
Perturbing and Protecting a Traceable Block Cipher
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Abstract

At the Asiacrypt 2003 conference Billet and Gilbert introduce a
block cipher, which, to quote them, has the following paradoxical trace-
ability properties: it is computationally easy to derive many equivalent
distinct descriptions of the same instance of the block cipher; but it is
computationally difficult, given one or even up to k of them, to recover
the so-called meta-key from which they were derived, or to find any
additional equivalent description, or more generally to forge any new
untraceable description of the same instance of the block cipher.

Their construction relies on the Isomorphism of Polynomials (IP)
problem. We here show how to strengthen this construction against
algebraic attacks by concealing the underlying IP problems. Our mod-
ification is such that our description of the block cipher now does not
give the expected results all the time and parallel executions are used
to obtain the correct value.

Keywords. Traitor tracing, Isomorphism of Polynomials (IP) prob-
lem, perturbation.

1 Introduction

Traitor tracing was first introduced by B. Chor, A. Fiat and M. Naor [4].
This concept helps to fight against illegal distribution of cryptographic keys.
Namely, in a system, each legitimate user comes with some keys. We sup-
pose that a hacker can somehow have access to them, maybe because some
legitimate users are traitors. These keys can then be duplicated, or new keys
can be created by a pirate, computed from legitimate ones. Traitor tracing
enables an authority to identify one or all of the users in possession of the
keys at the origin of the pirated ones.

Often traitor tracing is employed in a broadcast network. An encrypted
signal is broadcasted and each legitimate user has the keys needed to decrypt
it.
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Today, many traitor tracing schemes are based on some key distribution
and management techniques; the distribution of the keys is dependent on
some combinatorial construction. A novelty comes in 1999 with D. Boneh
and M. Franklin [3] (see also [10]) where public key cryptosystems are con-
sidered.

At the Asiacrypt 2003 conference, Billet and Gilbert [2] propose a traitor
tracing scheme taking place at a different level as the block cipher which al-
lows the decryption of the signal, also permits the traitor tracing functional-
ity. To this aim, a block cipher which have many descriptions is introduced.
All descriptions give – of course – the same result. Their idea relies on the
Isomorphism of Polynomials (IP) trapdoor [12], based on algebraic problems
for multivariate polynomials over finite fields. It was supposed that from one
or many descriptions of this block cipher it is not possible to create new ones
both allowing to decrypt the broadcasted signal and preventing the author-
ity to trace back pirates. However, recently, Faugère and Perret [9] have
presented a new algorithm for solving IP-like instances and have achieved
to solve a challenge proposed in [2].

Following the internal modifications of the Matsumoto-Imai cryptosys-
tem from Ding [6], we add perturbations to Billet and Gilbert’s traceable
block cipher. Doing so, we want to protect the trapdoors from direct alge-
braic attacks (as for instance the recent algorithms of [7] and [9]), i.e. we
want to alter the formal description of each round which forms the block
cipher. However, here, we must still keep the traceable property with regard
to the original block cipher. To manage this constraint, the pertubations are
chosen in a particular way and we run in parallel, for each round, multiple
descriptions of this round. None of them always gives the right result but
we can show that a majority of these descriptions actually does, leading us
to the expected value.

The paper is organized as follows. In Sect. 2, we recall a description of
the traceable block cipher given by Billet and Gilbert. In Sect. 3, we give
the principles of our modification of this traceable block cipher. In Sect. 4,
we introduce the polynomials and techniques we use to fullfil our goal. In
Sect. 5, we give practical implementations of our ideas. Starting from the
examples given in [2], we describe their modified versions. We also show
how to trace back pirates with our modified traceable block cipher.
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2 A traceable block cipher

The traceable block cipher of Billet and Gilbert is made of a succession of
rounds. Each round is given by a system of equations in a finite field F.
The authority possesses a meta-key which allows it to compute the secret
representations of the block cipher. The public representations consist of
the suitable systems of polynomials Gi,j .

The left part of Figure 1 illustrates the secret authority description.
Each round is made of a non-linear part preceded and followed by a linear
transformation.

The invertible linear transformations Li,j depend on user j, the same
is true for the order in which non-linear parts occur in the block cipher.
We call σj this permutation of the rounds. Thus, for user j, the system
of polynomials, giving his public representation of the rounds, is uniquely
determined by the linear parts of the round Li,j and σj . It is computed
from the secret representation by the authority and lies in the right part of
Figure 1. For user j, we denote them by G1,j , . . . , Gr,j .
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Figure 1: A traceable block cipher
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Here,

• r is the number of rounds,

• n stands for the number of variables,

• s, t and the Li,j are linear,

• the EΘσj(i)
are non-linear,

• the polynomials Pi,1, . . . , Pi,n are homogeneous of degree d.

Remark 1 The linear transformations s and t are shared by all the users
of the system.

What made this block cipher traceable is the property that EΘi1
◦EΘi2

=
EΘi2

◦ EΘi1
, i.e. the non-linear parts commute, always leading to the same

function FK = t ◦ EΘσj(r)
◦ · · · ◦ EΘσj(1)

◦ s independently of the order σj

in which the rounds are given. The permutation σj on the order of the
rounds is unique for each user and allows the authority to recover him. More
precisely, to this aim of finding a user from his block cipher description, first,
the authority computes in turn, for each i ∈ {1, . . . , r},

G1,j ◦ s−1 ◦ EΘi

−1, (1)

guessing the right value i by testing the simplicity of the result, i.e. by
estimating the degree and the number of monomials. When σj(1) has been
found, the authority continues its procedure with G2,j◦G1,j◦s−1◦EΘσj (1)

−1◦

EΘi

−1, for i 6= σj(1), trying to find back σj(2), and so on, until the permu-
tation σj is entirely recovered, see [2] for details.

3 Our protection in a nutshell

We write 0̃ for a polynomial which often vanishes and P̃ = P + 0̃. By the
way, S̃ stands for a system S of equations where some substitutions are
made, replacing some polynomials P by P̃ .

Example 1 Over GF (q)[X], we have 0̃ = Xq−1 − 1.
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Our idea is to simply replace Gi,j by G̃i,j, for i = 1, . . . , r. This way, the
IP problem structure of each round are made less accessible to an attacker.

The construction where only one description of a round is modified is
mainly given for pedagogical purpose and as an introduction to Sect. 5.2.
Actually, it conducts to wrong results.

In order to have a function which gives us always the correct result, we
have to modify several instances of the block cipher. More precisely, we
replace the system Gi,j by 4 concurrent systems G̃i,j where we can prove
that two of them lead to what is expected. A majority vote allows to decide
which result we have to retain. Note that this protection of one round can
be seen as a protection of one IP-like instance, and this way, it could be
applied to some other cryptographic schemes based upon IP.

4 Parasitizing the system with 0̃-polynomials

Example 1 is not sufficient because it does not allow enough diversity to stay
hidden from an attacker. In this section, we introduce new 0̃-polynomials
to this aim. We proceed following two steps.

First, we introduce a well-known class of polynomials, the q0-polynomials.
With them, we are able to compute polynomials which vanish on a predeter-
mined set of points. However, as q0-polynomials are univariate and strongly
related to vector spaces, next, we have to compose them with random mul-
tivariate polynomials.

4.1 Linearized polynomials [11]

Definition 1 For q0 a power of 2 such that q0 | q, a q0-polynomial over
F = GF (q) is a polynomial of the form L(X) =

∑e
i=0 aiX

q0
i

, with e ∈ N

and (a0, . . . , ae) ∈ Fe+1.

Note that a q0-polynomial L of degree qe
0 has at most e + 1 terms and a

great number of roots in its splitting field. Indeed, if a0 6= 0, we see that L
has only simple roots, so it has qe

0 zeroes in F.

Example 2 Let Tr : x 7→
∑15

i=0 x2i

be the trace of GF (216) over GF (2) and
α ∈ GF (216), then L = Tr(α.X) is a 2-polynomial with 16 terms and 215

roots over GF (216).

Proposition 1 The set of a q0-polynomial roots is a linear subspace of its
splitting field, i.e. L(X) =

∑e
i=0 aiX

q0
i

=
∏

α∈V (X − α)κ for V a linear
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subspace and some κ ≥ 1. In fact, for a q0-polynomial with simple roots,
κ = 1.

To count the number of q0-polynomials with qe
0 roots of order 1, it suffices

to count the number of GF (q0)-subspaces of GF (q) of dimension e:

Corollary 1 For q = qm
0 , the number of q0-polynomials with qe

0 roots of
order 1 is equal to:

G(q0,m, e) =
(qm

0 − 1) · · · (qm−e+1
0 − 1)

(qe
0 − 1) · · · (q0 − 1)

.

Due to the finite field structure, it is clear that a q0-polynomial has
at most 2m−1 roots, so, if we want to construct 0̃-polynomials with more
roots, we need to multiply several q0-polynomials together. But, there would
be some intersection among the roots of different polynomials. Hence, to
increase the number of roots more efficiently, we can combine some affine
q0-polynomials which are the relevant construction of q0-polynomials with
an affine set of roots.

Definition 2 For q0 a power of 2 such that q0 | q, an affine q0-polynomial
over F = GF (q) is a polynomial of the form A(X) = L(X)−α where α ∈ F

and L is a q0-polynomial.

4.2 Multivariate lifting

In order to tranform a q0-polynomial into a multivariate polynomial, we
compose it naturally with a multivariate polynomial.

Let Q be an affine q0-polynomial over GF (qm
0 ) which equals zero over

the subspace U of dimension e, we construct a multivariate version of Q
by choosing a multivariate polynomial f ∈ GF (qm

0 )[X1, . . . , Xnf
] and com-

puting Qf = Q(f(X1, . . . , Xnf
)). In our context, two conditions have to be

considered :

1. the resulting polynomial must have at least the same proportion 1
2m−e

of roots as Q,

2. Qf should not have a large number of terms.

Hence, we restrict the choice for f so as to respect the previous condi-
tions. In practice, we take a random f with a small number of terms and
we check if at least 1/2m−e points of GF (qm

0 )nf have an image following f
in U . So the polynomial Qf will have more than 2m.nf /2m−e roots.
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Example 3 If Q = Tr GF (24)/GF (2)(X), Q has 8 roots in GF (24). Then the
polynomial f(X1, X2) = X1 + X1.X2 of GF (24)[X1, X2] gives a polynomial
Qf with at least 32 roots in GF (24)2.

Eventually, this method allows to obtain a multivariate polynomial and
also to randomize the construction by breaking its linear structure.

5 Some practical considerations

In Sect. 5 of [2], the authors provide two examples of a system for 106 users.
In the first one, the base field is GF (216) and there are 5 variables. The

block cipher has 32 rounds and each equation is homogeneous of degree 4,
hence each round has at most 350 monomials, and there is at most 11200
monomials for the whole system. We will refer to this example as the Case
1.

In the second one, which we call Case 2, the base field is GF (29), there
are 19 variables, the block cipher has 33 rounds and each equation is homo-
geneous of degree 3. So each round and the system have, respectively, at
most 25270 and 833910 monomials.

5.1 Protecting one round

In this section, we introduce a modified system leading to the correct result
more than half time. In particular, we explain the interferences of our
parasitic 0̃ with the original public user representation; we show how we
can choose some component H of 0̃ to prevent an attacker to retrieve the
original system.

Let 0̃ = L(f(X1, . . . , Xnf
))H(X1, . . . , Xn) where

• L is a 2-polynomial with 2m−1 roots,

• f is a random polynomial of degree df in 2 ≤ nf ≤ n variables and
tf ≥ 2 terms such that 1/2 of its values are roots of L,

• H is a random polynomial in n variables over F with t terms.

Proposition 2 The polynomial 0̃ has about N1(m, t, tf ) terms and at least
1/2 of roots where

N(m, t, tf ) = m × t × tf .
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We add a parasitic 0̃ to every equation of the round, taking the same
2-polynomial L for all equations of a given round but with different random
polynomials H. This method allows the construction of a round function
G̃i,j that gives the correct result with a probability greater than 1/2.

We introduce the polynomial H to generate enough monomials of degree
d to avoid the capability of recovering P , a homogeneous multivariate poly-
nomial of degree d, from the knowledge of P +0̃. In fact, starting from P +0̃,
one can immediately compute the polynomial 0̃ without its monomials of
degree d, then knowing the form (i.e. designed as above) of 0̃, one can try
the two following ideas:

1. Guess the unknown monomials and their coefficients among all of the
different possibilities, in order to obtain a polynomial with the same
specific structure as 0̃. There are Mn,d =

(n+d−1
d

)
monomials of de-

gree d in n variables, so even if one guesses the number k of missing
monomials, there would be

(Mn,d

k

)
qk cases.

2. Analyse the terms of P + 0̃ to guess the missing monomials, then, by
deducing the generic form of H, try to find the missing coefficients
by solving an overdefined system of equations, at least quadratic, in
t + l variables over F (where l is the number of variables coming from
the unknown 2-polynomial of 0̃ and from f). This kind of problem
has been extensively studied these last years (see [5], [8] for example),
and in general, one can not provide attacks in less than q(t+l)/2, so we
should consider t such that qt ≥ 2160.

The choice of f and H is made in the following way: we choose f with
at least one term of degree 1 in X1 and if I is the set of L(X1) exponents,
then we draw a polynomial H as

H(X1, . . . , Xn) =
∑

i∈I∩{1,...,2m−1}

hi(X1, . . . , Xn)X1
2m−i.df ,

where the hi ∈ F[X1, . . . , Xn] are homogeneous of degree d − 1. For each i,
let ti be the number of terms of hi, then H has nearly t =

∑
i ti terms and

the product L(f(X1, . . . , Xnf
))H(X1, . . . , Xn) has at least t monomials of

degree d. Hence, the number of monomials k which are masking the original
polynomial P is greater than t, so a choice of t, such that qt ≥ 2160 to avoid
the second strategy above, allows also to thwart the first idea.

Furthermore, the number of choices for f and H is very large and so the
amount of ways to interfere an equation is large enough.

Let us apply our strategy to the two practical examples of [2]:
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• Case 1: We choose L, f , H such that tf = 2 and t = 10, as described
above. This implies N(16, 10, 2) = 320 terms more for each equation,

and thus 1600 terms more for one round G̃i,j . This represents nearly
6 times the size of the original round.

• Case 2: For tf = 3 and t = 18 such that qt ≥ 2160, we have N(9, 18, 3) =

486 more terms for each equation. The resulting G̃i,j has hence around
1,4 times the size of Gi,j .

Remark 2 Roughly counting, there are more than Λ = G(2,m,m − 1) ×( df

tf−1

)
×2m

t+tf
different ways to interfere an equation with such polynomials

0̃. In case 1, Λ ≥ 2208, and in case 2, Λ ≥ 2189.

5.2 Getting the correct value

For a given round Gi,j, we use four parallel modified descriptions G̃i,j with
correlated 0̃-polynomials to recover the expected result.

To achieve this goal, we partition F and construct 0̃-polynomials accord-
ingly. As shown in Sect. 5.1, it is possible to cover more than half of F.
So, we partition F twice into two sets of same size F = E1 ∪ E1 = E2 ∪ E2

and we construct 0̃1, 0̃1, 0̃2 and 0̃2 such that the polynomial 0̃κ (resp. 0̃κ)
vanishes over Eκ (resp. over Eκ), κ = 1 or 2.

With this construction, for any input value, there is always two 0̃-
polynomials which vanish and so at least two descriptions G̃i,j which give
the expected result. Furthermore, as the constuction of an 0̃-polynomial
is partially random (see Sect. 5.1), the non-zero values of the two other
0̃-polynomials look like random ones. Hence, with an overwhelming proba-
bility, the two other descriptions take 2 different results and so we can easily
decide which value is correct according to a majority decision.

5.3 The final construction

Our new description of the entire public representation consists thus in mod-
ifying each round independently as described in Sect. 5.2. We obtain four
parallel systems, with a majority vote at each level to decide which value
has to be sent to the next round. See Fig. 2 for the resulting description.

Then, the size of this description according to the two practical examples
of [2] is:

• Case 1: For the same choice of parameters as in Sec. 5.1, we have
1600 terms more for one round, i.e at most 1950 terms for each round.
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Figure 2: New public representation

Thus, the final function (with 4 parallel systems of 32 rounds) contains
around 22 times more terms than the original description.

• Case 2: Here, each equation contains at most 1816 monomials which
leads to a final description with nearly 6 times the size of the original
representation.
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5.4 Tracing procedure

Following [1], the authority can trace back pirates by looking at correlations
between differential characteristics of the input and differential characteris-
tics of the output. Thus, such a procedure relies only on the evaluation of
rounds at given input contrary to the procedure described in [2] which is
based on polynomials compositions.

This procedure, via evaluations, is still compatible with our new descrip-
tion and can be used by the authority to trace back the traitors.

Acknowledgments. The authors thank gratefully Stéphanie Alt and Rey-
nald Lercier for their comments on the tracing procedure.
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