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Abstract

I is a g-ary code of length L. A word w is called a descendant of a coalition of codewords
w®, w®, .. w® of T if at each position i, 1 < ¢ < L, w inherits a symbol from one of its

parents, that is w; € {w§1>,w§2’, ... ,wgt)}. A k-secure frameproof code (k-SFPC) ensures that

any two disjoint coalitions of size at most k& have no common descendant. Several probabilistic
methods prove the existance of codes but there are not many explicit constructions. Indeed,
it is an open problem in [J. Staddon et al., IEEE Trans. on Information Theory, 47 (2001),
pp- 1042-1049] to construct explicitly g-ary 2-secure frameproof code for arbitrary q.

In this paper, we present several explicit constructions of g-ary 2-SFPCs. These constructions
are generalisation of the binary inner code of the secure code in [V.D. T6 et al., Proceeding of
IndoCrypt’02, LNCS 2551, pp. 149-162, 2002]. The length of our new code is logarithmically
small compared to its size.

1 Introduction

Codes with secure property are used for copyright protection and piracy tracing. In many situations,
pirate objects can be modelled as descendant words. For example, in pay-per-view movies describled
in Fiat et al [6], a movie is divided into L segments and each segment has ¢ different variations with
different fingerprintings embeded. Subscribers receive different versions of the movie, and if some
of them collude to form a pirate movie, they may select at each segment one of the versions that
they have. Therefore, a version of a movie can be thought of as a codeword (w1, wo,...,wy), where
w; is the version number at the segment ¢. The pirate movie is then a decendant word constructed
from the codewords corresponding to the colluders’ movie versions.

Other example is in broadcast encryption. Chor et al [4] describle a scheme in which the session
key is divided into L shares. Each share is encrypted independently with ¢ different keys. An
authorized user is given a decoder box which contains L keys, each key enables it to decrypt a
share. Again, we can view the decoder as a codeword (wy,ws,...,wr), where w; is a decryption
key for the i share. A coalition of users can collude to create a pirate decoder where the i*" key
is selected from the collection of the i** keys in the colluders’ decoder boxes. Therefore, a pirate
decoder can be viewed as a descendant word produced from the coalition. Secure frameproof code
ensures that a coalition of users cannot frame other disjoint coalition by creating a pirate word
which is possibly created by the second coalition.

*This is the revised version of the paper published in International Journal of Pure and Applied Mathematics,
vol. 6, no. 3, 2003, 343-360.



Several probabilistic methods prove the existance of codes but there are not many explicit con-
structions. Indeed, it is an open problem in Staddon et al [11] to construct explicitly ¢g-ary 2-secure
frameproof code for arbitrary gq.

Since the code size corresponds to the number of users and the transmission bandwidth is propor-
tional to the code length and the alphabet size, it is desirable to construct code with large size but
relatively small length and small alphabet. In [5], Encheva et al. have several explicit constructions
of 2-secure frameproof codes. Using Hadamard matrix, a binary code is constructed, the size N
and length L of this code are the same and equal to 2". For other g-ary codes, the size is linear
to (length x ¢). In Té et al [14], 2-secure code with efficient tracing algorithm is introduced. This
is a two level construction which combines a binary 2-secure frameproof code with some outer
structures such as error-correcting code or perfect hash family. With a parameter n, the inner code
has size N = n and length L = (7).

In this paper, we present a number of new constructions of 2-secure frameproof codes. These codes
are generalisation of the inner code used in T6 et al [14]. The size of our new codes are exponentially
large compared to the length. The rest of the paper is organised as follows. In Section 2, we list all
the basic definitions and known results that will be used throughout the paper. In Section 3, we
define our new code families 'y »(n), 't <;(n), [, (n) and I'; ., (n). We prove the equivalence of
the Tb et al [14] inner code with our code I'1 2(n) in Section 4. Secure frameproof property of code
I'y2(n) is proved in Section 5. Sections 6 and 7 are dealing with the general code I'; »(n), I's <,(n)
and binary code I} .(n), I'; ., (n) respectively. We conclude our paper by summarizing our code
parameters, constraints and comparing them with the Encheva et al [5] codes in Section 8.

2 Preliminaries

Let T be a g-ary code of length L and size N. We have I' C Q”, where Q denotes a set of alphabets,
and |I'| = N. Each element of T is called a codeword and can be written as w = (w1, ws,...,wr),
where w; € Q. Elements of Q" in general are called words.

For a subset C' C I', we define the projection of C' on the position ¢ as
mi(C) ={w; : w € C}
and the descendants set of C' as
Desc(C) = {w € Q" : w; € m(C), Vi, 1 <i < L}
Desc(C) is the set of all words which can be constructed from the coalition C. An element w of
Desc(C) is called a descendant of C and elements of C are called parents of w. From the definition,

at any position ¢, w inherits a symbol from one of its parents. Hence, Desc(C) is the Cartesian
product of 7;(C)

L
Desc(C) = Hm(C)
i=1
Secure frameproof code ensures that two disjoint coalitions cannot create the same pirate word.
Definition 1 Let I' be a g-ary code of length L and size N. If for any two subsets C1,Co C I' of

size up to k,
CiNCy=0 — Desc(Cy) N Desc(Cy) =0 (1)



then T is called a k-secure frameproof code (k-SFPC).

Secure frameproof code is also called partially identifying code (Encheva et al [5]).

Since
L

Desc(Cy) N Desc(Cy) = H (m;(C1) N (Co)),
i=1

we have the following lemma immediately followed

Lemma 1 IfT" is a k-SFPC then for any two subsets C1,Cy C I' of size up to k, there ezists a
position i such that their projections on this position are two disjoint sets

m(C1) Nm(Cy) = 0. (2)

In (2), the position ¢ is said to separate C; and Cy. Lemma 1 says that for any two disjoint
coalitions C7 and C of size up to k, there must exist a position that separates them.

It is proved in Staddon et al [11] that when |T'| > 2k, to prove I to be k-SFPC, one needs to check
the condition (1) in the Definition 1 for only disjoint subsets C1,Co C T of size equal to k.

Theorem 1 [11] Let T' be a code of size N > 2k. Then T" is a k-SFPC if and only if for any two
subsets C1, Cy of size k (|C1| = |Ce| = k),

CiNCy=0 — Desc(Cy)N Desc(Co) = 0.

3 Our new code families I'y;(n), I't <(n), I';,.(n) and I} (n)

In this section, we describle our new code families I'y;(n), I't,<,(n), T}, (n) and I'; ., (n).

Let (n) be the set {1,2,...,n}. By (n); we denote the set of all subsets of (n) which contain exactly
t elements. Similarly, (n)<; denotes the set of all nonempty subsets of (n) which contain less than
or equal to ¢t elements.

With parameters n, t, r, consider the matrix M;,(n) whose rows are labelled by elements of (n);
and columns are labelled by elements of (n),. For U € (n);, V € (n),, the entry at the row U and
column V of the matrix My, (n) is [U N V|. The code I';,(n) is composed by rows of the matrix
M r(n). Without ambiguity, we identify a codeword of I'; ,.(n) with a set U € (n); and a position
with a set V' € (n),. And so, by definition, the symbol of the codeword U at the position V is
Uy = UNV|.

We define the code I'y <,(n) in a similar way. Code I'; <,(n) is depicted by the matrix M <,(n)
whose rows and columns are labelled by elements of the sets (n); and (n)<, respectively. For
U € (n);and V € (n)<,, the symbol of the codeword U at the position V is Uy = |[UNV]|.

Codes I'; .(n) and T} ., (n) are binary codes. They are constructed the same as code I'(n) and
'y <r(n) except that the symbol of the codeword U at the position V is Uy = [UNV| (mod 2). We
can think of codes I'; .(n) and I'; _,.(n) as the modulo 2 of the previous codes I't;(n) and I'y,<,(n)
respectively. -



Example 1 Codes I'3 2(5), ['55(5), I's,<2(4) and I'; .5(4) are shown below

Loo(5) |{L2} {L3} {14} {15} {23} {24} {25} {34} {3,5} {4,5)
{1,2,3} 2 2 1 1 2 1 1 1 1 0
{1,2,4}
{1,2,5}
{1,3,4}
{1,3,5)
{1,4,5)
{2,3,4}
{2,3,5}
{2,4,5}
{3,4,5)

I3.06) [ {1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}
{1,2,3} 0 0 1 1 0 1 1 1 1 0
{1,2,4}
{1,2,5}
{1,3,4}
{1,3,5}
{1,4,5}
{2,3,4}
{2,3,5}
{2,4,5}
{3,4,5}

Is<o(4) | {1} {2} {3} {4} {1,2} {1,3} {1,4} {2,3} {2,4} {3,4}
{1,235 1 1 1 0 2 2 1 2 1 1
{1,2,4y| 1 1 0 1 2 1 2 1 2 1
{(1,3,4y| 1 0 1 1 1 2 2 1 1 2
{234y 0 1 1 1 1 1 1 2 2 2
i@ | {1} {2} {3y {4 {1,2} {1,3} {1,4} {2,3} {2,4} {3,4}
{1,231 1 1 0 0 0 1 0 1 1
{1,2,4} | 1 1
{1,3,44 | 10
{2,3,4} | 0 1
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1
1
1
1
0
1
1
0
0

o
o

0 1 0 1 0 1 0 1
1 1 1 0 0 1 1 0
1 1 1 1 1 0 0 0

Code I' 2(n) has L = o(N?) and code I's 5(n) has L = N. However, the general code I'; . (n), Tt <r,
I'{ r(n) and T} ., (n) have much shorter length. Especially when r is a small number and ¢ is a large
number near n/2 then these codes have the length logarithmically small compared to the size.

4 Code F1,2 (’I’L)

In this section, we will show that the T6 et al [14] inner code v is equivalent to our code I'; 2(n).

The T6 et al [14] inner code + is defined as follows. First, choose two arbitrary permutations
(r1,79,...,7rp), (c1,¢2,...,¢) of (1,2,...,n). Code y contains n codewords {w(, ... w(™} of

length n2. Each codeword w(? is a two dimentional binary array indexed by [r,¢] where 1 < r < n,



1<c<mn,and
1, ifr=r7; and c# ¢;
wr,c]={ 1, ifr#r and c=¢
0, otherwise

If we choose r; = ¢; = 7 then

. 1, ifr=4and c#1
wWr,dd={ 1, ifr#iand c=1i

0, otherwise

Since all the codewords of 7y has the value 0 at the positions [1,1], [2,2], ..., [n,n], these n positions

are redundant and can be removed. Moreover, each codeword w(® is symmetric in the sense that

w[r, ¢] = w[c,r]. Therefore, we only need (%) position [r, ] where 1 < r < ¢ < n; and we have
’ ) ’ Yy 2

(i) . 1, if‘iE{’l",C}
w [T’C]—{o, iti ¢ {r,c}

If we make the correspondance from w® to {i} € (n); and from [r,c] to {r,c} € (n)s then it follows
that the code + is equivalent to our code I'1 2(n). And so we have the following theorem. For the
sake of completeness, we include a proof here.

Tio(4) | {1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

{1} 1 1 1 0 0 0
{2} 1 0 0 1 1 0
{3} 0 1 0 1 0 1
{4} 0 0 1 0 1 1

Theorem 2 [14] For any n > 4, I'1 2(n) is a binary 2-SFPC with size N = n and length L = (g)

Proof. Let {i1}, {i2}, {3} and {44} be four distinct elements of (n)1. Then {i1};, 5o} = {i2}{i1,in) =

Land {43} (i, ,i,} = {44} {ir,ip} = 0. Thus {i1,i2} € (n)2 separates {{i1}, {i2}} and {{i3}, {44}}. Since
IT'1,2(n)| = n > 4, it follows from Theorem 1 that I'; 2(n) is a 2-SFPC. O

5 The ternary secure frameproof code I's5(n)

The code I'g 2(n) is depicted by an (g) X (g) matrix where rows and columns are labelled by elements
of the set (n)q2, which are subsets of (n) of size 2. The entry at row U and column V is [U NV|.

When n = 4, we have the following code I'y 5(4)

Top(4) [ {1,2) {1,3} {L,4} {2,3} {2,4 {3,4
{1,2} 2 1 1 1 1 0
{1,3}
{1,4}
12,3}
12,4}
3,4}

SO R = =
—_ O = =N
_ = O N =
=N O =
N = O

1
1
1
1
2




Code I'; 5(4) is not a 2-SFPC because the word (1,1,1,1,1,1) can be constructed from both disjoint
coalitions {{1,2},{1,3}} and {{1,4},{2,4}}.

However, we will show that for any n > 4, I's2(n) is a 2-SFPC.
Theorem 3 For any n > 4, I'p2(n) is a ternary 2-SFPC with size N = (g) and length L = (g)

Proof. We prove by contradiction. Suppose I'z2(n) is not a 2-SFPC for some n > 4. Since
N = (’2‘) > 4, it follows from Theorem 1 and Lemma 1 that there exist four distinct codewords S,
So, S3, Sy such that for any position V

my(S1,S2) Ny (Ss, S4) # 0
(note that Si, 52,853,514,V € (n)s.)
This is equivalent to
(VNS |VASIn{Vvnss, VNSt #0, VV e (n)

Take V = S; we obtain
{27 |Sl N SZ|} N {|Sl N S3|a |Sl N S4|} 7é 0

Since for any i # 7, |S; N S;| is either equal to 0 or 1, we have

|S1 N So| € {|S1 N S|, |S1 N Sal} (3)
Similar arguments with V' = S, S3, .5, give

111 S| € {|S2 N 83,152 N Sal} (4)

|S3 N Sa| € {|S1 N S|, |S2 N S3|} (5)

151 S4] € {51 Sal, S5 N Sal} (6)

To proceed with the proof, we will use graph. Each element of (n) is represented as a point. A set
S = {z,y} € (n)2 is represented as an edge joining z and y. To make it clear, edges S; and Sy will
be drawn as unbroken lines and edges S3, S4 are broken lines.

We consider three cases

Case 1: S1 NSy =853NSs=10

Equations (3)-(6) become
0 € {|S1 N Ss3|,]|S1 NS4}
0 € {|S2 N S3],|S2 N Sy}
0 € {[S1 N Ss],[S2 N S5}
0 € {|S1 N S4l,|S2 N S4|}

— oY ; X °
o .- ° f y — oY
° ... ° f ’/: : ° ... °

Figure 1: Case 1



Thus, in this case, each of S; and S2 must be disjoint with either S3 or S4, and each of Ss, S; must
be disjoint with either S or Ss. Figure 1 shows all the possibilities.

Case 2: S]_ﬂSQ?é@, S3ﬂ5475@
Equations (3)-(6) become

1 € {|S1 N S5, [S1 N Sal}
1 € {|S2NSs|,|S2 N Sal}
1 € {|S1 N S5, [S2 N S|}
1€ {51 N Sal, |S2 N Sul}

Thus, in this case, each of S; and Sy must intersect with either S3 or S; and each of S5, S4 must
intersect with either S; or S,. Figure 2 shows all the possibilities.

Figure 2: Case 2

Case 3: S1 NSy #0, S3NSy =10
Equations (3)-(6) become

1€ {|S1NSs|,|S1NS4l}
1 € {|S2NSs|,|S2 N S4l}
0 € {|S1 N Ssl,|S2 N S3}
0 € {|S1 N S4l,|S2 NS4}

Thus, in this case, each of S; and Sy must intersect with either S3 or S4 and each of S3, S; must
be disjoint with either S; or S3. There is only one possibility as shown in Figure 3.

Figure 3: Case 3

It is easy to see in Figures 1, 2 and 3 that in all these cases if we choose V' = {z,y} then V separates
the two coalitions {51, S2}, {S3,S4}. This contradicts to the assumption that there does not exist
any set V € (n)y that can separate {S1,S2} and {Ss,Ss}. And so, the theorem is proved. Note
here that we have used the fact that n > 4 in the Figure 2. O



6 General codes I';,(n) and I'; <,(n)

We use the following theorem to prove the secure frameproof property of I'; ,.(n) and I'; <,(n)

Theorem 4 If S1, Sy, Ss and Sy are arbitrary subsets of (n) such that
Si ¢ Sj and S; ¢ S;  foralli € {1,2}, j € {3,4}
then there must exist an elements V € (n)<3 such that the following two sets
{lVnSi[,[V N Saf} and {[V N S3, [V NS}
are disjoint.
Proof. We prove by contradiction. Assume that there exists subsets Si, Sy, S3 and Sy of (n) such

that
Si¢ Sj and S; ¢ S;  foralli e {1,2}, j € {3,4} (7)

and for any V € (n)<3 we have

(VNS = |VnSs|)([VNSi— |V NSy
(VNS —VvnSs)(IVNSa| —[VNSs) = 0 (8)
We introduce a few notations.
If S is a subset of (n), we define
S{1)y = S
S(0) = S°=(@n)\S
and for an element z = (21, 29, 23, 24) € {0,1}*, we denote
S, = Sl<21) N SQ<ZQ> n Sg(z:),) N 5'4(24).
For instance, Sipi0 = 1N S5 N S3NSY.

Let s, = |S,|, then the condition (7) is equivalent to

181N 83| = Z 8z = $1000 + $1001 + S1101 + S1100 > 1 (9)
z1=1,23=0

51N 8§ = Z 8z = 81000 + S1010 t S1110 + S1100 > 1 (10)
21=1,24=0

[S2N S3] = Z 8z = 80100 + So101 + S1101 + S1100 > 1 (11)
z2=1,23=0

1SN 8§l = > s, =50100 + S0110 + 51110 + S1100 > 1 (12)
2o=1,24=0

53N ST = Z 8z = So010 + So110 + So111 + Soo11 > 1 (13)
z21=0,z3=1

154N S| = Z 8z = S0001 + So101 + So111 + Soo11 > 1 (14)
21=0,z4=1

1S3 N S5 = Z 8, = Sp010 + 81010 + S1011 + So011 > 1 (15)
29=0,2z3=1

154N 85| = Z 8z = 80001 + $1001 + S1011 + So011 > 1 (16)
22=0,z4=1



For any 0 < v, < s, such that ) v, <3, let V be an arbitrary element of (n)<3 which contains v,
elements from the set S, for each z € {0,1}*. We have

|VﬂSi|—|VﬂSj|=sz—szz E vy — Z U,

z;=1 z;j=1 2;=1,2;=0 2;=0,2;=1
Hence, (8) becomes

v1000 1 V1001 + Y1101 + V1100 — Y0010 — Y0110 — Vo111 — Vo011
1000 + V1010 + Y1110 + V1100 — Y0001 — Y0101 — Vo111 — Vo011

( )
( )
(vo100 + o101 + w1101 + V1100 — V0010 — V1010 — V1011 — V0O1l)
(vo100 + o110 + w1110 + V1100 — V0001 — V1001 — V1011 — V0oO1l)
—0 (17)

If s1100 > 1 then we can substitute into (17) with v1199 = 1 and all others v, = 0, we obtain 1 = 0,

a contradiction. Therefore, . Similarly, we have .

If s1010, 81001 > 1 then we can substitute into (17) with v1919 = v1901 = 1 and all others v, = 0,
we obtain 1 = 0, a contradiction. Therefore, at least one of s1910, S1001 must be equal to 0. And
0 $101081001 = 0. Similar argument shows that s101080110 = S010151001 = 8010180110 = $100050100 =
5100051011 = S011150100 = S011151011 = $001050001 = S001051110 = S110150001 = S110151110 = 0. Hence,

(s1010 + So0101)(s1001 + S0110) = O (18)
(s1000 + So0111)(s0100 + s1011) = 0 (19)
(soo10 + s1101)(S0001 + S1110) = 0 (20)

From (18) we have either s1910 = S0101 = 0 or s1001 = So110 = 0. Without lost of generality we can
assume that ‘ $1010 = So101 = 0 ‘

From (19) and (20) we consider four cases:

Case 1: s1000 = so111 = 0 and sgp10 = s1101 = 0

Equations (10), (11) and (13) become |S1 N S§| = s1110 > 1, |S2 N S§| = so100 > 1 and |S3 N S§| =
so110 > 1. Substitute into (17) with v1119 = vo100 = vo110 = 1 and all others v, = 0, we obtain
(—3) = 0, a contradiction.

Case 2: s1000 = So111 = 0 and sgo01 = s1110 = 0
Equations (10) and (14) become |S1 NS5| =0 > 1 and [S4+ N S¢| =0 > 1. This is a contradiction.

Case 3: so100 = s1011 = 0 and sgo10 = s1101 = 0
Equations (11) and (15) become |[S2 N S§| =0 > 1 and |S3 N S§| = 0 > 1. This is a contradiction.

Case 4: s0100 = s1011 = 0 and sgoo1 = s1110 = 0

Equations (10), (11) and (16) become |Sl N Sﬂ = $1000 Z 1, ‘52 N S§| = 81101 Z 1 and |S4 N Sgl =
51001 Z 1. Substitute into (17) with V1000 =— V1101 = V1001 — 1 and all others UV, = 0, we obtain
(—=3) = 0, a contradiction.

In all four cases we derive contradiction. This proves the theorem. O

From Theorem 4, the following theorem immediately follows

Theorem 5 For any 0 <t < n, the code I'; <3(n) is a 2-SFPC.



Proof. Let {S1,S2}, {S3, 54} be two disjoint coalitions where S; € (n);. Since
S ¢ Sj and Sj ¢S; forallie {1,2}, je€ {3,4}

it follows from Theorem 4 that 3V € (n)<3 such that the two sets {|[V N S1|,|V N Sz|} and {|[V N
S3|,|V N S4|} are disjoint. Thus, V separates {S1,S2} and {S3,S54}, and so I'y <3(n) is a 2-SFPC.
O

Corollary 1 For anyt >0, 7 > 3, and n > 4t +r, the code 'y, (n) is a 2-SFPC.

Proof. For any four distinct elements Sy, So, S3, S4 of (n);, by Theorem 4, there exists V € (n)<3
such that the two sets {|V' N S1|,|V N S2|} and {|V N Ss|,|V N S4|} are disjoint. Since n > 4t +1r =
|S1] + |S2| + |S3]| + |Sa| + r, we can add more elements from the set (n) \ (S1 U S2 U S3U Ss) to V
to obtain a set V' € (n),. We have VN S; = V' N S;, and thus, the two sets {|V' N Sy, |V’ N Sa|}
and {|V' N Ss|, |V’ N Sy|} are disjoint. This proves that the code I',(n) is a 2-SFPC. O

The codes I'y <3(n) in Theorem 5 has size N = (7) and length L = (}) + (5) + (3) = gn(n® + 5).
To maximize the code size, choose t = [n/2].

For 0 < p, A <1, p+ A =1, we have (Roman [10, page 445])

1 ) 1
)\—)\n —pn < A—)\n —un
V8nApu # ()\n) V2Tn\p #

Take p = A = 1/2, then

1 n 1
vV2n <%n> V5N
With ¢ = [n/2], we have N > \/LZ—nT‘, and therefore, L = o((log N)3).
7 Binary codes I';,(n) and T} _,.(n)

Similar to codes I'yy(n) and T'y <;(n), the binary codes I';,(n) and I'; ., (n) can be proved to be
2-secure frameproof.
Theorem 6 If S, Sy, Ss and Sy are arbitrary subsets of (n) such that
Si ¢ Sj and S; ¢ S foralli € {1,2},5 € {3,4}
then there must exist an elements V' € (n)<3 such that the following two sets
{|lVN 81| mod 2,|V N S3| mod 2} and {|V N S3| mod 2,|V N Sy| mod 2}

are disjoint.

Proof. Similar to the proof of Theorem 4. Note that the Equation (17) becomes

(v1000 + V1001 + V1100 + V1101 — Y0010 — Vo011 — V0110 — V0111)
(v1000 + V1010 + V1100 + V1110 — Y0001 — V0011 — V0101 — V0111)
(vo100 + vo101 + V1100 + V1101 — V0010 — Vo011 — V1010 — V1011)

(vo100 + vo110 + V1100 + V1110 — Y0001 — Vo011 — V1001 — V1011
=0 (mod 2) (21)

10



Corollary 2 For any 0 < t < n, the binary code I‘;S3(n) is a 2-SFPC with size N = (?) and
length L = tn(n® +5). When t = [n/2] then L = o((log N)3).

Corollary 3 For anyt >0, r > 3, and n > 4t +r, the binary code I'; . (n) is a 2-SFPC.

8 Conclusion

Below is the summary of codes in our paper:

e Code Fl,Q(n), n Z 4:

Code 'y 2(n), n > 4:

[ ]
aQ
S
a.
D
e
v
w
S
\;l-
AN
S

°
Q
@)
Q.
)

e

3

3

S

(\V4
w
S
(\V4
=
o~
+
3

Code I'} 55(n), t < n:

Code T}, (n), r>3,n >4t +r:

Choosing t = [n/2], codes ', /9] >3(n) and I‘E*n /2],>3(n) have size N exponentially large com-
pared to the length L: B

N= ([n/2]) >l b= sn(n’ +5) = o((log N)?)

Our codes have much shorter length compared to the following Encheva et al [5] explicit 2-SFPC
codes:

e Using Hadamard matrix: N =2", L = 2", ¢ =2
constraint: Hadamard matrix obtained from a Sylvester type matrix.
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e Using equi-distance code: N = qz’fll, L=¢’u~ (N xq)

constraint: 3 an affine design with the following parameters

gp—1 _gp—1
g—1" g—1 g—1

v=q"u k=qu, A=

e Using Mersenne prime and m-sequence: N =p, L =p, ¢ =2
constraint: p is a Mersenne prime.

We note here that, using Nanya et al [9] recursive techniques, Encheva et al [5] showed that it is
possible to construct codes with shorter length from existing binary codes. We have developed a
general recursive technique in [15] which can be applied to g-ary code for any value of q. We can
use this recursive technique to make our code even shorter.
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