Secure Key-Updating for Lazy Revocation

Michael Backes Christian Cachin Alina Optea

IBM Zurich Research Laboratory
CH-8803 Rischlikon, Switzerland
{mbc,cca,opr }@zurich.ibm.com

September 25, 2005

Abstract

We consider the problem of efficient key management and user revocation in cryptographic file systems
that allow shared access to files. A performance-efficient solution to user revocation in such systems is
lazy revocation, a method that delays the re-encryption of a file until the next write to that file. We for-
malize the notion of key-updating schemes for lazy revocation, an abstraction to manage cryptographic
keys in file systems with lazy revocation, and give a security definition for such schemes. We give two
composition methods that combine two secure key-updating schemes into a new secure scheme that
permits a larger number of user revocations. We prove the security of two slightly modified existing
constructions and propose a novel binary tree construction that is also provable secure in our model.
Finally, we give a systematic analysis of the computational and communication complexity of the three
constructions and show that the novel construction improves the previously known constructions.

1 Introduction

The recent trend of storing large amounts of data on high-speed, dedicated storage-area networks (SANS)
stimulates flexible methods for information sharing, but also raises new security concerns. As the networked

storage devices are subject to attacks, protecting the confidentiality of stored data is highly desirable in such
an environment. Several cryptographic file systems have been designed for this purpose [14, 26, 21, 15], but
practical solutions for efficient key management and user revocation still need to be developed further.

We consider cryptographic file systems that allow shared access to stored information and that use
untrusted storage devices. In such systems, we can aggregate files into sets such that access permissions anc
ownership are managed at the level of these sets. The users who have access to the files in a set form a group,
managed by the owner of the files, or gm@up owner Initially, the same cryptographic key can be used to
encrypt all files in a set, but upon revocation of a user from the group, the key needs to be changed to prevent
access of revoked users to the files. The group owner generates and distributes this new key to the users in
the group. There are two options for handling user revocatamive and lazy revocation, which differ
in the way that users are revoked from a group. With active revocation, all files in a set are immediately
re-encrypted with the new encryption key. The amount of work caused by a single revocation with this
method might, however, be prohibitive for large sets of files. With the alternative method of lazy revocation,
re-encryption of a file is delayed until the next write to that file and, thus, users do not experience disruptions

*Permanent address: Computer Science Department, Carnegie Mellon University, Pittsburgh, USAalbBa@lics.cmu.
edu

in the operation of the file system caused by the immediate re-encryption of all files protected by the same
revoked key. In systems adopting lazy revocation, the files in a set might be encrypted with different keys.
Storing and distributing these keys becomes more difficult than in systems using active revocation.

In this paper, we address the problem of efficient key management in cryptographic file systems with
lazy revocation. An immediate solution to this problem, adopted by the first cryptographic file systems
using delayed re-encryption [14], is to store all keys for the files in a set at the group owner. However,
we are interested in more efficient methods, in which the number of stored keys is not proportional to the
number of revocations. We formalize the notionkefy-updating schemes for lazy revocatamd give a
rigorous security definition. In our model,cgnter(e.g., the group owner) initially generates some state
information, which takes the role of the master secret key. The center state is updated at every revocation.
We call the period of time between two revocatiornteae interval Upon a user request, the center uses its
current local state to derivewser keyand gives that to the user. From the user key of some time interval,

a user must be able to extract the key for any previous time interval efficiently. Security for key-updating
schemes requires that any polynomial-time adversary with access to the user key for a particular time interval
does not obtain any information about the keys for future time intervals. The keys generated by our key-
updating schemes can be used with a symmetric encryption algorithm to encrypt files for confidentiality or
with a message-authentication code to authenticate files for integrity protection.

We describe two generic composition methods that combine two secure key updating schemes into a
new scheme in which the number of time intervals is either the sum or the product of the number of time
intervals of the initial schemes. Additionally, we investigate three constructions of key-updating schemes.
The first scheme uses a chain of pseudorandom generator applications and is related to existing methods
using one-way hash chains. It has constant update cost for the center, but the complexity of the user-key
derivation is linear in the total number of time intervals. The second scheme can be based on arbitrary
trapdoor permutations and generalizes the key rotation construction of the Plutus file system [21]. It has
constant update and user-key derivation times, but the update algorithm uses a relatively expensive public-
key operation. These two constructions require that the total numbgtime intervals is polynomial in the
security parameter. Our third scheme uses a novel construction. It relies on a tree to derive the keys at the
leaves from the master key at the root. The tree can be seen as resulting from the iterative application of the
additive composition method and supports a practically unbounded number of time intervals. The binary-
tree construction balances the tradeoff between the center-state update and user-key derivation algorithms
(both of them have logarithmic complexity i), at the expense of increasing the sizes of the user key and
center state by a logarithmic factorin

The rest of the paper is organized as follows. In Section 2 we give the definition of security for key-
updating schemes. In Section 3, we introduce the additive and multiplicative composition methods for secure
key-updating schemes. The three constructions and proofs for their security are presented in Section 4. A
systematic analysis of the computational and communication complexities of the three constructions and a
comparison with related work are given in Sections 5 and 6, respectively.

2 Definitions

2.1 Key-Updating Schemes

In our model, we divide time into intervals, not necessarily of fixed length, and each time interval is associ-
ated with a new key that can be used in a symmetric-key cryptographic algorithm. In a key-updating scheme,
the center generates initial state information that is updated at each time interval, and from which the center
can derive a user key. The user key for intetvpermits a user to derive the keys of previous time intervals

(k; for ¢ < t), but it should not give any information about keys of future time intervigl$ar i > ¢).

We formalize key-updating schemes using the approach of modern cryptography and denote the security
parameter by.. For simplicity, we assume that all the keys are bit strings of lergffihe number of time
intervals and the security parameter are given as input to the initialization algorithm.

Definition 1 (Key-Updating Schemes).A key-updating scheme consists of four deterministic polynomial
time algorithmsKU = (Init, Update, Derive, Extract) with the following properties:

- The initialization algorithm]nit, takes as input theecurity parametet”, the number of time inter-
valsT and arandom seed € {0, 1}(*) for a polynomiall(x), and outputs a bit stringy, called the
initial centerstate

- The key update algorithnilpdate, takes as input the curretiine intervalt, the current centestates;,
and outputs the centstateS; 1 for the next time interval.

- The user key derivation algorithrerive, is given as input dme intervalt and the centestateS;,
and outputs theser keyM;. The user key can be used to derive all kkyfor 1 < i < ¢.

- The key extraction algorithnkxtract, is executed by the user and takes as ingirha intervalt, the
user keyM; for intervalt as received from the center, anthaget time interval with 1 < ¢ < t. The
algorithm outputs th&eyk; for intervalsi.

2.2 Security of Key-Updating Schemes

The definition of security for key-updating schemes requires that a polynomial-time adversary with access
to the user key for a time intervalis not able to derive any information about the keys for the next time
interval. Formally, consider a probabilistic polynomial-time adverséry- (A, Ag) that participates in

the following experiment:

Initialization: The initial center state is generated with thi algorithm.

Key updating: The adversary adaptively picks a time intervyalich thad < ¢t < T—1 as follows. Starting
witht =0,1,..., algorithm.4;, is given the user keya/, for all consecutive time intervals unti;,
decides to outpuitop or t becomes equal t& — 1. We require that4;,, a probabilistic polynomial-
time algorithm, outputstop at least once before haltingl;, also outputs some additional information
z € {0,1}* that is given as input to algorithmdg.

Challenge: A challenge for the adversary is generated, which is either the key for time intesval
generated with th&pdate, Derive andExtract algorithms, or a random bit string of length

Guess: Ag takes the challenge andas inputs and outputs a Ibit

The key-updating scheme is secure if the advantage of the adversary of distinguishing between the properly
generated key for time interva+ 1 and the random key is only negligibly larger thén More formally,
the definition of a secure key-updating scheme is the following:

Definition 2 (Security of Key-Updating Schemes).Let KU = (Init, Update, Derive, Extract) be a key-
updating scheme and a polynomial-time adversary algorithm that participates in one of the two experi-
ments defined in Figure 1. The advantage of the adverdary(A;,, Ag) for the key-updating schemeU
is defined as

AdviiH(A) = ‘Pr[Expﬁk&:}\(l’“,T) =1]- Pr[ExpSKkljl;g(l",T) =1] ’

Expiia (1™, T)

So « Init(17,T)

t—0

(d,z) — Au(t, L, 1)

while(d # stop) and (t < T — 1)
t—t+1
Sy « Update(t — 1, .5:-1)
My «— Derive(t, St)
(d, z) «— Au(t, My, z)

St+1 — Update t, St)

kt+1 «— Extract(t + 1, Mt+1)

Expicya (1, 7)

So «— Init(1",T)

t—0

(d,z) — Au(t, L, 1)

while(d # stop) and (t < T — 1)
t—t+1
St «— Update(t — 1, S:—1)
My «— Derive(t, St)
(d, z) — Aul(t, My, z)

ki1 —r {0,1}"

b— Ag(kit1,2)

return b

(

M1 < Derive(t + 1, Sey1)
(
z)

b— Ag(kit1,
return b

Figure 1: Experiments defining the security of key-updating schemes.

Without loss of generality, we can relate the success probability of advessafyistinguishing between
the two experiments and its advantage as
1

[1 + Adv Sk“(A)]. @)

Pr[A succeeds= - [Pr[ExpszJ'A 0]+ Pr[Expiya = 1]]

The maximum advantage of all probabilistic polynomial-time adversaries is denoted

AdviEt = maX{Adeku(A)}.
The key-updating schem€U is secureif there exists a negligible functionsuch thatAdvyy} = €(x).

Remark. The security notion we have defined is equivalent to a seemingly stronger security definition, in
which the adversary can choose the challenge time intérwaith the restriction that* is greater than the

time interval at which the adversary outpstsp and thatt* is polynomial in the security parameter. This
second security definition guarantees, intuitively, that the adversary is not gaining any information about the
keys of any future time intervals after it outputsp.

3 Composition of Key-Updating Schemes

Let KU; = (Inity, Update;, Derive;, Extract;) andKUy = (Inity, Update,, Derives, Extracty) be two se-
cure key-updating schemes using the same security paramnettr 77 andT; time intervals, respectively.
In this section, we show how to combine the two schemes into a secure key-updating &dhem@nit,
Update, Derive, Extract), which is either the additive or multiplicative composition of the two schemes with
T =T, + Ty, andT = Ty - T, time intervals, respectively. Similar generic composition methods have been
given previously for forward-secure signature schemes [24].

For simplicity, we assume the length of the random seed ifnflh@lgorithm of the schemkU to bex
for both composition methods. Lét : {0,1}* — {0,1}!1(®)+(%) pe a pseudorandom generator; it can be
used to expand a random seed of lengthto two random bit strings of length(x) andlz(k), respectively,
as needed famit; andinity. We writeG(s) = G1(s)||Ga(s) with |G1(s)| = l1(x) and|Ga(s)| = l2(k) for
s €{0,1}".

Init(1%,T, s)
S(% — |nit1(1H,Tl,G1(S))
Sg — |nit2(1H,TQ,G2(S))
return (S§, S2)

Derive(t, (S}, S?))
ift <1y
M} — Derive;(t,S})
M? — 1
else
Mtl — Derivel(Tl, Stl)
M7 — Derivey(t — T4, 5?)
return(M}, M?)

Update(t, (S, S7))

Extract(t, (M}, M?),14)

ift<Ty ifi >1T
S}y < Update, (¢, 5}) k; « Extracta(t — Th, M2 i —T1)
S7, — S? else
else ift <1y
Sty < S} k; « Extracty (t, M}, i)
S?., < Update,(t — Ty, 57) else
return (St 1, SEq) k; «— Extracty (11, M}, 1)
return k;

Figure 2: The additive composition 8fU; andKU,.

3.1 Additive Composition

The additive composition of two key-updating schemes uses the keys generated by the first scheme for the
first T time intervals and the keys generated by the second scheme for the subsgqtiimet intervals.

The user key for the first; intervals inKU is the same as that of sched&); for the same interval. For

an intervalt greater thariy, the user key includes both the user key for intetvalT; of schemekKU,, and

the user key for intervaly of schemeKU,. The details of the additive composition method are described in
Figure 2. The security of the composition operation is analyzed in the following theorem.

Theorem 1. Suppose thatU; = (Init;, Update;, Derive;, Extract;) andKUy = (Inita, Update,, Derives,
Extracty) are two secure key-updating schemes Withand 75 time intervals, respectively, and thétis
a pseudorandom generator as above. Theh = (Init, Update, Derive, Extract) described in Figure 2
denoted aKU; & KU, is a secure key-updating scheme viijh+ 75 time intervals.

Proof. Let A = (Ay,.Ag) be a polynomial-time adversary f&fU. We build two adversary algorithms
Al = (A}, A}) and A% = (A7, A2%) for KU andKU,, respectively.

Construction of A!. A! simulates the environment fot, by giving to.4;, at each iteration the user key
M} thatAi, receives from the center. i aborts orA;, does not outputtop until time interval7; — 1, then
Al outputs L and aborts. Otherwised}, outputsstop at the same time interval ady,. In the challenge
phase,Aé receives as input a challenge kigy ; and gives that todg. Aé outputs the same bit a4g. The
success probability oft! for b € {0, 1} is

Pr[Expfia = b= Pr[ExpRh = b|B1 1 B, @

whereE is the event thatd;, outputsstop at a time interval strictly less thdh, and E» the event thatd
does not distinguish the simulation done 4y from the protocol execution. The only difference between
the simulation and the protocol execution is that the initial stat&fdy is a random seed in the simulation
and it is generated using a pseudorandom genetatothe protocol. IfA4 distinguishes the simulation from
the protocol, then a distinguisher algorithithfor the pseudorandom generator with advantage‘gg(D)

can be constructed. By the definition B, we havePr[E;] = AdvE;&(D).

5

Construction of A2. .A? simulates the environment fof: it first picks a random seedof lengthx and
generates frond; (s) an instance of the schenkdJ;. For the firstT} iterations of 4y, A? gives to.Ay
the user keys generated from If A aborts orA;, stops at a time interval less thdh, then .42 aborts
the simulation. For the nexf, time interval,.A? feeds.A;, the user keys received from the center. A
outputsstop at a time intervat > T3, then.A?, outputsstop at time intervak — T3. In the challenge phase,
Aé receives a challengk,_r, 41, gives this challenge tolg and outputs wha#g outputs. The success
probability of A% for b € {0,1} is

Pr[Expi e = b= Pr[Expii Tt = b|E1 N Ea). ®3)
We can relate the success probabilitiesiptd!, and.A? for b € {0, 1} as follows:

Pr[Expﬁkljl;Z =b] = Pr[ExpszJ;\ =bN Ey|+ Pr[ExpszJk =bN By
Pr[Expig 4 = bN Ey N Ey]+ Pr[ExpRy s =bN BN By |+

r[Expszljl-A =bN Ey]
r[ExpRy 4 = bl E1 N Eo]Pr[Ey N By +
r[Expszljl-A =b|Ea N El]Pr [Eg N E1]+ Pr [EQ]

Il IA
U T 9o

r Expszljllf’Al = b|Pr[Ey N Ea|+ Pr[ExpRs’ye = b]Pr[Ey N Ey |+
r[E] (4)
< Pr[ExpRylun = b]+ PrExpislse = b]+ Pr[E],

g

where (4) follows from (2) and (3). Finally, we can infer from (1)
AdVEES (A) < AdviET (A1) + AdvE, (A%) + AdvEE(D).

SinceAdvi) (A'), Adviy), (A?) andAdvE 8(D) are negligible from the assumptions of the theorem, the
statement of the theorem foIIows O

Extended Additive Composition. It is immediate to extend the additive composition to construct a new
scheme withl; +75+1 time intervals. The idea s to use the first scheme for the keys of thé*finstervals,

the second scheme for the keys of the riBxintervals, and the seedas the key for th¢T} + 75 + 1)-th
interval. By revealing the seedas the user key at intervél + 75 + 1, all previous keys oKU; andKU,

can be derived. This idea will be useful in our later construction of a binary tree key-updating scheme. We
call this composition methoelxtended additive composition

3.2 Multiplicative Composition

The idea behind the multiplicative compaosition operation is to use every key of the first scheme to seed an
instance of the second scheme. Thus, for each one dfithiene intervals of the first scheme, we generate
an instance of the second scheme Wijttime intervals.

In the sequel, we denote a time intervébr 1 < ¢t < Ty - T of schemeKU as a pait = <i, j>, where
iandj aresuchthat = (i — 1)Tx + j for 1 < < T andl < j < T,. The user key for a time interval
t = <i, 7> includes both the user key for time interval 1 of schemea<U; and the user key for time interval
j of schemeKU,. A user receivingl/; ;- can extract the key for any time intervatm,n> < <i, j>
by first extracting the key< for time intervalm of KU; (this step needs to be performed only:if <),
then usingK to derive the initial state of the:-th instance of the schenk&J,, and finally, deriving the key
k<mn>. The details of the multiplicative composition method are shown in Figure 3. The security of the
multiplicative composition method is analyzed in the following theorem.

6

Init(1%, 7, s)
SO — |nit1(1K,T1,G1(S))
return (L, So, So)

Derive(<i, j>, (S_1,5;,57))
ifi >1
M} | « Derive;(i —1,S} ;)
else
]\41,1_1 — 1
]\4j2 — Derivey(j, SJQ)
return (Mj1_17Mj2)

Update(<i, >, (S}_,5;,57))
it =T
S}, < Update, (i, S})
k},, « Extract; (i + 1,
Derivey (i 4+ 1,5}, 1),i+ 1)
Sg — |nit2(1ﬁ, T, Gg(kzl_i_l))
S? « Update, (0, S3)
return (S}, S}, 1, S1)

Extract(<i,j>, (M} |, M?), <m,n>)
ifi=m
k<mn> < Extracty(j, M7, m)
else
K « Extract;(i — 1, M} ;,m)
58 — |nit2(1”,TQ, GQ(K))
k<mn> < Extracta(Ts, S3,n)
return k<m,n>

else
SJZJrl — Update, (7, sz)
return (S} ,,5;7,5%,,)

7

Figure 3: The multiplicative composition #fU; andKUs.

Theorem 2. Suppose thakU; = (Init;, Update;, Derive;, Extract;) andKUy = (Inite, Update,, Derives,
Extracty) are two secure key-updating schemes Withand 75 time intervals, respectively, and thétis
a pseudorandom generator as above. Thah = (Init, Update, Derive, Extract) described in Figure 3
denoted a¥&KU; ® KU, is a secure key-updating scheme with 75 time intervals.

Proof. Let A = (A, Ag) be a polynomial-time adversary f&U. Similarly to the proof of Theorem 1, we
build two adversary algorithmd! = (A4}, A}) and.A? = (A7, A%) for KU; andKUs, respectively.

Construction of A'. A}, gets from the center the user keys' of schemeKU; for all time intervalsi
until it outputsstop. A' simulates the environment fot by sending the following user keys:

1. Atinterval<i, 1>, for 1 <4 < T3, A runsk; « Extract; (i, M},i); S3 < Inita(1%, s, Ga(k;));
S2 « Update,(0, S2); M? « Derives(1,S?) and gives4y, the user keyM_; 1~ = (M} |, M2).

2. Attime interval<i, j>, for1 <i < Ty andl < j < Ty, A}, computesS]? « Updatey(7 — 1, Sf-_l)
andM? — Derivey(j, S7) and gives tady, the user keyM ., j». = (M}, M).

If A aborts orA4;, outputsstop at a time intervak, j> with j # T, thenAi, aborts the simulation and
outputsL. Otherwise, A}, outputsstop at time intervak. In the challenge intervalélé is given a challenge
key k;+1 and it executesS? «— Inita (1%, Ty, Go(kiy1)); S? < Updatey(0,52); M « Derivey(1,5%);
ki «— Extracty(1, M, 1). It then gives the challenge to Ag. A} outputs the same bit adg. The success
probability of A* for b € {0,1} is

Pr[Expikljll'f’Al = b]=Pr[ExpRJ 4 = b|E1 N B, (5)

where E is the event thatd;, outputsstop at a time intervali, j) with j = T, and E, the event thatd
does not distinguish the simulation done 4y from the protocol execution. Il distinguishes the simu-
lation from the protocol, then a distinguisher algorittinfor the pseudorandom generator with advantage
AdvZ8(D) can be constructed. By the definition B, we havePr[E,] = AdvE#(D).

Construction of A%2. Assuming that4;, runs at most times (andq is polynomial inx), A% makes a
guess for the time interval in which A, outputsstop. A2 picks i* uniformly at random from the set
{1,...,q}. A% generates an instance of the schethg with i* time intervals. For any intervati, j> with
i < i*, A% generates the user keys using the keys from this instari€d afFor time intervals<i*, j> with
1 < j < Ty, A? outputs user keyM)., sz), whereM /., is the user key for time intervaf — 1 of KU;
that it generated itself anZﬁzITj2 is the user key for time intervglof KU, that it received from the center.

If A aborts orA;, outputsstop at a time intervakai, j> with i # i* or with i = ¢* andj = 75, then
A? aborts the simulation and outputs Otherwise, if.4;, outputsstop at a time intervak:*, j>, thenAf,
outputsstop at time intervalj. In the challenge phasel? receives a challenge kéy,, and gives that to
Ag. A% outputs the same bit a4g. The success probability of* for b € {0,1} is

- 1 - -
Pr[Expii e = b]= 6Pr[Expf<kg§ 4 =blE1NEy). (6)
As in the proof of Theorem 1, we can infer
Pr[Expi0h =b] < Pr[ExpRi4 = blE1 N Eo|Pr[Ey N Ey)+
Pr[ExpRy 4 = bl E1 N By Pr[Ey N Ey]+ Pr[Ey]
= Pr[ExpRy s = b]Pr[E1 N Ey]+qPr[ExpRii’ys = b]Pr[Ey N Ea]
+ PT[E_Q] (7)
< Pr[ExpszJ;f’Al = b} +q Pr[ExpikJ;f’Ag = b] + PI'[E_Q],
where (7) follows from (5) and (6). Finally we can infer from (1) that
AdVEH (A) < Adv (A1) + gAdVES, (A%) + AdvETE(D).

SinceAdvi) (A'), Adviy, (A?) and AdvE 8(D) are negligible from the assumptions of the theorem, the
statement of the theorem follows. O]

4 Constructions

In this section, we describe three constructions of key-updating schemes with different complexity and
communication tradeoffs. The first two constructions are based on previously proposed methods, whose
security has never been formally analyzed. We give cryptographic proofs that demonstrate the security of
the existing constructions after some subtle modifications. Additionally, we propose a third construction that
is more efficient than the known schemes. It uses a binary tree to derive the user keys and is also provably
secure in our model.

4.1 Chaining Construction (CKU)

In this construction the user keys and keys are generated iteratively from a random seed using a pseudoran-
dom generato6 : {0,1}* — {0,1}2%. We writeG(s) = G1(s)||G2(s) with |G1(s)| = |Ga(s)| = & for
s € {0, 1}*. The algorithms of the chaining construction, calléU, are the following:

- Init(1%, T, s) generates a random seggof lengthx from s and outputsSy = so.
- Update(t, S¢) copies the stats; into Sy ;.

- Derive(t, S¢) andExtract(t, My, i) are given in Figure 4.

8

Derive(t, St) Extract(t, My, 7)

Bry1 < S (Bt k) < M,

for i = T downto ¢ for j =t — 1 downto ¢
(Bi, ki) — G(Biy1) (Bj, kj) — G(Bj41)

return (B, k) return k;

Figure 4: TheDerive(t, S;) andExtract(t, M, i) algorithms of the chaining construction.

This construction has constant center-state size and linear cost for the user-key derivation algorithm. An
alternative construction with linear center-state size and constant user-key derivation is to precompute all
the keysk; and user key3/;, for 1 < ¢ < T in thelnit algorithm and store all of them in the initial center
stateS).

Theorem 3. Given a pseudorandom generai@r CKU is a secure key-updating scheme.

Proof. Let A = (Ay, Ag) be a polynomial-time adversary successful in breaking the security of the key-
updating scheme. We construct an algorithnthat distinguishes the output of the pseudorandom generator
from a random string of lengtx with sufficiently large probability.

Algorithm D has to simulate the environment fdr. D picks By, uniformly at random from{0, 1}*
and computes the user keys for previous time interval$ast;) = G(Bi+1), fori =T,...,1. D gives to
Ay user keyM; = (B;, k;) at iteratior.

Algorithm D is given a challenge string= r||; of length2«, which in experiment O is the output of
the pseudorandom generator on input a random seed of lengtid in experiment 1 is a random string of
length2x. Formally, theprg experiments are defined in Figure 5.

prg-l

EXP%%? Expe,p
s«—r{0,1}" rol|T1 <R {071}2K
rol|r1 — G(s) b« D(rol|r1)
b« D(rol|r1) return b
return b

Figure 5: Experiments defining the security of pseudorandom genérator

If A4;, outputsstop at time intervalt, D gives to.Ag the challenge ke¥;.; = r; and D outputs what
Ag outputs. Denote by, = Pr[Expgy’4 = b]. Itis immediate that

Pr[Exp%%! = 1]= Pr[ExpSt, = 1]=p1, (8)

and
Pr[Expggj;O =]: D05 9)

wherep|, is the probability thatd, given the user keys as in experim&sp= ", but challenge key; 1 =
G(s) for a random seed € {0, 1}*, outputs 0. The challenge key given.tbin experimentExpss*? is
Go(GT=1(s)), whereGi(s) = G1(...G1(s)...) for i applications ofG;. We can bound the absolute
difference betweep, andp;, as

Py —po| < Pr[Adistinguishes betweefi>(s) andGa(G] ~1(s))]
< (T —1t)Pr[A distinguishes between—p {0,1}" andG(s)]
<

(T — t)AdvEE. (10)

Using (8), (9) and (10), we can relate the success probabilitigsaid D by

Pr[D succeed$ = %(Pr[ExpE%O = 0]+Pr[ExpggD-1 =1])
1
= 5o +m)
1
= 5(100 +p1+p) — po)

v

1
Pr[A succeedﬁ;—i(T — t)AdvEE.

It follows that
1 prg
Pr[A succeed$< Pr[D succeed$+§(T — t)AdvEE,

and
AdvERy (A) < Adv®(D) + (T —)Advg;® < TAdVE®.

The statement of the theorem follows from the fact umtgrg is negligible. O

4.2 Trapdoor Permutation Construction (TDKU)

In this construction, the center picks an initial random state that is updated at each time interval by applying
the inverse of a trapdoor permutation. The trapdoor is known only to the center, but a user, given the state
at a certain moment, can apply the permutation iteratively to generate all previous states. The key for a time
interval is generated by applying a hash function, modeled as a random oracle, to the current state. This
idea underlies the key rotation mechanism of the Plutus file system [21], with the difference that Plutus uses
the output of an RSA trapdoor permutation directly for the encryption key. We could not prove the security
of this scheme in our model for key-updating schemes, even when the trapdoor permutation is not arbitrary,
but instantiated with the RSA permutation.

This construction has the advantage that knowledge of the total number of time intervals is not needed
in advance; on the other hand, its security can only be proved in the random oracle model. Let a family of
trapdoor permutations be given such that the domain size of the permutations with security patameter
I(k), for some polynomial. Leth : {0,1}(*) — {0,1}* be a hash function modeled as a random oracle.
The detailed construction of the trapdoor permutation scheme, CBld, is presented below:

- Init(1%, T, s) generates a randomy, —p {0,1}'*) and a trapdoor permutatiofi : {0, 1}/(*) —
{0, 1}’(“) with trapdoorr from seeds using a pseudorandom generator. Then it outsts=

(507 f’ 7-)'
- Update(t, Sy) with S; = (s, f, 7) computess; 1 = f~!(s;) and outputsS; 1 = (s¢11, f, 7).
- Derive(t, S¢) outputsiy < (s¢, f).

- Extract(t, My, 1) applies the permutation iterativety— i times to generate state = f'~*(M;) and
then outputsi(s;).

Theorem 4. Given a family of trapdoor permutations and a hash functiphDKU is a secure key-updating
scheme in the random oracle model.

Proof. Let A = (Ay, Ag) be a polynomial-time adversary successful in breaking the security of the key-
updating scheme. Assuming thdi, runs at most times, we construct an algorith# which givenf and
y — f(z) with z —g {0, 1}}(*) computesf —*(y) with sufficiently large probability.

10

Algorithm 7 has to simulate the environment fdr 7 makes a guess at the time inter¥ain which A4,
outputsstop. Z picks¢* uniformly at random from the sdtl, ..., q}. If Ay does not outpustop at time
intervalt*, thenZ aborts the simulation. Otherwise, at time interiédss than™, 7 gives to.A;, the user
key M, = (f*" " (y), /).

Algorithm Extract is executed byA4 as in the description of the scheme, Busimulates the random
oracle forA. If A queriesr to the random oracle for whicfi(x) = y, thenZ outputsz. Let E be the event
that.A asks query: = f~!(y) to the oracle and” the negation of this event. Since the adversary has no
advantage in distinguishing the properly generatediey from a randomly generated key if it does not
guery the random oracle at it follows that

Pr[A succeed$E| < %,
from which we can infer
Pr[A succeed$= Pr[A succeed$E|Pr[E]+ Pr[A succeed$E | Pr[E] < Pr[E] +%. (11)

Equations (1) and (11) imply th&tr[E]> L1Adv§Syy(A). Then the success probability of algoriti#ris
atleast; Pr[E]> 5. AdviByy(A). The statement of the theorem follows from the fact that algoriftimas
only a negligible probability of success. O]

4.3 Tree Construction (TreeKU)

In the two schemes above, at least one of the algoritiptate, Derive andExtract has worst-case com-
plexity linear in the total number of time intervals. We present a tree construction based on ideas of Canetti,
Halevi and Katz [9] with constant complexity for thgerive algorithm and logarithmic worst-case com-
plexity in the number of time intervals for tHépdate and Extract algorithms. Moreover, the amortized
complexity of theUpdate algorithm is constant. In this construction, the user key size is increased by at
most a logarithmic factor ifi' compared to the user key size of the two constructions described above.

Our tree-based key-updating scheme, calle#KU, generates keys using a complete binary tree with
T nodes, assuming w.l.0.g. tHAt= 2¢ — 1 for somed € Z. Each node in the tree is associated with a time
interval between 1 and, a unique label i{0, 1}*, atree-keyin {0, 1}* and anexternal keyn {0, 1}" such
that:

1. Time intervals are assigned to tree nodes using post-order tree traversal, i.e., a node corresponds to
intervali if it is the i-th node in the post-order traversal of the tree. We refer to the node associated
with intervalt as node.

2. We define a functiofabel that maps node with 1 < ¢ < T to its label in{0,1}* as follows. The
root of the tree is labeled by the empty stringand the left and right children of a node with laljel
are labeled by||0 and by/||1, respectively. The parent of a node with labé denoted byarent(¢),
thusparent(¢]|0) = parent(¢||1) = ¢. We denote the length of a labéby |¢|.

3. The tree-key for the root node is chosen at random. The tree-keys for the two children of an internal
node in the tree are derived from the tree-key of the parent node using a pseudorandom generator
G : {0,1}* — {0,1}?*. For an inputs € {0,1}*, we write G(s) = G1(s)||G2(s) with |G1(s)| =
|G2(s)| = . If the tree-key for the internal node with labis denoted.,, then the tree-keys for its
left and right children are, o = Go(u¢) andug; = G1(ue), respectively. This implies that once the
tree-key for a node is revealed, then the tree-keys of its children can be computed, but knowing the
tree-keys of both children of a node does not reveal any information about the tree-key of the node.

11

Update(t, (P, Lt))

ift=0
Py — leftkeys(e, ur) [* Py contains the label/tree-key pairs of all the left-most nodes */
Li—0 I* the set of left siblings is empty */
else
4y «— label(t) * compute the label of node*/
uy «— searchkey (¢, Py) [* compute the tree-key of node*/
if £ endsin 0 [* tis the left child of its parent */
(€s,us) < rightsib(¢e, Pr) [* compute the label/tree-key pair of the right siblingtof
Piy1 — P\ {(€,us)} Uleftkeys(€s,us) [* update the label/tree-key pairs 1 */
Lit1 — Le U{(ls,us)} * add the label/tree-key pair @fto set of left siblings fot + 1 */
else [* t is the right child of its parent */
(£s, us) < leftsib(€y, L) [* compute the label/tree-key pair of the left siblingtof/
Py — P\ {(be,ue)} * remove label/tree-key pair affrom P, */
Lit1 — L \ {(4s,us)} [* remove label/tree-key pair of left sibling effrom L;,1 */

return (Piy1, Lit1)

leftkeys (¢, u)

A0 [* initialize set A with the empty set */

while [£] < d * advance to the left until we reach a leaf */
A—AUu{(tu)} * add the label and tree-key of the current nodedity
£—¢)|0 /* move to left child of the node with label */
u — Go(u) [* compute the tree-key of the left child */

return A

Figure 6: TheUpdate(t, (P;, L)) algorithm.

4. The external key of a nodeis the keyk; output by the scheme to the application for intertal
For a node with tree-keyuj,pel(r), the external keyt, is obtained by computing, . ,, (1), where
F,(b) = F(u,b) andF' : {0,1}" x {0,1} — {0,1}" is a pseudorandom function on bits.

We describe the four algorithms of the binary tree key-updating scheme:

- Init(1%, T, s) generates the tree-key for the root node randomily,—r {0,1}", using seed;, and
outputsSy = ({(¢,ur)},0).

- Update(t, S;) updates the stat&, = (P;, L;) to the next center stat§ 1 = (P;+1, Li+1). The center
state for intervat consists of two setsP; that contains pairs of (label, tree-key) for all nodes on the
path from the root to node (including nodet), and L; that contains label/tree-key pairs for all left
siblings of the nodes i#; that are not inP;.

We use several functions in the description of thedate algorithm. For a label and a setA of
label/tree-key pairs, we define a functigrarchkey (¢, A) that outputs a tree-key for which (¢, u) €

A, if the label exists in the set, and otherwise. Given a labéland a set of label/tree-key pairs
functionrightsib(¢, A) returns the label and the tree-key of the right sibling of the node with label

and, similarly, functiorleftsib(¢, A) returns the label and the tree-key of the left sibling of the node
with label? (assuming the labels and tree-keys of the siblings arB.imhe functionleftkeys is given

as input a label/tree-key pair of a node and returns all label/tree-key pairs of the left-most nodes in the
subtree rooted at the input node, including label and tree-key of the input node.

The code for théJpdate andleftkeys algorithms is given in Figure 6. We omit the details of functions
searchkey, rightsib andleftsib. TheUpdate algorithm distinguishes three cases:

1. If t = 0, the Update algorithm computes the label/tree-key pairs of all left-most nodes in the

12

Extract(t, M, 1)

£1...Ls < label(3) [* the label ofi has lengths */

V< S

4 — €1 .. .EU

while v > 0 and searchkey(¢, M;) = L /*find a predecessor afthat is inM; */
ve—ov—1
f — 41 e év

forj=v+1tos [* compute tree-keys of all nodes on path from predecessot/to
Uey..0; — Goj(ey..0;_1)

key..0y — Fuy, o, (1) /* return external key of node*/

return ke, ..o,

Figure 7: TheExtract(t, M, i) algorithm.

complete tree using functidaftkeys and stores them if?;. The setl,; is empty in this case, as
nodes inP; do not have left siblings.

2. If t is the left child of its parent, the successor of nade post-order traversal is the left-most
node in the subtree rooted at the right siblihgf nodet. P, contains all label/tree-key pairs
in P; except the tuple for nodg and, in addition, all label/tree-key pairs for the left-most nodes
in the subtree rooted &t which are computed bigftkeys. The set of left siblingd.;, ; contains
all label/tree-key pairs froni; and, in addition, the label/tree-key pair for nade

3. Iftis the right child of its parent, nodetr 1 is its parent, s@,; contains all label/tree-key pairs
from P, except the tuple for node and L, contains all the label/tree-key pairs in except
the pair for the left sibling of node

- Algorithm Derive(t, (P;, L)) outputs the user tree-keéy;, which is the minimum information needed
to generate the set of tree-keys; : i < t}. Since the tree-key of any node reveals the tree-keys for
all nodes in the subtree rooted at that natle consists of the label/tree-key pairs for the left siblings
(if any) of all nodes on the path from the root to the parent of naal the label/tree-key pair of node
t. This information has already been pre-computed such that one caf) set{(label(¢), u;)} U L.

- Algorithm Extract(t, My,) first finds the maximum predecessor of nade post-order traversal
whose label/tree-key pair is included in the user tree&kgy Then it computes the tree-keys for all
nodes on the path from that predecessor to riodbe external key; is derived from the tree-key;
ask; = Fy,(1) using the pseudorandom function. The algorithm is in Figure 7.

0

Analysis of Complexity. The worst-case complexity of the cryptographic operations used i jiHete
andExtract algorithms is logarithmic in the number of time intervals, and thddefive is constant. How-
ever, it is easy to see that the key for each node is computed exactly dhagpdates are executed. This
implies that the total cost of all update operations jgseudorandom-function applications, so the amortized
cost per update is constant.

Now we prove the security of the binary tree construction.

Theorem 5. Given a pseudorandom generat6r and a pseudorandom functiaf, TreeKU is a secure
key-updating scheme.

Proof. SchemeTreeKU with T = 27 — 1 time intervals can be obtained fradrextended additive composi-
tions of a trivial key-updating schenieivKU with one time interval, defined as follows:

13

| [CKU | TDKU | TreeKU |

Update(t, S;) time 0 1 PKop.| O(logT) PRG op*
Derive(t, S;) time T —t PRG op. 0 0
Extract(t, M, i) time | t—i PRGop. | t —i PKop.| O(logT) PRG op.
Center state size K poly(k) O(klogT)
User key size K K O(klogT)

Figure 8: Worst-case time and space complexities of the constructidoge: the amortized complexity of
Update(t, S¢) in the binary tree scheme is constant.

- Init(1%, T, s) generates a random user ki «—pr {0, 1}" from the seed and outputsSy = M.

Update(t, S;) outputsS;1 < S; only for¢ = 0.
- Derive(t, S¢) outputsi; < M for¢ = 1.
- Extract(t, My, q) returnsk = Fyy(1) fort = ¢ = 1.

Given thatF' is a pseudorandom function, it is easy to see ThatkU is a secure key-updating scheme.
Consider an adversary that has a non-negligible advantage in breakingKU. Since the scheme has one
time interval,A is not given any user keys and it has to outup at time interval 0. We build a distinguisher
algorithm D for the pseudorandom functiof is given access to an oraate: {0,1} — {0,1}", which is
either F'(k, -) with k «<px {0,1}", or a random functioy < {f : {0,1} — {0,1}*}. D gives toA the
challenget; = G(1) and outputs the same bit ds It is immediate that the advantageldfin distinguishing
the pseudorandom function from random functions is the same as the advantage of adv@rdasaking
TrivkU.

The tree scheme with time intervals can be constructed as follows: gene?@té instances ofirivkU
and make them leaves in the tree; build the tree bottom-up by additively composing (using the extended
method) two adjacent nodes at the same level in the tree. The security of the binary tree scheme obtained by
additive composition as described above follows from Theorem 1. O

5 Performance of the Constructions

In this section we analyze the complexity of the cryptographic operations in the four algorithms and the
space complexities of the center state and the user keys for all three proposed constructions. Recall that all
schemes generate keys of lengthIn analyzing the time complexity of the algorithms, we specify what
kind of operations we measure and distinguish public-key operations (PK op.) from pseudorandom generator
applications (PRG op.) because PK operations are typically much more expensive than PRG applications.
We omit the time complexity of thénit algorithm, as it involves only the pseudorandom generator for all
schemes except for the trapdoor permutation scheme, in itchlso generates the trapdoor permutation.
The space complexities are measured in bits. The detailed analysis is in Figure 8.

The chaining schem@KU has efficienUpdate andExtract algorithms, but the complexity of the user-
key derivation algorithm is linear in the number of time intervals. On the other hand, the trapdoor permu-
tation schemd@ DKU has efficient user-key derivation, but the complexity of thelate algorithm is one
application of the trapdoor permutation inverse and that oEsheact(t, M, i) algorithm ist—i applications
of the trapdoor permutation. The tree-based sch@émeKU balances the tradeoffs between the complex-
ity of the three algorithms: the cost &ferive algorithm is constant and that of thépdate and Extract
algorithms is logarithmic in the number of time intervals in the worst-case, at the expense of increasing the

14

center-state and user-key sizes1(x log T'). Moreover, the amortized cost of thipdate algorithm in the
binary tree construction is constant.

Both CKU andTreeKU require the number of time intervals to be known in advance; this is not needed
for TDKU. As the chaining and the trapdoor permutation schemes have worst-case complexities fihear in
for at least one algorithm, both of them require the number of time intervals to be rather small. In contrast,
the binary tree construction can be used for a practically unbounded number of time intervals.

In practical applications, such as key management for cryptographic storage systems, we recommend
using a construction similar to the generic forward-secure signature scheme with practically unbounded
number of time periods of Malkin, Micciancio, and Miner [24]. The idea is to construct the multiplicative
composition of the chaining scheme with binary tree schemes of different sizes. At time intefuhle
chaining scheme, the center generates an instance of the binary tree scheftie-wittime intervals. In
addition to allowing a practically unbounded number of time intervals, this construction has the property
that the complexity of thé/pdate, Derive and Extract algorithms increases with the number of past time
intervals.

6 Related Work

Time-Evolving Cryptography. The notion of secure key-updating schemes is closely related to forward-
and backward-secure cryptographic primitives. Indeed, a secure key-updating scheme is forward-secure as
defined originally by Anderson [4], in the sense that it maintains security in the time intervals following

a key exposure. However, this is the opposite of the forward security notion formalized by Bellare and
Miner [6] and used in subsequent work. Here we use the term forward security to refer to the latter notion.

Time-evolving cryptography protects a cryptographic primitive against key exposure by dividing the
time into intervals and using a different secret key for every time interval. Forward-secure primitives protect
past uses of the secret key: if a device holding all keys is compromised, the attacker can not have access
to past keys. In the case of forward-secure signatures, the attacker can not generate past signatures on
behalf of the user, and in the case of forward-secure encryption, the attacker can not decrypt old cipher-
texts. There exist many efficient constructions of forward-secure signatures [6, 2, 19] and several generic
constructions [22, 24]. Bellare and Yee [7] analyze forward-secure private-key cryptographic primitives
(forward-secure pseudorandom generators, message authentication codes and symmetric encryption) and
Canetti, Halevi and Katz [9] construct the first forward-secure public-key encryption scheme.

Forward security has been combined with backward security in models that protect both the past and
future time intervals, called key-insulated [12, 13] and intrusion-resilient models [20, 11]. In both models,
there is a center that interacts with the user in the key update protocol. The basic key insulation model
assumes that the center is trusted and the user is compromised in &t tmustintervals and guarantees
that the adversary does not gain information about the keys for the intervals the user is not compromised. A
variant of this model, called strong key insulation, allows the compromise of the center as well. Intrusion-
resilience tolerates arbitrarily many break-ins into both the center and the user, as long as the break-ins do not
occur in the same time interval. The relation between forward-secure, key-insulated and intrusion-resilient
signatures has been analyzed by Malkin, Obana and Yung [25]. A survey of forward-secure cryptography is
given by ltkis [18].

Re-keying, i.e., deriving new secret keys periodically from a master secret key, is a standard method
used by many applications. It has been formalized by Abdalla and Bellare [1]. The notion of key-updating
schemes that we define is closely related to re-keying schemes, with the difference that in our model, we
have the additional requirement of being able to derive past keys efficiently.

15

Multicast Key Distribution. In key distribution schemes for multicast, a group controller distributes a
group encryption key to all users in a multicast group. The group of users is dynamic and each join or
leave event requires the change of the encryption key. The goal is to achieve both forward and backward
security. In contrast, in our model of key-updating schemes users should be able to derive past encryption
keys efficiently.

A common key distribution model for multicast is thatksdy graphsintroduced by Wong et al. [30]
and used subsequently in many constructions [28, 27, 17, 16]. In these schemes, each user knows its own
secret key and, in addition, a subset of secret keys used to generate the group encryption key and to perform
fast update operations. The relation between users and keys is modeled in a directed acyclic graphs, in
which the source nodes are the users, intermediary nodes are keys and the unique sink node is the group
encryption key. A path from a user node to the group key contains all the keys known to that user. The
complexity and communication cost of key update operations is optimal for tree structures [29], and in this
case it is logarithmic in the number of users in the multicast group. We also use trees for generating keys,
but our approach is different in considering the nodes of the tree to be only keys, and not users. We obtain
logarithmic update cost in the number of revocations, not in the number of users in the group.

Key Management in Cryptographic Storage Systems. Early cryptographic file systems [8, 10] did not
address key management. Cepheus [14] is the first cryptographic file system that considers sharing of
files and introduces the idea of lazy revocation for improving performance. However, key management in
Cepheus is centralized by using a trusted key server for key distribution. More recent cryptographic file
systems, such as Oceanstore [23] and Plutus [21], acknowledge the benefit of decentralized key distribution
and propose that key management is handled by file owners themselves. For efficient operation, Plutus
adopts a lazy revocation model and uses a key-updating scheme based on RSA, as described in Section 4.2.

Farsite [3], SNAD [26] and SiRiUS [15] use public-key cryptography for key management. The group
encryption key is encrypted with the public keys of all group members and these lockboxes are stored on
the storage servers. This approach simplifies key management, but the key storage per group is proportional
to the number of users in the group. Neither of these systems addresses efficient user revocation.

7 Conclusions

Motivated by the practical problem of efficient key management for cryptographic file systems that adopt
lazy revocation, we define formally the notion of key-updating schemes for lazy revocation and its security.
In addition, we give two methods for additive and multiplicative composition of two secure key-updating
scheme into a new scheme which can handle a larger number of user revocations, while preserving security.
We also prove the security of two slightly modified existing constructions and propose a hew construction,
the binary-tree scheme, that balances the tradeoffs of the existing constructions. Finally, we provide a
systematic analysis of the computational and communication complexities of the three constructions.

We can extend the definition of key-updating schemes to support user keys for intdreah which
only keys of the time intervals betweéandt can be extracted, for any< ¢ < t. This is useful in a model
in which users joining the group at a later time interval should not have access to past information. The
extension can be incorporated in the tree construction without additional cost, but the chaining and trapdoor
permutation constructions do not work in this model because the user key reveals all previous keys.

In a companion paper [5], we show how to extend secure key-updating schemes to cryptosystems with
lazy revocation, and introduce the notions of symmetric encryption, message-authentication codes, and
signature schemes with lazy revocation. Furthermore, we demonstrate that using these cryptosystems in
some existing distributed cryptographic file systems improves their efficiency and security.

16

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

M. Abdalla and M. Bellare, “Increasing the lifetime of a key: A comparitive analysis of the security
of rekeying techniques,” ifProc. Asiacrypt 2000vol. 1976 ofLecture Notes in Computer Science
pp. 546-559, Springer-Verlag, 2000.

M. Abdalla and L. Reyzin, “A new forward-secure digital signature schemeFtat. Asiacrypt 2000
vol. 1976 ofLecture Notes in Computer Scienpg. 116-129, Springer-Verlag, 2000.

A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,
M. Theimer, and R. P. Wattenhofer, “FARSITE: Federated, available, and reliable storage for an in-
completely trusted environment,” Proc. 5th Symposium on Operating System Design and Implemen-
tation (OSDI) Usenix, 2002.

R. Anderson, “Two remarks on public-key cryptology,” Technical Report UCAM-CL-TR-549, Uni-
versity of Cambridge, 2002.

M. Backes, C. Cachin, and A. Oprea, “Lazy revocation in cryptographic file systems,” Research Report
RZ 3628, IBM Research, Aug. 2005.

M. Bellare and S. Miner, “A forward-secure digital signature schemeRrot. Crypto 1999vol. 1666
of Lecture Notes in Computer Scienpp. 431-448, Springer-Verlag, 1999.

M. Bellare and B. Yee, “Forward-security in private-key cryptography,”Froc. CT-RSA 20Q3
vol. 2612 ofLecture Notes in Computer Scienpp. 1-18, Springer-Verlag, 2003.

M. Blaze, “A cryptographic file system for Unix,” ifProc. First ACM Conference on Computer and
Communication Security (CC$p. 9-16, 1993.

R. Canetti, S. Halevi, and J. Katz, “A forward-secure public-key encryption schemBfom Euro-
crypt 2003 vol. 2656 ofLecture Notes in Computer Scienep. 255-271, Springer-Verlag, 2003.

G. Cattaneo, L. Catuogno, A. D. Sorbo, and P. Persiano, “The design and implementation of a transpar-
ent cryptographic file system for Unix,” ifroc. USENIX Annual Technical Conference 2001, Freenix
Track pp. 199-212, 2001.

Y. Dodis, M. Franklin, J. Katz, A. Miyaji, and M. Yung, “Intrusion-resilient public-key encryption,”
in Proc. CT-RSA 20Q3/0l. 2612 ofLecture Notes in Computer Sciengp. 19-32, Springer-Verlag,
2003.

Y. Dodis, J. Katz, S. Xu, and M. Yung, “Key insulated public-key cryptosystems?rarc. Eurocrypt
2002 vol. 2332 ofLecture Notes in Computer Scienpg. 65-82, Springer-Verlag, 2002.

Y. Dodis, J. Katz, and M. Yung, “Strong key-insulated signature schemdstdim Workshop of Public
Key Cryptography (PKC)vol. 2567 ofLecture Notes in Computer Sciengp. 130-144, Springer-
Verlag, 2002.

K. Fu, “Group sharing and random access in cryptographic storage file systems,” Master’s thesis,
Massachusetts Institute of Technology, 1999.

E. Goh, H. Shacham, N. Modadugu, and D. Boneh, “SiRiUS: Securing remote untrusted storage,” in
Proc. Network and Distributed Systems Security (NDSS) Symposium@0d31-145, ISOC, 2003.

17

[16] M. T. Goodrich, J. Z. Sun, and R. Tamassia, “Efficient tree-based revocation in groups of low-state de-
vices,” inProc. Crypto 2004vol. 3152 ofLecture Notes in Computer Scienpp. 511-522, Springer-
Verlag, 2004.

[17] J. Goshi and R. E. Ladner, “Algorithms for dynamic multicast key distribution treeflfac. 22nd
Symposium on Principles of Distributed Computing (POQp) 243—-251, ACM, 2003.

[18] G. Itkis, “Forward security, adaptive cryptography: Time evolution.” Survey, available Fribon
Ilwww.cs.bu.edulfaclitkis/pap/forward-secure-survey.pdf

[19] G. Itkis and L. Reyzin, “Forward-secure signatures with optimal signing and verifyingPrar.
Crypto 2001 vol. 2139 ofLecture Notes in Computer Scienpp. 332—-354, Springer-Verlag, 2001.

[20] G. Itkis and L. Reyzin, “SiBIR: Signer-base intrusion-resilient signaturesPrioc. Crypto 2002
vol. 2442 ofLecture Notes in Computer Scienpg. 499-514, Springer-Verlag, 2002.

[21] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu, “Plutus: Scalable secure file sharing
on untrusted storage,” iRroc. 2nd USENIX Conference on File and Storage Technologies (FAST)
2003.

[22] H. Krawczyk, “Simple forward-secure signatures from any signature schenfedm 7th ACM Con-
ference on Computer and Communication Security (C@%)108-115, 2000.

[23] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao, “Oceanstore: An architecture for global-scale
persistent storage,” iRroc. 9th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLP®)190-201, ACM, 2000.

[24] T. Malkin, D. Micciancio, and S. Miner, “Efficient generic forward-secure signatures with an un-
bounded number of time periods,” Froc. Eurocrypt 2002vol. 2332 ofLecture Notes in Computer
Sciencepp. 400-417, Springer-Verlag, 2002.

[25] T. Malkin, S. Obana, and M. Yung, “The hierarchy of key evolving signatures and a characterization of
proxy signatures,” ifProc. Eurocrypt 2004vol. 3027 ofLecture Notes in Computer Scienpg. 306—
322, Springer-Verlag, 2004.

[26] E. Miller, D. Long, W. Freeman, and B. Reed, “Strong security for distributed file systemBfbom
the First USENIX Conference on File and Storage Technologies (F28T3.

[27] O. Rodeh, K. Birman, and D. Dolev, “Using AVL trees for fault tolerant group key management,”
International Journal on Information Securjtyol. 1, no. 2, pp. 84—-99, 2001.

[28] A.T.ShermanandD. A. McGrew, “Key establishment in large dynamic groups using one-way function
trees,”IEEE Transactions on Software Engineeringl. 29, no. 5, pp. 444-458, 2003.

[29] R. Tamassia and N. Triandopoulos, “Computational bounds on hierarchical data processing with ap-
plications to information security,” iRroc. 32nd International Colloquium on Automata, Languages
and Programming (ICALR)2005.

[30] C. K. Wong, M. Gouda, and S. S. Lam, “Secure group communications using key grigiis/ACM
Transactions on Networkingol. 8, no. 1, pp. 16—30, 2000.

18

