713 587199285 298351326
3 1380538716 1734438025 1879141590 263981249 409702314
4 1246656604 1190541655 335103065 1296162698 1617646414
5 1833569923 1928024282 1415862106 1087276245 1388984083

Table 2. Computation of (Eenc, Penc) = Renc(Epub, Ppub)

A.2 Encryption

Let the cleartext be m = 1234567890.

1. Renc = {2, 7, 3, 0, 2, 5}.
2. Eenc = (1833569923, 1928024282), jenc = 1415862106. Penc = (1087276245, 1388984083).

See the computation of Eenc and Penc in table 2.
3. s = 778556510 ≡ 1234567890 · 1087276245 (mod 2038074743).

Or, without point mapping, s = 52662893 ≡ 1234567890·1415862106 (mod 2038074743).
4. Eadd = (676584098, 780085609), jadd = 2025917762. Padd = (177821233, 1165194771).

See the computation of Eadd and Padd in table 3.

A.3 Decryption

1. Eenc = (1833569923, 1928024282), jenc = 1415862106. Penc = (1087276245, 1388984083).
See the computation of Eenc and Penc in table 4.

2. m = 1234567890 ≡ 778556510
1087276245

(mod 2038074743).

Or, without point mapping, m = 1234567890 ≡ 52662893
1415862106

(mod 2038074743).



li step A B j X Y

3 1 5623338 1542326099 1184183258 735258627 1467464305
2 973906739 926996936 1423331616 1012656296 702593547

5 1 1485351990 1044206814 1920984729 1800183561 27610117
2 557823387 1411529446 171171721 1991705438 1149200471
3 1246587758 1820408125 1025448285 1815730124 850742163
4 1304525980 891801068 1308456267 868039412 254751298
5 1350957780 476165907 932243745 1876161440 753754367
6 469172815 1174131630 69732628 631683592 1885710283
7 963865851 1261117933 548896667 1227099569 2020086185

7 1 218338709 273241892 74905039 1144498937 804626961
2 1601507492 1758313701 1165583981 1200163279 1238591775
3 2036358308 119655713 726199613 2033866541 1257587595

13 1 535778255 1463139231 1786982245 1985838610 746457600
2 560530122 1895982094 542575216 401751667 613273271

17 1 501928978 355829735 1030684883 785373941 796911410
2 590570350 1072912890 251179082 1740362535 462965839
3 1890451422 917411489 496953163 668146359 124231506
4 1550872108 2022265167 940617213 214814991 1111122308
5 676584098 780085609 2025917762 177821233 1165194771

Table 3. Computation of (Eadd, Padd) = Renc(Einit, Pinit)



li step A B j X Y

3 1 1936481645 1776242581 630090893 1660383176 1744476876

5 1 1430470609 40582855 1028483894 1898519995 372738423
2 1148853434 1127149144 224623633 526627529 1697378396
3 405336297 1972599311 1560624970 941978132 796336228
4 1705910649 836961951 1345993982 1714476180 263372979
5 650080839 38713955 641432302 419385819 1490749037
6 4876965 1824767940 1796971660 960295277 444262786
7 1700917220 1102900608 1549029437 853368709 1534148412
8 80129380 895682551 604738146 401825005 1809855326
9 333341281 1507034176 200892776 857256699 151494563

7 1 386817178 986873756 1596824085 1089063290 1200338454
2 1163265600 1652382504 247666447 35486911 140709888
3 1327348544 701069988 1525548901 1097445415 1244304879
4 1872769466 876542223 1874683657 1839410064 1192237369
5 929691044 10840617 85182430 62731743 1951339018

11 1 1379497730 338474024 612833687 873082374 168209298
2 1383475737 1031214117 1721122710 215248691 819131015
3 2007316327 1586858652 984201838 1032181901 716372884
4 1092972726 1374833862 261894426 1895020752 1966433055
5 463150383 1750328449 1685934326 1419219244 1706099551
6 43375383 1961994791 927909690 1747038641 243009056
7 1758645710 233863216 405123042 255784322 1288324737
8 321948224 271622647 1996614972 1783240460 1060098696

13 1 1669193482 1770622733 1604030238 1598825265 983125723
2 2026329675 917676361 579979385 551478229 1652437045
3 1670631652 285103639 1654287755 1315332893 1330536855
4 1852486988 1795498441 567185355 1304087342 1820840786
5 25550017 1567778343 1082338500 638226480 1099370676
6 1502644223 1000537226 559761086 1995641973 327234176

17 1 1938579915 966513714 187324713 587199285 298351326
2 1380538716 1734438025 1879141590 263981249 409702314
3 1246656604 1190541655 335103065 1296162698 1617646414
4 1833569923 1928024282 1415862106 1087276245 1388984083

Table 4. Computation of (Eenc, Penc) = Rpriv(Eadd, Padd)


